
HYBRID FORCE-POSITION CONTROL

OF A 4-DOF SCARA MANIPULATOR

COMMANDE HYBRIDE

FORCE/POSITION D’UNE

MANIPULATEUR SCARA AVEC

QUATRE DEGRÉS DE LIBERTÉS

A Thesis Submitted to the Division of Graduate Studies

of the Royal Military College of Canada

by

Jack McDonald, BEng

Captain

In Partial Fulfillment of the Requirements for the Degree of

Master of Applied Science in Mechanical Engineering

October, 2022

© This thesis may be used within the Department of National Defence

but copyright for open publication remains the property of the author.

To my wife, Zaneta and my daughter, Georgia.

ii

Acknowledgements

I would like to thank my supervisor, Dr. Amor Jnifene, for first introducing me

to control systems and robotics in the fourth year of my undergraduate degree,

and then taking me in as a graduate student, and eventually a member of his

faculty. His patience, enthusiasm, mentorship, fairness and expertise have

been greatly appreciated.

I would also like to thank the RMC machine shop for the significant assis-

tance with the construction of the physical model for this thesis. In particular,

Brendan Freeman, Charles Sadiq and Dave Neumann were very helpful. Their

advice, energy, and their patience with the numerous changes and iterations

were very helpful.

Finally, I would like to thank my father-in-law, Lubomir Balaz for his

critical assistance at multiple points throughout this project. His experience

with robot design and mastery of Solidworks came in handy when significant

obstacles were encountered.

iii

Abstract

A wide range of robotic tasks ranging from metal grinding to minimally inva-

sive surgery require fine control of both the position and the contact force of

the robot’s end effector. Force-position control theory for robotic manipula-

tors has been thoroughly researched and and simulated in recent years, with

both fundamental and advanced approaches being applied to a broad array of

problems with success. Surgical skin cutting has been identified as one area

that has not yet seen much work, and a 4 Degrees of Freedom (DOF) Selec-

tive Compliance Articulated Robot Arm (SCARA) manipulator is identified

as a robot configuration that could be used for this application. A hybrid

force-position controller works by running a position feedback loop in parallel

with a force feedback loop, with a supervisory controller prioritizing between

them. In this thesis, a hybrid force-position controller for a 4-DOF SCARA

manipulator was developed. The mathematical model for the kinematics and

dynamics of a SCARA robot were determined and verified using MatLab’s

Simulink and Simscape environments. A PID controller with feedback lin-

earization was designed to control the position of the end effector, while a

PI/Feedforward controller with velocity damping was designed to control the

end effector’s contact force with a simulated environment. Both controllers

were combined in a hybrid force-position architecture and simulated with suc-

cess.

iv

Résumé

Plusieurs tâches robotiques incluant la chirurgie minimalement invasive et le

meulage du métal, ont besoin de la régulation précise de la position et la

force de contact de l’organe terminal. La théorie du contrôle force-position

pour les manipulateurs robotiques a fait l’objet de recherches et de simula-

tions approfondies ces dernières années, avec des approches fondamentales et

avancées appliquées à beaucoup de problèmes avec succès. La coupe chirur-

gicale de la peau a été identifiée comme un domaine qui n’a pas encore vu

beaucoup de travail, et un manipulateur de bras robotique articulé à confor-

mité sélective à 4 degrés de liberté est identifié comme une configuration de

robot qui pourrait être utilisée pour cette application. La commande hybride

force/position des robots manipulateurs fonctionne en exécutant une boucle

de rétroaction pour la position en parallèle avec une boucle de rétroaction

pour la force, avec un contrôleur de supervision qui commute entre les deux.

Cette étude vise à développer un régulateur hybride de la force et position

pour un manipulateur SCARA avec quatre degrés de libertés. Le modèle

mathématique de la cinématique et de la dynamique d’un robot SCARA a

été développé et vérifié à l’aide des environnements Simulink et Simscape de

MatLab. Un régulateur PID avec la linéarisation de la rétroaction était conçu

pour contrôler la position de l’effecteur d’extrémité, ainsi qu’un régulateur

PI/anticipatif avec l’amortissement de la rapidité pour la force de contact a

été aussi développé et vérifié. Les deux contrôleurs ont été combinés dans une

architecture hybride force-position et simulés avec succès.

