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Abstract

A wide range of robotic tasks ranging from metal grinding to minimally inva-
sive surgery require fine control of both the position and the contact force of
the robot’s end effector. Force-position control theory for robotic manipula-
tors has been thoroughly researched and and simulated in recent years, with
both fundamental and advanced approaches being applied to a broad array of
problems with success. Surgical skin cutting has been identified as one area
that has not yet seen much work, and a 4 Degrees of Freedom (DOF) Selec-
tive Compliance Articulated Robot Arm (SCARA) manipulator is identified
as a robot configuration that could be used for this application. A hybrid
force-position controller works by running a position feedback loop in parallel
with a force feedback loop, with a supervisory controller prioritizing between
them. In this thesis, a hybrid force-position controller for a 4-DOF SCARA
manipulator was developed. The mathematical model for the kinematics and
dynamics of a SCARA robot were determined and verified using MatLab’s
Simulink and Simscape environments. A PID controller with feedback lin-
earization was designed to control the position of the end effector, while a
PI/Feedforward controller with velocity damping was designed to control the
end effector’s contact force with a simulated environment. Both controllers
were combined in a hybrid force-position architecture and simulated with suc-

Cess.
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Résumé

Plusieurs taches robotiques incluant la chirurgie minimalement invasive et le
meulage du métal, ont besoin de la régulation précise de la position et la
force de contact de l'organe terminal. La théorie du controle force-position
pour les manipulateurs robotiques a fait ’objet de recherches et de simula-
tions approfondies ces dernieres années, avec des approches fondamentales et
avancées appliquées a beaucoup de problemes avec succes. La coupe chirur-
gicale de la peau a été identifiée comme un domaine qui n’a pas encore vu
beaucoup de travail, et un manipulateur de bras robotique articulé & confor-
mité sélective a 4 degrés de liberté est identifié comme une configuration de
robot qui pourrait étre utilisée pour cette application. La commande hybride
force/position des robots manipulateurs fonctionne en exécutant une boucle
de rétroaction pour la position en parallele avec une boucle de rétroaction
pour la force, avec un controleur de supervision qui commute entre les deux.
Cette étude vise a développer un régulateur hybride de la force et position
pour un manipulateur SCARA avec quatre degrés de libertés. Le modele
mathématique de la cinématique et de la dynamique d’un robot SCARA a
été développé et vérifié a l'aide des environnements Simulink et Simscape de
MatLab. Un régulateur PID avec la linéarisation de la rétroaction était congu
pour controler la position de l'effecteur d’extrémité, ainsi qu’'un régulateur
PI/anticipatif avec I'amortissement de la rapidité pour la force de contact a
été aussi développé et vérifié. Les deux controleurs ont été combinés dans une

architecture hybride force-position et simulés avec succes.
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Introduction

The use of robot manipulators is widespread throughout the modern indus-
trial economy[l], and is rapidly expanding into new areas including health
care[2], construction[3] and consumer retail[4]. One of the major drivers of
this expansion is the increasing level of sophistication of the controllers behind
the robots. The development of force-position controllers is one of the most
important areas where this level of sophistication is increasing, and it is the

focus of this thesis.

The term robot can be applied to a wide variety of things, ranging from
bipedal humanoid robots to wheeled and aerial unmanned robotic vehicles.
The force-position control concept is one generally used for robot manipulators
- that is to say robots that have one end fixed to a static object with a series of
articulated links, joints and motors leading towards an end effector. These are
often also referred to as robot arms, as they mimic the role that a human’s arm
plays in the execution of tasks. Moving forward in this thesis, the term robot
will refer specifically to a robot manipulator, and will thus exclude robotic

vehicles or any other broader definition of the term.

Almost all robots require the position of their end effectors to be controlled.
This is typically achieved with an onboard computer sending actuating signals
to motors at each of the joints, and receiving information from sensors that
measure and calculate the actual end effector position[5]. As the robot moves
through free space, a properly designed position controller can account for the
known dynamic properties of the robot, and apply actuating forces and torques

at each of the joints that will force the end effector position to converge upon



a desired end effector trajectory[6]. However, when the robot must interact
with the external environment in any significant way, the position controller
alone may no longer be effective[7]. In many applications, the contact force

that the robot exerts on its external environment must also be controlled.

For example, a robot designed to perform metal polishing tasks must con-
trol both the position of the end effector and the contact force it exerts on
the metal. The position of the end effector must be controlled in order for the
interaction between the robot’s tool and the metal to take place, while the
contact force will determine the rate at which the metal is polished, the rate at
which the tool will wear and the heat generated during the operation. Some of
the many other applications of force-position control are robotic surgery[63],

human-robot interaction[9] and robotic assembly tasks [10][11].

Solutions to the problem of force-position control began with proposals
by Salisbury and Craig of an active stiffness control method to control robot
contact force using position sensor feedback [12][13]. This was followed by
Hogan’s development of indirect methods for force-position control using po-
sition and velocity feedback, referred to as impedance control or admittance
control[7][14][15][16]. At around the same time, both Mason[17]| as well as
Craig and Raibert [18][19] developed a direct approach to force-position con-
trol known as hybrid force-position control. These advances all occurred in
the early 1980’s, such that by the arrival of the 1990’s there existed a solid

base of fundamental approaches towards force-position control[20)].

These fundamental methods can be split into two categories: indirect
methods and direct methods. Indirect methods (impedance and admittance
control) are those which use a theoretical model to calculate the contact force
from the position and velocity sensor data[21]. Direct methods (hybrid force-
position control) use a force/torque sensor or observer to create feedback for
an independent force control loop[22]. Additional methods that incorporated
elements from both categories were developed including: dynamic hybrid
control[23], parallel force-position control[24] and hybrid impedance control
[25]. The stability, performance and suitability to different applications of

all of these force-position controller types were the subject of considerable



analysis in subsequent research[20][26][27][28][29][30][31][32][33].

Throughout this initial explosion of force-position control theory, a paral-
lel explosion in advanced methods of pure position control for robots was also
underway. These new methods included adaptive control[34][35][36], sliding
mode control[37][38] and robust control[39][40]. Ensuing papers applied these

advanced methods to the force-position control problem with success[41][42][43].

The development of these advanced methods was followed by a second
wave of new methods in the 1990’s that took advantage of advances in artificial
intelligence concepts. Control strategies based on neural networks[44][45][46],
fuzzy logic[47][48] and learning algorithms[49] all began to emerge. Similar to
the previous wave of advanced controllers, these techniques soon were applied
to the problem of force-position control with success[50][51][52][53][54].

The rapid increase in new techniques for position control and force/-
position control of robot manipulators started to slow in the mid-2000’s,
at which point the focus of the research began towards applying the new
methods to real-world problems. Problems such as soil excavation[55], robot
locomotion[56] and metal grinding[57], to name a few, have been areas where
force-position control has been successfully applied. Within the field of health
care in particular, there have been many different areas where the use of
force-position control has been applied, including limb rehabilitation[58][59],

needle/catheter insertion[60][61] and robotic surgery[62].

It is worth noting that the majority of the recent research into advanced
force/position control techniques and their application to real-world problems
is limited to simulations, with only a few exceptional papers validating their

controllers experimentally[21][57][58].

Robotic surgery is a particularly promising field for the use of force/-
position controlled robotics. The widespread use of the Da Vinci robot in
laproscopic surgery is evidence of this[64], but there also exist many other
non-laproscopic surgical tasks that robotics can assist with. One surgical task
that has not yet received significant attention from robotics researchers is the

cutting of skin. This task is an important part of many different surgical



operations and clearly involves fine control of both the position and applied
force of a tool. Some work by Duchemin et al. in the early 2000’s successfully
applied hybrid force/position control to the related problem of skin harvesting
for reconstructive surgery[65][66][67], however there has been little attention

to the area since then.

The application of force/position control to the problem of skin cutting in
robotic surgery was thus identified as a potential area for development. Using
simulations to test developed controllers would be a beneficial contribution in
the area, but an even stronger contribution would be to validate developed
controllers through physical experimentation. The focus of this thesis was set

with this area for contribution in mind.

Figure 1.1: Photo of existing 3-DOF SCARA manipulator

An existing Selective Compliance Articulated Robot Arm (SCARA) ma-

nipulator with 3 Degrees of Freedom (DOF), shown in Figure 1.1, was con-



sidered to be a good base to build off of into a robot that could be used in a
surgical cutting application. In order for it to be made suitable for surgical
skin cutting, it would need a fourth DOF to be added, allowing for control
of the orientation of the cutting tool relative to the direction of its travel
along the skin. Thus, the development of a force/position controller for a
4-DOF SCARA manipulator was set as the focus of this thesis. It would be
developed and tested through simulations, as is done in the majority of the
literature, but with a specific focus on eventual experimental validation on a
modified version of the existing 3-DOF SCARA manipulator. Efforts to make
the required modifications to the robot were also pursued in parallel to the

development of the controllers, and are discussed in Appendix A.

It is also worth mentioning that although the state of the art in modern hy-
brid force/position control is in the application of advanced (adaptive, sliding
mode, robust, etc...) controllers and artificial intelligence techniques (neural
networks, fuzzy logic, learning algorithms, etc...) to the problem - the fun-
damental control methods (PID control, feedback linearization, feedforward
control, etc...) are often able to match their performance with a much simpler
approach. An example of this is in [66], where Dombre et al. use PID con-
trol to achieve effective hybrid force/position control in their experimentally
validated skin harvesting robot. Thus, the focus of this thesis was the applica-
tion of fundamental control methods to the problem of hybrid force/position

control.

This thesis will be organized into six chapters. This introduction consti-
tutes the first, and a more detailed technical discussion into the background
of hybrid force/position control will follow in the second chapter. The third
chapter will discuss the development of the mathematical model and simula-
tions of the 4-DOF SCARA manipulator. The fourth chapter will discuss the
development of the position controller for the robot, and the fifth chapter will
discuss the development of the force/position controller. Finally, the sixth
chapter will be a conclusion to the thesis. Two appendices are also included,
one containing information on the construction of the physical robot, and one

containing all of the thesis’s source code.



2 Background

Figure 2.1: Typical SCARA robot shown with and without joint
identification[68]

The robot configuration that was investigated for this thesis was the Selective
Compliance Articulated Robot Arm (SCARA), which is serial manipulator
that has three degrees of freedom (DOF) in its most basic format. Moving
from the fixed base of the robot out towards its end effector, the first two
joints are revolute, while the last is prismatic. This configuration is useful due
to its inherent simplicity and maneuverability. In this thesis, a fourth DOF is
added to the configuration to make it more applicable the the task of surgical
skin cutting. Many generalized conclusions about the control or modelling
of the 4-DOF SCARA robot from this study will also be applicable to any

other serial robot manipulator configuration, aside from the implications of



2.1. Position Control

increased /lowered mathematical complexity involved in different robot config-
urations (i.e. computing power, accumulation of uncertainties, etc...). Figure
2.1 below shows a typical 3-DOF SCARA robot with its three joints identified.

2.1 Position Control

While this study focuses specifically on hybrid force-position control, position
control of the end effector forms the basis on which the force-position controller

must be built upon, and therefore must be introduced independently.

Position controllers for robot manipulators require a desired trajectory of
the end effector (both the position and orientation of the end effector expressed
as a time series) as input. The job of the position controller is to take this
desired trajectory, and to apply actuating forces and torques at each of the
robot’s joints in a coordinated manner, such that the position and orientation
of the end effector will converge upon the desired trajectory over time. Typi-
cally, the robot is equipped with optical encoders at each joint that measure
the actual angles of rotation for revolute joints and the joint displacements for
prismatic joints. These sensors allow for closed-loop feedback control, where
the controller is constantly comparing its actual position/orientation to the
desired trajectory, and uses the difference between the two to decide on what
signals to send to the system’s actuators. A block diagram of a typical position

controller is shown below in Figure 2.2.

Desired Tracking Actuating System output

trajecto: error forces/torques end effector pose)

—_ = | Controller | —=2= | Plant : a2
] Sensor data

Figure 2.2: Block diagram of a typical position controller

The simplest control strategy for a robot manipulator is one that treats

each joint as an independent system, and with a separate controller for each.

7



2.1. Position Control

This is known as a decentralized control strategy, as there is no centralized
controller that coordinates the movements of the joints with each other. These
types of controllers are easy to understand, build and troubleshoot, but lack
in performance because they fail to deal with coupling between joints. The
motion of one motor in, say, the third joint of a robot may create reaction
forces that affect the dynamics of the the first joint of the robot. A decentral-
ized controller cannot account for these dynamics, which will ultimately lead

to increased tracking error and reduced performance[6].

However, if near-zero tracking error is not required, and the controller
designer is willing to accept a reduced performance in favour of simplicity - a
decentralized control strategy may be best. If this is the case, a commonly used
controller type for each of the individual joints is the Proportional Derivative
(PD) controller. This controller uses two fixed gain constants, Kp and Kp,
to calculate the command forces/torques to be sent to the motors using the

control law shown below:

¢ = Kpge + Kpge (2.1)

Where 7¢ represents the command force/torque sent to the joint, and
ge represents the tracking error, that is to say the difference between the
measured joint variable (from the joint sensor) and the desired joint variable

(from the desired trajectory).

If the control gains are properly selected, an independent joint PD con-
troller can force a robot to successfully track a desired trajectory. However, in
the presence on non-linearities and coupling between joints, there will always
be a significant tracking error, and even at steady-state there will be an error
due to gravity. The size of these errors will be inversely proportional to the
size of the control gains, but there are functional limits on the control gains

based on the motor saturation limits[69].

A typical solution to the problem of the tracking error is to introduce a

third control action into the PD controller called the Integral action. Such



2.1. Position Control

a controller is thus referred to as a PID controller. The control gain K7y is

introduced into the previous control as shown below:

t
¢ = Kpge + Kpqge + KI/ qedt (2.2)
0

This additional term turns the closed loop system into a third orders sys-
tem, which allows the controller to reject step input (i.e. constant) distur-
bances, most notably the effects of gravity[69]. If the nonlinearities of the
robot system are known to be bounded, that is to say it is known that they
will not exceed a certain maximum, the system can be modelled with a step
disturbance of such a size and the PID gains can be set to guarantee conver-
gence. This has a dramatic positive effect on the performance of the system
without adding much complexity to the controller. It does not, however, take

account of the coupling between the joints.

In order to account for the coupling, a centralized controller must be used.
The simplest version of a centralized controller is the state feedback controller.
This controller assumes that the robot system is linear (although it is not),

and represents it in state space form shown below:

& = Ax + Bu (2.3)

Where x represents the n x 1 state vector of the linearized system, A
represents the n x n state matrix that defines the linear relationships between
the states, B represents the nxm input matrix defining the linear relationships
between the system’s states and the system’s input variables, and u represents
the m x 1 input variable vector. Let n represent the order of the system (i.e.
the number of states), and m represent to number of input variables. Note
that the linearized representation of a robot manipulator in state space will
always be of an order (n) that is double the number of joints (one state for each
joint’s variable, and one for the first derivative thereof), and that the number
of input variables (m) will be equal to the number of joints (the command

torque sent to each joint).



2.1. Position Control

The control law shown below can be used to stablize the system[70]:

u=—Kz+z4 (2.4)

Where K represents a m x n matrix of appropriately selected control gains,
and x4 represents an n x 1 vector of desired state variable values (taken from
the given desired trajectory). When Equation 2.4 is substituted into Equation

2.3 the following closed loop dynamics result:

&t =Ax+ B(—Kx + xq) (2.5)
& = Ax — BKxz + Bzy (2.6)
t=(A— BK)x + By (2.7)

Note that the closed loop dynamics in Equation 2.7 take the same form as
the base state space representation in Equation 2.3, just with the new state
space matrix being A — BK and the system input changed to x4. State space
control theory dictates that if the system in Equation 2.3 is controllable, that
is to say that it satisfies the following inequality[69]:

det [B AB A2B ... A"‘lB];«éO (2.8)

... then there exists a control gain matrix K that, when used in the con-
trol law 2.4, can force the poles of the closed-loop system to anywhere in the
complex plane. This means that as long as the natural limits of the system’s
actuators are respected (i.e. the motor saturation limits), the tracking perfor-
mance of the robot manipulator can be made to be asymptotically stable [71].
Typically, an optimization strategy known as the Linear Quadratic Regulator
is used to determine the pole locations in the complex plane that will maximize

system tracking performance without over-saturating the motors[71].

Much like the PD controller, a state feedback controller has two states

(one for joint position and one for joint velocity) for each of the joints, and

10



2.1. Position Control

so it will always be able to at least match the performance of the PD control
action. In applications where some linear coupling exists between joints (such
as in a 4-DOF SCARA manipulator), it will out-perform the decentralized
PD controller, as it will be equipped to deal with these dynamics (due to the

effect of the non-diagonal elements of the system’s A matrix).

The state feedback controller does however fall short in the same main
way that the PD controller does, which is in dealing with nonlinearities. The
asymptotic stability of the system is only guaranteed insofar as the system can
be accurately modelled as purely linear time-invariant (LTI) [70]. Robotic
manipulators unfortunately do not fall into this category. In fact, if a sys-
tem’s linear coupling is not significant, a decentralized PID controller will
outperform the state feedback controller, as the integral action will be able to
eliminate some or all of the steady-state error that comes from the unmodeled

nonlinear system elements.

The previously mentioned controllers are all linear controllers, and thus
will not properly stabilize the system in the presence of nonlinear dynamics.
In order to deal with the nonlinear dynamics, a feedforward control scheme
can be adopted. In order to demonstrate how such a scheme works, the

manipulator dynamic system can be represented in the form shown below:

7= 9(q,4,4) + h(q,q) (2.9)

Where 7 represents the forces/torques experienced at each joint, g repre-
sents a vector of all of the joint variables, g represents all the of the system’s
linear dynamics, and h represents all of the system’s nonlinear dynamics. The
feedforward control approach uses h(qq, ¢q) as an estimation of the system’s
nonlinear dynamics and adds them into one of the linear control laws men-
tioned above that can stabilize the remaining linear dynamics (¢g(q, ¢, G)). The
control law below shows a PID inner loop controller with a feedforward com-

pensator for the nonlinear dynamics:
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2.1. Position Control

t
¢ = h(q4, 4a) + Kpge + Kpge + KI/ gedt (2.10)
0

Where ¢4 represents a vector of desired joint variables. This controller
is efficient because the nonlinear dynamics of the desired trajectory can be
pre-calculated as soon as the dynamic model of the system and the desired
trajectory are known, reserving online computing power for the simpler lin-
ear controller. This method of pre-calculating the expected forces/torques
from the nonlinear dynamic terms based on the known desired trajectory is
also sometimes referred to as the computed torque method. When the dy-
namic model is an accurate representation of the system, this controller is
very effective, but because modelling error and uncertainty are inevitable, its
performance will always be negatively affected by them[72]. Figure 2.3 below

shows a block diagram of a feedforward control strategy:

Feedforward

Compensator |

Desired Tracking Actuating System output
trajectory error Linear forces/torques (end effector pose)
— — — | PlaNt | —
Controller

] Sensor data

Figure 2.3: Block diagram of a feedforward controller

Because the feedforward element of the controller is using only the desired
trajectory in its calculations, whenever the robot’s pose differs from the desired
pose, the nonlinear elements of the system dynamics will not be completely
cancelled, which will act as a disturbance on the linear controller. In order to
overcome this issue, the actual measured joint variables are used in Equation

2.11 in lieu of the desired joint variables. This control law is shown below:

12
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t
TC :h(q7Q)+KPqe+KD(je+K]/ qedt (211)
0

This control strategy is often known as inverse dynamics control[69], and

a block diagram of it is shown below in Figure 2.4:

Desired Tracking Actuating System output
trajectory error Linear forces/torques (end effector pose)
> > — — | PlANT | e—

Controller

| Feedback
—

Linearization

Sensor data

Figure 2.4: Block diagram of an inverse dynamics controller

The inverse dynamics controller will represent an increase in performance
when compared to the feedforward controller, but will come at the expense of
an increased requirement for online processing power, as the nonlinear dynam-

ics of the robot must be calculated using live sensor data from the robot[72].

Both the feedforward and inverse dynamics controllers use a nonlinear con-
trol method known as feedback linearization, where the a nonlinear system is
manipulated with an outer feedback loop to attempt to cancel the nonlin-
earities and convert it into a linear system. This ”linearized” system can be
controlled using the PD/PID /state space method described earlier, and if the

linearization is exact, the system will be asymptotically stable[70].

Beyond these feedback linearization methods, there exist more advanced
controllers that can deal with the nonlinearities inherent in robot manipula-
tors. In particular, sliding mode control[37][38], adaptive control[34][35][36]
and robust control[39][40] have been proven to be very useful when applied
to end-effector position control. These control methods are significantly dif-
ferent than the linear control and feedback linearization methods that have

been previously discussed, as their theoretical formulation is based off of the
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2.2. Force Control

Lyapunov Stability of the system which is applicable to all dynamic systems,
whether linear or nonlinear. The use of such methods is helpful when seek-
ing to achieve strong trajectory-tracking in the presence of uncertainties, or
unmodeled dynamics in a system. These requirements are important, but
outside the scope of this thesis, so further details of these advanced position

control methods will not be discussed.

2.2 Force Control

First, it should be noted that the term ”force control” can refer not only to the
control of the forces exerted by a robot manipulator on its external environ-
ment, but also to the control of torques exerted on its external environment.
Much like how ” position control” refers to the control of both the position and
the orientation of the end effector, the same linear-rotational duality exists in

the force/torque domain.

Force control of robot manipulators is a significantly less discussed topic
than that of position control. Almost every robot manipulator requires end
point position control, and while many also require force control, many do not.
This means that there are many robots that require only position controllers,
and there are very few robots that require only force controllers. There are
very few applications where force/torque (but not position/orientation) needs
to be controlled, and a robot manipulator is the tool chosen to complete the
task. When searching for an example of such a task, one might think of
tightening of a bolt. The external torque that must be applied cannot exceed
a certain amount so as not to damage the bolt, but it also must reach a certain
minimum for the bolt to be properly installed. However, in order for the bolt
to be tightened, it must be rotated in place, which means that the orientation
of the end-effector of a robot performing this task would in fact also need a

position controller.

If a force needs to be controller but the position does not, it is unlikely
that a robot manipulator will be selected to perform the task. As such, it

is important to understand that force control for robot manipulators always
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exists within the context of position control. This relationship is ultimately the
focus of this thesis, and will be discussed at length later, but at the moment
force control will be separated from position control in order to discuss its

theory independently.

Force control refers to controlling the forces and torques that a robot
manipulator applies to its external environment. These forces and torques can

be represented by a 6 x 1 combined force/torque vector fe,s shown below:

fext,x
fe:nt,y

fea:t,z

Text,x

feat = (2.12)

Text,y

Text,z

Where fez; represents a component of the force that the end effector exerts
on the environment in the ¢ direction, and 7, ; represents a component of the
torque that the end effector exerts on the environment in the ¢ direction. Note
that while x, y and z were selected as the coordinate system, any orthogonal,
right-hand coordinate frame can be used. Typically, the coordinate frame
is selected based on the task that the force control is being used for. For
example, if the task assigned to the robot manipulator is to apply a force
normal to a surface, the coordinate frame might be set up to have the z
axis perpendicular to the surface. Another frame that could be used for the
coordinate system of the external force vector would be the frame associated
with the end effector (i.e. the tool frame). The force/torque sensor used to
generate feedback for the force controller is usually installed at or near to the
origin of the the tool frame, and there is convenience associated with having
matching coordinate systems for the measured external forces/torques and the

desired forces/torques[29].

The goal of a force controller is to take a desired force/torque vector (fy)

as an input, and then come up with a command force/torque to apply at each
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of the robot’s motors that will cause the actual external forces/torques that
the robot applies to its environment (fey:) to converge to fg. It does this
by taking measurements of fe,; from a force/torque sensor mounted on the
end effector of the robot, and then plugging them into a force control law to

calculate a command force/torque (7¢).

The development of the force control law is highly dependent on the ex-
ternal force model that the designer of the controller adopts, and this model
will be highly dependent on the task that the robot is being used for. For
position control of the robot, the system model generally will always take the
same form, whereas in force control there is no real limit to the number of
different models that can be used. For instance, a robot designed to polish
metal using a high-speed rotary brush will experience significantly different
forces and torques when in contact with its environment than a robot designed

to make a surgical incision would.

The modelling of the external forces for this study will be discussed in
detail in later on, so for now they will only be treated in general terms. A
block diagram of a closed-loop force controlled system is shown below in Figure
2.5:

Desired Force Actuating
forces/torques tracking error Force forces/torques Pl
— — —_— ANT | G—
Controller
End effector External forces
position /torques acting
\orientation on robot
Sensor data External »
Force Model | i
System output

(external forces
/torques)

Figure 2.5: Block diagram of a closed-loop force controlled system

Typically the types of force controllers that are used are made up of similar
types of actions as those previously discussed in Section 2.1, that is to say lin-

ear PID controllers with feedforward or computed torque elements to achieve
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feedback linearization. One exception does exist, however, as a result of the
nature of the measurements made by the force/torque sensor. Typically, these
measurements are extremely noisy, which means that when numerical deriva-
tives are taken, the signal is almost completely useless. Thus, the derivative
control action is rarely used, and the linear controllers are left simply with

their PI (Proportional and Integral) actions[19].

2.3 Force-Position Control

Controlling both the position and the contact forces exerted by the end ef-
fector simultaneously is not possible using the previously discussed position
controllers or force controllers alone. In order to achieve proper tracking of
both a desired position/orientation trajectory and a desired contact force tra-

jectory, the two objectives must somehow be merged and controlled together.

Force-Position control methods can be grouped into two categories, the
first being indirect methods and the second being direct methods. In the first
category, the contact force between the robot’s end-effector and the environ-
ment is modelled as a function of the end-effector’s position (and time deriva-
tives thereof)[73]. The inverse of this function allows the controller to deter-
mine an adjusted position/orientation trajectory that, when used as input for
a simple position controller, will achieve both the desired position/orientation

trajectory and also the desired force/torque output.

The most widely-used of these indirect methods is known as impedance
control, where the relationship between the position and the contact force
is modelled as a second order mass-spring-damper system with adjustable
parameters. The resistance posed by this mass-spring-damper system, also
known as the mechanical impedance of the robot’s external environment, is
simply added into the robot’s internal dynamic model, and a position con-
troller can be built to stabilize the system[14][15][16].

While impedance control and other indirect methods of force-position con-
trol represent an elegant simplification of the problem, they can only guarantee

contact force tracking insofar as the external force model is accurate[28]. In
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reality, external forces acting on robot manipulators are often very complex,
time-variant, or unknown. If more deliberate force tracking is desired, the di-
rect methods of force-position control are more appropriate. In these methods,
an explicit closed force feedback loop is used to directly control the output
forces exerted by the manipulator. Hybrid force/position control falls firmly

into this category[73].

In hybrid force/position control, two feedback loops run in parallel to each
other. One controls the position/orientation of the end effector, and the other
controls the forces/torques exerted by the end effector on the external environ-
ment. Both controllers produce command signals that would achieve stability
for their respective goals, and the two signals are both sent to a supervisory
controller. The supervisory controller prioritizes the competing goals of po-
sition tracking and force tracking, and then sends the system’s actuators a
single command signal that is built from the two signals it received[19]. The

structure is shown below in Figure 2.6.

It is at this point that one of the fundamental problems in force/position
control should be mentioned. The problem is that it is the desired forces/-
torques and the desired trajectories are not guaranteed to be compatible with
each other, that is to say it may be impossible to achieve both targets at
once. Imagine a robot tasked with erasing a chalkboard, and that the plane
of the chalkboard is normal to the z axis of a global coordinate frame. The
position controller will attempt to force the robot to follow a trajectory with
a constant value for the x position of the end effector (while moving along
the changing paths in the y and z directions), while the force controller will
attempt to force the robot to exert a constant force in the x direction. If
there is some compliance in the chalkboard, the exertion of a constant force
against it will cause it to deform in the = direction, which means that in order
for the robot to maintain its desired force, it will need to deviate from its
target of holding the end effector position constant in the x direction. In this
case, there is no possible way to achieve both targets, because the targets are

mutually exclusive.

Indeed, unless the two trajectories are perfectly compatible, it is impossible
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2.3. Force-Position Control

to build a controller that can track both force and positions perfectly. If the
user of the robot knows enough about the environment that it operates in to be
able to come up with desired position and force trajectories that are perfectly
compatible, they could simply build their controller using this knowledge and
use a single closed-loop feedback system to track one of the trajectories alone.
This is a fundamental problem in hybrid force-position control: the desired
position and force inputs can often contain conflicting requirements, and the
controller needs to be able to prioritize the correct requirements depending on

the situation.

The solution to this problem lies in a deeper understanding of the na-
ture of the tasks assigned to the force/position controlled robot manipulator.
In [17], Mason explains that if the six degrees of freedom of an end effector
(three dimensions of translation and three axes of rotation) are analyzed in-
dependently, each one can be assigned as either having natural constraints or
artificial constraints. The natural constraints are those that are imposed by
the environment, while the artificial constraints are imposed by the robot’s
controller. These constraints can either limit the position/orientation of the
end effector, or the forces/torques that it can exert on its environment in that

direction.

To continue with the example of the robot manipulator tasked with erasing
the chalkboard, where the chalkboard is aligned with the y — z plane, the task
can be broken down into natural and artificial constraints in the following

manner:

Table 2.1: Natural and artificial constraints for a chalkboard-erasing robot

Natural Constraints Artificial Constraints

vy =0 fm:fezt,x
fyzo Uy:yE
f-=0 vy = Zp
Tz =0 Wy = WE x
wy =0 Ty =0
w, =20 7, =0
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Note that v; represents the velocity of the eraser in the ¢ direction, f;
represents the contact force between the eraser and its environment in the
direction, feq:; represents the desired contact force between the eraser and its
environment, and g and Zg represent the desired velocity of the eraser in the
y and z directions, respectively. Also, w; represents the rotational velocity of
the eraser about the 7 axis, wg; represents the desired rotational velocity of
the eraser about the ¢ axis, and 7; represents the contact torque about the ¢

axis between the eraser and the chalkboard.

It is important to recognize that the natural constraints of f,, f. and 7,
assume a frictionless sliding interaction as the eraser rotates and moves later-
ally along the chalkboard. This is obviously an oversimplification, and these
constraints could be more realistically modelled as functions of the normal
force between the chalkboard and the eraser, the velocity of the eraser in the
y and z directions, and the rotational velocity of the eraser about the x axis.
If this sort of model were to be used, the expressions that represent the re-
spective friction forces and torques would be set equal to f,, f. and 7, and

they would remain as natural constraints.