v

Contents

Acknowledgements iii

Abstract iv

Résumé v

List of Tables viii

List of Figures ix

List of Symbols xii

1 Introduction 1

2 Background 6

2.1 Position Control . 7

2.2 Force Control . 14

2.3 Force-Position Control . 17

3 Model Development 23

3.1 Kinematic Model . 23

3.1.1 Frame Assignment . 24

3.1.2 Link Connection Definitions 26

3.1.3 Forward Kinematics . 28

3.1.4 Inverse Kinematics . 30

3.1.5 Workspace . 34

vi

Contents

3.2 Differential Kinematics . 36

3.2.1 Computing the Jacobian 37

3.2.2 Kinematic Singularities 40

3.3 Dynamic Model . 42

3.4 MatLab/Simulink Model . 49

4 Position Control 56

4.1 Decentralized PID Control . 56

4.2 Decentralized PID Control with Feedback Linearization 67

4.3 Centralized Control with Feedback Linearization 72

4.4 Position Control Workspace Trial 81

5 Force-Position Control 84

5.1 Reaction Surface Model Development 84

5.2 Hybrid Force-Position Controller 88

5.2.1 Establishing the Selection Matrix 92

5.2.2 Joint Space/Cartesian Space Signal Assignments 95

5.3 Force Control . 100

5.3.1 PI/Feedforward Controller 103

5.3.2 PI/Feedforward/Velocity Damping Controller 106

6 Conclusion and Recommendations 111

Bibliography 115

Appendices 123

A Appendix A: Physical Robot Construction 124

A.1 Eliminating Mechanical Backlash 125

A.2 Force/Torque Sensor and Fourth DOF 132

B Appendix B: Source Code 133

B.1 Robot Model Development . 133

B.2 Position Control Simulation . 141

B.3 Hybrid Force-Position Control Simulation 174

vii

List of Tables

2.1 Natural and artificial constraints for a chalkboard-erasing robot . . 20

3.1 D-H Table for 4-DOF SCARA manipulator 27

3.2 Inertial parameters for robot model links 50

5.1 Natural and artificial constraints for 4 DOF SCARA robot 93

viii

List of Figures

1.1 Photo of existing 3-DOF SCARA manipulator 4

2.1 Typical SCARA robot shown with and without joint identification[68] 6

2.2 Block diagram of a typical position controller 7

2.3 Block diagram of a feedforward controller 12

2.4 Block diagram of an inverse dynamics controller 13

2.5 Block diagram of a closed-loop force controlled system 16

2.6 Structure of a hybrid force/position controller 19

3.1 Schematic of SCARA manipulator with frame assignments 25

3.2 Schematic of SCARA manipulator showing link connection variables 27

3.3 Two dimensional representation of links 1 and 2 32

3.4 2D representation of robot workspace with varied physical parameters 34

3.5 3D representation of robot workspace 36

3.6 Solidworks models of all four robot links and the base 49

3.7 Simscape Multibody Assembly of Robot Links 50

3.8 Simulink Model of System Dynamics 53

3.9 SimScape Multibody Model of System Dynamics 55

4.1 General PID controller block diagram 59

4.2 Simulink model of PID position controller 61

4.3 Decentralized PID controller 3D tracking results 63

4.4 Joint 1 and 2 tracking performance for Decentralized PID controller 64

4.5 Joint 3 and 4 tracking performance for Decentralized PID controller 65

4.6 Decentralized PID controller joint errors 66

ix

List of Figures

4.7 Feedback Linearization/PID control block diagram 69

4.8 Simulink model of PID position controller with Feedback Lineariza-

tion . 70

4.9 Joint errors for Decentralized PID/Feedback Linearization controller 71

4.10 Simulink model of Full State Feedback Linearization controlled sys-

tem . 75

4.11 Joints 1 and 2 Full State Feedback Linearization controller results

using LQR-generated gain matrix 78

4.12 Joints 3 and 4 Full State Feedback Linearization controller results

using LQR-generated gain matrix 79

4.13 Joint errors for Centralized PID/Feedback Linearization controller 81

4.14 Configuration switch trial results 82

5.1 Updated Simulink model including reaction surface forces 85

5.2 Reaction surface testing trajectory 87

5.3 Joints 1 and 2 position controller results with reaction surface model 89

5.4 Joints 3 and 4 position controller results with reaction surface model 90

5.5 Block diagram of hybrid force-position controller architecture . . . 98

5.6 Simulink implementation of hybrid force-position controller 99

5.7 Simulink implementation of PI/Feedforward force controller 104

5.8 Results of the PI/Feedforward force controller 106

5.9 Simulink implementation of PI/Feedforward/Velocity Damping force

controller . 108

5.10 Results of the PI/Feedforward/Velocity Damping force controller . 109

5.11 Results of variable force tracking 110

A.1 Photo of existing 3-DOF SCARA manipulator 124

A.2 Example of mechanical backlash 126

A.4 Existing elbow joint thrust (left) and radial (right) bearings 127

A.3 Existing shoulder joint thrust bearing 127

A.5 Face-mounted crossed-roller bearing 128

A.6 Graphic demonstrating the strain wave principle (left) and photo

of a disassembled Harmonic Drive (right) 129

x

List of Figures

A.7 Exploded view of complete design for the new first joint 130

A.8 Images of the cycloidal drive prototype 131

A.9 Robotiq 6-axis force-torque sensor 132

xi

List of Symbols

Symbol Description Unit

ai link length m

Ai−1
i homogeneous transform from frame i−1 to

frame i

di link offset m

fext vector of external forces/torques acting on

the end-effector

N or N ·m

FN normal force N

g acceleration due to gravity m
s2

I moment of inertia kg ·m2

J Jacobian

K gain matrix

KD derivative gain

Kfi integral force control gain

Kfp proportional force control gain

KI integral gain

KP proportional gain

Kvd velocity damping force control gain