In this breakdown of constraints based on the nature of the task, there are
twelve constraints representing the position, orientation, forces and torques
each broken down into the three axes of the task frame. For most tasks that
involve a robot interacting with stiff, immobile solids, a similar breakdown
can be made[17]. With these natural and artificial constraints defined, the

problem of conflicting requirements can be resolved.

The solution to the problem is to ask the controller to only impose the ar-
tificial constraints on to the robot, while allowing the environment to impose
the natural constraints on the robot. As long as there no more than six arti-
ficial constraints and they are all mutually orthogonal (i.e. no linear artificial
constraints in the same direction as each other, and no rotational artificial
constraints about the same axis as each other), there will be no conflicting

requirements that the controller needs to prioritize between.

The supervisory controller in the hybrid force/position control scheme is
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responsible for taking the two independent sets of command signals sent by the
position controller and the force controller, and then deciding upon a single set
of command signals to be sent to the robot’s actuators. It does this by break-
ing the task down into its natural and artificial constraints, and determining
whether the force command or the position command is the appropriate signal
to be used for each of the artificial constraints[19]. Continuing on with the
chalkboard-erasing robot example, the supervisory controller would send the
command signals from the force/torque control loop for the linear x direction
and the rotational y and z directions, and it would send the command signals
from the position/orientation control loop for the linear y and z directions

and the rotational z direction.

Decomposing and rebuilding these command signals from global coordi-
nate frames, to task frames, and then mapping them into signals to be sent to
the robot’s actuators, is a complex tasks that requires significant processing
power and knowledge of the robot model. However, as these transformations
rely heavily on the robot model, the environmental force model, and the se-
lection of the task frame, their explanation will be discussed later in Chapter
5.

Hybrid force/position control will be the focus of the remainder of this
thesis. The next chapter will deal with the development of the mathematical

model of the robot that was investigated
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Model Development

The first step in the control system design was the development of a theoreti-
cal model of the robot. This process included the creating a kinematic model
of the robot using the Denavit-Hartenburg (D-H) Convention, deriving the
inverse kinematics and robot workspace, using differential kinematics to de-
termine the singular positions, creating the dynamic model using the Lagrange

method, and finally recreating the entire model in MatLab/Simulink.

3.1 Kinematic Model

The development of the kinematic model of the robot was the critical founda-
tion for the remainder of the project. Any mistakes made here might not have
been immediately apparent, but would have had dramatic effects on later re-
sults. It was also important that the frames were assigned and nomenclature
selected in an intuitive manner to allow for more straightforward analysis of

results and troubleshooting of problems.

The kinematic modelling for the robot was performed without any specific
physical parameters of any of the links or motors. All parameters were left
as variables. The starting point of the development was simply the 4-DOF
SCARA manipulator configuration. This approach made it so that design
choices on the physical parameters of the robot could be made with more

knowledge of how they would effect its performance.
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3.1. Kinematic Model

3.1.1 Frame Assignment

The first step in the development of the kinematic model was the assign-
ment of frames of reference to each link using the Denavit-Hartenberg (D-H)
Convention[74]. In the the D-H Convention, each link is numbered starting
from the fixed base of the arm, which is called link 0. The moving link at-
tached to link 0 is called link 1, and so on all the way until the end effector is
reached. Likewise, the joints of the robot are also numbered such that joint ¢

forms the connection between link 7 — 1 and link 4.

The z axis of each frame i (i.e. z;) is set parallel to the joint axis of the
joint ¢ 4+ 1. Next, the z; axis is set as the common normal between the z;_1
and the z; axes. When the z;_1 and z; axes are parallel (as is commonly the
case), the x; axis can be set arbitrarily to wherever is most convenient for the
frame assigner. With the z; and x; axes established, the origin of the frame,
O;, is set as the intersection of the two, and the y; axis is set as direction
normal to the x;-z; plane that originates from O; in the direction compliant

with the right-hand rule for frames of reference.

The origin of frame 7 is set at the intersection of the common normal of
the z; and z;11 axes (i.e. a;+1) and the z; axis. T Note that if the axes z;
and z; 41 are parallel (as is commonly the case), there are an infinite number
of common normals between them, and thus an infinite number of locations
for the origin of frame ¢. In this case, the origin may be set wherever is most

convenient.
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Figure 3.1: Schematic of SCARA manipulator with frame assignments

A special case exists for the assignment of the base frame of the robot (i.e.
frame 0). As with all other frames, the zyp axis must align with the axis of
joint 1. However, because there exists no frame before it, no common normal
can be used to set the z¢ axis. Thus, the zy axis (and furthermore the origin
and yp axis) are all set arbitrarily. In this case, they should be set to align the
origin with some known reference point in the environment wherein the robot
operates. The base frame is the only fixed frame, so it will be used to define
the motion of the robot’s end-effector in its operating environment. Thus, it is
best to set the origin at some known reference point in the environment that
coincides with the zy axis. A good choice for this is the point where the fixed
arm of the robot is attached to its operating environment (i.e. the ground, or

a platform on which it is operating).

A second special case exists for the assignment of frame n, where n repre-
sents the number of joints in the robot. Because there is no joint n 4 1, the
zn axis must be set arbitrarily. Typically, the z, axis is chosen to be set to
be aligned with z,_1, or to be aligned with the approach vector of the end
effector. Once z, is set, the same rules apply for setting the location of O,,

and the x, and ¥, axes.
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Figure 3.1 shows a schematic of the SCARA manipulator and the frames

that were assigned to each joint using the D-H Convention.

3.1.2 Link Connection Definitions

Once frames are assigned to each joint, the D-H Convention uses four variables
to describe the transformations between successive frames (i.e. the geomet-
ric characteristics of the robot links). These four variables are called link
length, link offset, link twist and joint angles (represented by a;, d;, a; and 6;,

respectively).

The link length, a;, (as previously described) represents the length of the
common normal between the z;_; and z; axes. The link twist, «;, represents
the angle of rotation about the x; axis that is required to bring the z;_; axis
parallel to the z; axis. Once the transformations defined by a; and «; are done,
the link offset, d;, represents the distance along the z; axis that O;_1 must be
translated in order for it to be coincident with O;. Finally, once these three
transformations are done, the joint angle, 6;, represents the rotation about

the z; axis required to align the x;_1 and x; axes.
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> M 1
th \]/' X1
y:/]?‘ ds

Figure 3.2: Schematic of SCARA manipulator showing link connection vari-
ables

Figure 3.2 shows an updated schematic of the 4-DOF SCARA manipulator
with the important link connection variables labelled. These variables were
collected and then listed in Table 3.1. It is important to note that the variables
01, 02, ds and 64 could vary over time, as they were the variables associated
with the movement of each joint in the RRPR configuration. The variables [y,
l1, lo and l4 represent the fixed lengths of each link in the robot. They were
left as variables so that they could be parameterized during any future design

process.

Table 3.1: D-H Table for 4-DOF SCARA manipulator

Link a; d,; (873 Oi
1 I lo 0 01
2 lQ 0 ™ 02
3 0|ds| 0O
4 0 [ly| O |6,
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3.1.3 Forward Kinematics

With the link connection variables defined, the D-H Convention provides a
straightforward path to kinematic equations by using homogeneous transfor-
mation matrices. These 4 x 4 matrices are a mechanism that can be used to
convert a point or a vector from one frame into another, both by rotating it
and translating it. The homogeneous transformation that converts a vector
from ¢ to frame ¢ — 1 is represented by Aﬁ_l, and can be calculated using the

following formula:

cl; —sb;co; sbisay;  a;ch;

Aﬁ_l _ s8; cBico; —cb;sa; a;s; (3.1)
0 say coy d;
0 0 0 1

Note that the notations s and c¢ are shorthand for sine and cosine, s; and
¢; are shorthand for sinf; and cosf;, s;; and c¢;; are shorthand for sin(6; + ;)
and cos(0; + 0;), and finally that s;; and c¢;; are shorthand for sin(6; — 6;) and

cos(#; — 6;). Also note that moving forward, the vector ¢ shall represent a

T
vector of the four joint variables, that is to say ¢ = [91 0y ds 94] .

Homogeneous transforms can be concatenated by post-multiplying them,
thus yielding the overall homogeneous transform from the end effector to the
base frame. Thus, the overall homogeneous transform for the 4-DOF SCARA

robot was calculated as follows:
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Al(q) = AY(q) A3(q) A3(q) Af(a) (3.2)
_Cl —S51 0 ll C2 S9 0 lg 1 00 0 C4 —54 0
S1 C1 0 0 SS9  —C9 01 0 0 S4 Cq 0
Af(q) =
0 1 I 0 0 -1 0 0 1 ds 0 1
i 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0
(3.3)
_01221 s191 0 licr +lzcr2
A(g) = | T2t T 0 lis1+los12 (3.4)
0 0 -1 lg—1Is—ds
0 0 0 1

This homogeneous transform contains all the information needed to com-
plete the kinematic model. Rows 1 through 3 of columns 1 through 3 make
up the rotation matrix (i.e. a description of the orientation of the end effector
with respect to the base frame), and rows 1 through 3 of column 4 make up
the position vector of the end effector in the base frame. The rotation matrix

will be represented by R} and the position vector will be represented by P

Cioi S122 O licy + lac12
R(q) = |s191 —ci03 O P)(q) = |lis1 + lasio (3.5)
0 0 -1 lo— 1y —d3

These results made intuitive sense for a number of reasons. First, the z
component of P is lg — I4 — d3. Just by inspecting Figure 3.2 it can be seen
that this should be the case. The z and y components of P{ are functions of
only 61 and 65, which also makes intuitive sense. Additionally, 8, has no effect
on the position of the end effector, and d3 has no effect on the orientation of
it. These intuitive observations confirmed the validity of the D-H convention

methods and that they were effectively employed in this application.

With these results, the position and orientation of the end effector could

be determined if the state of each joint variable was known. For control of the

29



3.1. Kinematic Model

end effector, however, it was important to be able to determine the required
set of joint variables that would result in a given end effector position and
orientation. This is called inverse kinematics, and was the next step in the

full development of the model.

3.1.4 Inverse Kinematics

Inverse kinematics are developed by taking the forward kinematic equations,
and simply re-configuring the equations to solve for the joint variables, instead
of the end effector position and orientation. This process is complicated by

the fact that multiple solutions often exist.

Before going further, it is necessary to establish the convention that the
position and orientation of the end effector will be described with. The posi-
tion of the end effector will be relatively simple. The vector Pg will represent
the location of the end effector in the base frame, and will be made up of the
three components xg, yg and zg. The orientation of the end effector is more

complex to describe.

There exist many ways to describe transformations in orientations, but
the one that will be used here will be roll-pitch-yaw. In this method, three
successive elementary rotations are made. The first is the "roll” rotation, of
an angle ¢ about the xy axis. The next is the ”pitch” rotation, of an angle
v about the yg axis, and the final is the ”yaw” rotation of an angle ¢ about
the zg axis. Because the axes of rotation for all three are all part of a fixed
frame, the determination of the overall rotation matrix can be found using

pre-multiplication:
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3.1. Kinematic Model

Rg = Rz(¢) Ry(y) Rx(w) (3'6)
[cp —sp 0 cv 0 sv| |1 O 0
Rgp=|s¢ cp O 0 1 0| |0 ep —s9p (3.7)

| 0 0 1| [-sv O cv| |0 sy

[cocr  cosvsi — sdc)  chpsver + spsi
RE = |s¢cv  spsvsy) + copcp  spsvcy) — cosiyp (3.8)

—sv cvsy cvey

The goal of the inverse kinematics will be to produce a solution for each
joint variable when given a set of ZYX Euler Angles, along with a location of
the end effector.

The first and simplest component to solve for in this case was for the third
joint, dg, as it was only present in one part of the forward kinematic solution,

ZE.:
zp =lo— 1y —ds (3.9)
d3:lo—l4—ZE (310)

Next, the ZYX Euler Angle rotation matrix from Equation 3.8 was com-

pared with R from 3.5 to come up with obsevations regarding v and :

Ci9di  S12d 0 cocv  cosvsy — spcyy  copsve) + spsip

RY(q) = S197 —Coi O Rg = |spcv  spsvsy + cocyp  spsvep — chpsy
0 0 -1 —sv cvsy cvey

(3.11)

Looking at r3; in both matrices, it could be seen that sv = 0, which meant
that v would always be either 0 or 7. Substituting this result into r32 and r33

showed that i would be m when v was 0, or it would be 0 when v was 7. In
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3.1. Kinematic Model

the ZYX Euler Angle framework, a rotation of m about either the fixed z axis
or the fixed y axis produced the same result, so there will exist no solution
that differentiates between the two possibilities. Therefore, it was arbitrarily
chosen that v would be set to 0 and that 1) would be set to m. With this set,
comparing 711, 721, 712 and 92 between the two rotation matrices showed that

¢ would always be equal to 61 4+ 05 — 0,.

These results made sense, as there was no way that any of the joints could
have been manipulated to change the orientation of the end effector about the
o or yo axes, and the orientation of the end effector about the zy axis was

simply a linear combination of the joint angles 1, 2 and 4.

Figure 3.3: Two dimensional representation of links 1 and 2

In order to solve for 6; and -, some new geometric intermediate variables
were required. Figure 3.3 shows them all and what they represent. The first

solution that will be shown is for 65, using cosine law:
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3.1. Kinematic Model

¢ = a® + b* — 2abcos3 (3.12)
(\/m)Q = )% + 1y% — 21y lyc0s (180 — 65) (3.13)
TE’ + yE2 =112 + 152 + 2l1lycos0y (3.14)

0y = +arccos (mE2 T yE22l1;2l12 — l22> (3.15)

It is important to note that there are two possible solutions for f2: one
where it is positive and one where it is negative. These two cases correspond
to the ”elbow-up” and ”elbow-down” configurations of the second joint. This
kinematic ambiguity had major implications in the path-planning and control
of the robot.

In order to calculate 64, sine law was used:

siny  sinf

Nl
L ; (3.16)
sin (fr —601)  sin (180 — 6-) (3.17)
L2 Vo +yr? .
sin (arctan2(yg, xg) — 01) = lo sinfs (3.18)

Vre?+ye?

losind
01 = arctan2(yg, xp) — arcsin (251112) (3.19)

Vae? +yp?

At this point the two calculated values of 65 from Equation 3.15 could be
substituted into Equation 3.19 to determine the two corresponding values for

f1. Thus, the inverse kinematic equations of the robot were:

losind
01 = arctan2(yg, rg) — arcsin B B (3.20)
Vrp?+yr?
2 2 _1.2_2
09 = tarccos TE +YE ! 2 (3.21)
2111
d3 = lo — l4 — ZE (3.22)
0y =0, —05— ¢ (3.23)
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3.1.5 Workspace

With the forward and inverse kinematic models fully developed, the shape of
the robot’s workspace could be determined. Given the physical parameters

of the robot (link lengths, joint limits), the workspace could be plotted and
visualized.

I1 =0.4,|2=0.4 |1 =0.4,I2=0.4
0, =[ -0.75m, 0.751] 6, =[-0.57, 0.57]
0, =[-m 7] 6, =[-0.875x, 0.875x]
0.5 0.5
5 E
E o =0
0.5 -0.5
-0.5 0 0.5 -0.5 0 0.5
x[m] x [m]
I_I =0.4, |2=0.4 |1 =0.4, |2 =0.2
6, =[ -0.25m, 0.257] 0, = -0.25m, 0.257]
6, =[0.75m, 0.757] 6, =[ -0.75, 0.757]
0.5 0.5
E £
= 0 = 0
-0.5 -0.5
-0.5 0 0.5 -0.5 0 0.5
X [m] X [m]

Figure 3.4: 2D representation of robot workspace with varied physical param-
eters

34



3.1. Kinematic Model

As the forward kinematic model of the robot found in Section 3.1.3 showed,
the fourth joint contributed only to the orientation of the end effector, and
not to its position. Additionally, Equation 3.9 showed that the third joint
(and the only the third joint) contributed only to the zg position of the end
effector. This meant that the determination of the workspace was largely a
two-variable problem, governed by the limits of joints 1 and 2. Using the same
logic, the only two link connection variables that could change the shape of

the workspace were [1 and I5.

The workspace was plotted using a number of arbitrary values for Iy, lo and
for the upper and lower limits of 6; and 5. These plots are shown in Figure
3.4. The red areas represent the regions of the workspace that were accessible
only in the ”elbow-up” configuration, while the blue areas represent those only
accessible in the ”elbow-down” configuration. The purple areas represent the

regions that were accessible with both configurations.

These images of course only show a two dimensional cross-section of the
workspace over the z-y plane. Figure 3.5 below shows a full three dimensional

representation of the workspace.
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3.2. Differential Kinematics

0.2

0.8
0.4 02 %[m]

Figure 3.5: 3D representation of robot workspace

With the workspace, the forward kinematics and the inverse kinematics all

determined, the kinematic model of the robot could be considered complete.

3.2 Differential Kinematics

The next step in the development of the robot model was to determine the
differential kinematic equations that represented the movement of its joints
and links through space and time. By taking the kinematic equations for
each joint from Equation 3.4 and differentiating them once with respect to
time, the relationship between each of the joint velocities and the end effector
velocity could be ascertained. This relationship between joint and end effector
velocities is represented by a matrix called the Jacobian, which is used in many

subsequent levels of robot model development.
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3.2. Differential Kinematics

3.2.1 Computing the Jacobian

To find this Jacobian, the generalized velocity of the end effector first had to
be calculated. The generalized velocity vector shall be represented by v, and

shall be a combination of the linear velocity (P) and angular velocity (w):

50
Py
0
Wy

v = (3.24)

The linear and angular velocities of the end effector were calculated it-
eratively, by calculating the linear and angular velocities of each successive
joint. The following generalized equations were used to calculate each frame’s

velocities once the velocities of the previous frame were known:

PP=P) + Pio—l,i + (W) x PYyy) (3.25)
0 0 0

Wi = Wi Wiy (3.26)

In these equations, the subscripts and superscripts can be explained as
follows. Using the example of P207 3, the superscript 0 represents the frame of
reference that the variable (in this case the linear velocity) was being compared
to. The subscript 2,3 means that the velocity that was being measured was
the linear velocity of the origin of frame 3 with respect to the origin of frame
2. If the subscript is a single number, then it simply means that the variable
in question is being measured in absolute terms, not as one frame with respect

to another.

These two equations could be expressed more clearly when it is known

whether the joint ¢ is a prismatic or revolute joint. For prismatic joints, it

0
i—1,

third (i.e. right-most) column of the rotation matrix RY ;. Thus, Equations

is known that w = 0 and that PZ-O_LZ» = diz?_l, where z?_l represents the

3.25 and 3.26 could be simplified to the following in the case of prismatic

joints:
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3.2. Differential Kinematics

P?=P) +di2? |+ (wi—y x Pio—l,i) (3.27)
W =Wl (3.28)
For revolute joints, it is known that w?,u = éiZ?,l and that ‘E.)iofl,i =

w?_l’i X Pio_u. Substituting this into Equation 3.25 yielded the following:

P =Py + (w1 x PLg) + (Wi x PLyy) (3.29)
PZ-O = on—l + (UJ?_LZ‘ + W?_l) X Pz'o—l,i (3.30)
PO =P+ x piO_M (3.31)

And substituting into Equation 3.26 yielded the following;:

W) =wd | +6;2) (3.32)

Using Equations 3.27, 3.28, 3.31 and 3.32, one can calculate the generalized
velocity vector for each frame if the generalized velocity vector of the previous
frame is already known. By starting at the base frame (whose generalized
velocity vector was 0 in all directions), one could calculate the vector for each
successive frame until finally, the end effector was reached. Each successive
joint made the equations longer and more complex, which made sense based
on the increasing effects of coupling between the joints moving away from the

base frame.

Using the MatLab script shown in Appendix A, the end effector generalized

velocity vector was found to be:
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3.2. Differential Kinematics

1, (9’1 + 9'2) sin (61 + 02) — 116;sin0), |
' Iy <01 + 92) cos (01 + 02) + 1161 cosb;
o0 = P4§ —ds (3.33)
Wy 0
0
i 91 + 92 — 94 |

These results confirmed the validity of the MatLab script, as Pf is equal
to the first derivative of P{ (from Equation 3.5) with respect to time. Ad-
ditionally, in Equation 3.5, it was clear that the rotation matrix was just an
elementary rotation of #; + 6 — 64 about the base frame’s z-axis. These results
confirmed that w{ is also equal to the first derivative with respect to time of

such a rotation.

The Jacobian of the robot, represented by a 6 x n matrix J(g), can pri-
marily defined as the matrix that maps the joint velocities, ¢, to the robot’s

end effector generalized velocity vector v:

v=J(a)q (3.34)

Looking at the results in Equation 3.33, the Jacobian for the 4-DOF
SCARA manipulator was found to be:

_—ZQSiIl (91 + 92) — [1sinf; —lsin (91 + 92) 0 0
lacos (01 + 02) + licosh;  lacos (1 +602) 0 0O
0 0 -1 0
J(g) = 3.35
(@) ; N BN CED
0 0 0
i 1 1 —1_

Note that the Jacobian can be broken down into the translational Jacobian

Jp and the rotational Jacobian Jo:
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3.2. Differential Kinematics

J
J="F (3.36)
._JO
_—12812 - l181 —lzslg 0 0 000 0
Jp = | lycia + licy lac19 0 O Jo=10 0 0 O (3.37)
0 0 -1 0 11 0 -1

3.2.2 Kinematic Singularities

By analyzing the Jacobian from Equation 3.37 it was possible to confirm some
things that were already known about the robot’s kinematics, and also possible

to learn some new information.

The first observation of importance was that the fourth and fifth rows
of the matrix were all zeroes. Looking back at Equation 3.33, this meant
that there was no way to change the angular velocities of the end effector
about the base frame’s x or y axes of rotation, and thus no way to change
the angular orientation of the end effector about those same axes. This was
a manifestation of the fact that the SCARA arm only had four degrees of

freedom, and so was not a new piece of information.

The third and fourth columns of the Jacobian clearly showed that the
linear velocity of the end effector in the z-direction and the angular velocity
of the end effector about the z axis of rotation could both be controlled at all
configurations of the robot directly by the velocities of the third and fourth
joints, respectively. This confirmed the existing understanding of the robot’s

kinematic model.

The more interesting conclusion that could be derived from the Jacobian
was in consideration of the first two columns. These columns represented the
effects that changes in the velocities of joints 1 and 2 had on the generalized
velocity of the end effector. It could be seen that the third, fourth and fifth
rows of these two columns were zeroes, and the sixth row was just one. This
meant that the first two joint velocities had no effect on the z-position, the

z-orientation nor the y-orientation of the end effector. It also meant that
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3.2. Differential Kinematics

the effect it had on the z-orientation of the end effector was simply a linear
combination of the effect that the fourth joint had. However, the first two rows
of these first two columns show expressions that represent the only means that
the robot had of controlling the x or y positions of the end effector (because
the first two rows of the third and fourth columns were all zeroes). These four
elements are shown in a smaller matrix below, which will be referred to as

J12:

-1 —1 -l
Jig = 2512 — 181 2512 (3.38)

lacio +lici  lacio

Since Ji2 represented the whole connection between the robot’s joint ve-
locities and the end effector’s linear velocity in two directions (z and y), it
can be said that if Jjo ever became rank-deficient (i.e. the columns became
linearly-dependent), the robot end effector would be in a position of reduced
mobility of the end effector (in the x-y plane). To be more specific, this would
mean that a finite velocity of the end effector in a certain direction would
require an infinite joint velocity for at least one of the joints. These config-
urations of reduced mobility are referred to as ”kinematic singularities” or

”singular positions”. To find them, the determinant of Jyo was set to zero:

det (J12) = 0 = (—l2s12 — l151)(l2c12) — (—l2512)(l2c12 + l1c1)
0 = —ly?s12c12 — lilasicia + la?s12c12 + lilaci s1a
0 = lila(c1512 — s1012)
0 =1l (sin (01 + 05 — 01))
0 = sin (#2)

9220 or 92:7'('

This meant that if the second joint was set to either 0 or 7 radians, the
robot would be in a singular position. This made sense, because if the second

joint was at 0, the first two links would be fully extended, meaning that
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3.3. Dynamic Model

the robot would no longer be able to move in the direction parallel to the
first two links. If the second joint was at 7 radians that would mean that
the first two joints would be parallel again, and the robot would be at the
internal boundary of its workspace. These kinematic singularities are known

as boundary singularities.

3.3 Dynamic Model

The final step in the development of the mathematical model of the robot
was to incorporate information on the masses and moments of inertia of each
link. Doing so would progress the model from a kinematic model to a dynamic
model. This was extremely important, because it would allow for an analysis
of the forces acting on the robot, and in turn to analyze the forces (or torques)

required by each joint’s motor in order to control the robot.

The Lagrange Method was used to generate the dynamic model of the
robot. In this method, the potential and kinetic energies of each link are
considered and modelled mathematically. The resulting expressions can be
differentiated with respect to time and to the the joint variables, and combined

to create a general set of dynamic equations.

First, expressions had to be built for the positions, rotational velocities
(w?}Gi) and translational velocities (PgGi) of the centres of mass of each link
1, expressed in frame 0. Equations 3.25 and 3.26 were used to come up with

the following expressions:

42



3.3. Dynamic Model

20
FPea,

20
Pea,

20
Pea,

20
Pea,

[—01(l1s1) + le1ws1) + leyer))
01(licr) + leawer) — leyst))
0

[(01 + 02) (leayerz — leaas12) — 01 (lis1 + losiz) — Balasio]
(61 4 02) (le2acr2 + leays12) + 01 (lier + laciz) + balacio
0

[(01 + 02) (Iesyerz — legasiz2) — 01 (lis1 + lasiz) — Balasio]
(01 + 62) (lezwcrz + lesysi2) + 01 (lier + laciz) + balacrs
_d's

[(01 + 02 — 04) (IeayCrog — leawS101) — 01 (ls1 + las12) — Oalasio
(01 + 02 — 04) (leawCr2i + leaysi0a) + 01 (licr + laciz) + Oalacra

i —ds3
[0
W%GI == 0
101
0T
woa, = | 0
|01+ 03]
0T
wea, = | 0
|01 4 03]
[ 0
WeG, = 0
_01 + 0y — 04

Note that the variables in the form [, or l., represent the x and y coor-

dinates of the location of the centre of gravity of link i, expressed with respect
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to the frame 3.

The next step in the Lagrange Method was to build expressions that rep-
resented the kinetic energy (k;) and the gravitational potential energy (u;) of
each link ¢ in the robot. The formulae to calculate these expressions is shown

below:

1 . . 1
ki = Qmi(PgGi)TPCO’Gi + §(W%Gi>TICiw%Gi (3.45)

u; = —m;g" Pg, (3.46)

In these equations, m; represented the mass of link ¢ in kilograms, g repre-
sented the acceleration due to gravity in metres per square second, expressed
as vector with respect to frame 0, and Pc; represented the position of the
centre of mass of link ¢, expressed with respect to frame 0. I¢, represented

the inertia tensor of link ¢ at its centre of mass, which took the form:

Imci _I:L‘yi _Ixzi
Io, = | Ly, I —I, (3.47)
_I:czi _Iyzi Izzi

In this tensor, I, Iy, and I.., represented the mass moments of inertia
of the link, while I,,, I, and I, represented the mass products of inertia.
Each of them was measured in kilogram square metres. When the inertia
tensor is measured at the centre of mass of the link, the mass products of
inertia will all equal zero. The entire inertia tensor was a physical property of
each link that was held constant as long as the geometry and the density of

the link does not change.

k(t) =ki + ko + k3 + ka (3.48)
u(t) =uy + uz + ug + ua (3.49)
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Once k; and u; were calculated for each link, they were added all together to
produce expressions that represented the total kinetic (k(t)) and gravitational
potential (u(t)) energies of the robot as a function of the robot’s geometric
and inertial constant properties, as well as the time-variant joint positions
and velocities. Because the joint positions and velocities could change over
time, the total kinetic and gravitational potential energies of the robot could
be expressed as functions of time. Unfortunately, these expressions were too
long to be shown on paper, but they can be re-calculated using the MatLab
scripts shown in Appendix A.

The expressions for k(t) and u(t) were then plugged into Lagrange’s equa-

tion below to solve for the dynamic equations of the robot:

Ti =

d ( Ok ok  Ou
a <aé,~) - o (3.50)

In this formula, 7; represents the force or torque (in Newtons or Newton
metres) required at joint ¢ to maintain the kinetic/potential energies that were
plugged into the right-hand side of the equation. The generalized joint force/-
torque vector 7 = |14 T T3 T4 ' could be created by stacking Equation
3.50 calculated for each joint on top of one another. The expression that was
calculated to be equal to the vector 7 represented the force/torque required
at each joint to counteract the inertial, centrifugal, Coriolis, and gravitational
forces/torques acting on the robot. It did not, however, represent the forces/-
torques required to overcome any frictional forces (in the motors or otherwise),
any electrical forces internal to the motors, or any external applied forces/-

torques acting on the end effector.

The generalized force/torque vector 7 could be broken down into the three
types of forces/torques that it represented, the mass/inertial, the centrifugal/-
Coriolis and the gravitational forces/torques:

= M(0)8+ C(0,0) + G(0) (3.51)
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T = (3.52)

0= (3.53)

In this form, M () represents the mass matrix, C/(0, ) represents the vec-
tor of centrifugal and Coriolis terms, and G(0) represents the vector of gravi-
tational forces. While the entire expression for 7 was so large that it does not
show well in one piece, if it was broken down into these individual elements it

can be shown:
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My My, 0 My
My M. 0 M.
M@= | T > (3.54)
0 0 m3g+my 0

My My 0 Tn4(lc4:z2 + lc4y2) + IZZ4

Mt = Loy + Loy + Loy + Loy +ma (4 le1z)? + leay®)
+ma(l?+ (lo + leaw)? + leay® + ma (% + (Io + lega)® + lesy?)
+ma(l? + 1% + leaz” + leay®) + (ma + mg + ma)lilacs)
+ maly (leazca + leays2) + msli (lesoca + lesys2)
4+ my (lc4m(l1624) + 2l2cs) + leay(lisgg — 2l234)) (3.55)
My = Moy = Loy + Loy + Loy +ma((lo 4 leag)? + leay®)
+m3((la + lese)® + legy®) + ma(lo? + loaw® + leay?)
+ (ma + mg + my)lilaca + mali (leazca + leays2)
+ mgly (leszca + lesys2) + ma(leaz(licog + 2lacs)
+ leay (1895 — 2l254)) (3.56)
May = Ly + Ly + Loy + ma((l2 + le2a)® + lo2y?)
+ms((l2 + lesz)? + lesy?)

+ma(lo? + leaw” + leay® + 2o (leages + leaysa)) (3.57)

My = My = =y (leag (leaw + loca + licog) + leay(leay — 1254 + l1597))
— 1, (3.58)
Moy = Mys = —ma(leaz” + leay® + lo(leazcs + leaysa)) — L, (3.59)

Note that many of the terms in the mass matrix came in pairs, because

the mass matrix must always be a positive semi-definite matrix.
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Cy

C(0,6) = % (3.60)
C3
Cy

Cy =0 (3.61)

Csy = l191((91 + 92) ((mz + m3 + my)lasa + (Mmaleas + mglch)SQ)
— 1161 ((61 + 62) (maleay + msleay)ca

+ (01 + 6y — 94) (maleazSoz — MaleayCoy)) (3.62)
C3=0 (3.63)
Cy = ma(01 + 02 — 04) (12(01 + 02) (leayca + leagsa)

4+ 1my (01 + 0y — 94)l19'1(lc4y024 — lc4zs24)) (3.64)

And finally the vector of gravitational forces:

G() = (3.65)

Once the expressions for M (), C(6,0) and G(0) were found, the dynamic

equations for the robot were nearly complete. However, as mentioned earlier,

Equation 3.51 did not take into account any external forces/torques applied

at the end effector. In order for the robot to perform any useful tasks (lifting,

carrying, etc...) the model had to be be built to account for these external

forces/torques. To account for these additional strains on the motors, a simple

term was added to the end of the equation:

T=MB)6+C0,0) + GO) + T fort (3.66)
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Where f.;+ represented the generalized end-effector force-torque vector
(i.e. the z, y and z forces stacked on top of the z, y and z torques). These

forces/torques had to be expressed with respect to frame 0.

This additional term at the end takes advantage of a convenient property
of the robot’s Jacobian. Not only could it be used to map the end effector
velocity to the joint velocities, it could also be used to map the end effector
force/torque vector to the joint forces/torques due to the concept of virtual
work[69)].

3.4 MatLab/Simulink Model

With a mathematical model representing the robot in place, the model had to
be implemented virtually to enable simulations. The model had to be built as
a system that took applied joint forces/torques (7) as inputs, and produced
an end-effector trajectory as output (xg(t),yg(t), zg(t)). The individual joint
variables (¢(t)) and joint velocities (¢(t)) would be internal states of the sys-

tem.

The first step in the development of the virtual model was the assignment
of shapes and weights to each of the links so that their inertial properties could
be calculated. In order to do this, each of the four links, along with a base
piece were all built in Solidworks. Images of these models are shown below in

Figure 3.6:

Base Link 1 Link 2 Link 3 Link 4

A=

Figure 3.6: Solidworks models of all four robot links and the base
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Next, the parts were all imported into MatLab’s Simscape Multibody App,
and linked together. Simscape Multibody allows users to assign densities to
solid objects, and so all parts were assigned densities of 1000 % Figure 3.7

below shows the assembled configuration of all the parts:

Figure 3.7: Simscape Multibody Assembly of Robot Links

With the densities and geometries of all the parts known, the inertial
properties could all be calculated. The results of these calculations are shown
below in Table 3.2:

Table 3.2: Inertial parameters for robot model links

Link Link 1 | Link 2 | Link 3 | Link 4
Length (m) 0.4 0.4 ds 0.15
Mass (kg) 6.01 5.37 4.03 0.91

Density (%) 1000 1000 1000 1000

leiz (m) 0.185 | -0.224 0 0
leiy (m) 0 0 0 0
lei (m) 0 0 0.201 | -0.122

Iz, (kg-m?) | 0.0132 | 0.0234 | 0.0802 | 0.0016
I, (kg-m?) | 0.1810 | 0.1261 | 0.0802 | 0.0016
L., (kg-m?) | 0.1807 | 0.1558 | 0.0064 | 0.0025
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3.4. MatLab/Simulink Model

An important observation from this table is that all of the links had centres
of mass that were displaced from their associated frames of reference in only
one of the three dimensions, due to rotational symmetry. This simplified the
dynamic equations considerably, as many of the terms disappearred when I.;,,
leiy or le;, were zero. With these values substituted in, the M matrix was thus

simplified to:

2.34cosfs + 3.23 1.17cosby +1.12 0 —0.0025

1.17cosfs + 1.12 1.12 0 —0.0025
M(g) = | T (3.67)
0 0 494 0
—0.0025 ~0.0025 0 0.0025

. and the C' and G vectors were simplified to:

0 0
. 1.176, (6, + 62)sind 0

C(6,6) = i 1O+ 2)sind CO=| (3.68)
0 0

The only variables that made any changes to the dynamic equations of
motion were 6o, 91 and 92. This made sense, because the angle 6> was the
only joint variable that could affect the configuration of the robot in a way that
would have an effect on the other joints (if the elbow was extended the entire
arm would require more torque at joint 1 to rotate than if it was retracted).
Additionally, it made sense that 6; and 6, would affect the C' matrix, as they

would increase the centrifugal /Coriolis forces acting on joint 2.

With the physical properties of the robot model established, it became
possible to model the dynamic system in MatLab’s Simulink. The dynamic
system was modelled to take torque commands as inputs, and to produce
joint angles/positions, velocities, and accelerations as output. In order to do

so, Equation 3.51 was rearranged as follows:
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3.4. MatLab/Simulink Model

T=M(0)0+C(0,0) +GO) + I for (3.69)
M) =1 —C(0,0) —GO) + I four (3.70)
0=M©O)"(r—C0,0) - GO) + I feut) (3.71)

Using Simulink, the calculated 0 signal could then have two numerical
integrations performed on it to come up with 6 and 6 signals. These two
signals could be fed back into the equation through a feedback loop to continue
the simulation, and could also be used as the system output. Put together in

Simulink, the model of the system dynamics is shown below in Figure 3.8.

Note that the MatLab function block M_inv had the following internal

code:

function Minv = M__inv(theta2)

Minv = [—0.0027974/(0.0034132*cos(theta2) 2 —
0.0058971), (0.0029211*cos(theta2) + 0.0027974)
/(0.0034132xcos(theta2)"2 — 0.0058971), O,
(0.0029211*cos(theta2))/(0.0034132%cos(theta2) 2 —
0.0058971); (0.0029211%cos(theta2) + 0.0027974)
/(0.0034132% cos (theta2)"2 — 0.0058971) ,
(1.0%(0.0058422+cos (theta2) + 0.0080676))
/(0.0034132x«cos(theta2)"2 — 0.0058971), O,
—(1.0%(0.0029211*cos(theta2) + 0.0052703))
/(0.0034132«cos(theta2)"2 — 0.0058971); 0, O,
0.20243, 0; (0.0029211*cos(theta2))/(0.0034132x*cos(
theta2) 2 — 0.0058971), —(1.0%(0.0029211%cos(theta2)
+ 0.0052703))/(0.0034132xcos(theta2)"2 — 0.0058971),
0, (1.3653%cos(theta2)"2 — 2.3641)/(0.0034132x*cos(
theta2) 2 — 0.0058971) |;

.. and the MatLab function block C was made up of the following code:
function C = C(theta2 ,thetaldot ,theta2dot)
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3.4. MatLab/Simulink Model

SOTWRUA(] WoISAG JO [OPOIN JUI[NWIS :R°¢ 8INSI

e—— (e

GO

10j08)\ sipuCD/[EBNLUSD

r

mm_eﬁ.il

4

100ZEISWN T

—
1001E8U
s |E s [k

suonIsO-/sa|Buy Juor ¢ T sogoojan uer |

SUOREIB|EI0Y U | XUE

ZEIOU

1oPZEIAL

¥
opiey 2

o]

XUJEW SSE JO assany|

¥

Sy JOIoW

e ¥
+
— sonbuo) oo+ H SpuBLIWOY anbuo]

Jopsy, Ayaen

[o'¥8t-"00]

solweuAq welsAs

53



3.4. MatLab/Simulink Model

C= [ 0; (18257«sin(theta2)xthetaldot"2)/15625 +
(18257« theta2dot*sin (theta2)*xthetaldot)/15625; 0; 0];

With this model established, controllers could be developed and tested in
Simulink. An additional model was built in Simscape Multibody that could
be used in parallel to the pure Simulink model. This would allow for a visual
representation of the robot arm movement, as well as a troubleshooting/com-
parison aide for the Simulink model. Figure 3.9 below shows the Simscape
Multibody model of the robot that was developed.
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3.4. MatLab/Simulink Model
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Position Control

With the model of the robot fully developed both theoretically and in simu-
lations, a set of command signals to send to each of the joints was required in
order to test it. In order to come up with a set of command forces/torques, a

controller had to be developed.

The focus of this project was to develop a hybrid force/position controller,
and the approach to this development was to move forward incrementally
through each level of complexity. The first and simplest level of the controller

that could be developed was the position controller.

Position control of the end effector of a robot is a well-developed science
and can be achieved through a wide variety of different methods. Some of
these methods are simple, and some are very complex. Generally, the sim-
plicity of the controller comes at a cost of lower performance, while the more
complex controllers can achieve stronger performance. To be specific, the
term ”performance” in this case refers to the ability of the controller to force
the robot’s end effector to follow a given trajectory within its workspace with

minimal tracking error.

4.1 Decentralized PID Control

A Decentralized Proportional-Integral-Derivative controller was among the
simplest options that could effectively be used to control the position of the
end effector. PID is a commonly used type of linear controller known for

its simplicity and robustness (in comparison to other linear controllers). The
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4.1. Decentralized PID Control

functionality of a PID controller can be described as follows:

1. A desired trajectory is provided as input for the controller. This tra-
jectory must be provided as a set of desired positions as a function of

time.
2. The first time derivative and integrals of the desired trajectory are taken

numerically and stored.
3. Measurements of the state of the controlled variables are taken using

sensors, and numerical derivatives and integrals are taken of these signals

as well.

4. The difference between the measured state and the desired state is mul-
tiplied by the proportional gain (Kp), and added to the difference be-
tween the derivatives of the measured and desired states multiplied by
the derivative gain (Kp), which is then added to the difference between
the integrals of the measured and desired states multiplied by the inte-
gral gain (K7).

5. This resulting signal is then applied as command signal to the system

actuator(s).

This algorithm can be represented with the following simple control law:

7= Kpé(t) + Kpe(t) + K; /Ot e(t)dt (4.1)

. where e(t) represents the difference between the desired trajectory and

the actual position of each joint.

For any linear system, it is known that there exists some set of controller
gains (Kp, K;r and Kp) that will cause the actual state of the controlled
variable to converge to certain types of desired trajectories. For step input
trajectories, a properly designed PID controller will yield asymptotic stability.
For linear ramp input trajectories, a properly designed PID controller will yield

stability, albeit with a non-zero steady-state error [71].

Unfortunately, the robot system in question was highly nonlinear. The M

matrix and C' vector contained multiple sinusoidal functions that themselves
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4.1. Decentralized PID Control

were nonlinear, and the C' vector also contained polynomials that made it
more nonlinear. In order to linearize the system for the PID controller, it
could be assumed that the robot was always in its fully extended (i.e. 62 = 0)
configuration. This configuration would be the most mechanically intensive
for the controller to move, so this assumption would be more likely to cause
the controller to be over-powered than to be under-powered, which was good
for performance. The new M matrix and C vector were shown below with the

0> = 0 assumption in place:

557 229 0 —0.0025 0
2.29 1.12 0 —0.0025 . 0

M(9) = C(0,0) = (4.2)
0 0 494 0 0
0

—-0.0025 -0.0025 O 0.0025

As can be seen below in Equation 4.3, if gravity was ignored, the 6, = 0
assumption fully linearized the system. It must be noted of course, that using
this assumption would certainly introduce tracking error to the system. This
was because the system’s nonlinearities would act as unmodeled disturbances
that the linearized PID controller was not equipped to deal with. Luckily, due
to the PID controller’s robustness (in particular, the higher order introduced
through the integral term), as long as these ”disturbances” remained bounded
over time, that is to say they would not continue to increase as ¢t approaches
infinity, the error that they initially caused could eventually be reduced to

Z€ero.

5.5761 + 1.2965 — 0.002504
1.290; + 1.1265 — 0.002564
4.94ds
—0.00256; — 0.002565 + 0.002564

= M(0)§+C(6,0) = (4.3)

To further simplify the system, all of the coupling between joints would

be ignored and each joint would only be controlled as if it were the only
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4.1. Decentralized PID Control

one moving. Thus, each joint would effectively be running its own separate
controller, operating independently of the other three joint controllers. It was
for this reason that this strategy was called Decentralized PID Control. This
would certainly reduce the performance of the robot, but as long as the speeds
of the system were low the effects would be small. By ignoring coupling, the

system dynamics could be reduced to:

5.570;
1.126

7= 2 (4.4)
4.94d5

0.00250,

The transfer functions of these four equations were thus:

)

1(s) 1

7(s)  5.57s? (45)
972(;)) N le (4.6)
IZSS) - 4.91432 (47)
a(s) ! (4.8)

7(s)  0.0025s2

Each of these transfer functions was then put into the block diagram shown

below in Figure 4.1:

Pp(s) K; System Py(s)
— — | Kp + s Kps |— —_—

Dynamics
I

Figure 4.1: General PID controller block diagram

Note that in this diagram, Pp(s) represented the desired trajectory of the

joint variable being controlled, while P4(s) represented the actual trajectory
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4.1. Decentralized PID Control

of the joint variable. The block diagram was then simplified to find the closed-

loop system characteristic equations below:

Joint 1:
K K K
3 D 9 P I
_ 4,
St esrY T T ear 0 (4.9)
Joint 2:
K K K
3 D 9 P I
_ 41
SIS Tttt 0 (4.10)
Joint 3:
K K K
3 D 2 P I
—0 411
S ro1” T1o1® T 1oa (4.11)
Joint 4:
K K K
3 D 2 P I
-0 412
S 0.0025° T 0.0025° T 0.0025 (4.12)

Next, the target poles of the system were arbitrarily set to -8, -9 and -10.
Poles this far into the left-hand side of the complex plane would guarantee
stability for the linearized system. If the system was not performing well
enough, these could be pushed further left, and if it was performing well but
requiring unrealistic command torques and forces from the motors, these could
be pushed further to the right. If these two trade-offs were proving difficult to
compromise between, the Linear Quadratic Regulator (LQR) could be used
to optimize the best location for the poles, and if this didn’t work a different
controller type would be selected. With these poles, the target characteristic

equation was worked out to be:

(s +8)(s+9)(s+10)=0 (4.13)
§% 4 275% 4+ 2425 + 720 = 0 (4.14)

Which yielded final control gains of:

60



Decentralized PID Control

4.1.

JNo ne}

Iorfoyuod uonisod (JId JO [PPOW JUINWIS 7§ 9INSI]

N0 Jopp Ejey)

10}0943 pu3 uo

19

Bunoy 80104 [eUWIB)X]

SolWeuAq walsAs

4

Ino jop ejay}

Ino” ey}

yino
Emno
zino
210]

eyl

Luj &

Y .
Y 14510
A ]k = nle

a}a10s1q

dx )

P ¥ eyl

PEP

<
s
3

A

Jafjonuo) uonisod did

p ¢ ey

P 1 ey

61



4.1. Decentralized PID Control

1347.94 4010.4 150.39
271.04 806.4 30.24

p= Kr= Kp= (4.15)
1195.48 3556.8 133.38
0.605 1.8 0.0675

Figure 4.2 shows the assembled PID position controller in Simulink. Note
that the same exact controller was used for both the Simulink and the Sim-

scape Multibody models.

To test the performance of the Decentralized PID controller, a three-
dimensional trajectory was built using a combination of sinusoidal curves.

The desired trajectory r(t) was arbitrarily set to be:

g 0.8 — 0.44 — 0.05sin (42)
Yd —0.2% + 0.15sin(37)
0.25 — 0.1% — 0.005sin (13x¢
rty= | = T sin () (4.16)
] 0
Vq 0
0a] | 0 _

Where T represented the total trial time for the simulation (in this case
set to 10 seconds). This trajectory was chosen because to challenge the con-
troller to follow a non-linear end effector path without violating the workspace
boundaries. It also stayed within the zone that was accessible using both the
elbow-up and elbow-down configurations (i.e. the purple areas from Figure
3.4).

Figure 4.3 below shows both the reference trajectory r(¢) in black, and the
Decentralized PID controller’s output trajectory in a rainbow colour, starting
at blue and ending in red. From this image alone we can see that the De-
centralized PID controller was able to track the reference trajectory, although
with a relatively large tracking error at the beginning of the trial. Figures

4.4 and 4.5 show the performance of each individual joint’s controller, again
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4.1. Decentralized PID Control

0.8 -0.4

Figure 4.3: Decentralized PID controller 3D tracking results

showing that the reference trajectory was well-tracked, but with significant

tracking error during the first second of the trial.

The tracking errors (defined as the difference between the desired trajec-
tory and the actual trajectory) are shown in Figure 4.6. Note that both the
error from the main Simulink simulation and from the Simscape Multibody
trials are shown. Because the errors were relatively stable after 2 seconds, the
final 8 seconds of the trial are not shown. allowing a better focus on the first

second of the trial.

An important observation from Figure 4.6 is that although the results from
the Simulink trials and the Simscape Multibody trials were similar, they were
not exactly the same. They followed the same trends, but they did not always
have the exact same magnitudes. In fact, this slight difference in performance
was a good indicator that the Simulink model that was built from scratch is
valid. Because there was a non-zero difference in performance, we know that

there were two separate sets of solvers being used, but because the results
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4.1. Decentralized PID Control

Joint Errors
0.15 T T T T T T T T T
Joint 1 Error
Joint 2 Error
0.1 Joint 3 Error |
' Joint 4 Error

Joint 1 Error (SimScape)
— — —Joint 2 Error (SimScape)

= 0.05 — — —Joint 3 Error (SimScape) | 4
@ — — —Joint 4 Error (SimScape)
&
E —
T 0 =
2
i,
-0.05 i

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Time (seconds)

Figure 4.6: Decentralized PID controller joint errors

were very similar, we know that the model built from scratch replicated the

dynamic model that formed the basis of the Simscape Multibody platform.

Another important observation is that the discrepancy between the Simulink
results and the Simscape Multibody results did not seem to exist for Joint 3.
In Figure 4.6, the Joint 3 Simscape Multibody line was never visible because
it was exactly the same as the Joint 3 Simulink line. This was initially con-
cerning, because it suggested that there was be some unintended link between
the two models, or perhaps that the Joint 3 Simscape Multibody data simply
didn’t exist. After further investigation however, it was found that the two
data sets were in fact distinct, they were just so similar that it was impossible
to see the difference in the plot. The reason that the Joint 3 data sets were
so much more similar than the other three joints, was because the scaling for

Joint 3 was necessarily different. Since Joint 3 was the only prismatic joint,
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4.2. Decentralized PID Control with Feedback Linearization

it was the only Joint whose error was denominated in metres, not radians.
Additionally, because Joint 3 was the only joint that was affected by gravity
(see Equation 3.65), the performance of its controller was significantly worse
than that of the other three joints. This meant that error for Joint 3 was much
larger than the other three joints (but the fact that it was the only prismatic
joint meant that it would be scaled on the plot to match the other three), and
therefore the difference between the Simulink and Simscape Multibody errors

would be dramatically less noticeable.

While the Decentralized PID controller was able to successfully track the
trajectory, it did so with some significant tracking error. In order to increase
the position tracking performance prior to moving forward with the force

control, an increased layer of sophistication was added.

4.2 Decentralized PID Control with Feedback

Linearization

The majority of the tracking error for the Decentralized PID Controller came
from the system’s nonlinearities that were ignored during the linearization
process. To reduce these errors, an internal feedback loop could be added to
the control law to linearize the system dynamically, that is to say to linearize
it with more appropriate assumptions than simply assuming the robot was in

its fully extended configuration at all times.

First, we will recall the system’s dynamic equations (3.66), and rewrite

them in the following form:

T = Mlinearé + Mnonlinear(e)é + 0(07 0) + G(G) + JTfext (417)
Where Mjpeqr represented the linear, time-invariant parts of the M ma-

trix, and Mponiinear(0) represented the nonlinear/time-variant parts of the M

matrix. From Equation 3.67 we can see that they were be equal to:
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4.2. Decentralized PID Control with Feedback Linearization

Mlinear =

Mnonlinear (9) =

3.23
1.12
0
| —0.0025

—2.34C0802
1.17cosf,
0
0

1.12
1.12
0
—0.0025

1.17cos05
0
0
0

0 —0.0025
0 —0.0025
4.94 0
0 0.0025
0 0
0 0
0 0
00

Using the following change of variables from 7 to wu:

U=T-—

Mnonlinear(e)é - C(ea 9) - G(e)

(4.18)

(4.19)

(4.20)

. and again assuming that f.,; = 0 because we were still only modelling

the free movement of the robot through space, we were left with the following

linearized system dynamics:

u = Mlinear 7

(4.21)

Using the same process as was used in the development of the previous

controller, a set of new PID gains (Kpy, K12 and Kpy) was developed to

ensure convergence. Using the same desired poles of -8. -9 and -10, and again

ignoring the coupling (i.e. non-diagonal) elements in Mj;,cqr to maintain the

decentralized control strategy, the following new PID gains were found:

781.66

271.04

1195.48
0.605

P2 =

12 —

2325.6
806.4
3556.8
1.8

87.21
30.24
133.38
0.0675

(4.22)
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4.2. Decentralized PID Control with Feedback Linearization

Using the same algorithm as from Equation 4.1, the simple dynamics of

Equation 4.21 could be stabilized with the following control law:

= Kpaélt) + Krae(t) + K. | e(t)i (1.23)

This PID control law could then be combined with the feedback lineariza-

tion inner loop from Equation 4.24 to create the following overall control law:

t
7= Kpoé(t) + Kpae(t) + Ko / e(t)dt + Mpontinear(0)0 + C(0,0) + G(0) (4.24)
0

A rough block diagram showing the implementation of a Feedback Lineariza-

tion/PID strategy is shown in Figure 4.7.

Desired Tracking Actuating System output
trajectory error Linear forces/torques (end effector pose)
> > — e | PlANT | e—

Controller

| Feedback
—

Linearization

Sensor data

Figure 4.7: Feedback Linearization/PID control block diagram

Note that in order to implement this law, the controller had to have access to
0, 6 and 6 which would either require velocity and acceleration sensors (on top of
the already-necessary position/angle sensors), or the use of numerical derivatives
(potentially even double derivatives) that could be significantly noisy and prone to
measurement error. This would not make a major effect on the performance in the
simulations, as we had easy access to these values, but it would certainly be an
important factor to consider in the actual physical controller. The Simulink block
diagram for the Decentralized PID with Feedback Linearization controller is shown

in Figure 4.8.
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4.2. Decentralized PID Control with Feedback Linearization

Joint Errors
D1 5 T T T T T T T T T
Joint 1 Error
i Joint 2 Error
o1 H 4 Joint 3 Error 4
Joint 4 Error

Jaint 1 Error (SimScape)
— — —Juoint 2 Error (SimScape)
— — —Joint 3 Error (SimScape)
— — —Joint 4 Error (SimScape)

0.05

Error (rad or m)
(=

-0.05

_015 i i i i i i i i i
0 0.2 0.4 0.6 0.8 1 1.2 1.4 16 18 2

Time (seconds)

Figure 4.9: Joint errors for Decentralized PID/Feedback Linearization con-
troller

When implemented, the Decentralized PID/Feedback Linearization controller
out-performed its predecessor, as expected. The resulting errors for each joint are
shown again in Figure 4.9:

The significant improvement in performance showed up almost exclusively in Joint
3. The reason for this was because Joint 3 had previously been affected significantly by
gravity, and the new controller included a gravity compensation term. The resultant
error for Joint 3 was very minimal, only slight periodic undulations as a result of the
sinusoidal nature of the desired trajectory. Notably, Joint 3 was the only joint that did
not have a significant error at the start of the trial that was slowly cancelled over time.
This was because Joint 3’s dynamics being completely decoupled (i.e. independent)
of the other three joints, as can be seen in Equations 3.67 and 3.68. Because of
this decoupling, the Decentralized PID controller with Feedback Linearization did
not need to ignore any dynamics. In the other three joints, the coupling had to be
ignored, and thus was a source of error. The third position controller that was built

was an attempt to reduce that error.
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4.3. Centralized Control with Feedback Linearization

As previously mentioned, this improved performance came at a cost of increased
complexity, and an increased requirement for online computation and/or sensors.
These simulations did not accurately reflect this cost, and so it must always be men-
tioned when discussing the results. If this computational/sensor cost were too much
of a problem, the control law could be slightly modified to reduce it. Instead of us-
ing online measured data from the robot’s sensors, the values for 6, 6 and 6 could
have been pre-computed using the values of 6 from the desired trajectory. This pre-
computing would reduce the computational burden on the controller at the cost of
slightly increased error, due to the fact that the desired values of 6 would not always
be guaranteed to be equal to the actual value of 6 during the trial. This control

strategy is known as the Computed Torque method.

4.3 Centralized Control with Feedback

Linearization

The largest remaining source of error in the previous controller came from ignoring
the coupling between the joints in pursuit of a decentralized approach. In order to
reduce those errors, the logical solution was to use a centralized controller that could
account for the dynamic coupling between the joints. A full state feedback control
law is a classic example of a centralized controller for linear systems, and combining
it with an inner feedback linearization loop would allow for the benefits of centralized

control to be applied to a nonlinear, time-variant system.

We will start with Equation 4.21, which was used in the development of the
previous controller. The same feedback linearization was be used in this controller,
but instead of using PID control to stabilize the system, full state feedback was used.
Full state feedback requires the system to be represented in state-space form. To
achieve this, two state variables, 1 and z2 were be introduced, each one representing

a 4 x 1 vector in itself:

01 0.1

Ir1 = 0= 02 o = 9 = 0.2 (425)
ds ds
04 s

These two states were then used to represent Equation 4.21 in state space:
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4.3. Centralized Control with Feedback Linearization

T 0 Ii] |z 0
SR e

Note that here, the A matrix was 8 x 8 and the B matrix was 8 x 4, and were

equal to:

0 I 0
A= 4 B= (4.27)
0 O M1
...and that M ~1 was the inverse of Mnear:
0.4739  —0.4739 0 0
—0.4739  1.3688 0 0.8949
M~ = (4.28)
0 0 0.2024 0
0 0.8949 0 400.8949

If the rank of the controllability matrix, M¢ (Equation 2.8), was greater than the
number of states (in this case 8), then it is said that the system is fully controllable.
Using MatLab’s ctrb() function, Mc was found to have a rank of 8, meaning that
the system was fully controllable. This meant that a control law in the following

form:

u=—K "' +0,4 (4.29)

€2

...could force the closed-loop poles to any desired location in the s-plane. Note
that K represents a 4 X 8 gain matrix. Again, arbitrarily setting the locations of
desired poles to -8.0, -8.1, -8.2, -8.3, -8.4, -8.5, -8.6 and -8.7, MatLab’s place()

function yielded the following K matrix:
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4.3. Centralized Control with Feedback Linearization

K= [Kl Kz} (4.30)
[228.9897 765350  0.7344  1.6829
TR7720 784412 —0.2282  1.3943

K= (4.31)
3.8678 —6.2185 330.3889 —6.0836
| 01742 —0.1743 —0.0019  0.1664
(544107 18.5250  0.0906  0.1828
187917 18.7500 —0.0260 0.1455

Ky — (4.32)
0.4604 —0.7347 81.9093 —0.7304
|0.0418 —0.0418 —0.0002  0.0408

The complete control law for the full state feedback linearization controller was
thus:

|+ Oq + Myoniinear(0)0 4+ C(0,0) + G(6) (4.33)

T=-K 0
0

Figure 4.10 below shows the Simulink implementation of the Full State Feedback
Linearization controller. Note that the full state feedback controller was significantly
more simple than the PID controller in this form, due to the simplicity of its control

law.

When the Full State Feedback Linearization model was tested, the results were
very poor. After some extensive troubleshooting, it became clear that the model
itself was not faulty, and that the only thing likely to be causing the problem was an
error in the K gain matrix itself. The controller clearly was working to force the end
effector to follow the desired trajectory, it was just not very successful at doing so.
One hint as to why the blame could be attributed to a sub-optimal K matrix comes
from investigating its third row. Referencing Equation 4.29 we can see that this third
row would be multiplied by the vectors in Equation 4.25 to yield the following formula

for the control signal us:

us = 3.86780; — 6.21850, + 339.3889d3 — 6.08360, (4.34)
+0.46046; — 0.734765 + 81.9093d3 — 0.73046, (4.35)
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4.3. Centralized Control with Feedback Linearization

Recalling from Equation 4.17 that d3 had no dynamic coupling with any of the
other three joints (due to it operating purely in the z direction while the other joints
operated exclusively on the z-y plane), it did not make sense for the control signal
uz to have any dependence on 6, 03, 04, 91, Gy or 6. Equation 4.35 showed us
that this K matrix did include contributions from these other joints, which although
significantly lower in magnitude than the contributions of ds and ds, were certainly

not optimal. This points to potential flaws in MatLab’s place() function.

When thinking about how to manually determine a better K matrix, the problem
became more clear. The K matrix was the matrix which would force the matrix
A — BK to have eigenvalues equal to the desired poles - in this case -8.0, -8.1, -8.2,
-8.3,-8.4,-8.5, -8.6 and -8.7. To give an idea of the complexity of this task, the matrix
A — BK (with significant rounding to allow for it to fit) is shown below:

0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
A_ BK — 0 0 0 0 0 0 0 1
0.5K11 —0.5K12 0 0 0.5K5 —0.5K16 0 0
—0.5K>2; 1.4K>22 0 0.9K24 —0.5K>25 1.4K>¢ 0 0.9K>g
0 0 0.2K33 0 0 0 0.2K37 0
0 0.9K 42 0 401 K44 0 0.9K 46 0 401 K4s |

The eigenvalues of this matrix were all equal to very long expressions which made
it difficult to solve for the individual elements of the K matrix. They were certainly
too long to solve for by hand, and it seemed that MatLab’s place() function used
a numerical optimization to do so, so clearly the dimensionality (i.e. n = 8) of this
optimization was too great for its effective application to this problem. An attempt
was made to improve the performance of the system by using desired poles that were
10 times more negative (i.e. more stable), even though this improvement would come
at the known cost of significantly better system actuators. The results yielded no

improvement.

Another attempt was made to improve the results by using MatLab’s 1qr ()
function, which employs the Linear Quadratic Regulator to choose an optimal set of
poles and a corresponding gain matrix K according to a user-defined set of priorities
on error vs. actuation requirement minimization. The gain matrix that it came up

with is shown below:
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1 0 0 0 26837 0.5078 0 —0.0011
1 . 1.72 —0.001
K 0 0 0 0.5078 7268 0 0.0016 (4.36)
0 01 0 0 0 3.2987 0
0 0 0 1 -0.0011 -0.0016 0 1.0025

This change clearly solved the problem of the motion of Joints 1, 2 and 4 affect-
ing ug, which was a good sign. When tested, it did make an improvement to the
performance of the controller, but not anywhere close to enough to replicate the per-
formance of the PID-based controllers. Figures 4.11 and 4.12 show the performance

of the controller using the new LQR-generated gain matrix.

Clearly, the performance was not satisfactory. The controller succeeded in pushing
each joint in the correct direction, but was not able to accurately track the reference

trajectory anywhere close to as well as the PID-based controllers.

Given that two separate methods of finding an appropriate gain matrix yielded
unsatisfactory results, it was clear that either the implementation of the Full State
Feedback Linearization controller was done incorrectly, or the it was an inferior con-
troller type for this application. Assuming the latter, one possible explanation for
its inferior performance was that it was comparable to a PD controller, not a PID

controller. The control law from Equation 4.29 can be rewritten as:

u= K0+ Ky +0, (4.37)

This was not dissimilar to the control law for a Proportional-Derivative (PD)
controller, with the gain matrices K7 and K serving in similar roles to the Kp and
Kp gains. Given that the previous controllers were based on a PID action, it made
sense that reverting to a PD action (and thus losing the benefits of the integral action)
would lead to a decrease in performance. In a PID controller, the integral action is
known to reduce tracking error at the expense of stability, while the derivative action
is known to increases the damping of the system (i.e. reduce oscillations) at the
expense of the tracking error. In a trial such as this where the system was being
asked to track a constantly-changing reference trajectory, it made sense that losing
the integral action could be responsible for the significant decrease in performance
for the Full State Feedback Linearization controller.

While unfortunately the Full State Feedback Linearization controller proved to

be a failure, there was a second option available to deal with the coupling in the

7
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4.3. Centralized Control with Feedback Linearization

system, and to hopefully create a more centralized control strategy. This option would
simply see a transfer of all the non-diagonal terms from the Mj;,eqr matrix to the
Myontinear () matrix, and then using the same Feedback Linearization/PID strategy
that was previously successful. This way, the coupling would be counteracted with
the Feedback Linearization, and the PID controller would be left with (theoretically)

linear dynamics. In this strategy, the new breakdown between the two M matrices

would be:
(323 0 0 0
0 1.12 0 0
Mlinear = (438)
0 0 4.9 0
0 0 0 00025
2.34cosby 1.17cosf> +1.12 0 —0.0025
1.17cos6 1.12 0 0 —0.0025
Mnonlinear(e) - costz + (439)
0 0 0 0
—0.0025 —0.0025 0 0

Plugging these two new matrices into the same control law as shown in Equation
4.24, and also the same Simulink model as shown in Figure 4.8, yielded the errors
shown in Figure 4.13. Comparing these results to the Decentralized PID/Feedback
Linearization controller, we saw a slight reduction in the tracking error for Joint 4, no
change for Joint 3, and slight increases in the tracking error for Joints 1 and 2. Given
that the performance of Joints 1 and 2 were more consequential for force position
control than the performance of Joint 4 was (they controlled the end effector position
and orientation, while Joint 4 only controlled its orientation), it was determined
that the Centralized Feedback Linearization/PID Controller actually slightly under-

performed its predecessor.

The reasons behind this under-performance likely were that the coupling between
the joints was relatively insignificant while operating at low speeds, and because the
tracking errors in both controllers were probably largely the result of the non-constant

nature of the desired trajectory.

This represented the end of the trials of the different position controllers, and from
this point on, the position controller that was used was the Decentralized Feedback

Linearization/PID Controller due to its superior performance.
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Joint Errors
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Joint 1 Error
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Figure 4.13: Joint errors for Centralized PID/Feedback Linearization con-
troller

4.4 Position Control Workspace Trial

As discussed in Section 3.1.5, there existed three zones within the robot’s workspace
that were each accessible by a different set of possible robot configurations. One zone
was accessible only in the elbow-up configuration (i.e. 85 > 0), another was accessible
only in the elbow-down configuration (i.e. 2 < 0), and the third zone was accessible

in either configuration.

This fact presented a problem for the inverse kinematics component of the control
algorithm. When given a reference trajectory for the robot to track, the proper elbow
configuration had to be selected to ensure continuity from start to finish. Certain
trajectories that traversed from the elbow-up-only zone to the elbow-down-only zone
would require a configuration switch mid-trial. To solve this issue, the controller
analyzed the entire reference trajectory prior to the trial and determined which zones
it would need to enter. If the reference trajectory stayed in the zone that allowed

both configurations, the elbow-up configuration was arbitrarily selected for the entire
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Figure 4.14: Configuration switch trial results

run. If the reference trajectory included travel into one of the areas that required a
specific configuration, that configuration would be implemented for the entire run.
If the reference trajectory required a configuration switch mid-run, the algorithm
would immediately switch the configuration being used for the inverse kinematics

and continue.

Figure 4.14 shows the results of a trial where the position controller was provided
such a reference trajectory (where the configuration had to be switched mid-run).
The black, horizontal line represents the reference trajectory, while the multi-coloured
line represents the path of the end effector due to the position controller (starting
at dark blue and ending in red). Note that the reference trajectory’s starting point

was displaced from the home position of the robot, so the trial began with a large,
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4.4. Position Control Workspace Trial

fast correction move to get it on track. The trial proceeded normally, and then
once the robot reached the border between the elbow-up only zone and the zone
where both configurations would work (around where the path turned teal), the
controller switched to using the elbow-down inverse kinematic equations. This meant
that the robot was suddenly very far from its desired position, so it made a rapid,
dramatic correction manoeuvre that involved it completely extending Joint 2 (and
thus touching the edge of the workspace) and then actually leaving the workspace
for a while (the joint limits were not programmed into the simulation). After a short

break, the robot was able to successfully continue tracking the reference trajectory.

This trial demonstrated that the robot could successfully switch configurations

mid-trial if necessary.
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Force-Position Control

With the position controller fully developed, it was time to proceed to the devel-
opment of the force-position controller. Before this could happen, however, the model
had to be modified in order to make it so that the robot could encounter external

reaction forces at its end effector.

5.1 Reaction Surface Model Development

This modification took the form a theoretical reaction surface in the robot’s workspace
that would exert a normal force against the end effector whenever it made contact
with it. For simplicity’s sake, the surface was made to be perfectly flat and aligned
with the global z axis, and it was also assumed to be frictionless. The only reaction
force that it would generate would be a normal force, which would be calculated with

the following formula:

FN = krs(zrs - ZE) (51)

. where Fy represents the normal reaction force that would be applied to the
end effector, ks represents the stiffness of the reaction surface (set here to 10 kN/m)
and z,s represents the z coordinate of the reaction surface. Figure 5.1 shows the

Simulink model updated to include the surface reaction forces.
The internal workings of the reactionforces function are shown below as well:

function reaction_forces = reactionforces(x,y,z,rx,ry,rz)

rsymax = 0.4;
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5.1.
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5.1. Reaction Surface Model Development

rsymin = —0.4;
rsxmax = 0.6;
rsxmin = 0.2;

rszbase = 0.13;
rsstiffness = 10000;

if x < rsxmin | x > rsxmax | y < rsymin | y > rsymax | z >
rszbase

reaction_forces = |

else

reaction_forces = |

0
0
—rsstiffness*(rszbase — z);
0
0
]

end

The model first used the z, ¥ and z position of the end effector, and the defined
limits of the reaction surface plane (rsxmax, rsxmin, rsymax, rsymin and rszbase)
to determine if the end effector was in contact with the reaction surface or whether
it was still in free space. If it was found that it was in contact, the reaction force was
calculated using Equation 5.1. As can be seen in Figure 5.1, this reaction force was
then multiplied by the transpose of the Jacobian (as per Equation 3.66) and added
to the M(0)d, C(0,6), and G(0) terms already present.

In order to test the functionality of the updated model, a new trajectory was
established. This trajectory would start at the robot’s home position (where are joint
variables were equal to zero), travel in a straight line for 2 seconds to a point on the
reaction surface, and then would transition to a sine wave that would repeatedly test

the reaction surface. This trajectory is shown below:
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T4
Ya
24
Py
V4

| Pa ]

... for t < 2 seconds, and to:

Zq
Yd
Zd
Ya
V4

| P ]

0.8 — 1.5sin%
—1.55111%
0.25 — (0.25 — 25 )sing4r
0
0
0

0.5
—0.3 + 0.75sin(4 — 0.2)
zZps — 0.025sin (107 (4% — 0.2))

0
0
0

... for t > 2 seconds. Figure 5.2 below shows the trajectory in black, as well as

the reaction surface in yellow.

Figure 5.2: Reaction surface testing trajectory

08 4
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When the position controller that was developed in the previous chapter was
used on this updated model and desired trajectory, the results were predictably poor.
They are shown below in Figures 5.3 and 5.4. The tracking of the desired trajectory
is solid for joints 1, 2 and 4, comparable to the performance obtained in free space.
This was because the reaction surface was aligned normal to the global z axis, and
the motion of these three joints had no effect on the z position of the end effector
(see the third row of Equation 3.37).

However, there was a very serious effect on the position-tracking performance
of the third joint, which was fully aligned with the global z axis. The position
tracking was good up until the point when it came into contact with the reaction
surface, at which point it lost its ability to keep up with the desired trajectory as
it descended below the surface. Even once the desired trajectory resurfaced into
free space, the effect of the integral action in the position controller kept it from
immediately regaining satisfactory tracking. In fact, the controller wasn’t able to
fully converge before the desired trajectory once again dipped below the reaction
surface, causing it to relapse into unsatisfactory tracking. It is worth noting that due
to the slight compliance of the reaction surface, the end effector was able to descend

a little bit below the reaction surface, but not anywhere close to enough.

These results were exactly what was expected when implementing the position
controller on the new model that included the reaction surface. This meant that
the new model of the physical system could be considered as verified. With this

verification complete, the force control strategy could be developed.

5.2 Hybrid Force-Position Controller

In order to develop and test force control strategies, the hybrid force-position control
architecture had to be established first. This was challenging, because it involved
building an outer control structure when one of the inner loops (the force controller)
had not been developed. Due to the nature of hybrid force-position control, it was
possible to build the entire outer loop while maintaining complete dominance of the
position controller in the control of the system (using the selection matrix .S), which
allowed for troubleshooting and ensured functionality prior to the development of the

force controller.

The algorithm for robot hybrid force-position control can be described using the

following steps:
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5.2. Hybrid Force-Position Controller

1. A set of desired position trajectories and desired force trajectories are pro-
vided as the system’s inputs. Typically, both the desired force and position
trajectories are expressed in Cartesian coordinates, because the task the robot
is assigned to is usually not affected by the configuration of the robot. These
trajectories may need to be converted to joint space if the controllers or sensors

in the system so demand it.

a) If the position trajectories need to be converted from Cartesian space to

joint space, this can be done using the robot’s inverse kinematics.

b) If the force trajectories need to be converted from Cartesian space to joint

space, this can be done by the transpose of the Jacobian matrix.

2. The actual position and force experienced at the end effector are measured

using sensors.

a) Typically, the positions are measured using optical encoders on each
joint’s motors, and thus are expressed in joint space. A numerical in-
tegration can be performed on these positions to obtain joint velocities

and then another numerical integration will yield the joint accelerations.

b) The force experienced at the end effector is usually measured with a force-
torque sensor mounted near the end of the robot manipulator. This signal
will usually require some extensive processing to remove measurement
noise as well as the inertial, centrifugal/Coriolis effects that will come
purely from the motion of the robot arm. With these effects removed,
the signal representing the external force acting on the end effector may
need to be multiplied by the transpose of the appropriate Jacobian matrix

to convert it to joint space, if necessary.

3. The measured positions, velocities, accelerations, and external forces are then
fed into the two independent position control and force control loops, along with
the desired position and force trajectories. Each loop will produce a separate
set of control forces/torques (either in joint space or Cartesian space) as their
outputs.

a) The goal of the position control loop is to produce a set of force/torques
that will cause the actual position of the end effector to converge on the
desired position. It usually will operate without using the force sensor
data as an input.

b) The goal of the force control loop is to produce a set of force/torques that

will cause the external force experienced by the end effector to converge

91



5.2. Hybrid Force-Position Controller

on the desired force. Sometimes it will only use the force sensor data as

input, but sometimes it will also use some of the position sensor data.

4. If they are expressed joint space, the output forces/torques from the two control
loops must be converted to Cartesian space using the inverse of the transpose

of the Jacobian matrix.

5. The force/torque output vector from the position control loop is multiplied by
the selection matrix S, while the force/torque output vector from the force
control loop is multiplied by the difference between the identity matrix and the
selection matrix, I — S. These two products are added together to create the

unified hybrid force-position control signal.

6. This unified control force/torque signal is then multiplied by the transpose of
the Jacobian matrix to convert it back into joint space, and is then sent to the

robot’s motors to actuate the system.

7. New measurements are taken by the robot’s sensors and Steps 2 through 7

repeat themselves.

In designing the hybrid force-position control architecture for this project, two
main sets of decisions had to be made. The first surrounded the choice of the selection
matrix S, and the second was when to express the signals in joint space vs. Cartesian

space.

5.2.1 Establishing the Selection Matrix

To come up with an appropriate selection matrix, the task that would be assigned to
the robot had to first be defined. Given that the reaction surface model established
in the simulation could only exert a force in the global z direction, the desired force
trajectories in the x and y directions, as well as the desired external torques about
the x, ¥y and z directions all were set to zero. Knowing that the reaction surface’s
stiffness was 10 kN/m and that the z height of the entire robot workspace was only
0.25m, it made sense for the desired force trajectory to be set around 200 N in the z
direction. Thus, the desired force trajectory would be set to zero in all coordinates

except the z direction, where it would be kept around 200 N.

To keep some alignment with the position trajectories established in Equations
5.2 and 5.3, the desired force would be set to zero until the robot had a chance to

come into contact with the reaction surface at 2 seconds. However it is important to
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5.2. Hybrid Force-Position Controller

note that for ¢ > 2 seconds, the desired force would be in conflict with the desired
position, as the desired position often would surface above the reaction surface, thus
allowing no contact force to exist. This conflict between the desired position and the
desired force was exactly the reason for which the selection matrix (and in fact the

entire hybrid force-position control architecture) was required.

Table 5.1: Natural and artificial constraints for 4 DOF SCARA robot

Natural Constraints Artificial Constraints

Jr= T =1Zq
fy = Y=Yd
Ty = ¢ = ¢a
Z:er_fﬁ%r’?d fz:fea:t,z,d

T =0

Ty =

Y =0

V=

To decide on how to make the selection matrix, the task was broken down into
natural and artificial constraints, shown in Table 5.1. All twelve entries in this table

should be discussed, as they all held some significance.

The simplest constraints to discuss are the two natural constraints of ¢ = 0 and
v = 0. These constraints were imposed on the robot simply due to its number of
degrees of freedom. It was simply not possible for a 4 DOF SCARA robot configured
as in this project to achieve any rotation of the end effector about the global x or y

axes, thus ¥ and v by definition had to always be zero.

Next, we could establish the natural constraints of f, =0, f, =0, 7, =0, 7y =0
and 7, = 0. These external forces acting on the end effector had to always be zero
simply because the reaction surface defined in this model had no ability to exert
external forces or torques other than a reaction force in the global z direction. If
the model included non-normal forces such as friction, or if the reaction surface was
aligned on an oblique plane, or if the surface was curved, these constraints would not

necessarily be true. However, with this model, they did hold true.

Next we can discuss the artificial constraints of x = x4, y = yq and ¢ = ¢gq.
These constraints were called ”artificial” because they were imposed via the position
controller. Because there was no possibility of an external force being applied in the z

or y directions, nor an external torque about the z axis, the position controller would
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be free to constrain the motion of the end effector in these three degrees of freedom

as if the motion were through free space.

Finally, we must discuss the final two constraints - the artificial constraint of

femt,z,d

constraints were the two that were acting in the all-important z direction, where the

f2 = fewt,z,a and its twin, the natural constraint of z = z,., — These two
reaction surface would provide an impediment to position control as shown in Figure
?77. Because position control would not be effective in this direction, we could not
use the position controller to establish an artificial constraint on the z position of the
end effector. Additionally, we had a desired force trajectory that we were aiming to
track in the z direction of fez » 4, which meant that f, = feq: . 4 should be defined as
the artificial constraint. The natural constraint that would arise from Equation 5.1

— Jeatza defining the natural and artificial constraints this

would thus be z = 2z, T
way, we were effectively tellihg the hybrid force-position controller to prioritize force
control in the z direction and to accept that the z position of the end effector would
be determined by the dynamics of the reaction surface, not by the desired position

trajectory.

From these natural and artificial constraints, we could create the selection matrix
S. This matrix was a 6 x 6 diagonal matrix where all of the diagonal elements s; were
between 0 and 1 (i.e. S = diag(si, s2, S3, 84, S5, 8¢) such that all s; € (0,1)). The
control law wherein the selection matrix is used is shown below:

T= JT([S]Tp +[I- S]Tf) (5.4)

.. where I represents a 6 x 6 identity matrix, and 7, and 7 represent the actuating
forces/torques generated by the position and force control loops, respectively. Note
that 7, and 77 had to be expressed in the Cartesian base frame, while the unified
actuating force/torque vector that was sent to the system as input, 7, was expressed

in joint space.

The S matrix had to select the directions and axes of rotation which would be
artificially constrained by the position controller, and had to leave unselected the
directions and axes of rotations which would be artificially constrained by the force
controller. In our example, since the z and y axes of rotation would not be artificially
constrained by the position controller nor the force controller, it did not matter what
the s4 and s5 entries were. Because we were asking the controller to completely
prioritize position control for the first two seconds of the trial, the selection matrix

for the first 2 seconds of the trial was set to:
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So—2 =

S O = O O O
o = O O O O
= o O O O O

S O O O O
o O O O~ O
S O O = O O

.. while the selection matrix from 2 seconds onward was set to:

52,10 = (5.6)

o O O O o O
o O = O O O
o = O O O O
_ o O O O O

o O O O O
o O ©O O~ O

This simple deletion of one element of the selection matrix would ultimately lead
to the prioritization of force control in the z direction. If we wanted the controller
to slowly transition to force control from position control, we could have established
a time variant S matrix where the s3 element would gradually change from 0 to 1
over time. If we wanted to have the controller compromise between both force and
position tracking error at the same time, we could have set s3 to a value somewhere
between 0 and 1 and held it there. Finally, if the task frame (and thus the natural
and artificial constraints) were expressed in a frame of reference that was the same
as the global frame of reference, or was time variant, the force/torque vectors 7, and
7¢ would have had to be multiplied by an appropriate rotation matrix to account
for this. Additionally the entire right hand side of Equation 5.4 would have had to
be multiplied by the inverse of this rotation matrix to convert it back to the global
reference frame prior to multiplication by the transpose of the Jacobian to convert
it into joint space. For this application, however, there was no need to make such

modifications.

5.2.2 Joint Space/Cartesian Space Signal Assignments

With the selection matrix established, the remaining decisions in the development of

the hybrid force-position control architecture involved deciding which signals would
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be expressed in Cartesian coordinates, and which would be expressed in joint space.
When reading through the seven-step description of the algorithm at the beginning
of this section, there are many points where it was mentioned that a signal could be
expressed in either Cartesian or joint space. The conversion between the two involves
using the forward or inverse kinematics when discussing positions, multiplication by
the Jacobian or by the inverse of the Jacobian when discussing velocities, and multi-
plying by the transpose of the Jacobian or the inverse of the transpose of the Jacobian
when discussing forces. Each one of these conversions comes at a computational cost,

and thus conversions were minimized as much as possible.

To make the decisions on where to make the conversions, it was important to first
identify certain points in the overall algorithm where the signal had to be in one of
the two forms (Cartesian space or joint space). As recently discussed, we knew that
the actuating torque outputs from each of the position and force control loops had
to be expressed in Cartesian coordinates in order for them to be used in the selection
matrix control law (Equation 5.4). We also knew that after being processed by the
selection matrix, the signal had to be converted back into joint space in order to be
sent to each of the joint’s motors. Thus, there had to be at least one multiplication

by the transpose of the Jacobian.

Next we had to consider the position controller that has already been developed
in the previous chapter. This position controller worked exclusively in joint space,
using inverse kinematics to pre-compute the joint space equivalent of the desired
position trajectory, which was provided in Cartesian coordinates (Equations 5.2 and
5.3). When the position controller was being used on its own to control the robot,
it was convenient for the actuating force/torque vector to be expressed in joint space
so that it could be directly sent to each of the robot’s motors. Unfortunately, this
meant that the position controller’s output had to be multiplied by the inverse of
the transpose of the Jacobian in order to be converted to Cartesian space prior to
being sent to the selection matrix. This was a relatively significant issue, because the

transpose of the Jacobian was not always invertible.

The first issue with the invertibility of the Jacobian matrix was a result of it
being a 6 x 4 matrix. Any non-square matrix is, by definition, not invertible. Luckily,
because two of the rows in the Jacobian were all zeroes (because of the inaccessibility
of the rotational degrees of freedom about the x and y axes), the Jacobian could easily
be made square by simply removing the two empty rows. The second issue was that
even once the Jacobian was made square, it could still become uninvertible when its

determinant was equal to zero. From Section 3.2.2, we recall that this condition arose
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when the robot was in a singular configuration (when 6 = 0 or 7). This was more
challenging to deal with, but could be avoided through some clever programming.
The problem that would arise when the determinant was equal to zero was that in
calculating the inverse of the matrix, there would be a requirement to divide by zero,
thus breaking the control loop. There existed no issue if we were dividing by 0.0001
or by -0.0001, so we could monitor the value of 65 being used in the calculation,
and if it ever went between -0.0001 and 0.0001, we could just manually adjust it to
-0.0001 or 0.0001, whichever was closer. This would lead to a slight inaccuracy in
the conversion from joint space to Cartesian space, but as long as the manipulator
did not stay near the kinematic singularity for too long the inaccuracy would have a
negligible effect. Once these two problems were taken care of in the manner outlined
above, the inverse of the transpose of Jacobian could always be taken without risking
a mathematical error. Once the inverse was taken, the two rows of zeros were added

back in the appropriate places to yield the following matrix:

'2 5005(91+62) _9 5cos(91+92)+cost91 0 _9 500591'
: sinf . in6 *~ sinf
2.5sin(91592) _2.5sin(91i9%§+sin91 0 _2521n§
sinfs sinfo sinfs
0 0 -1 0
JTy-1 — 5.7
(%) 0 0 0 0 (57)
0 0 0 0
L0 0 0 -1

With the inverse of the transpose of the Jacobian complete, the only remaining
conversions that were necessary were for the force control loop. Luckily, because the
force controller would be used only in the context of a hybrid force-position controller,
it could be set up to require no conversions. The desired force trajectories were easiest
to provide in Cartesian space - the force/torque measurements in our simulation could
be easily accessed (without having to process force/torque sensor data) in Cartesian
space so there was never a need to convert into joint space. The entire force control
loop was thus be built in Cartesian space and then the loop output 7y would require

no conversion prior to being sent to the selection matrix.

A block diagram showing the different signals as they flowed through the hybrid
force-position controller architecture is shown in Figure 5.5. Note that signals with a
j subscript referred to signals in joint space, and those with C' subscripts referred to

signals in Cartesian space.

The Simulink implementation of the entire hybrid force-position control scheme
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Figure 5.5: Block diagram of hybrid force-position controller architecture

is shown in Figure 5.6. The supervisory controller is blown up to show it in further
detail. Note that the image also shows the force controller, despite their having been

no discussion of its development as of yet. This discussion will follow in Section 5.3.

The MatLab Function block labelled S is the selection matrix. The function inside
of it is as follows:

function [S,IS] = S(u)

if u>0
S=[100000;01 00000000000 00100;00
0010; 00000 1];
else
S = eye(6);
end

IS = eye(6) — S;
In Figure 5.6 it can be seen that the input "u” to the ”S” function was a step
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Figure 5.6: Simulink implementation of hybrid force-position controller
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input. This step input was set to zero for 0 < t < 2 and switched to 1 for ¢ > 2.
It functioned as a trigger to force the S matrix to change from pure position control

dominance, to the hybrid force-position control structure detailed above.

Note also in Figure 5.6 the two other MatLab function blocks. The one that is
blown up in the magnified area is the transpose of the Jacobian. Unfortunately, the
top right of the two is not blown up for better visibility, but it is the inverse of the
transpose of the Jacobian matrix. These two functions were the minimum requirement
for Cartesian to joint space (and vice versa) signal conversion as discussed above, and

they were placed in the scheme in the locations specified in Figure 5.5.

5.3 Force Control

The control of the external force applied by the end effector was a very different
problem compared to control of the position of the end effector. Firstly, if a hybrid
force-position control strategy is being used, it is likely because there is some degree of
uncertainty about the dynamics of the environment that will be generating the contact
forces (otherwise impedance control could easily be implemented). This means that
the force controller can not be designed using control laws derived from the system’s
dynamic equations to the same degree that a position controller can. Secondly, force
and position are very different concepts theoretically, in that they are separated by two
orders of integration and have completely different relationships with other relevant
variables such as velocity, acceleration and mass. Finally, the sensors that can be used
to measure force produce much noisier signals compared to position sensors (although

in a simulated environment this is less important).

The first issue is the most important to explain, as it was the cause of significant
confusion during the force controller development, and ultimately determined the
design process that was used. Originally it was assumed that to develop the force
controller, a similar process to the position controller development should be used.
The dynamic equations would be written out, and then manipulated until a control
law could be arrived at. That control law would produce a control force/torque
vector which would be mathematically guaranteed to achieve convergence between

the desired contact force and the actual contact force.

Unfortunately, that process, when applied to the force control problem, would
require precise knowledge of the dynamics of the reaction surface. While models for
such dynamics were available, one of the main reasons hybrid force-position control

is used is for situations when knowledge of the dynamics of the environment are
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unknown, or too complex to mathematically model accurately. When the dynamics
of the environment are known, it is simple enough to build an impedance controller
that will convert the desired force into a desired ”virtual position” that the position
controller can track on its own. To build the force controller in a hybrid force-position
control scheme using the known dynamic equations of the reaction surface would be to
subvert the purpose of this project. Thus, the force controller had to be built without

consideration of the dynamics of the environment in which it would be operating.

The implications of this reality were that there could not be a guarantee of con-
vergence for the force controller in the same way that there was for the position
controller. Additionally, any control gains that would be used could not be calcu-
lated based on theoretical knowledge of the dynamic equations, they would generally
have to be found through a process of trial and error. It is possible that there exists
a better way to come up with a control law and controller gains without information
on the dynamics of the environment, but throughout the survey of the literature it
was never discovered. This certainly could represent a future improvement on the

work done in this thesis.

The second major difference between the development of the force controller in
comparison to the position controller was the simply fact that forces and torques are
mathematically much different than positions and angles. In the position controller,
the robot could be thought of as a system that took a force/torque vector as input,
and produced a linear/angular position vector as output. The nonlinear dynamics of
the plant could be nullified with feedback linearization, leaving a clean second-order
linear system (Newton’s Second Law states that force/torque is proportional to the
second derivative of linear /angular position) that could be controlled using established
linear control methods such as PID control. For force control, the position-related
terms (M(6), C(6,6) and G()) of the dynamic equation (Equation 3.66) could be
cancelled using a process similar to feedback linearization, but what was left (shown

below) was not a second-order differential equation:

TCartesian = fezt (58)

The simplicity of this dynamic equation suggested that the controller be built

using a feedforward control law similar to the law shown below:

TCartesian = fd (59)
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. where f; represents the desired force trajectory expressed in Cartesian coordi-
nates. This simple control law of course would not be enough to achieve satisfactory

force tracking, but it would at least need to form the basis of the control law.

The final important distinction between force control and position control lay in
the difference between the measurement hardware for the two feedback loops. In
position control, the sensors used to generate the feedback for the controller are
typically optical encoders on each of the motors. These encoders can very accurately
measure the position of the joint, without significant measurement noise. In force
control, the sensor providing the feedback is usually a force/torque sensor mounted on
the end effector. This sensor works through the use of a strain gauge, which produces
a very noisy signal. Filtering mechanisms do exist that can reduce the noise, but these

come with a computational cost and also can muffle important feedback information.

The existence of this strain gauge measurement noise creates a significant chal-
lenge when taking a numerical derivative. There are many different ways to take
a numerical derivative, but at their core they all must take the difference between
previous measurements and divide it by the time interval between them. Because
taking a larger time interval will create a larger lag in the measurements with respect
to the current signal, an optimal numerical derivative is one that uses as small of a
time interval as possible. When a numerical derivative is taken of a noisy signal, espe-
cially when the time interval is small, there is a very large chance that the difference
between the two sampled measurements will not be a reflection of the overall trend
in the rate of change of the signal. This means that any measurement noise will get
amplified when a numerical derivative is taken. If a second numerical derivative must
be taken, the measurement noise will get amplified even further, often to the point

where the signal is no longer present amid all the noise.

The implication of this is that it is feasible to take the numerical derivative of a
signal that comes from an optical encoder much moreso than it is to take one from a
signal coming from a strain gauge. In the previous chapter, PID control with feedback
linearization was used to control the position of the robot. This involved taking a
numerical derivative of the joint angles/positions both in the feedback linearization
and in the derivative part of the PID controller. Additionally, the signal had to
undergo a second numerical derivative for use in the cancellation of the coupled
terms of the M matrix of the feedback linearization. Unfortunately in the force
control scheme, due to the expected noisiness of the sensor data, it was best to avoid

the use of numerical derivatives.

It is important to note that because this controller was being developed using
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a simulation where there was no measurement noise, it was functionally possible to
take a numerical derivative of the feedback. This avoidance of numerical derivatives
was a self-imposed constraint designed to make the developed force controller more
applicable to reality.

Without the ability to take a numerical derivative, there was no way to implement
the derivative component of a PID controller. This was unfortunate, due to the
flexibility and simplicity of PID control. However, the benefits of PID control did
not all have to be discarded, because the P (proportional) and I (integral) terms
do not require numerical derivatives. Thus, a PI controller was thought of as an

appropriate choice for the force control.

5.3.1 PI/Feedforward Controller

The two deductions from the above analysis on the differences between position and
force control were that both feedforward control and PI control would be appropriate

for the force controller. Thus, the first force control law that was proposed was:

t
Tzfd+Kfp(fd—f)+Kfi/0 (fa— f)dt (5.10)

. where 7 represents the control torque (in Cartesian space), fq and f represent
the desired and actual external forces, respectively, and Ky, and Ky; represent the
proportional and integral force control gains, respectively. The Simulink implemen-

tation of this control law is shown in Figure 5.7.

As mentioned above, no clear method was found to select the control gains Ky,
and Ky;, so they were selected through trial and error. For this robot, this was
relatively simple, in that the force control only had to operate through the one joint
that was aligned with the z axis. This would not be so simple under many other

circumstances, including:

If the reaction surface generated forces that did not act only in the normal

direction

If the reaction surface was not aligned perfectly with the z — y plane

e If the reaction surface was not perfectly flat

If the robot manipulator had more than one joint that could generate forces in

the z direction
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Figure 5.7: Simulink implementation of PI/Feedforward force controller
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e If the robot manipulator did have only one joint that could generate forces in
the z direction, but that joint was able to generate forces in the z and/or y

directions as well

e If the selection matrix required force control in more directions than just z

In all of these cases, different control gains would be required for each of the 6
Cartesian degrees of freedom. This would be much more difficult to set up using trial

and error alone, although not necessarily impossible.

To perform the trial and error search, the controller was first run with both gains
set to zero. The feedforward controller alone created a tracking response, but only
one that oscillated significantly about the desired value. Next, the value of Ky, was
increased from zero in small increments until the point when the increases no longer
corresponded to an improvement in the controller’s performance. It was found that
this value was somewhere around 20. At this point, the robot could track the desired
force, although with a significant oscillatory response following the transition from
position control to force control at 2 seconds. Additionally, there was a slight steady-
state error in the response. The K¢; term was then increased until the steady-state
error disappeared, at a value of around 5. These gains were accepted as somewhere
close to optimal, as a better response could not be obtained with any different set
of gains. The results of the PI/Feedforward controller implemented with these gains

are shown in Figure 5.8.

These results were promising, in that they represented a functional hybrid force-
position control scheme. The position controller was able to reliably track the desired
trajectory for the first two seconds, and then when the selection matrix dictated that
the force controller was to take over in the z direction, it did so. The position tracking
in the x and y directions were not compromised, while the position control in the z

direction was abandoned in favour of the force controller (as intended).

Where these results fell short was in the quality of the force controller’s perfor-
mance. Not only did it take a long time for the controller to converge on the desired
value (roughly one second), it did so with a very large overshoot (almost 100%) and

some serious oscillation in the response.

The next iteration of the force controller was designed to improve this perfor-

mance.
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Figure 5.8: Results of the PI/Feedforward force controller

5.3.2 PI/Feedforward/Velocity Damping Controller

The issues with the response of the PI/Feedforward force controller were a significant
overshoot, a slow settling time, and a significantly oscillatory response. In a normal
PID scheme, these issues are taken care of with the derivative term, however in this
project it was decided that derivative control would be avoided for the force controller

due to issues with taking a numerical derivative of noisy force/torque sensor signals.

A typical derivative term in a PID controller comes in the form Kp (24 — &),
where K is the derivative gain, x4 is the desired system output, and z is the actual
measured output. Thus, the command signal sent to the system’s actuators has
a negative-proportional relationship with the time derivative of the output of the
system. Thus, the derivative term can be thought of as a sort of ”artificial damping”
of the system, removing kinetic energy when the system becomes over-excited. This

removal of energy during peak excitation of the system has a strong stabilizing effect
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on the controller’s performance which can reduce/eliminate overshoot and oscillatory
behaviour.

Thus, a clever substitute for a derivative control term was used. Instead of using
the derivative of the noisy force/torque sensor data, a derivative of the position of
the end effector was fed into the force controller. As previously stated, there was
no problem with taking a numerical derivative of the position sensor data, because
it contained very little measurement noise. As long as the control law ensured an
negative-proportional relationship between the velocity of the end effector and the
command signal, the ”artificial damping” effect could be replicated. Thus, a ”velocity
damping” term was added to the end of the PI/Feedforward control law, as shown

below in Equation 5.11:

= fat Kpp(fa— )+ Kpi /0 (fa— Pt — KouX (5.11)

. where K, represents the velocity damping gain, and X represents the Carte-

sian expression of the end-effector’s velocity:

= J(0)8 (5.12)

The Simulink implementation of this control law is shown in Figure 5.9.

The same process was used to determine the appropriate value for K,4 as was
used for the other two force control gains - trial and error. The value was raised in
small increments from zero all the way until the increases no longer had a positive
impact on the performance of the controller. The optimal value was found to be
approximately 2000. The performance of the controller with K4 set to this optimal

value are shown in Figure 5.10.

These results were thought to be excellent. As with the PI/Feedforward controller,
the position tracking was excellent up until ¢ = 2 seconds in the x, y and z directions.

For t > 2 seconds, the z and y position tracking continued to be excellent, while
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Figure 5.10: Results of the PI/Feedforward/Velocity Damping force controller

the position tracking in the z direction was ignored in favour of the force tracking.
The performance of the force controller represented the major improvement against
the previous controller, as the overshoot and settling time were dramatically reduced,
while the oscillation was completely eliminated. This meant that the velocity damping

term was working exactly as was intended.

This performance was considered to be fully satisfactory in terms of the aims
of this project, in that the goal of hybrid force-position control had been achieved.
To further test the capabilities of the controller, another trial was run, except that
instead of asking the force controller to track a constant 200N desired force in the z

direction, it was asked to track a z-force trajectory of:

f2=200(1+ Sin(% -0.2)) (5.13)
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Figure 5.11: Results of variable force tracking

The results of the attempt to track this variable force trajectory are shown in
Figure 5.11. Again, the performance was excellent. It was particularly notable that
the controller was able to bring the force all the way down to ON by bringing the end
effector up to the edge of the reaction surface without encountering any disruptive
behaviour at this boundary. The tracking was almost perfect, with just a slight lag

and a small overshoot.

The success of this force controller within the overall hybrid force-position control
scheme represented the conclusion of the simulation work that was done in this thesis.
More discussion on future directions in which this work could be explored can be found
in Chapter 6. The primary application for this controller was to be for use with a

physical robot, the details of which will be discussed in the subsequent chapter.
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Conclusion and

Recommendations

The goal of this thesis was to develop a hybrid force-position controller for a 4-DOF
SCARA manipulator, and this was successfully completed. However, throughout the
course of the project, many different areas for further investigation were discovered

and will be discussed in further detail here.

The first and most obvious area for future work would be in the completion of the
construction of the physical robot. The decision to stop building it was made in this
thesis not because it wasn’t a worthwhile objective, but because of internal challenges
specific to the project (software availability, time constraints). The construction of
the robot would have allowed for testing of the controller on a real robot, which (if
successful) would have represented a major success. Implementing a controller on
a simulation is one thing, but dealing with a physical robot comes with an entirely
separate suite of challenges. Some of these challenges can be resolved without having
to change too much in the controller, but it is also possible to encounter challenges
that might invalidate core assumptions within the design of the controller, necessi-
tating major changes. Implementing the controller developed in this thesis on an
actual physical robot would be the most valuable direction for future work, especially

considering the design work that has already been done towards rebuilding the robot.

One important part of implementing the controller on a physical robot would be
the redevelopment of the mathematical model of the robot, in order to properly cal-
culate control gains and feedback linearization functions. This redevelopment would
certainly require the determination of the physical characteristics of the robot, in-
cluding the masses, moments of inertia, lengths, centre of mass locations and motor
constants for all of the joints and links. In addition to this, a more accurate model of

the robot’s dynamics would have included a model for friction in each of the joints,
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and also the motor dynamics. While many of these characteristics (mass, lengths,
motor constants) can be found relatively easily and accurately, other characteristics
(moments of inertia, centre of mass locations, friction constants) aren’t easily deter-

mined, and are very specific to the setup of the robot.

In order to accurately determine these values, a process called dynamic identifica-
tion can be used. In this process, the robot motors are given time-varying sequences
of input voltages at each of the actuating motors, and the resulting joint positions and
angles are measured over time. Then, a numerical optimization of all of the unknown
parameters of the robot would have to be performed. In this optimization process,
many different combinations of parameters would be proposed, and then used to map
the known input voltages into corresponding output joint positions and angles. The
combinations of parameters that generated output joint positions and angles that
most closely matched the actual measured output joint positions and angles would
form the best possible estimates of these parameters. The optimization process would
continue until a set of parameters was found than generated output joint positions
and angles that were deemed a close enough fit, and then these would be assumed to
be actual representations of the real parameter values. This dynamic identification
would ensure that the mathematical model upon which the robot controller was built

would be an accurate representation of reality.

There are also many ways that the development of the controller itself could have
been pushed further, with or without being implemented on a physical robot. Most of
these areas for work involve removing one or more of the assumptions that simplified

the work done in this thesis. These directions are listed below:

1. The reaction surface with which the robot had to interact could have been
made an oblique plane (i.e. not perpendicular to the z axis), forcing the robot
to prioritize between force and position control in more joints than just the

prismatic joint.

2. The reaction surface could have been made to be a curved surface, forcing the
supervisory controller to constantly re-evaluate the directions of the natural

and artificial constraints.

3. The forces generated by the reaction surface could have been made to be more
than just a normal force (i.e. the addition of a friction model), necessitating a
new balance between the natural and artificial constraints in the plane tangent

to the reaction surface.
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4. The supervisory controller’s selection matrix could have been made more in-
telligent, giving it the ability to determine on its own when to switch from
position dominance to force dominance based on its position relative to the

reaction surface.

5. The entire controller could have been improved to make it more robust, making
it so that it would not produce erratic and crazy performance failures when

presented with challenging boundary conditions or unexpected inputs.

6. The model could have been updated to include random measurement noise to

test the robustness of the developed controllers.

Beyond all of these possible improvements to the quality of the controller, a
major improvement to the controller could have been achieved if a more math-based
approach was taken to determine the force controller’s feedback gains than simply
trial and error. As mentioned during the discussion of the development of the force
controller, a more theoretically valid approach for this was never found throughout
the literature, but this does not necessarily mean that such an approach does not

exist.

Despite all of these areas for future work, this thesis was totally successful in its
aim of developing a hybrid force-position controller for a 4-DOF SCARA manipula-
tor. A kinematic model of the robot was developed with the DH convention, and then
manipulated to find the robot’s inverse kinematics and workspace. By differentiating
the kinematic equations, the robot’s Jacobian was found, and this was used to deter-
mine the locations of its kinematic singularities. The Lagrange method was used to
develop the robot’s dynamic equations and complete the mathematical model of the

robot.

A simplified model of a 4-DOF SCARA robot was built in Solidworks, and the
physical properties of this model were plugged into the mathematical model to gen-
erate a simulation of the model in Simulink, and also SimScape. Multiple position
controllers were built for both simulations, and when they were applied, the system
outputs were very similar - validating the mathematical model of the robot. Ulti-
mately, the most successful of the position controllers was the Decentralized Feedback

Linearization/PID controller.

The simulations were then rebuilt to include a reaction surface that would gen-
erate an external normal force acting on the end effector if it was interacted with.

This allowed for the development of a force controller, the most successful of which
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was a PI/Feedforward/Velocity Damping controller. Finally, the two controllers (po-
sition and force) were combined in a hybrid force-position control scheme that was

successfully able to prioritize between position and force tracking goals.
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A Appendix A: Physical Robot

Construction

Figure A.1: Photo of existing 3-DOF SCARA manipulator

In addition to the simulation work done in this thesis, a parallel effort was made to
design and build a 4-DOF SCARA robot on which the controller could be tested.
Previous students had built a 3-DOF SCARA manipulator (shown in Figure A.1)
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A.1. Eliminating Mechanical Backlash

that originally was going to be used as a base, and augmented to add the fourth
degree of freedom, as well as a force/torque sensor. This previous model also had
some significant mechanical backlash that had to be rectified in order to make it
useful for a high-precision task such as force-position control. Thus, the physical

robot construction was broken down into three main lines of effort:

1. Add a fourth degree of freedom
2. Add a force/torque sensor

3. Eliminate mechanical backlash

Unfortunately, due mainly to concerns regarding the accessibility of the software
required to interface between the robot motors and the controller, the physical con-
struction of the robot was put on hold and eventually removed from the aims of this
thesis. Thus, this chapter will discuss the work that was done, although ultimately a
functional 4-DOF SCARA manipulator was never built.

A.1 Eliminating Mechanical Backlash

The first and most significant task in the rebuild of the robot was to get rid of the
mechanical backlash in the existing robot. In machine design, mechanical backlash
occurs when two moving parts within an assembly have too much clearance between
them. A classic example of this is when the teeth of a gear become worn and no
longer fit perfectly into the gears they are paired with, thus leaving some room for
the gears to move around without any intentional driving force/torque. This example

is depicted below in Figure A.2:
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A.1. Eliminating Mechanical Backlash

Gear 1

|
\
Gear 2 N mechanical
"""~ ~ backlash

Figure A.2: Example of mechanical backlash

In a robot manipulator, even a small amount of mechanical backlash in any of
the joints can lead to the end effector swinging around uncontrollably, which is a
significant issue when precision control (such as in this project) is the goal. While it
was difficult to determine where in the existing robot’s mechanical chain the backlash

was being generated, it was assumed to be in two different places.

The first was in the drive trains of the first and second (shoulder and elbow)
motors. It was assumed to be here, because the end effector would swing left and
right in a manner that could only have been caused by looseness in the two rotary
joints, and the connections between the motor housings and shafts to the robot links
all seemed to be quite tight. Thus, the internal drive train of each of the motors was
thought to be the only other place where this horizontal movement of the end effector

could have been coming from.

The second place that backlash was assumed to be coming from was in the two
bearings of each of the first and second (shoulder and elbow) joints. It was assumed
to be here, because the end effector would sag down a bit, and could also be lifted
up - indicating some looseness in the vertical plane. This could have come from the
prismatic joint, but this motor was driven by a worm gear which is a mechanism
known to have very low backlash, and the prismatic joint itself seemed to have been
assembled quite tightly. When the robot was disassembled, it could be clearly seen
that the vertical backlash was coming from some bending at each of the two rotary

joints, which indicated that the bearings were not serving their purpose properly.
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A.1. Eliminating Mechanical Backlash

Figure A.3: Existing shoulder joint thrust bearing

These two sources of backlash had to be dealt with separately. The easier of the
two sources to eliminate was the vertical backlash of the end effector coming from
the loose vertical bearings in the shoulder and elbow joints. The thrust bearing for
the shoulder joint is shown in Figure A.3. For the elbow joint, a combination of one

thrust bearing and one radial bearing was used, both are shown in Figure A .4.

The thrust bearings were very strong to support the axial load of the robot arm,
and the elbow joint’s combination of the thrust and radial bearing was useful for

radial loads as well. However, neither joint was well set up to deal with the bending
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A.1. Eliminating Mechanical Backlash

moment loads that were placed on them with the robot in an outstretched position.
This bending load was where the most mechanical play was discovered, and so it was
decided that both joints had to be re-designed with new bearings more capable of
dealing with bending loads.

Figure A.5: Face-mounted crossed-roller bearing

The bearings that were selected with this criteria in mind were face-mounted
crossed-roller bearings, shown in Figure A.5. These bearings consist of an inner
ring that rotates independently from an outer ring, with both rings capable of being
fixed to independently moving parts. These bearings are more expensive than typical
bearings, at around $100 each, but they are able to deal with thrust, radial and
bending loads. Thus, two of these bearings were purchased for the re-design, which

was considered to be a good solution to the mechanical backlash in the vertical plane.

Dealing with the horizontal-plane backlash was more challenging. Since it was
assumed that this backlash was coming from looseness in the drive trains of each of
the rotary motors for the first two joints, the simplest solution would have simply been
to purchase new low-backlash motors. These, however were too large and outside of
the budget for this build. If the same motors were to be used, a new, low-backlash
power transmission element would need to be installed between the output shaft of

the motor and the subsequent driven link in the robot arm.
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A.1. Eliminating Mechanical Backlash

Figure A.6: Graphic demonstrating the strain wave principle (left) and photo
of a disassembled Harmonic Drive (right)

Such a low-backlash power transmission device was hard to find. In a stroke of
good luck, a gear system known as a Harmonic Drive was available at RMC which
was perfectly suited to the task. Harmonic Drives operate on a complex mechanical
principle called ”strain wave gearing” which is difficult to explain. Figure A.6 shows
two images, on the right it shows a photo of a disassembled Harmonic Drive, and on
the left it shows a graphic demonstrating the principle. Without going into further
detail, the Harmonic Drive can be understood to simply act as a gear reducer, but

without any backlash.

The Harmonic Drive was perfect for this application, and would thus be used
for the shoulder joint - because the shoulder joint was the place where mechanical
backlash would lead to the most movement at the end effector. Thus, the entire first
joint was be redesigned to include the Harmonic Drive, as well as the face-mounted
crossed-roller bearing. After a few iterations and changes to components to allow
them to be more easily built at the RMC Machine Shop, the final design for the
first joint was completed, and can be seen in Figure A.7. Unfortunately during the
construction of this first joint, the software concerns were realized, which led to a halt

in the development of the physical robot - so it was never fully built.

While the Harmonic Drive solved the issue of backlash in the shoulder motor,

a solution was still needed for the elbow motor. Unfortunately, only one Harmonic
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A.1. Eliminating Mechanical Backlash

Drive was available, and buying another one was outside of the budget of this build.
Thus, a cheaper solution had to be developed. After some research, the concept of a
"cycloidal drive” was discovered. A cycloidal drive is another gear reduction system
that works with a similar principle to the Harmonic Drive, only just not manufactured
and sold under a patent. Off-the-shelf cycloidal drives can be purchased, but are even
more expensive than Harmonic Drives, so the idea to manufacture one at the RMC

Machine Shop was considered.

A functional prototype (shown in Figure A.8) of a custom cycloidal drive was
designed on Solidworks and 3D printed at the RMC Machine Shop. This initial
prototype was built with the purpose of determining whether the concept could work,
and the physical model showed that it was a potentially valid solution to the elbow
joint’s backlash. A second prototype was planned to be built with CNC-machined

rotors and proper bearings and bushings, but again, the physical robot construction
was halted before it could be built.

Figure A.8: Images of the cycloidal drive prototype

This represented the full extent of the work that was done to eliminate the back-
lash in the physical robot. While plenty of work still remains in order to get a
functional robot built, assuming that the cycloidal drive is effective in reducing the
elbow joint’s backlash, all that must to be done is to design and put together all of
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A.2. Force/Torque Sensor and Fourth DOF

SROBOTIQ

Figure A.9: Robotiq 6-axis force-torque sensor

the pieces.

A.2 Force/Torque Sensor and Fourth DOF

The approach to rebuilding the robot was to start by designing and building the
first joint, and then to move on and design/build each subsequent link and joint
in the order they appeared in the robot’s kinematic chain. Thus, the addition of
a force/torque sensor and the fourth degree of freedom had not even began by the
time that the physical construction had been halted due to the concerns surrounding

software availability.

The only exception to this, was the actual purchasing of the force-torque sensor,
as it had to be done early on in the project due to its price. After some searching
on the market, a 6-axis force-torque sensor made by a company called Robotiq was
deemed to be the most suitable option and was purchased, and can be seen in Figure
A.9. This force-torque sensor was to be installed directly after the fourth rotary joint

in the kinematic chain.

This represents all of the work that was done towards the goal of building the
physical robot for testing. While it was certainly unfortunate that it was not com-

pleted, significant progress was made, and hopefully future work will see it finished.
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Appendix B: Source Code

B.1 Robot Model Development

tic

syms
syms
syms
syms
syms
syms
syms

syms

ldyy ldzz I4xy ldyz I4dxz

theta_1(t) theta_2(t) d.3(t) theta_4(t)
theta_1_dot theta_2_dot d_-3_dot theta_4_dot
theta_1_ddot theta_2_ddot d_3_ddot theta_4_ddot

thetal theta2 d3 theta4

m0 ml m2 m3 m4

g-
10 11 12

lcOx 1lcOy 1lcO0z lclx lely lelz le2x lc2y 1c2z le3x le3dy
lc3z lcdx lcdy lcdz

syms I0xx I0yy 10zz Ilxx Ilyy Ilzz Ilxy Ilyz Ilxz I2xx I2yy
12zz 12xy 12yz I12xz I3xx I3yy I3zz I3xy I3yz I3xz Idxx

%% Generate the robot’s kimnematic model using the following

DH Table:
% Link a
% 1 11
% 2 12
% 3 0
% 4 0

alpha
0
pi
0
0

1o

s
l4

133

theta
thetal
theta?2
0
theta/



B.1. Robot Model Development

% First generate the homogeneous transformation

A_0.1 = [cos(theta_1(t)),
theta_1(t));

sin(theta_1(t)),

theta_1(t));

A_1.2 = [cos(theta_2(t)),
theta_2(t));

sin(theta_2(t)),

theta_2(t));

A 3.4 = [cos(theta_4(t)),

sin(theta_4(t)),

—sin(theta_1(t))

cos(theta_1(t))

i1
sin (theta_2(t))

—cos(theta_2(t))

ik
—sin(theta_4(t))

cos(theta_4(t))

matrices:
, 1lxcos(
, 11xsin(

.10

, 12xcos|(

, 12xsin(
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B.1. Robot Model Development

i1

A_0.2 simplify (A_0_1xA_1.2);
A_0.3 simplify (A_0_2xA_2_3);
A 0.4 = simplify (A_0_.3xA_3.4);

%Extract the rotation matrices and other important info from
transformation

%matrices :

R.0.1 = A0.1(1:3, 1:3);
R0.2 =A02(1:3, 1:3);
R.0.3 = A0.3(1:3, 1:3);
R.04 = A_04(1:3, 1:3);

ro0.1 = A_0_1(1:3,4);

r.1.2 =R.0.1xA_1.2(1:3,4);
r.2.3 = R.0.2+A_2.3(1:3,4);
r.3.4 = R.0.3xA_3.4(1:3,4);

z-.0_.1 = R_0-1
z_.0.2 = R_0_2
z.0.3 = R.0_3
z_.0.4 = R.0_4

%Compute the translational and rotational wvelocity wvectors of
each frame
%using the iterative method:

w0 = [0;0;0];

w1l = w.0 + theta_1_dot«[0;0;1];
w2 = w_1 + theta_2_dot*xz_0_1;
w3 = w.2;

w4 = w.3 + theta_4_dotxz_0_3;

p-dot_0 = zeros(3,1);
p-dot-1 = p_dot_-0 + cross(w_1,r_0_1);
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B.1. Robot Model Development

p-dot-2 = p_dot_1 + cross(w-2,r_1_2);
p-dot_3 p-dot_-2 + cross(w3,r-2_.3) + d-3_dotxz_0_2;

= p-dot_-3 + cross(w_4,r_.3_.4);

%Set the wvelocities equal to zero and solve to fine the
translational and

%rotational Jacobian matrices:

equnsl = [w_1(1)==0, w_1(2) ==0, w_1(3)==0];

varsl = [theta_1_dot ];

[J_.01, 7] = equationsToMatrix (eqnsl, varsl);

eqns2 = [w_2(1)==0, w_2(2) ==0, w-2(3)==0];

vars2 = [theta_-1_dot, theta_2_dot];

[J_.02, "] = equationsToMatrix (eqns2, vars2);

eqns3 = [w.3(1)==0, w3(2) ==0, w-3(3)==0];

vars3 = [theta_1_dot, theta_2_dot, d_3_dot];

[J_.03, 7] = equationsToMatrix (eqns3, vars3);

equnsd = [w_4(1)==0, w4(2) ==0, w_4(3)==0];

vars4d = [theta_1_dot, theta_2_dot, d-3_dot, theta_4_dot];
[J.04, "] = equationsToMatrix (eqns4, vars4)

eqnsl = [p-dot_-1(1)==0, p_-dot-1(2) ==0, p_dot_1(3)==0];
varsl = [theta_1_dot];

[J.P1, 7] = equationsToMatrix (eqnsl, varsl);

eqns2 = [p-dot_-2(1)==0, p_-dot_-2(2) ==0, p-dot_-2(3)==0];
vars2 = [theta_1_dot, theta_2_dot];

[J.P2, 7] = equationsToMatrix (eqns2, vars2);

eqns3 = [p-dot_3(1)==0, p_-dot_3(2) ==0, p_-dot_3(3)==0];
vars3 = [theta_1l_dot, theta_2_dot, d_3_dot];

[J.P3, "] = equationsToMatrix(eqns3, vars3);

eqnsd = [p-dot_4(1)==0, p_-dot_4(2) ==0, p-dot_4(3)==0];
varsd = [theta_1_dot, theta_2_dot, d_-3_dot, theta_4_dot];
[J.P4, "] = equationsToMatrix (eqnsd, vars4)

J.4 = [J.P4 ; J_04];
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B.1. Robot Model Development

disp (' Jacobian.Computed )
toc

%% Generate a dynamic model for the robot wusing Lagrange ’s
Method :

%First establish the dynamic parameters:

Iecl = [I1xx 0 0;0 Ilyy 0; 0 0 Ilzz];
Ic2 = [I2xx 0 0;0 I2yy 0; 0 0 I2zz];
Ic3 = [I3xx 0 0;0 I3yy 0; 0 O I3zz];
Icd = [I4xx 0 0;0 Idyy 0; 0 0 Idzz];

lel_wrt0 = R_.0_-1x[lclx; lely; lelz]
le2_wrt0 = R_0_2x[lc2x; lec2y; lc2z];
le3_wrt0 R_0_3%[lc3x; lc3y; lc3z]
led_wrt0 = R_0_4x[lcdx; lcdy; lcdz]

%Next generate expressions for the translational and
rotational wvelocities ,
%and the positions of the centres of masses of each link:

ql_-dot = [theta_1_dot];

q2_dot = [theta_1_dot;theta_2_dot];

q3_-dot = [theta_1_dot;theta_2_dot;d_3_dot];

q4-dot = [theta_-1_dot;theta-2_dot;d-3_dot;theta_4_dot];

vel = 0 4+ cross(J_.0lxql_dot,lcl_wrt0);

J Plxql_dot + cross(J_02xq2_dot ,lc2_wrt0);
ved J_P2xq2_dot + cross(J_03xq3_dot,lec3_wrt0);
ved = J P3xq3_dot 4+ cross(J_04xq4_dot ,lcd_wrt0);

ve2

omegal = J_01lxql_dot;

omega2 = inv(R_0.2)%J_02xq2_dot;
omegad = inv(R_0.3)%J_03xq3_dot;
omegad = inv(R_0.4)xJ_04xq4_dot;
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B.1. Robot Model Development

Pcl = lecl_wrt0;

Pc2 = A_0-1(1:3,4) + lc2_wrt0;
Pc3 = A_0-2(1:3,4) + lc3_wrt0;
Pcd = A_0-3(1:3,4) + lcd_wrt0;

%Use these to find expressions for the kinetic and potential
energies of

%each link as a function of each of the joint wvariables (
which each are

%represented as a function of time):

kl = 0.5+«mlxtranspose (vcl)*vcl + 0.5xtranspose (omegal)*Iclx
omegal ;

k2 = 0.5+«m2«transpose (vc2)*vc2 + 0.5xtranspose (omega2)x*Ic2x
omegaZ2;

k3 = 0.5*xm3xtranspose(vc3)*vc3 + 0.5xtranspose (omega3d)*Ic3x
omegaJ ;

k4 = 0.5xmdxtranspose(ved)*xved + 0.5xtranspose (omegad)xIcdx

omegad ;

k = kl+k2+k3+k4;

gl = —ml*[0 0 g_]*Pcl;
g2 = —m2x[0 0 g_]xPc2;
g3 = -—m3x%[0 0 g_]xPc3;
gd = —mdx[0 0 g_]xPcd;

g = gl+g24g3+g4;
g = simplify (g);

%Change wvariables and differentiate to continue Lagrange’s

Method :

k = subs(subs(subs(subs(k,theta_1,thetal), theta_2 6 theta2),d.3
,d3) ,theta_4 ,theta4)

g = subs(subs(subs(subs(g,theta_1,thetal)  theta_2  theta2),d.3
,d3) ,theta_4 ,theta4)
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B.1. Robot Model Development

dk_dtheta_dot = [diff(k,theta_1_dot):;diff(k,theta_2_dot);diff
(k,d_3_dot);diff (k,theta_4_dot)];

dk_dtheta_dot = subs(subs(subs(subs(dk_dtheta_dot ,theta_1_dot
,diff (theta_1,t)),theta_2_dot ,diff(theta_2 ,t)),d_3_dot,
diff(d-3,t)),theta_4_dot ,diff (theta_-4,t));

time_derivative.dk_dtheta_dot = diff(dk_dtheta_dot ,t);

dk_dtheta = [diff(k,thetal);diff(k,theta2);diff(k,d3); diff(k,
thetad) |;

dk_dtheta = subs(subs(subs(subs(dk_dtheta ,thetal ,theta_1),
theta2 ,theta_2),d3,d_3) ,thetad ,theta_4);

dg_dtheta = [diff(g,thetal);diff(g,theta2);diff(g,d3);diff(g,
thetad)];

dg_dtheta = subs(subs(subs(subs(dg-dtheta ,thetal ,theta_1),
theta2 ,theta_2),d3,d_3) ,thetad ,theta_4);

~—

tau = time_derivative_dk_dtheta_dot — dk_dtheta + dg_dtheta;

tau = subs(tau,[diff (theta_1(t),t,t),diff(theta_2(t),t,t),
diff(d_3(t),t,t),diff (theta 4(t),t,t)],[theta 1_ddot,
theta_2_ddot ,d_3_ddot ,theta_4_ddot]) ;

tau = simplify (tau);

tau = subs(tau,[theta_1(t),theta_2(t),d-3(t),theta-4(t)],]
thetal ,theta2 ,d3,thetad]) ;

M = tau — subs(tau,[theta_1_ddot ,theta_2_ddot ,d_3_ddot,
theta_-4_ddot],[0,0,0,0])

= tau — subs(tau,[g_],[0])

= simplify (G);

=tau — M- G

simplify (C)

Q@

M1l = simplify ((M(1) — subs(M(1),theta_1_ddot ,0))/
theta_1_ddot);

M12 = simplify ((M(1) — subs(M(1),theta_2_ddot ,0))/
theta_2_ddot);

M13 = simplify ((M(1) — subs(M(1),d_3_ddot ,0))/d_3_ddot);

Mi14 = simplify ((M(1) — subs(M(1),theta_4_ddot ,0))/
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B.1. Robot Model Development

theta_4_ddot);
M21 = simplify ((M(2)
theta_1_ddot);
M22 = simplify ((M(2)
theta_2_ddot);
M23 = simplify ((M(2)
M24 = simplify ((M(2)
theta_4_ddot);
M31 = simplify ((M(3)
theta_1_ddot);
M32 = simplify ((M(3)
theta_2_ddot);
M33 = simplify ((M(3)
M34 = simplify ((M(3)
theta_4_ddot);
M41 = simplify ((M(4)
theta_1_ddot);
M42 = simplify ((M(4)
theta_2_ddot);
M43 = simplify ((M(4)
M44 = simplify ((M(4)
theta_4_ddot);

subs (M(2) ,theta_1_ddot ,0))/
subs (M(2) ,theta_2_ddot ,0))/

subs (M(2) ,d_3_ddot ,0))/d_3_ddot);
subs (M(2) ,theta_4_ddot ,0))/

subs (M(3) ,theta_1_ddot ,0))/
subs (M(3) ,theta_2_ddot ,0))/

subs (M(3) ,d_3_ddot ,0))/d_3_ddot);
subs (M(3) ,theta_4_ddot ,0))/

subs (M(4) ,theta_1_ddot ,0))/
subs (M(4) ,theta_2_ddot ,0))/

subs (M(4) ,d_3_ddot ,0))/d_3_ddot);
subs (M(4) ,theta_4_ddot ,0))/

M_matrix = [M11,M12,M13,M14;M21,M22,M23,M24; M31,M32, M33, M34;

M41,M42, M43, M44]

M.inv = inv(M_matrix)

C11 = simplify ((C(1)
C12 = simplify ((C(1)

C13 = simplify ((C(1)
C14 = simplify ((C(1)

C21 = simplify ((C(2)

C22 = simplify ((C(2)

subs (C(1) ,theta_1_dot ,0))/theta_1_dot)
subs (C(1) ,theta_2_dot ,0))/theta_2_dot)

subs (C(1),d-3_dot ,0))/d_-3_dot);
subs (C(1) ,theta_4_dot ,0))/theta_4_dot)

subs (C(2) ,theta_1_dot ,0))/theta_1_dot)

subs (C(2) ,theta_2_dot ,0))/theta_2_dot)
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B.2. Position Control Simulation

C23 = simplify ((C(2) — subs(C(2),d-3_dot ,0))/d_-3_dot);
C24 = simplify ((C(2) — subs(C(2),theta_4_dot ,0))/theta_4_dot)

C31 = simplify ((C(3) — subs(C(3),theta_1_dot ,0))/theta_1_dot)
C32 = simplify ((C(3) — subs(C(3),theta_2_dot ,0))/theta_2_dot)

C33 = simplify ((C(3) — subs(C(3),d-3_dot ,0))/d_-3_dot);
C34 = simplify ((C(3) — subs(C(3),theta_4_dot ,0))/theta_4_dot)

C41 = simplify ((C(4) — subs(C(4),theta_1_dot ,0))/theta_1_dot)
C42 = simplify ((C(4) — subs(C(4),theta_2_dot ,0))/theta_2_dot)
C43 = simplify ((C(4) — subs(C(4),d-3_dot ,0))/d_-3_dot);

C44 = simplify ((C(4) — subs(C(4) ,theta_4_dot ,0))/theta_4_dot)

C_matrix = [C11,C12,C13,C14;C21,C22,C23,C24;C31,C32,C33,C34;
C41,C42,C43,C44]

B.2 Position Control Simulation
tic
close all

%% Establish simulation parameters using the following wvalues

g__ = —9.8;
10 = 0.5;
11 = 0.4;
12 = 0.4;
14 = 0.15;
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B.2. Position Control Simulation

ml_ = 6.01;
m2_ = 5.37;
m3_. = 4.03;
m4_ = 0.91;
I1zz_ = 0.1807;
12zz_ = 0.1558;

13zz_. = 0.0064;
Tdzz_ = 0.0025;
lelx. = —0.185;
le2x_. = —0.224;
le3x. =
ledx_ =
lely. =

le2y. =

ledy. =
lcdy_ =

lcelz_ =
le2z_ =
le3z_ = —0.201;
lcdz_ = —0.122;

o O O O O O O O

thetalupperlimit = pi/2;
thetallowerlimit = —thetalupperlimit;
theta2upperlimit = 7xpi/8;
theta2lowerlimit = —theta2upperlimit ;
d3upperlimit = 0.35;

d3lowerlimit = 0.1;

thetadupperlimit = pi;
thetad4lowerlimit = —thetadupperlimit;

jointlmotorlimit = 1000;
joint2motorlimit = 1000;
joint3motorlimit = 1000;
jointdmotorlimit = 1000;

M_inv = subs(M.inv,{g, 10, 11, 12, 14, ml, m2, m3, m4, Ilzz,
122z, 13zz, ld4zz, lclx, le2x, lecd3x, lcdx, lcly, lc2y, lc3y
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B.2. Position Control Simulation

, ledy},{g--, 10_, 11_, 12_, 14_, ml_, m2_, m3_, m4d_,
11zz_, 12zz_, 13zz_, ld4zz_, lclx_, le2x_, ledx_, lcdx_,
lely_, le2y_, le3y_-, lcdy_});

M = subs(M_matrix,{g, 10, 11, 12, 14, ml, m2, m3, md4, Ilzz,
1272z, 13zz, Idzz, lclx, lec2x, le3x, ledx, lecly, lc2y, lec3y
, ledy},{g--, 10_, 11_, 12_, 14_, ml_, m2_, m3_, m4d_,
11zz_, 12zz_, 13zz_, ldzz_, lclx_, lc2x_, le3dx_, lcdx_,
lely_, le2y_, le3y_-, lcdy_});

C = subs(C_matrix,{g, 10, 11, 12, 14, ml, m2, m3, md, Ilzz,
1272z , 13zz, Idzz, lclx, lec2x, le3x, lecdx, lcly, lc2y, lc3y
, ledy} {g--, 10_, 11_, 12_, 14_, ml_, m2_, m3_, m4d_,
11zz_, 12zz_, 13zz_, ld4zz_, lclx_, le2x_, le3x_, lcdx_,
lely_, le2y_, le3y_-, lcdy_});

G = subs(G,{g-, 10, 11, 12, 14, ml, m2, m3, md4, Ilzz, I12zz,
13zz , Tdzz, lclx, le2x, le3x, ledx, lely, lc2y, le3dy, lcdy
Yo{g-—, 10_, 11_, 12_, 14_, ml., m2_, m3., md_, Ilzz_,
12zz_, 13zz_, Tdzz_, lelx_, le2x_, led3x_, ledx_, lcly_,
le2y_, le3y-, ledy_});

%% First we plot the workspace of the robot

zz1 = [];
zz2 = [];

n = 50;

cornerr = sqrt ((11_xcos(thetalupperlimit) + 12_xcos(
thetalupperlimit+theta2upperlimit)) 2 + (11_xsin(
thetalupperlimit) + 12_xsin(thetalupperlimit+
theta2upperlimit)) "2 );

cornerangle = acos(1l1_xcos(thetalupperlimit) + 12_xcos(

thetalupperlimit+theta2upperlimit)/cornerr);
surfaceltheta = thetallowerlimit:(thetalupperlimit—

thetallowerlimit)/n:thetalupperlimit;
surfacelr = cornerr:((11_ + 12_)—cornerr)/n:11_ + 12_;
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B.2. Position Control Simulation

xx2 = zeros(n+1,n+1);
yy2 = zeros(n+1,n+1);
for i = 1:n+1
anglel = thetalupperlimit + (cornerangle —
thetalupperlimit)*(i—1)/n;
angle2 = (cornerangle — thetalupperlimit)*(i—1)/n;
radius = sqrt((ll_xcos(angle2))"2 — 11_"2 +12_"2) + 11_x
cos(angle2);
for j = 1:n+1
thickness = (n+1—j)/n;
xx2(i,j) = (cornerr+(radius—cornerr)*thickness)xcos(
anglel);
yy2(i,j) = (cornerr+(radius—cornerr)xthickness)xsin(
anglel);
end
end
xx3 = zeros(n+1,n+1);
yy3 = zeros(n+1,n+1);
for i = 1:n+1
anglel = thetallowerlimit + (—cornerangle —
thetallowerlimit)*(i—1)/n;
angle2 = (—cornerangle — thetallowerlimit)*(i—1)/n;
radius = sqrt((ll_xcos(angle2))"2 — 11_"2 +12_"2) + 11_x
cos(angle2);
for j = 1:n+1
thickness = (n+1—j)/n;
xx3(i,j) = (cornerr+(radius—cornerr )*thickness)x*cos(
anglel) ;
yy3(i,j) = (cornerr+(radius—cornerr)*thickness)*sin (
anglel);
end
end
[thetatheta ,rr] = meshgrid ([surfaceltheta] ,[surfacelr]);

144



B.2. Position Control Simulation

xx1 rr.xcos(thetatheta);

yyl = rr.xsin(thetatheta);

z4 = 10_ — 14_ — d3upperlimit:(d3upperlimit — d3lowerlimit)/
n:10_ — 14_ — d3lowerlimit;

x4 = (11_412_)*cos(surfaceltheta);

yd = (11_412_)xsin(surfaceltheta);

yy4d = [];
for i = 1:n+1

yy4 = [yyd;y4];
end

[xx4, zz4] = meshgrid ([x4],[z4]);

zb = 10_ — 14_ — d3upperlimit:(d3upperlimit — d3lowerlimit)/
n:10_ — 14_ — d3lowerlimit;

x5 = 11_xcos(thetalupperlimit) + 12_xcos(thetalupperlimit:
theta2upperlimit /n:thetalupperlimit+theta2upperlimit);

y5 = 11_xsin(thetalupperlimit) + 12_xsin(thetalupperlimit:
theta2upperlimit /n:thetalupperlimit+theta2upperlimit);

yy5 = [];
for 1 = 1:n+1

yy5 = [yyd;y5];
end

[xx5, zzb] = meshgrid ([x5],[25]);

z6 = 10_. — 14_ — d3upperlimit:(d3upperlimit — d3lowerlimit)/
n:10_ — 14_ — d3lowerlimit;
x6 = l1_xcos(thetallowerlimit) + 12_xcos(thetallowerlimit:

theta2lowerlimit /n: thetallowerlimit+theta2lowerlimit ) ;
y6 = l1_xsin(thetallowerlimit) + 12_xsin(thetallowerlimit:
theta2lowerlimit /n:thetallowerlimit+theta2lowerlimit);
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yy6 = [];
for i = 1:n+1

yy6 = [yy6;y6];
end

[xx6, zz6] = meshgrid ([x6],[z6]);

z7 = 10_. — 14_ — d3upperlimit:(d3upperlimit — d3lowerlimit)/
n:10_. — 14_. — d3lowerlimit;

x7 = (cornerr)xcos(linspace(—cornerangle ,cornerangle ,n+1));

y7 = (cornerr)*sin(linspace(—cornerangle ,cornerangle ,n+1));

yy7 = [];

[xx7, 2zz7] = meshgrid ([x7],[z7]);
grey = [0.1,0.1,0.1];

for 1 = 1:n+1

zz7z = [];
for j = 1:n+1
zz7z = |zzz, 10_ — 14_ — d3lowerlimit |;
end
zz1 = [zzl;222];

end

for i = 1:n+1

zzz = [];
for j = 1:n+1
zz7z = [zzz, 10_ — 14_ — d3upperlimit |;
end
7222 = [z22;727];

end
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figure (1)

surf(xxl,yyl,zzl, FaceColor
"none’) ;

get (gcf, 'Renderer’);

hold on

surf(xxl,yyl,zz2, FaceColor
"none’) ;

get (gcf, ’'Renderer’);

hold on

surf(xx2,yy2,zz1, FaceColor
"none’) ;

get (gef, 'Renderer’);

hold on

surf(xx2,yy2,zz2, FaceColor
"none’) ;

get (gcf, ’'Renderer’);

hold on

surf(xx3,yy3,zz1, FaceColor
"none’) ;

get (gef, 'Renderer’);

hold on

surf(xx3,yy3,zz2, FaceColor
‘none’) ;

get (gef, 'Renderer’);

hold on

surf(xx4 ,yy4,zz4 ,’FaceColor
‘none’ ) ;

get (gcf, 'Renderer’);

hold on

surf(xx4 ,yy4,zz4 , FaceColor
"none’) ;

get (gcf, ’'Renderer’);

hold on

surf(xx5,yy5,zz5, FaceColor
"none’) ;

get (gef, 'Renderer’);

hold on

"FaceAlpha’ .1, EdgeColor’
"FaceAlpha’ ,.1,  EdgeColor’,
"FaceAlpha’ ,.1, EdgeColor’,

"FaceAlpha’ .1, EdgeColor’,

"FaceAlpha’ ,.1, EdgeColor’,
"FaceAlpha’ ,.1, EdgeColor’,
"FaceAlpha’ .1, EdgeColor’
"FaceAlpha’ ,.1, EdgeColor’,
"FaceAlpha’ ,.1, EdgeColor’,
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surf(xx5,yy5,zz5, FaceColor’ ,grey , "FaceAlpha’ ,.1,  EdgeColor’,
"none’) ;

get (gef, 'Renderer’);

hold on

surf(xx6,yy6,zz6 , ’FaceColor’ ,grey , 'FaceAlpha’ ,.1,  EdgeColor’,
‘none’ ) ;

get (gcf, 'Renderer’);

hold on

surf(xx6,yy6,zz6 , ’FaceColor’ ,grey, 'FaceAlpha’ ,.1, EdgeColor’,
"none’) ;

get (gcf, 'Renderer’);

hold on

plot3(x4,y4,linspace(10. — 14_ — d3upperlimit,10_. — 14_ —
d3upperlimit ,n+1), black ’)

hold on

plot3(x4,y4,linspace(10_. — 14_ — d3lowerlimit ,10. — 14_ —
d3lowerlimit ,n+1), ’black’)

hold on

plot3(x5,y5,linspace(10_ — 14_ — d3upperlimit ,10_. — 14_ —
d3upperlimit ,n+1), black’)

hold on

plot3(x5,y5,linspace(10_ — 14_ — d3lowerlimit ,10_ — 14_ —
d3lowerlimit ,n+1), "black’)

hold on

plot3(x6,y6,linspace(10- — 14_ — d3upperlimit ,10_. — 14_ —
d3upperlimit ,n+1), black ’)

hold on

plot3(x6,y6,linspace(10_. — 14_ — d3lowerlimit ,10. — 14_ —
d3lowerlimit ,n+1), black’)

hold on

plot3 (x7,y7,linspace(10_ — 14_ — d3upperlimit ,10_ — 14_ —
d3upperlimit ,n+1), black’)

hold on

plot3 (x7,y7,linspace(10_ — 14_ — d3lowerlimit ,10_ — 14_ —
d3lowerlimit ,n+1), black’)

hold on

plot3 ([cornerrxcos(cornerangle),cornerrscos(cornerangle)],|
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cornerrxsin(cornerangle) ,cornerrx*sin(cornerangle)],

linspace(10. — 14_ — d3lowerlimit ,10_ — 14_ — d3upperlimit
,2), "black ")
hold on

plot3 ([ cornerr*xcos(—cornerangle),cornerrxcos(—cornerangle)],|

cornerrxsin(—cornerangle) ,cornerr*sin(—cornerangle)],

linspace(10. — 14_ — d3lowerlimit ,10_ — 14_ — d3upperlimit

,2), black’)
hold on

figure(5)

surf(xxl,yyl,zzl, FaceColor
‘none’ ) ;

get (gecf, 'Renderer’);

hold on

surf(xxl,yyl,zz2, FaceColor
"none’);

get (gcf, 'Renderer’);

hold on

surf(xx2,yy2,zz1, FaceColor
‘none’) ;

get (gcf, ’'Renderer’);

hold on

surf(xx2,yy2,zz2, FaceColor
‘none’ ) ;

get (gecf, 'Renderer’);

hold on

surf(xx3,yy3,zz1, FaceColor
"none’);

get (gcf, 'Renderer’);

hold on

surf(xx3,yy3,z22, FaceColor
‘none’) ;

get (gcf, ’'Renderer’);

hold on

surf(xx4 ,yy4,zz4 , FaceColor’

"none’) ;

"FaceAlpha’ .1, EdgeColor’,
"FaceAlpha’ ,.1,  EdgeColor’,
"FaceAlpha’ ,.1,  EdgeColor’,
"FaceAlpha’ ,.1, EdgeColor’,
"FaceAlpha’ .1, EdgeColor’
"FaceAlpha’ ,.1,  EdgeColor’,
"FaceAlpha’ ,.1, EdgeColor’,
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get (gef, 'Renderer’);

hold on

surf(xx4,yy4,zz4 , FaceColor’ ,grey , "FaceAlpha’ ,.1, ’EdgeColor’,
"none’) ;

get (gef, 'Renderer’);

hold on

surf(xx5,yy5,zz5, FaceColor’ ,grey , "FaceAlpha’ ,.1, ’EdgeColor’,
"none’) ;

get (gecf, 'Renderer’);

hold on

surf(xx5,yy5,zz5, FaceColor’ ,grey, 'FaceAlpha’,.1, EdgeColor’,
"none’) ;

get (gef, 'Renderer’);

hold on

surf(xx6,yy6,zz6 , ’FaceColor’ ,grey , 'FaceAlpha’ ,.1,  EdgeColor’,
"none’) ;

get (gef, 'Renderer’);

hold on

surf(xx6,yy6,zz6 , ’FaceColor’ ,grey, 'FaceAlpha’ ,.1, EdgeColor’,
‘none’ ) ;

get (gcf, 'Renderer’);

hold on

plot3(x4,y4,linspace(10_. — 14_ — d3upperlimit,10. — 14_ —
d3upperlimit ,n+1), black’)

hold on

plot3(x4,y4,linspace(10_. — 14_ — d3lowerlimit ,10. — 14_ —
d3lowerlimit ,n+1), black’)

hold on

plot3(x5,y5,linspace(10_ — 14_ — d3upperlimit ,10_. — 14_ —
d3upperlimit ,n+1), black’)

hold on

plot3(x5,y5,linspace(10. — 14_ — d3lowerlimit ,10_ — 14_ —
d3lowerlimit ,n+1), black’)

hold on

plot3(x6,y6,linspace(10_. — 14_ — d3upperlimit ,10. — 14_ —
d3upperlimit ,n+1), black’)

hold on
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plot3(x6,y6,linspace(10. — 14_ — d3lowerlimit ,10_ — 14_ —
d3lowerlimit ,n+1), black’)

hold on

plot3(x7,y7,linspace(10. — 14_ — d3upperlimit ,10_. — 14_ —
d3upperlimit ,n+1), black’)

hold on

plot3 (x7,y7,linspace(10_. — 14_ — d3lowerlimit ,10. — 14_ —
d3lowerlimit ,n+1), black’)

hold on

plot3 ([cornerr*cos(cornerangle),cornerrxcos(cornerangle)],|

cornerr*sin(cornerangle),cornerr*sin(cornerangle)],

linspace(10_. — 14_ — d3lowerlimit ,10_ — 14_ — d3upperlimit
,2), ’black’)
hold on

plot3 ([cornerr*xcos(—cornerangle) ,cornerrxcos(—cornerangle)],|

cornerrxsin(—cornerangle) ,cornerr*sin(—cornerangle)],

linspace(10_. — 14_ — d3lowerlimit ,10_ — 14_ — d3upperlimit
,2), ’black’)
hold on

%% Generate and plot the non—rigid surface (mnrs) that the
robot will interact with

nrs_ymax = 0.4;
nrs_.ymin = —0.4;
nrs_.xmax = 0.6;
nrs_xmin = 0.2;
nrs_zbase = 0.13;

nrs_stiffness = 10000;

nrs_frictioncoefficient = 0.2;

nrs.x = linspace(nrs_xmin ,nrs_xmax ,n+1);
nrs_.y = linspace(nrs_ymin ,nrs_ymax ,n+1);
nrs_zz = [];
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for 1 = 1:n+1

nrs_z = [];
for j = 1:n+1
nrs_z = [nrs_z, nrs_zbase|;
end
nrs_zz = [nrs_zz;nrs_zl;
end
[nrs_xx, nrs_yy] = meshgrid ([nrs_x],[nrs_y]);

%% Plot the reaction surface

% figure (1)
% surf(nrs_zx,nrs_yy,nrs_zz, 'FaceColor’,[1, 1, 0], FaceAlpha
7.8, "EdgeColor’, 'none’) ;
get(gcf, ’'Renderer’);
hold on
plotd (nrs_z,linspace (nrs_ymax ,nrs_ymaz ,n+1),nrs_zz(n+1,:),’
black ’)
% hold on
% plot3(nrs_x,linspace (nrs_ymin ,nrs_ymin ,n+1),nrs_zz(1,:),’
black ’)
% hold on
% plot3(linspace (nrs_zxmaz ,nrs_cmaz ,n+1),nrs_y,nrs_zz (:,n+1),’
black ’)
% hold on
% plot3(linspace (nrs_amin ,nrs_cmin ,n+1),nrs_y ,nrs_zz(:,1),
black ’)
% hold on

X X N

)

%% Generate the desired trajectory and the corresponding
joint angle timeseries wusing the inverse kinematics, as

well as the desired normal and friction forces:

trial_time = 10;
stepsize = 0.005;

152



B.2. Position Control Simulation

x-d = [];

y-d = [];

z.d = [];

zo_d = [];
theta_1.d = [];
theta_2_.d = [];
theta_1_d1 = |
theta_2.d1 = |
theta_4_.d1 = |
theta_1.d2 = |
theta_2_.d2 = |
theta_4.d2 = |
d.3.d = [];
z_base = [];
theta_4.d = [];
f_normal_d = [];
f_friction_d = [];

t = [];

DOFs = [];

spline = [];

for i = O:stepsize:trial_time — stepsize
t = [t; i];
j = i/trial_time;

% Line from starting position to surface

% zo-d = 11_ + 12 — g«=(l1_ + 12 — (nrs_.xmin + nrs_zmaz)
/2);

% y--d = jx(nrs_.ymin + 0.1x(nrs.ymax — nrs_ymin));

% z._d = 10_ — 4. — d3lowerlimit — j+(10_ — 14_ —
d3lowerlimit — nrs_zz(n/10,n/2));

% Squiggle within single area

% z_.d = 0.5 + j#0.2;

% Yy--d = —0.2 + jx0.4;

% zo_d = 0.05 + j*0.15 + 0.025+sin (j*10%pi);

% Squiggle within two areas

% x__d = 0.1 + j%0.4;

% yo_d = 0.4 + j*0.6;
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XN X NN NXNNN KK

z._d = 0.05 + jx0.15 + 0.025%sin(jx10%pi);
Squiggle within three areas

z__d = 0.25;

y--d = —0.4 + j*0.8;

z._d = 0.05 + j%0.15 + 0.025+sin(j*10xpi);
NRS test line

x__d = 0.5;

y__d = —0.2 + jx0.4;

zo-d = 0.08 + 0.025xsin(j*10xpi);

Position Only Controller Test Line;
x-.d = 0.8 — 0.4%j — 0.05%sin(j=*4*pi);

y..d = —0.2%xj + 0.15xsin(j*1.5xpi);

z_.d =0.25 — 0.1xj] — 0.005*sin(j*15xpi);

spline = [spline; x_.d y_.d z_.d];

zo__d = 0;

x.d = [x.d; x-.d];

y-d = [y.d; y--d]J;

z.d = [z.d; z__d];

zo.d = [zo_.d; zo__d];

theta_2__.dl = acos((x-.d"2 + y_.d"2 — 11_"2 — 12_"2) /(2%
11_x12_));

theta_2__.d2 = —acos((x-.d"2 + y_.d"2 — 11_"2 — 12_"2) /(2%
11_%x12_));

theta_1__dl = atan2(y_.d ,x_.d) — asin(12_xsin(theta_2__d1
)/(sart(x--d"2 + y_d"2)));

theta_1_.d2 = atan2(y-.d ,x-.d) — asin(l2_xsin(theta_2_.d2
)/(sart(x-.d"2 + y__d"2)));

d3..d =—-z_.d + 10 — 14_;

theta_4__.dl = zo__.d — theta_1__d1 — theta_2__d1;

theta_4_.d2 = zo__d — theta_1_.d2 — theta_2_.d2;

theta_2__dlcheck = or(theta_2__d1 < theta2lowerlimit
theta_2__d1l > theta2upperlimit);

theta_2__d2check = or(theta_2_.d2 < theta2lowerlimit ,
theta_2__d2 > theta2upperlimit);

theta_l__dlcheck = or(theta_1__d1 < thetallowerlimit ,
theta_1__.d1 > thetalupperlimit);

theta_1__d2check = or(theta-1_.d2 < thetallowerlimit ,

3
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theta_1_.d2 > thetalupperlimit);
if or(theta_2__dlcheck ,theta_1__dlcheck) == 0
if or(theta_2__d2check ,theta_1__d2check) = 0
DOFs = [DOFs; 2];
theta_1__d = theta_1__d1;
theta_2__d = theta_2__d1;
theta_4__d = theta_4__d1;
else
DOFs = [DOFs; 1.1];
theta_1__d = theta_1__.d1;
theta_2__d = theta_2__d1;
theta_4__d = theta_4__d1;
end
else
if or(theta_2__d2check ,theta_1__d2check) = 0
DOFs = [DOFs; 1.2];
theta_1__d = theta_1_.d2;
theta_2__d = theta_2__d2;
theta_4__d = theta_4__d2;
else
DOFs = [DOFs; 0];
theta_1__d = theta_1__.d1;
theta_2__d = theta_2__d1;
theta_4__d = theta_4__d1;

end
end
theta_1_d = [theta_1_d; theta_1_.d];
theta_2_.d = [theta_2_d; theta_2__.d];
theta_4.d = [theta_4_d; theta_4__.d];

theta_1_d1 = [theta_1_d1; theta_1__d1
theta_2_d1 [theta_2_d1; theta_2__dl1
theta_4_d1 [theta_4_d1; theta_4__d1
theta_-1.d2 = [theta_1.d2; theta_1_.d2
[
[

)

)

}
)
I
)
}
}

Y

theta_2_.d2 = [theta_2_.d2; theta_2_.d2];
theta_4_d2 = [theta_4_d2; theta_4_.d2];
d.3.d = [d.3.d; d.3_.d];

z_base = [z_base; 10_. — 14_ — nrs_zbase];
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f_normal.d = [f.normal_d; 100];
f friction-d = [f_friction_-d; 20];
end

if sum(DOFs = 0) > 0
disp ( 'The_desired .trajectory.is.not.fully _enclosed._in._the
-reachable_workspace )
else
if and(sum(DOFs = 1.1) > 0,sum(DOFs = 1.2) > 0 )
disp(’The_desired._trajectory _has.at_least._.one.
inflection _point )
else
if sum(DOFs = 1.1) > 0
theta_1_d = theta_1_d1;
theta_2_.d = theta_2_d1;
end
if sum(DOFs = 1.2) > 0
theta_1_d = theta_1_d2;
theta_2_d = theta_2_d2;
end
end

end

figure (2)

subplot (4,2 ,1)

plot (t,theta_1_d)

xlabel ( 'Time.(seconds) )

ylabel (’\theta_1_(radians)’)

title (’'Desired.and_.Actual_Angle_for_Joint.1")
legend ( 'Desired -Angle’)

hold on

subplot (4,2,3)

plot (t,theta_2_d)

xlabel ( ’Time.(seconds) )

ylabel (’\theta_2_(radians)’)

title (’Desired _and_Actual_Angle_for_Joint.2")
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legend ( 'Desired .Angle’)
hold on

subplot (4,2 ,5)

plot(t,d_-3_d)

xlabel ( 'Time.(seconds) )

ylabel (’d_3_(metres)’)

title (’Desired _and_Actual_Position.for.Joint.3")
legend ( ’Desired .Position )

hold on

subplot (4,2,7)

plot (t,theta_4_d)

xlabel ( ’Time.(seconds) )
ylabel(’\theta_4._(radians)’)

title (’Desired_and_Actual_Angle_for_Joint.4")
legend ( 'Desired .Angle’)

hold on

theta_1.d = [t,theta_1_d];
theta_2.d = [t,theta_2_d];
d.3.d = [t,d-3.d];

theta_4.d = [t,theta_4_d];

figure (1)
plot3(x.d,y-d,z.d, 'color’,’black’,’linewidth’,2);
hold on

%% Establish the timeseries of external forces/torques
applied to the end effector %%

fext = [];

for i = O:stepsize:trial_time — stepsize
j = i/trial_time;
if i > trial_time/2

fext = [ fext; i, 0, 0, 0, 0, 0, 0 ];

157



B.2. Position Control Simulation

end

%%

Kp
Kd

Ki =

else
fext = [ fext; i, 0, 0, 0, 0, 0, 0 ];
end

Run the simulation and plot the results

[1347.94; 271.22; 1192.9; 0.605];
[150.39; 30.26; 133.1; 0.0675];
[4010.4; 806.9; 3549.03; 1.8];

sim ( "RobotSimDecentralizedPID ")
sim (’RobotSimscapeDecentralizedPID ’)

X =

y =
7 =

error_-x = [];

error.y = [];

error_z = [];

for

1 O:stepsize:trial_time — stepsize

b= [t; i];

j = round(i/stepsize);

x = [x; ll_%cos(theta_out(j+1,1)) + 12_%cos(theta_out (]
+1,1) + theta_out(j+1,2))];

y = [y; ll_ssin(theta_out(j+1,1)) + 12_xsin(theta_out (]
+1,1) + theta_out(j—+1,2))];

z = [z; 100 — 14_ — theta_out(j+1,3)];

error_x = [error_x; x-d(j+1) — x(length(x))];

error_y = [error_y; y.d(j+1) — y(length(y))];

error_z = [error_z; z.d(j+1) — z(length(z))];

plot3 ([11_xcos(theta_out(j+1,1)) + 12_%cos(theta_out (]
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+1,1) + theta_out(j+1,2)), 11_%cos(theta_out(j+2,1)) +

12_xcos(theta_out(j+2,1) + theta_out(j+2,2))],

[11_x

sin(theta_out (j+1,1)) + 12_xsin(theta_out(j+1,1) +
theta_out (j+1,2)),l1_xsin(theta_out(j+2,1)) + 12_xsin(

theta_out (j+2,1) + theta_out(j+2,2))],

[10. — 14_ —

theta_out (j+1,3),10. — 14_ — theta_out(j+2,3)], color’

,color (j+1,:),

"linewidth’,3)

%scatter3 (l1_xcos(theta_out (j+1,1)) + 12_%cos(theta_out(j
+1,1) + theta_out(j+1,2)),l1_xsin(theta_out(j+1,1)) +
12_xsin(theta_out (j+1,1) + theta_out(j+1,2)),10. — 14_

— theta_out(j+1,8),10,color(j+1,:),

hold on
end

error_1 =

[
error_2 = |
error.3 = |

[1;

error_1l_simscape =

error_4 =

error_2_simscape =
error_3_simscape =

error_4_simscape =

filled 7) ;

for i = 1:1:length(theta_out (:,1))—
error_.1 = [error_1; theta_ 0ut(1—|—1 1) — theta_1.d(i,2)];
error_2 = [error_2; theta_out(i+1,2) — theta-2_d(i,2)];
error_3 = [error_3; theta_out(i+1,3) — d_-3.d(i,2)];
error_4 = [error_4; theta_out(i+1,4) — theta_4.d(i,2)];

end

for i = 1:1:length(theta_out_simscape (:,1))—1

error_l_simscape =

i+1,1) — theta_1_d(i,2
[error_
2) J;

[error_3_simscape;

error_2_simscape =
i+1,2) — theta_2_d(i,
error_3_simscape =

i+1,3) — d.3.d(i,2)];

[error_

) 15

1_simscape; theta_out_simscape(

theta_out_simscape (

2_simscape;

theta_out_simscape (
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error_4_simscape = [error_4_simscape; theta_out_simscape (
i+1,4) — theta_4.d(i,2)];

end

scatter3 (x(1),y(1),z(1),50,color(1,:),’d’, filled’,’
markeredgecolor’,’'w’)

scatterd (x(round(trial_time/stepsize)),y(round(trial_time/
stepsize)) ,z(round(trial_time/stepsize)),50,color (round(
trial_time/stepsize) ,:),’d’,’filled ’, "'markeredgecolor’, 'w’
)

set (gca, ’DataAspectRatio’ ,[1 1 1])

set (gcf, ’Position’ ,[150 50 1250 900])

hold off
t2 = [t ; trial_time];

figure (2)

subplot (4,2 ,1)

plot (t2, theta_out (:,1))

legend ( 'Desired .Angle’,’ Actual_Angle’)

subplot (4,2 ,3)
plot (t2, theta_out (:,2))
legend ( ’Desired _Angle’,’ Actual_Angle’)

subplot (4,2 ,5)

plot (t2, theta_out (:,3))

% plot(t,z_base)

legend ( ’Desired .Position’,’ Actual _Position )%, 'Non—Rigid
Surface Height )%

subplot (4,2 ,7)
plot (t2, theta_out (:,4))
legend ( 'Desired .Angle’,’ Actual_Angle’)

tau_maxes = [max(tau_out(:,1)) , max(tau_out(:,2)) , max(
tau_out (:,3)) , max(tau_out(:,4))];
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tau_mins = [min(tau_out(:,1)) , min(tau_out (:,2)) , min(
tau-out (:,3)) , min(tau_out (:,4))];

tau_diffs = tau_maxes— tau_mins;

error_maxes = [max(error_1) , max(error_2) , max(error.3) |,

max(error_4)|;
error_mins = [min(error_1) , min(error_-2) , min(error-3) |,
min(error_4) |;

error_diffs = error_maxes — error_mins;

upperylims = | max([tau_maxes(1)/tau_diffs (1), ,error_maxes(1)/
error_diffs (1) ,0]) + 0.1 , max([tau_maxes(2)/tau_diffs(2),
error_maxes (2)/error_diffs(2) ,0]) + 0.1, max([tau_maxes(3)
/tau_diffs (3) ,error_maxes(3)/error_diffs(3) ,0]) + 0.1, max
([tau_maxes (4)/tau_diffs (4) ,error_maxes(4)/error_diffs (4)
0]) + 0.1];

lowerylims = [ min([tau_mins(1)/tau_diffs (1) ,error_mins(1)/
error_diffs (1) ,0]) — 0.1, min([tau_mins(2)/tau_diffs(2),
error_mins (2)/error_diffs(2) ,0]) — 0.1, min([tau_mins(3)/
tau_diffs (3),error_mins(3)/error_diffs(3),0]) — 0.1, min(]
tau_mins (4)/tau_diffs (4) ,error_mins (4)/error_diffs (4) ,0])
— 0.1];

subplot (4,2 ,2)

yyaxis left

plot(t, error_1,’r’)

xlabel ( 'Time.(seconds) )

ylabel (’Error_(rad)’)

set(gca, ycolor’ ’r7)

ylim ([lowerylims (1)*error_diffs (1) ,upperylims(1)*error_diffs
(1))

yyaxis right

plot (t2, tau_out(:,1),’g’)

ylabel(’\tau_1.(Num) )

')

ylim ([lowerylims (1)*tau_diffs (1) ,upperylims(1)*xtau_diffs(1)])

set (gca, 'ycolor

title (’Joint_.1_Error_and._Torque _Command’ )
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legend (' Joint .Error’, ’Command.. Torque ")
grid on
hold on

subplot (4,2 ,4)

yyaxis left

plot(t, error.2,’r’)

xlabel ( 'Time.(seconds) )

ylabel (’Error_(rad)’)

set(gca, ycolor’,’r”)

ylim ([lowerylims (2)*error_diffs (2) ,upperylims (2)*error_diffs
(2)])

yyaxis right

plot (t2, tau-out(:,2),’g’)

ylabel(’\tau_2.(Num) )

'g’)

ylim ([lowerylims (2)*tau_diffs (2) ,upperylims (2)*xtau_diffs (2)])

set (gca, 'ycolor

title (’Joint _.2_Error_and_Torque_Command’)
legend (’Joint _Error’,’Command.Torque )
grid on

hold on

subplot (4,2 ,6)

yyaxis left

plot(t, error.3,’r’)

xlabel ( ’Time.(seconds) )

ylabel( ’Error.(m) )

set (gca, ycolor’,’r”)

ylim ([lowerylims (3)*error_diffs (3) ,upperylims(3)*error_diffs
(3)1)

yyaxis right

plot (t2, tau_out(:,3),’g’)

ylabel (’\tau_3_(N)’)

,'g7)

ylim ([lowerylims (3)«tau_diffs (3) ,upperylims(3)*tau_diffs (3)
4+0.000000001])

title (’Joint .3_Error._and._Torque _Command’ )

set (gca, 'ycolor’
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legend (' Joint .Error’, ’Command.. Torque ")
grid on
hold on

subplot (4,2 ,8)

yyaxis left

plot(t, error_4,’r’)

xlabel ( 'Time.(seconds) )

ylabel (’Error_(rad)’)

set(gca, ycolor’,’r”)

ylim ([lowerylims (4)*xerror_diffs (4) ,upperylims (4)*error_diffs
(1))

yyaxis right

plot (t2, tau_out(:,4),’g’)

ylabel(’\tau_4.(Num) )

'g’)

ylim ([lowerylims (4)*tau_diffs (4) ,upperylims (4)*xtau_diffs (4)])

title (’Joint _4_Error_and_Torque_Command’)

set (gca, 'ycolor

legend (’Joint _Error’,’Command.Torque )
grid on
hold on

set (gcf, ’Position’ ,[100 50 1250 900])

figure (3)

subplot (4,1,1)

plot (t,theta_1_.d(:,2))

hold on

xlabel ( ’Time.(seconds) )

ylabel( ’\theta_1_(radians)’)

title (’Desired _and_Actual_Angle_for_Joint.1")
plot (t2, theta_out(:,1))

legend ( ’Desired -Angle’,’ Actual_Angle’)

hold off

subplot (4,1 ,2)
plot (t,theta_2_d (:,2))
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hold on

xlabel ( ’Time.(seconds) )

ylabel (’\theta_2_(radians)’)

title (’Desired _and_Actual_Angle_for_Joint.2")
plot (t2, theta_out (:,2))

legend ( 'Desired.Angle’,’ Actual_Angle’)

hold off

subplot (4,1,3)

plot (t,d-3.d(:,2))

hold on

xlabel (’Time.(seconds) )

ylabel(’d_3_(metres)’)

title (’Desired _and_Actual_Position._for._.Joint.3")
plot (t2, theta_out (:,3))

legend ( ’Desired.Position’,’ Actual _Position’)
hold off

subplot (4,1 ,4)

plot (t,theta_4_.d(:,2))

hold on

xlabel ( ’Time.(seconds) )

ylabel( ’\theta_4_(radians)’)

title (’Desired _and_Actual_Angle_for_Joint.4")
plot (t2, theta_out(:,4))

legend ( ’Desired -Angle’,’ Actual_Angle’)

hold off

set (gef, ’Position’ ,[50 50 800 900])

combined_error_maxes = [max(error_1) , max(error_2) , max(
error_3) , max(error_4) , max(error_l_simscape) , max(
error_2_simscape) , max(error_3_simscape) , max(
error_4_simscape) |;

combined_error_mins = [min(error_1) , min(error_-2) , min(
error_3) , min(error_4) , min(error_1_simscape) , min(
error_2_simscape) , min(error_3_simscape) , min(
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error_4_simscape) |;
combined_error_diffs = max(combined_error_maxes) — min(
combined_error_mins);

figure (4)

plot(t, error_-1,’color’,[1 0.563 0])

hold on

plot(t, error.2,’b’)

plot(t, error_3,’color’,[0 0.5 0])

plot(t, error_4,’color’,[0.781 0 1])

plot(t, error_1_simscape,’—’,’color’ ,[1 0.563 0])
plot(t, error_2_simscape , ’b—")

plot(t, error_3_simscape,’—’,’color’,[0 0.5 0])
plot(t, error_4_simscape,’—’, ’color’,[0.781 0 1])

xlabel ( ’Time.(seconds) )

ylabel (’Error.(rad.or.m)’)

xlim ([0,2])

title (’Joint_Errors’)

legend (' Joint.1.Error’,’Joint.2_.Error’, ’ Joint.3_.Error’,’ Joint
~4_Error’,’ Joint_1_Error_(SimScape)’,’Joint .2_Error._(
SimScape) ’,’Joint .3_Error.(SimScape)’,’ Joint .4_Error.(
SimScape) ’)

grid on

hold off

%% Run the Decentralized PID with Feedback Linearization

Controller and plot the results

Kp2 = [781.66; 271.22; 1192.9; 0.605];
Kd2 = [87.21; 30.26; 133.1; 0.0675];
Ki2 = [2325.6; 806.9; 3549.03; 1.8];

sim ( "RobotSimFLDecentralizedPID ")
sim ( ’RobotSimscapeFLDecentralizedPID ”)

figure(5)
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plot3(x.d,y-d,z.d, ’color’,’black’,’linewidth’,2);
hold on

color = jet(l+ round(trial_time/stepsize));

)
—
=
o
—
I

™
|

error.y = [];
error_z = [];
for i = O:stepsize:trial_-time — stepsize

i

t=[t; i];

j = round(i/stepsize);

x = [x; ll_%cos(theta_out(j+1,1)) + 12_%cos(theta_out (]
+1,1) + theta_out(j—+1,2))];

y = [y; ll_ssin(theta_out(j+1,1)) + 12_xsin(theta_out (]
+1,1) + theta_out(j—+1,2))];

z = [z; 10 — 14_ — theta_out(j+1,3)];

error_.x = [error_x; x.d(j+1) — x(length(x))];

error_y = [error_y; y.d(j+1) — y(length(y))];

[error_z; z.d(j+1) — z(length(z))];

plot3 ([11_xcos(theta_out(j+1,1)) + 12_%cos(theta_out (]
+1,1) + theta_out(j+1,2)), ll_*cos(theta_out(j+2,1)) +
12_xcos(theta_out (j+2,1) + theta_out(j+2,2))],[11_%
sin(theta_out (j+1,1)) + 12_xsin(theta_out(j+1,1) +
theta_out (j+1,2)),l1_*sin(theta_out(j+2,1)) + 12_xsin(
theta_out (j+2,1) + theta_out(j+2,2))],[10_. — 14_ —
theta_out (j+1,3),10_. — 14_ — theta_out(j+2,3)], color’
,color (j+1,:), linewidth’,3)

%scatter3 (l1_%cos(theta_out(j+1,1)) + 12_%cos(theta_out(j
+1,1) + theta_out(j+1,2)),11_xsin(theta_out(j+1,1)) +
12_xsin(theta_out (j+1,1) + theta_out(j+1,2)),10- — 14_

error_z
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end

error_1 = |
error_2 = |
error-3 = |
error_4 =
error_1_simscape =
error_2_simscape =
error_3._

error_4_simscape =

for

end

for

end

scatter3 (x(1),y(1),z(1),50,color (1,:),’d’,

— theta_out (j+1,8),10,color(j+1,:),

hold on

[1;

simscape =

‘filled ) ;

i = 1:1:length(theta_out (:,

error_.1 = [error_1; theta_out 1—|—1 1) — theta_1.d(i,2)];
error_2 = [error_2; theta_out(i+1,2) — theta_2.d(i,2)];
error_3 = [error_3; theta_out(i+1,3) — d.3.d(i,2)];
error_4 = [error_4; theta_out(i+1,4) — theta_4_ d(1 2) 15
i = 1:1:length(theta_out_simscape (:,1))—1

error_l_simscape =

i+1,1) — theta_1.d(i,2)];

error_2_simscape =

i+1,2) — theta_2.d(i,2)];

error_3_simscape = [error_3_simscape;

i+1,3) — d.3.d(i,2)];

error_4_simscape = [error_4_simscape;

i+1,4) — theta_4_d(i,2)];

markeredgecolor’,'w’)

[error_1_simscape;

[error_2_simscape;

theta_out_simscape (
theta_out_simscape (
theta_out_simscape (

theta_out_simscape (

"filled ',

scatter3 (x(round(trial_time/stepsize)),y(round(trial_time/

stepsize)) ,z
trial_time/stepsize) ,:),’d’,

)

(round(trial_time/stepsize)) ,50,color (round(
“filled ’,

) b

"markeredgecolor’ | ’w
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set (gca, 'DataAspectRatio’ ,[1 1 1])
set (gcf, ’Position’ ,[200 50 1250 900])
hold off

figure (6)

subplot (4,1,1)

plot (t,theta_1_.d(:,2))

hold on

xlabel ( ’Time.(seconds) )

ylabel (’\theta_1_(radians)’)

title (’Desired _and_Actual_Angle_for_Joint.1")
plot (t2, theta_out (:,1))

legend ( 'Desired_.Angle’,’ Actual_Angle’)

hold off

subplot (4,1 ,2)

plot (t,theta_2_d (:,2))

hold on

xlabel ( ’Time.(seconds) )
ylabel(’\theta_2_(radians)’)

title (’Desired _and_Actual_Angle_for_Joint.2")
plot (t2, theta_out(:,2))

legend ( ’Desired _-Angle’,’ Actual_Angle’)

hold off

subplot (4,1,3)

plot(t,d-3.d(:,2))

hold on

xlabel ( ’Time.(seconds) )

ylabel(’d_3_(metres)’)

title (’Desired _and_Actual_Position._for.Joint.3")
plot (t2, theta_out(:,3))

legend ( ’Desired .Position’,’ Actual _Position )
hold off

subplot (4,1 ,4)
plot (t,theta_4_.d (:,2))
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hold on

xlabel ( ’Time.(seconds) )

ylabel (’\theta_4_(radians)’)

title (’Desired _and_Actual_Angle_for_Joint.4")
plot (t2, theta_out (:,4))

legend ( 'Desired.Angle’,’ Actual_Angle’)

hold off

set (gef, ’Position’,[250 50 800 900])

combined_error_maxes = [max(error_-1) , max(error_2) , max(
error_3) , max(error_4) , max(error_l_simscape) , max(
error_2_simscape) , max(error_3_simscape) , max(
error_4_simscape) |;

combined_error_mins = [min(error_1) , min(error_2) , min(
error-3) , min(error_4) , min(error_l_simscape) , min(
error_2_simscape) , min(error_3_simscape) , min(

error_4_simscape) |;
combined _error_diffs = max(combined_error_maxes) — min(

combined_error_mins);
figure (7)

plot(t, error_1,’color’,[1 0.563 0])
hold on

plot(t, error-2,’b’)

plot(t, error_3,’color’,[0 0.5 0])

plot(t, error-4,’color’,[0.781 0 1])

plot(t, error_1_simscape,’—’, ’color’,[1 0.563 0])
plot(t, error_2_simscape,’b—")

plot (t, error_3_simscape,’—’,’color’,[0 0.5 0])
plot(t, error_4_simscape,’—’, ’color’,[0.781 0 1])

xlabel ( ’Time.(seconds) )
ylabel(’Error.(rad_.or.m)’)
xlim ([0,2])

title (’Joint._.Errors’)

legend (' Joint .1_Error’,’Joint_.2_Error’,’ Joint_.3_Error’,’ Joint
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~4.Error’,’ Joint.1_.Error.(SimScape)’,’ Joint .2_.Error.(
,"Joint _4_Error._(

SimScape) ’,’Joint .3_Error_(SimScape)’
SimScape) ’)
grid on

hold off

%% Implement and plot results for full state feedback

linearization controller

M _linear_inv = [0.4739 , —0.4739 , 0 , 0 ; —0.4739
0, 0.8949 : 0 , 0 , 0.2024 , 0 ; 0 , 0.8949
400.8949];

A = [zeros(4) , eye(4) ; zeros(4) , zeros(4)];

B = [zeros(4) ; M_linear_inv |;

K = place(A,B,[ 8.0, —8.1, 8.2, 8.3, 8.4,
—8.7])

Q= [ eye(4) , zeros(4); zeros(4) , eye(4)];

R = eye(4);

K = lqr(A,B,Q.R)

sim ( "RobotSimFLCentralizedPID ")
sim ( "RobotSimscapeFLCentralizedPID ")

figure(8)

plot3(x.d,y-d,z.d, 'color’,’black’,’linewidth’

hold on

~8.5,

02) 5

, 1.3688

0,

~8.6,

)
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error.y = [];
error_z = [];
for i = O:stepsize:trial_time — stepsize

i

t=[t; i];

j = round(i/stepsize);

x = [x; ll_xcos(theta_out(j+1,1)) + 12_%cos(theta_out (]
+1,1) + theta_out(j+1,2))];

y = [y; ll_ssin(theta_out(j+1,1)) + 12_xsin(theta_out(j
+1,1) + theta_out(j+1,2))];

z = [z; 10 — 14_ — theta_out(j+1,3)];

error.x = [error_x; x-d(j+1) — x(length(x ;

))
error.y = [error.y; y-d(j+1) — y(length(y))
error_z = [error_z; z.d(j+1) — z(length(z))];
plot3 ([11_xcos(theta_out(j+1,1)) + 12_%cos(theta_out (]

+1,1) 4+ theta_out(j+1,2)), 11_xcos(theta_out(j+2,1)) +
12_xcos(theta_out (j+2,1) + theta_out(j+2,2))],[11_x
sin(theta_out(j+1,1)) + 12_xsin(theta_out(j+1,1) +
theta_out (j+1,2)),11_%sin(theta_out(j+2,1)) + 12_xsin(
theta_out (j+2,1) + theta_out(j+2,2))],[10- — 14_ —
theta_out (j+1,3),10. — 14_ — theta_out(j+2,3)], color’
,color (j+1,:), linewidth’,3)

Jscatter3 (l1_xcos(theta_out (j+1,1)) + 12_%cos(theta_out(j
+1,1) + theta_out(j+1,2)),l1_xsin(theta_out(j+1,1)) +
12_xsin(theta_out (j+1,1) + theta_out(j+1,2)),10. — 14_
— theta_out(j+1,8),10,color(j+1,:), filled 7);

hold on

end

error_1 = |
error_2 = |
error-3 = |
error_4 = [];

error_1l_simscape = H ;

error_2_simscape

error_3_simscape = H ;
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error_4_simscape = [];

for i = 1:1:length(theta_out (:,1))—
error_-1 = [error_1; theta,out(l—i—l 1) — theta_1.d(i,2)];
error_2 = [error_2; theta_out(i+1,2) — theta_2.d(i,2)];
error_3 = [error_3; theta_out(i+1,3) — d_-3.d(i,2)];
error-4 = [error_4; theta_out(i+1,4) — theta-4.d(i,2)];

end

for i = 1:1:length(theta_out_simscape (:,1))—1
error_1_simscape = [error_1_simscape; theta_out_simscape(

i+1,1) — theta_1_.d(i,2)];

error_2_simscape = [error_2_simscape; theta_out_simscape(

i+1,2) — theta_2_d(i,2)];
error_3_simscape = [error_3_simscape; theta_out_simscape(
i+1,3) — d-3.d(i,2)];
error_4_simscape = [error_4_simscape; theta_out_simscape(
i+1,4) — theta_4.d(i,2)];

end

scatter3 (x(1),y(1),z(1),50,color(1,:),’d’, filled’,’
markeredgecolor’,'w’)

scatter3 (x(round(trial_time/stepsize)),y(round(trial_time/
stepsize)) ,z(round(trial_time/stepsize)),50,color (round/(
trial_time/stepsize) ,:),’d’,’ filled >, ’markeredgecolor’, ’'w’
)

set (gca, 'DataAspectRatio’ ,[1 1 1])

set (gcf, "Position’ ,[300 50 1250 900])

hold off

figure(9)

subplot (4,1 ,1)

plot (t,theta_1_.d(:,2))

hold on

xlabel (’Time.(seconds) )

ylabel (’\theta_1_(radians)’)

title (’Desired _and_Actual_Angle_for_Joint.1")
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plot (t2, theta_out (:,1))
legend ( ’Desired -Angle’,’ Actual_Angle’)
hold off

subplot (4,1 ,2)

plot (t,theta_2_d (:,2))

hold on

xlabel ( 'Time.(seconds) )

ylabel (’\theta_2_(radians)’)

title ('Desired.and_.Actual_Angle_for._Joint.2")
plot (t2, theta_out(:,2))

legend ( ’Desired _Angle’,’ Actual_Angle’)

hold off

subplot (4,1,3)

plot(t,d-3_.d(:,2))

hold on

xlabel ( 'Time.(seconds) )

ylabel(’d_3_(metres)’)

title (’Desired.and_Actual_Position.for_.Joint.3")
plot (t2, theta_out(:,3))

legend ( 'Desired .Position’,  Actual _Position ")
hold off

subplot (4,1 ,4)

plot (t,theta_4_.d (:,2))

hold on

xlabel ( ’Time.(seconds) )

ylabel (’\theta_4_(radians)’)

title (’Desired _and_Actual_Angle_for_Joint.4")
plot (t2, theta_out (:,4))

legend ( 'Desired .Angle’,’ Actual_Angle’)

hold off

set (gef, ’Position’ ,[350 50 800 900])

combined_error_maxes = [max(error_-1) , max(error_2) , max(
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error_3) , max(error_4) , max(error_1l_simscape) , max(
error_2_simscape) , max(error_3_simscape) , max(
error_4_simscape) |;

combined_error_mins = [min(error_1) , min(error_-2) , min(
error_3) , min(error_4) , min(error_1_simscape) , min(
error_2_simscape) , min(error_3_simscape) , min(

error_4_simscape) |;
combined_error_diffs = max(combined_error_maxes) — min(
combined_error_mins);

figure (10)

plot(t, error_1,’color’,[1 0.563 0])

hold on

plot(t, error_2,’b’)

plot(t, error_3,’color’,[0 0.5 0])

plot(t, error_4 ,’color’,[0.781 0 1])

plot(t, error_l_simscape,’—’, ’color’,[1 0.563 0])
plot(t, error_2_simscape,’b—")

plot(t, error_3_simscape,’—’, ’color’,[0 0.5 0])
plot(t, error_4_simscape,’—’,’color’,[0.781 0 1])

xlabel ( ’Time.(seconds) )

ylabel( ’Error.(rad._or.m)’)

xlim ([0,2])

title (’Joint_Errors’)

legend (’Joint_1_Error’,’Joint.2_Error’,’Joint _.3_Error’,’ Joint
~4.Error’,’ Joint.1_.Error.(SimScape)’,’ Joint .2_.Error.(
SimScape) ’,’Joint _3_Error_(SimScape)’,’Joint _4_Error._(
SimScape) ”)

grid on

hold off

toc

B.3 Hybrid Force-Position Control Simulation
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tic

close all

%% Establish simulation parameters using the following wvalues

g__ = —9.8;
10 = 0.5;
11 = 0.4;
12_. = 0.4;
14 = 0.15;
ml_ = 6.01;
m2_ = 5.37;
m3_. = 4.03;
m4_ = 0.91;

I1zz_ = 0.1807;
12zz_ = 0.1558;
13zz_. = 0.0064;
Tdzz_ = 0.0025;
lelx. = —0.185;
le2x. = —0.224;
le3x. =
ledx_ =
lely. =

le2y. =

ledy. =

lcdy_ =

lclz_ =
le2z_ =
le3z_. = —0.201;
lcdz_ = —0.122;

o O O O O O O O

thetalupperlimit = pi/2;
thetallowerlimit = —thetalupperlimit;
theta2upperlimit = 7xpi/8;
theta2lowerlimit = —theta2upperlimit;
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d3upperlimit = 0.35;

d3lowerlimit = 0.1;

thetadupperlimit = pi;
thetad4lowerlimit = —thetadupperlimit;

jointlmotorlimit = 1000;
joint2motorlimit = 1000;
joint3motorlimit = 1000;
joint4dmotorlimit = 1000;

M_.inv = subs(M.inv,{g, 10, 11, 12, 14, ml, m2, m3, m4, Ilzz,
1272z, 13zz, Idzz, lclx, le2x, le3x, ledx, lcly, lc2y, lc3y
, ledy},{g--, 10_, 11_, 12_, 14_, ml_, m2_, m3_, m4d_,
11zz_, 12zz_, 13zz_, ld4zz_, lclx_, lec2x_, le3x_, lcdx_,
lely_, le2y_, le3y_, lcdy_});

C = subs(C_matrix,{g, 10, 11, 12, 14, ml, m2, m3, md, Ilzz,
1272z, 13zz, Idzz, lclx, lec2x, le3x, ledx, lecly, lc2y, lc3y
, ledy} {g--, 10_, 11_, 12_, 14_, ml_, m2_, m3_, m4d_,
11zz_, 12zz_, 13zz_, ld4zz_, lclx_, le2x_, ledx_, lcdx_,
lely-, le2y_, le3y_-, lcdy_});

G = subs(G,{g-, 10, 11, 12, 14, ml, m2, m3, md4, Ilzz, I2zz,
13zz , Tdzz, lclx, le2x, le3x, ledx, lely, lc2y, ledy, lcdy
Yo{g-—, 10_, 11_, 12_, 14_, ml., m2_, m3., md_, Ilzz_,
12zz_, 13zz_, ldzz_, leclx_, le2x_, led3x_, ledx_, lcly_,
le2y_, le3y-, lecdy_});

%% First we plot the workspace of the robot

zz1 = [];
zz2 = [];

n = 50;
cornerr = sqrt ((11_xcos(thetalupperlimit) + 12_xcos(
thetalupperlimit+theta2upperlimit)) "2 + (11_xsin(

thetalupperlimit) + 12_xsin(thetalupperlimit+
theta2upperlimit)) "2 );
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cornerangle = acos(ll_xcos(thetalupperlimit) + 12_xcos(
thetalupperlimit+theta2upperlimit)/cornerr);

surfaceltheta = thetallowerlimit:(thetalupperlimit—
thetallowerlimit)/n:thetalupperlimit ;
surfacelr = cornerr:((11_ + 12_)—cornerr)/n:11_ + 12_;

xx2 = zeros(n+1,n+1);
yy2 = zeros(n+1,n+1);

for i = 1:n+1

anglel = thetalupperlimit + (cornerangle —
thetalupperlimit)*(i—1)/n;

angle2 = (cornerangle — thetalupperlimit)*(i—1)/n;

radius = sqrt((ll_xcos(angle2)) 2 — 11_"2 +12_"2) + 11_x
cos(angle2);

for j = 1:n+1
thickness = (n+1—j)/n;

xx2(i,j) = (cornerr+(radius—cornerr)*thickness)xcos(
anglel);

yy2(i,j) = (cornerr+(radius—cornerr)xthickness)xsin(
anglel);

end

end

xx3 = zeros(n+1,n+1);
yy3 = zeros(n+1,n+1);

for i = 1:n+1

anglel = thetallowerlimit + (—cornerangle —
thetallowerlimit)*(i—1)/n;
angle2 = (—cornerangle — thetallowerlimit)*(i—1)/n;

radius = sqrt((ll_xcos(angle2))"2 — 11_"2 +12_"2) + 11_x
cos(angle2);

for j = 1:n+1
thickness = (n+1—j)/n;

xx3(i,j) = (cornerr+(radius—cornerr )*thickness)xcos(
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anglel);
yy3(i,j) = (cornerr+(radius—cornerr)xthickness)*sin(
anglel);
end
end
[thetatheta ,rr] = meshgrid ([surfaceltheta] ,[surfacelr]);
xx1 = rr.xcos(thetatheta);

yyl = rr.xsin(thetatheta);

z4 = 10_ — 14_ — d3upperlimit:(d3upperlimit — d3lowerlimit)/

n:10_ — 14_ — d3lowerlimit;
x4 = (11_412_)*cos(surfaceltheta);
y4d = (11_+12_)*sin(surfaceltheta);

yyd = [];
for i = 1:n+1

yy4d = [yyd;y4];
end

[xx4, zz4] = meshgrid ([x4],[z4]);

zb = 10_ — 14_ — d3upperlimit:(d3upperlimit — d3lowerlimit)/

n:10_ — 14_ — d3lowerlimit;
x5 = ll_xcos(thetalupperlimit) + 12_xcos(thetalupperlimit:
theta2upperlimit/n:thetalupperlimit+theta2upperlimit);
y5 = 11_xsin(thetalupperlimit) + 12_xsin(thetalupperlimit:
theta2upperlimit /n:thetalupperlimit+theta2upperlimit);

yy5 = [];
for i = 1:n+1

yy5 = [yyd;y5];
end

[xx5, zz5] = meshgrid ([x5],[z5]);
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z6 = 10. — 14_ — d3upperlimit:(d3upperlimit — d3lowerlimit)/
n:10_. — 14_. — d3lowerlimit;
x6 = l1_xcos(thetallowerlimit) + 12_xcos(thetallowerlimit:

theta2lowerlimit /n: thetallowerlimit+theta2lowerlimit ) ;
y6 = 11_xsin(thetallowerlimit) + 12_xsin(thetallowerlimit:

theta2lowerlimit /n: thetallowerlimit+theta2lowerlimit ) ;

yy6 = [];
for i = 1:n+1

yy6 = [yy6;y6];
end

[xx6, zz6] = meshgrid ([x6],[z6]) ;

z7 = 10_. — 14_ — d3upperlimit:(d3upperlimit — d3lowerlimit)/
n:10_. — 14_ — d3lowerlimit;

x7 = (cornerr)xcos(linspace(—cornerangle ,cornerangle ,n+1));

y7 = (cornerr)*sin(linspace(—cornerangle ,cornerangle ,n+1));

yy7 = [];

for i = 1:n+1

yy7 = [yy7;y7];
[xx7, zz7] = meshgrid ([x7],[z7]);
grey = [0.1,0.1,0.1];

for i = 1:n+1

7227z = [];
for j = 1:n+1
zz7z = |zzz, 10_ — 14_ — d3lowerlimit |;
end
zz1 = [zzl;222];

end

for i = 1:n+1
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7227z = [];
for j = 1:n+1

zz7z = [zzz, 10_ — 14_ — d3upperlimit |;
end
222 = [222;z2272];
end
figure (1)

surf(xxl,yyl,zzl, FaceColor
"none’) ;

get (gcf, 'Renderer’);

hold on

surf(xxl,yyl,zz2, FaceColor
"none’) ;

get (gcf, ’'Renderer’);

hold on

surf(xx2,yy2,zz1, FaceColor
‘none’ ) ;

get (gef, 'Renderer’);

hold on

surf(xx2,yy2,zz2, FaceColor
"none’) ;

get (gcf, 'Renderer’);

hold on

surf(xx3,yy3,zz1, FaceColor
‘none’) ;

get (gef, 'Renderer’);

hold on

surf(xx3,yy3,zz2, FaceColor
"none’) ;

get (gef, 'Renderer’);

hold on

surf(xx4 ,yy4,zz4 ,’FaceColor
"none’) ;

get (gef, 'Renderer’);

hold on

surf(xx4 ,yy4,zz4 , FaceColor

) 8rey ,

, 8Iey ,

) 8Iey ,

) 8rey ,

, 8ITey ,

 8Iey ,

) 8Tey

) 8ITey ,

"FaceAlpha’

"FaceAlpha’

"FaceAlpha’

"FaceAlpha’

"FaceAlpha’

"FaceAlpha’

"FaceAlpha’

"FaceAlpha’

5.

5.

5.

5.

5.

5.

"EdgeColor

"EdgeColor

"EdgeColor

"EdgeColor

"EdgeColor

"EdgeColor

"EdgeColor

"EdgeColor
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‘none’ ) ;

get (gcf, 'Renderer’);

hold on

surf(xx5,yy5,zz5, FaceColor’ ,grey, 'FaceAlpha’ ,.1,  EdgeColor’,
‘none ) ;

get (gcf, ’'Renderer’);

hold on

surf(xx5,yy5,zz5, FaceColor’ ,grey , "FaceAlpha’ ,.1,  EdgeColor’,
"none’) ;

get (gef, 'Renderer’);

hold on

surf(xx6,yy6,zz6 , ’FaceColor’ ,grey , 'FaceAlpha’ ,.1,  EdgeColor’,
‘none’ ) ;

get (gecf, 'Renderer’);

hold on

surf(xx6,yy6,zz6 ,  FaceColor’ ,grey, 'FaceAlpha’,.1, EdgeColor’,
"none’);

get (gcf, 'Renderer’);

hold on

plot3(x4,y4,linspace(10. — 14_ — d3upperlimit ,10_. — 14_ —
d3upperlimit ,n+1), black ’)

hold on

plot3(x4,y4,linspace(10_. — 14_ — d3lowerlimit ,10. — 14_ —
d3lowerlimit ,n+1), black’)

hold on

plot3(x5,y5,linspace(10_. — 14_ — d3upperlimit ,10. — 14_ —
d3upperlimit ,n+1), black’)

hold on

plot3(x5,y5,linspace(10_ — 14_ — d3lowerlimit ,10_ — 14_ —
d3lowerlimit ,n+1), black’)

hold on

plot3(x6,y6,linspace(10- — 14_ — d3upperlimit ,10_. — 14_ —
d3upperlimit ,n+1), black ’)

hold on

plot3(x6,y6,linspace(10_. — 14_ — d3lowerlimit ,10. — 14_ —
d3lowerlimit ,n+1), black’)

hold on
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plot3(x7,y7,linspace(10_. — 14_ — d3upperlimit ,10_. — 14_ —
d3upperlimit ,n+1), black ’)

hold on

plot3(x7,y7,linspace(10. — 14_ — d3lowerlimit ,10_ — 14_ —
d3lowerlimit ,n+1), black’)

hold on

plot3 ([cornerrxcos(cornerangle),cornerrxcos(cornerangle)],|

cornerrxsin(cornerangle) ,cornerr*sin(cornerangle)],

linspace(10. — 14_ — d3lowerlimit ,10_ — 14_ — d3upperlimit
,2), black’)
hold on

plot3 ([ cornerr*xcos(—cornerangle) ,cornerrxcos(—cornerangle)],|
cornerrxsin(—cornerangle) ,cornerr*sin(—cornerangle)],
linspace(10. — 14_ — d3lowerlimit ,10_ — 14_ — d3upperlimit
,2), ’black’)

hold on

figure (5)

surf(xxl,yyl,zzl, FaceColor’ , grey, FaceAlpha’,.1, EdgeColor’,
‘none’ ) ;

get (gcf, 'Renderer’);

hold on

surf(xxl,yyl,zz2, FaceColor’, grey, 'FaceAlpha’,.1, EdgeColor’,

"none’) ;

get (gcf, ’'Renderer’);

hold on

surf(xx2,yy2,zz1, FaceColor’ ,grey , 'FaceAlpha’ ,.1, EdgeColor’,
"none’) ;

get (gef, 'Renderer’);

hold on

surf(xx2,yy2,zz2, FaceColor’ ,grey , ’FaceAlpha’ "EdgeColor ’

5.

‘none’ ) ;
get (gcf, 'Renderer’);
hold on
surf(xx3,yy3,zz1, FaceColor’ , grey, 'FaceAlpha’,.1, EdgeColor’,
"none’) ;

get (gcf, 'Renderer’);
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hold on

surf(xx3,yy3,zz2, FaceColor’ ,grey, 'FaceAlpha’ ,.1, ’EdgeColor’,
"none’) ;

get (gcf, 'Renderer’);

hold on

surf(xx4,yy4,zz4 ,’FaceColor’ ,grey , 'FaceAlpha’ ,.1, EdgeColor’,
"none’) ;

get (gcf, ’'Renderer’);

hold on

surf(xx4 ,yy4,zz4 ,’FaceColor’ ,grey , 'FaceAlpha’ ,.1, ’EdgeColor’,
"none’) ;

get (gef, 'Renderer’);

hold on

surf(xx5,yy5,zz5, FaceColor’ ,grey, 'FaceAlpha’ ,.1, EdgeColor’,
"none’) ;

get (gcf, ’'Renderer’);

hold on

surf(xx5,yy5,zz5, FaceColor’ ,grey, 'FaceAlpha’ ,.1, EdgeColor’,
"none’) ;

get (gef, 'Renderer’);

hold on

surf(xx6,yy6,zz6 , ’FaceColor’ ,grey , 'FaceAlpha’ ,.1,  EdgeColor’,
‘none’) ;

get (gef, 'Renderer’);

hold on

surf(xx6,yy6,zz6 , ’FaceColor’ ,grey, 'FaceAlpha’ ,.1, EdgeColor’,
‘none’ ) ;

get (gcf, 'Renderer’);

hold on

plot3(x4,y4,linspace(10. — 14_ — d3upperlimit ,10_. — 14_ —
d3upperlimit ,n+1), black’)

hold on

plot3(x4,y4,linspace(10_. — 14_ — d3lowerlimit ,10. — 14_ —
d3lowerlimit ,n+1), black’)

hold on

plot3(x5,y5,linspace(10_ — 14_ — d3upperlimit ,10_. — 14_ —
d3upperlimit ,n+1), black’)
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hold on

plot3(x5,y5,linspace(10_. — 14_ — d3lowerlimit ,10. — 14_ —
d3lowerlimit ,n+1), black’)

hold on

plot3 (x6,y6,linspace(10_ — 14_ — d3upperlimit ,10_. — 14_ —
d3upperlimit ,n+1), black’)

hold on

plot3 (x6,y6,linspace(10_ — 14_ — d3lowerlimit ,10_ — 14_ —
d3lowerlimit ,n+1), black’)

hold on

plot3(x7,y7,linspace(10. — 14_ — d3upperlimit ,10_. — 14_ —
d3upperlimit ,n+1), black’)

hold on

plot3 (x7,y7,linspace(10_. — 14_ — d3lowerlimit ,10. — 14_ —
d3lowerlimit ,n+1), black’)

hold on

plot3 ([cornerr*cos(cornerangle),cornerrxcos(cornerangle)],|

cornerrxsin(cornerangle) ,cornerr*sin(cornerangle)],

linspace(10_. — 14_ — d3lowerlimit ,10_ — 14_ — d3upperlimit
,2), ’black’)
hold on

plot3 ([cornerr*xcos(—cornerangle),cornerrxcos(—cornerangle)],|

cornerrxsin(—cornerangle) ,cornerr*sin(—cornerangle)],

linspace(10_. — 14_ — d3lowerlimit ,10_ — 14_ — d3upperlimit
,2), "black”)
hold on

%% Generate the reaction surface (rs) that the robot will

interact with

rs.ymax = 0.4;
rs_.ymin = —0.4;
rs_.xmax = 0.6;
rs_.xmin = 0.2;

rs_zbase = 0.13;

rs_x = linspace(rs_xmin ,rs_xmax ,n+1);
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rs_y = linspace(rs_ymin ,rs_ymax ,n+1);
rs_zz = [];

for i = 1:n+1

rs_z = [];
for j = 1:n+1
rs_z = [rs_z, rs_zbase];
end
rs_zz = [rs_.zz;r8.7|;
end
[rs_xx, rs_yy] = meshgrid([rs_x],[rs_y]);

%% Plot the reaction surface

figure (1)

surf(rs_xx ,rs_yy ,rs_zz , FaceColor’ ,[1, 1, 0], FaceAlpha’,.8,’
EdgeColor’, ’none’);

get (gef, 'Renderer’);

hold on

plot3(rs_x ,linspace(rs_ymax ,rs_ymax ,n+1),rs_zz(n+1,:), black’
)

hold on

plot3(rs_x ,linspace(rs_ymin ,rs_ymin ,n+1),rs_zz (1,:), black’)

hold on

plot3(linspace(rs_xmax ,rs_xmax ,n+1),rs_y ,rs_zz (: ,n+1),  black’
)

hold on

plot3(linspace(rs_xmin ,rs_xmin ,n+1),rs_y ,rs_zz (:,1), black’)

hold on

%% Generate the desired trajectory and the corresponding
joint angle timeseries using the inverse kinematics, as

well as the desired normal and friction forces:

trial_time = 10;
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stepsize = 0.005;

x-d = [];

y-d = [];

z-d = [];

zo.d = [];
theta_-1.d = [];
theta_2.d = [];
theta_1_d1 = |
theta_2_d1 = |
theta_4_.d1 = |
theta_1.d2 = |
theta_2.d2 = |
theta_4.d2 = |
a3.d = [
z_base = [];
theta_4_.d =
fext_x_d = [];
fext_y_.d = [];
fext_z_.d = [];
fext_rx.d = []
fext_ry_.d = [];
fext_rz_d = []
t=[l;

DOFs = [];

spline = [];

for i = O:stepsize:trial_time — stepsize
t = [t; i];
j = i/trial_time;
Line from starting position to surface
zo_d = 11_ + 12 — jx(l1_ + 12 — (nrs_.xmin + nrs_zmaz)
/2);
% y__d = jx(nrs_ymin + 0.1x(nrs_.ymax — nrs_ymin));
% z._d = 10 — 14 — d3lowerlimit — j*(10_- — 14_ —
d3lowerlimit — nrs_zz(n/10,n/2));
% Squiggle within single area

R R
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RN X N R NNNNEN KKK

R N N XK

r__d = 0.5 + j*x0.2;

y--d = —0.2 + j*0.4;

z__d = 0.05 + j%0.15 + 0.025+sin(j*10xpi);
Squiggle within two areas

x__d = 0.1 + j*0.4;

Yy--d = —0.4 + j*0.6;

zo-d = 0.05 + j%0.15 + 0.025+sin(j*x10xpi);
Squiggle within three areas

x__d = 0.25;

y-_d = —0.4 + j=0.8;

zo_d = 0.05 + jx0.15 + 0.025%sin(j*x10%pi);
RS test line

if j < 0.2
x..d = 0.8 — jx1.5;
y_.d = —jx1.5;

z..d = 0.25 — j*(0.25 — rs_zbase) /0.2;
else
x_.d = 0.5;
y--d = —0.3 + (j—0.2)%0.75;
z..d = rs_zbase — 0.025*sin((j—0.2)*10xpi);
end
Position Only Controller Test Line;
zo_d = 0.8 — 0.4+ — 0.05+«sin(j*4xpi);
y__d = —0.2%5 + 0.15xsin(j*x1.5xpi);
zo_d = 0.25 — 0.1%5 — 0.005xsin (j*15%pi);
fext_x__d = 0;
fext_y__d = 0;
fext_rx__d = 0;

fext_ry__.d =

)

o o o -

fext_rz__d =

if j < 0.2
fext_z__d

else
fext_z__d = —200 —200%sin(j*10);
fext_z__d = —200;

b

0;

end

spline = [spline; x_.d y_.d z_.d];
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zo__d = 0;

x.d = [x.d; x_-_d];

y-d = [yd; y--dJ;

z.d = [z_.d; z__d];

zo.d = [zo_.d; zo__d];

theta_2__.dl = acos((x--d"2 + y_.d"2 — 11_"2 — 12_"2) /(2%
11_x12_));

theta_2__.d2 = —acos((x-.d"2 + y_.d"2 — 11_"2 — 12_"2) /(2%
11_x12_));

theta_1__d1l = atan2(y_.d ,x_.d) — asin(12_xsin(theta_2__d1
)/(sqrt(x-.d"2 + y_.d"2)));
theta_1__.d2 = atan2(y_.d ,x_.d) — asin(l12_xsin(theta_2__.d2
)/(sqrt(x-.d"2 + y_.d"2)));
d-3..d =—2z_.d + 10_ — 14_;
theta_4__dl = zo__.d — theta_1__d1 — theta_2__d1;
theta_4_.d2 = zo__.d — theta_1_.d2 — theta_2_.d2;
theta_2__dlcheck = or(theta_2__d1 < theta2lowerlimit ,
theta_2__d1l > theta2upperlimit);
theta_2__d2check = or(theta_2_.d2 < theta2lowerlimit ,
theta_2__d2 > theta2upperlimit);
theta_l__dlcheck = or(theta_1__d1 < thetallowerlimit ,
theta_1__.d1 > thetalupperlimit);
theta_1__d2check = or(theta_1_.d2 < thetallowerlimit ,
theta_1_.d2 > thetalupperlimit);
if or(theta_2__dlcheck ,theta_1__dlcheck) = 0
if or(theta_2__d2check ,theta_1__d2check) = 0
DOFs = [DOFs; 2];
theta_1__d = theta_1__d1;
theta_2__d = theta_2__.d1;
theta_4__d = theta_4__d1;
else
DOFs = [DOFs; 1.1];
theta_1__d = theta_1__d1;
theta_2__d = theta_2__d1;
theta_4__d = theta_4__d1;
end

else
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end

if or(theta_2__d2check ,theta_1__d2check) = 0

DOFs = [DOFs; 1.2];
theta_1__d = theta_1_.d2;
theta_2__d = theta_2_.d2;
theta_4__d = theta_4__d2;
DOFs = [DOFs; 0];
theta_1__d = theta_1_.d1;
theta_2__d = theta_2__d1;
theta_4__d = theta_4__.d1;
end
end
theta_1_.d = [theta_1_d; theta_1_.d];
theta_2.d = [theta_2_.d; theta_-2_.d];
theta_4_.d = [theta_4_d; theta_4__.d];
theta_1_.d1 = [theta_1.d1; theta_-1__.d1];
theta_2_dl = [theta_2_d1l; theta_2__d1];
theta_4_d1l = [theta_4_.d1; theta_4__.d1];
theta_1.d2 = [theta_1_d2; theta_1__.d2];
theta_2_.d2 = [theta_2_d2; theta_2_.d2];
theta_4_d2 = [theta_4.d2; theta_4_.d2];
d-3.d = [d.3.d; d-3__d];
z_base = [z_base; 10_. — 14_ — rs_zbase];
fext_x_.d = [fext_x_d; fext_x__d];
fext_y_d = [fext_y_-d; fext_y__d];
fext_z.d = [fext_.z_d; fext_z__d];
fext_rx_.d = [fext_rx_d; fext_rx__d];
fext_.ry_.d = [fext_ry_-d; fext_ry__d];
fext_rz_.d = [fext_rz_d; fext_rz__d];

if sum(DOFs = 0) > 0
disp (’The_desired -trajectory.is.not_fully _enclosed._in._the

else

~reachable_workspace’)

if and(sum(DOFs = 1.1) > 0,sum(DOFs = 1.2) > 0 )

disp(’The_desired._trajectory._has._at_least._one.
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inflection .point )
else
if sum(DOFs = 1.1) > 0
theta_1_d = theta_1_d1;
theta_2_d = theta_2_d1;
end
if sum(DOFs = 1.2) > 0
theta_1_d = theta_1.d2;
theta_2_d = theta_2_d2;
end
end

end

theta_1.d = [t,theta_1_d];
theta_2_.d = [t,theta_2_d];
d.3.d = [t,d.3.d];

theta_4.d = [t,theta_4_d];

fext_x_d = [t,fext_x_d];
fext_y_.d = [t,fext_y_d];
fext_z_d = [t,fext_z_d];
fext.-rx_.d = [t,fext_rx_d];
fext_ry.d = [t,fext_ry_d];
fext_rz_d = [t,fext_.rz_d];
figure (1)

plot3(x.d,y-d,z.d, 'color’,’black’,’linewidth’,2);
hold on

%% Run the Decentralized PID with Feedback Linearization
Controller and plot the results

Kp2 = [781.66; 271.22; 1192.9; 0.605];

Kd2 = [87.21; 30.26; 133.1; 0.0675];

Ki2 = [2325.6; 806.9; 3549.03; 1.8];

Kpf = 20;
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Kif = 5;
Kvd = 2000;

sim ( ’RobotSimFORCEShybridforceposition YESVELOCITYDAMPING )
% sim (’RobotSimscape FORCEShybridforceposition ’)

figure (1)

plot3(x.d,y-d,z.d, ’color’,’black’,’linewidth’,2);
hold on

i = 0:stepsize:trial_time — stepsize

b= [t; i];

j = round(i/stepsize);

x = [x; ll_%cos(theta_out(j+1,1)) + 12_%cos(theta_out (]
+1,1) + theta_out(j—+1,2))];

y = [y; ll_xsin(theta_out(j+1,1)) + 12_xsin(theta_out(j
+1,1) + theta_out(j—+1,2))];

z = [z; 10 — 14_ — theta_out(j+1,3)];

error_.x = [error_x; x.d(j+1) — x(length(x))];
error_y = [error_y; y.d(j+1) — y(length(y))];
error.z = [error_-z; z.d(j+1) — z(length(z))];

plot3 ([11_xcos(theta_out(j+1,1)) + 12_%cos(theta_out (]
+1,1) + theta_out(j+1,2)), ll_*cos(theta_out(j+2,1)) +
12_xcos(theta_out(j+2,1) + theta_out(j+2,2))],[11_%
sin(theta_out (j+1,1)) + 12_xsin(theta_out(j+1,1) +
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theta_out (j+1,2)),11_%sin(theta_out(j+2,1)) + 12_xsin(
theta_out (j+2,1) + theta_out(j+2,2))],[10- — 14_ —
theta_out (j+1,3),10_ — 14_ — theta_out(j+2,3)], color’
,color (j+1,:), linewidth’,3)

%scatter3 (l1_xcos(theta_out(j+1,1)) + 12_%cos(theta_out(j
+1,1) + theta_out(j+1,2)),l1_xsin(theta_out(j+1,1)) +
12_xsin(theta_out (j+1,1) + theta_out(j+1,2)),10. — 14_

— theta_out (j+1,8),10,color(j+1,:), filled ’);

hold on

end

error_1 = |
error_2 = |
error-3 = |
error_4 = [];

error_1l_simscape =

[
error_2_simscape = [];
error_3_simscape = |

[

error_4_simscape =

for i = 1:1:length(theta_out (:,1))—
error_1 = [error_1; theta,out(l—l—l 1)
error_2 = [error_2; theta_out(i+1,2)
error_3 = [error_3; theta_out(i+1,3) — d_3_d (i
error_4 = [error_4; theta_out(i+1,4)

end

% for i = 1:1:length(theta_out_simscape (:,1))—1

% error_1_simscape = [error_1_simscape;

theta_out_simscape (i+1,1) — theta_-1_d(i,2)];

% error_2_simscape = [error_2_simscape ;

theta_out_simscape (i+1,2) — theta_2_.d(i,2)];

% error_-3_simscape = [error_-3_simscape;
theta_out_simscape (i+1,3) — d_8_-d(i,2)];
% error_j_simscape = [error_j_simscape;

theta_out_simscape (i+1,4) — theta_4_d(i,2)];

% end

— theta_1_.d 1, )]
— theta_2_d

— theta_4._ d

192



B.3. Hybrid Force-Position Control Simulation

scatter3 (x(1),y(1),z(1),50,color(1,:),’d’, filled’,’
markeredgecolor’,'w’)

scatter3 (x(round(trial_time/stepsize)),y(round(trial_time/
stepsize)) ,z(round(trial_time/stepsize)),50,color (round/(

) 9

trial_time/stepsize) ,:),’d’,’ filled ’, ’markeredgecolor’,’'w

)
set (gca, 'DataAspectRatio’ ,[1 1 1])
set (gcf, ’Position’ ,[200 50 1250 700])
hold off

t2 = [t ; trial_time |];

figure (2)

subplot (4,1,1)

plot (t,theta_1_d(:,2))

hold on

xlabel ( 'Time.(seconds) )

ylabel (’\theta_1_(radians)’)

title (’Desired _and_Actual_Angle_for._Joint.1")
plot (t2, theta_out (:,1))

legend ( ’Desired .Angle’,” Actual_Angle )

hold off

subplot (4,1,2)

plot (t,theta_-2_d (:,2))

hold on

xlabel ( ’Time.(seconds) )

ylabel (’\theta_2_(radians)’)

title (’Desired _and_Actual_Angle_for_Joint.2")
plot (t2, theta_out (:,2))

legend ( 'Desired .Angle’,’ Actual_Angle’)

hold off

subplot (4,1,3)

plot(t,d-3.d(:,2))
hold on
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xlabel ( 'Time.(seconds) )

ylabel(’d_3_(metres)’)

title (’Desired _and_Actual_Position._.for.Joint.3")
plot (t2, theta_out (:,3))

plot ([0, trial_time],[—rs_zbase + 10_ — 14_,—rs_zbase + 10_ —
14_])

legend ( ’Desired .Position’,’ Actual _Position’,’Reaction_Surface
")

hold off

subplot (4,1 ,4)

plot (t,theta_4_d(:,2))

hold on

xlabel ( ’Time.(seconds) )
ylabel(’\theta_4._(radians)’)

title (’Desired_and_Actual_Angle_for_Joint.4")
plot (t2, theta_out(:,4))

legend ( 'Desired Angle’,’ Actual_Angle’)

hold off

set (gcf, ’Position’ ,[250 50 800 700])

combined_error_maxes = [max(error_-1) , max(error_2) , max(
error_3) , max(error_4) , max(error_1l_simscape) , max(
error_2_simscape) , max(error_3_simscape) , max(
error_4_simscape) |;

combined_error_mins = [min(error_1) , min(error_-2) , min(
error-3) , min(error_4) , min(error_1l_simscape) , min(
error_2_simscape) , min(error_3_simscape) , min(

error_4_simscape) |;
combined _error_diffs = max(combined_error_maxes) — min(
combined_error_mins);

figure (3)

plot(t, error_1,’color’,[1 0.563 O0])
hold on
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plot(t, error_2,’b’)
plot(t, error_3,’color’,[0 0.5 0])
plot(t, error_4,’color’,[0.781 0 1])

% plot(t, error_1_simscape,’——","color’,[1 0.563 0])
% plot(t, error_2_simscape, ' b——")

% plot(t, error_3_simscape,’——","color ’,[0 0.5 0])
% plot(t, error_j_simscape,’ ——","color’,[0.781 0 1])

xlabel ( 'Time.(seconds) )

ylabel (’Error._(rad_or.m)’)

title (’Joint._.Errors’)

%legend (7 Joint 1 Error’, Joint 2 Error’,’ Joint 3 Error’,’
Joint 4 Error’,’Joint 1 Error (SimScape)’,’Joint 2 Error (
SimScape) 7, "Joint 8 Error (SimScape)’,’Joint 4 Error (
SimScape) ’)

legend (’Joint_1_Error’,’Joint.2_.Error’,’ Joint .3_.Error’,’ Joint
~4_Error’)

grid on

hold off

figure (4)

subplot (3,2,1)
plot (t, x.d)

hold on

plot(t, x)

hold off

ylim ([min([x;x.d]) — 0.1x(max([x;x-d])-min([x;x.d])) max([x;
x_.d])+ 0.1%(max([x;x_d])—min([x;x.d]))])

xlabel ( ’Time.(seconds) )

(
ylabel( ’Position.(m)’)
legend ( ’Desired ’, > Actual )
title ("End_Effector .x—position’)

subplot (3,2,3)
plot(t, y-d)
hold on
plot(t, v)
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hold off

ylim ([min([y;y-d]) — 0.1x(max([y;y-d])-min([y;y-d])) max([y;
y-d])+ 0.1x(max([y;y-d])-min([y;y-d]))])

xlabel ( 'Time.(seconds) )

ylabel (’Position.(m) )

legend ( 'Desired ’, > Actual 7)

title ( 'End_Effector._.y—position’)

subplot (3,2,5)

plot(t, z_d)

hold on

plot (t, z)

plot ([0, trial_time] ,[rs_zbase ,rs_zbase])

hold off

ylim ([min([z;z.d]) — 0.1%(max([z;z_d])-min([z;z_d])) ,max([z;
z.d])+ 0.1x(max([z;z-d])-min([z;z_d]))])

xlabel ( ’Time.(seconds) )

ylabel(’'Position.(m) ")

legend ( ’Desired ’, > Actual’, ’Reaction_Surface )

title ("End_Effector _z—position’)

fext.x = fext_out_cartesian (:,1);

fext_y fext_out_cartesian (:,2);

fext_z = fext_out_cartesian (:,3);

subplot (3,2,2)

plot (t, fext_x_-d(:,2))

hold on

plot (t2, fext_x)

hold off

ylim ([min ([min(fext_x) ,min(fext_x_-d)]) — 0.1%(max([max(fext_x
) ;max( fext_x_d)])-—min([min(fext_x) ,min(fext_x_-d)])) ,max(]
max( fext_x ) max(fext_x_d)])+ 0.1%(max([max(fext_x)
fext_x_d)])-min([min(fext_x) ,min(fext_x_d)]))])

xlabel (’Time.(seconds)’)

ylabel( ’Force.(N) )

legend ( 'Desired ’, > Actual 7)

ymax
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title (’End_Effector .x—Reaction_Force’)

subplot (3,2 ,4)

plot (t, fext_y_-d(:,2))

hold on

plot (t2, fext_y)

hold off

ylim ([min ([min(fext_y ) ,min(fext_y_-d)]) — 0.1%(max([max(fext_y
) max(fext_y_d)])—min([min(fext_y) ,min(fext_y_-d)])) ,max(]

)

max(fext_y) max(fext_y_d)])+ 0.1x(max([max(fext_y ) max(
fext_y_d)])-—min([min(fext_y) min(fext_y_d)]))])

xlabel (’Time.(seconds) )

ylabel( 'Force.(N) )

legend ( ’Desired ’, > Actual )

title ("End_Effector _y—Reaction_Force’)

subplot (3,2 ,6)

plot (t, fext_z_d (:,2))

hold on

plot (t2, fext_z)

hold off

ylim ([min ([min(fext_z) ;min(fext_z_d)]) — 0.1%(max([max(fext_z
) max(fext_z_d)])—min([min(fext_z) min(fext_z_d)])) ,max(]
max( fext_z) max(fext_z_d)])+ 0.1x%(max([max(fext_z) ,max(
fext_z_d)])-min([min(fext_z) min(fext_z_d)]))])

xlabel ( ’Time.(seconds) )

ylabel( 'Force.(N) )

legend (’Desired ’, > Actual )

title ("End_Effector _.z—Reaction_Force’)

set (gcf, ’Position’ ,[300 50 1000 700])

toc
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