lcix x-position of centre of gravity of link i m

lciy y-position of centre of gravity of link i m

lciz z-position of centre of gravity of link i m

m mass kg

M(θ) mass matrix

xii

n number of robot links

Oi origin of frame i [xi,yi,zi]

PE position of the end effector [xE ,yE ,zE]

q joint variable vector

P i−1
i position of point i with respect to frame

i− 1

Ri−1
i rotation matrix from frame i − 1 to frame

i

r(t) desired trajectory

S selection matrix

t time s

αi link twist rad

θi joint angle rad

τ generalized joint force/torque vector N or N · m

τC command force/torque N or N · m

τf force controller command fore/torque vec-

tor

N or N · m

τp position controller command fore/torque

vector

N or N · m

ωi angular velocity rad
s

zrs z coordinate of the reaction surface m

xiii

1 Introduction

The use of robot manipulators is widespread throughout the modern indus-

trial economy[1], and is rapidly expanding into new areas including health

care[2], construction[3] and consumer retail[4]. One of the major drivers of

this expansion is the increasing level of sophistication of the controllers behind

the robots. The development of force-position controllers is one of the most

important areas where this level of sophistication is increasing, and it is the

focus of this thesis.

The term robot can be applied to a wide variety of things, ranging from

bipedal humanoid robots to wheeled and aerial unmanned robotic vehicles.

The force-position control concept is one generally used for robot manipulators

- that is to say robots that have one end fixed to a static object with a series of

articulated links, joints and motors leading towards an end effector. These are

often also referred to as robot arms, as they mimic the role that a human’s arm

plays in the execution of tasks. Moving forward in this thesis, the term robot

will refer specifically to a robot manipulator, and will thus exclude robotic

vehicles or any other broader definition of the term.

Almost all robots require the position of their end effectors to be controlled.

This is typically achieved with an onboard computer sending actuating signals

to motors at each of the joints, and receiving information from sensors that

measure and calculate the actual end effector position[5]. As the robot moves

through free space, a properly designed position controller can account for the

known dynamic properties of the robot, and apply actuating forces and torques

at each of the joints that will force the end effector position to converge upon

1

a desired end effector trajectory[6]. However, when the robot must interact

with the external environment in any significant way, the position controller

alone may no longer be effective[7]. In many applications, the contact force

that the robot exerts on its external environment must also be controlled.

For example, a robot designed to perform metal polishing tasks must con-

trol both the position of the end effector and the contact force it exerts on

the metal. The position of the end effector must be controlled in order for the

interaction between the robot’s tool and the metal to take place, while the

contact force will determine the rate at which the metal is polished, the rate at

which the tool will wear and the heat generated during the operation. Some of

the many other applications of force-position control are robotic surgery[63],

human-robot interaction[9] and robotic assembly tasks [10][11].

Solutions to the problem of force-position control began with proposals

by Salisbury and Craig of an active stiffness control method to control robot

contact force using position sensor feedback [12][13]. This was followed by

Hogan’s development of indirect methods for force-position control using po-

sition and velocity feedback, referred to as impedance control or admittance

control[7][14][15][16]. At around the same time, both Mason[17] as well as

Craig and Raibert [18][19] developed a direct approach to force-position con-

trol known as hybrid force-position control. These advances all occurred in

the early 1980’s, such that by the arrival of the 1990’s there existed a solid

base of fundamental approaches towards force-position control[20].

These fundamental methods can be split into two categories: indirect

methods and direct methods. Indirect methods (impedance and admittance

control) are those which use a theoretical model to calculate the contact force

from the position and velocity sensor data[21]. Direct methods (hybrid force-

position control) use a force/torque sensor or observer to create feedback for

an independent force control loop[22]. Additional methods that incorporated

elements from both categories were developed including: dynamic hybrid

control[23], parallel force-position control[24] and hybrid impedance control

[25]. The stability, performance and suitability to different applications of

all of these force-position controller types were the subject of considerable

2

analysis in subsequent research[20][26][27][28][29][30][31][32][33].

Throughout this initial explosion of force-position control theory, a paral-

lel explosion in advanced methods of pure position control for robots was also

underway. These new methods included adaptive control[34][35][36], sliding

mode control[37][38] and robust control[39][40]. Ensuing papers applied these

advanced methods to the force-position control problem with success[41][42][43].

The development of these advanced methods was followed by a second

wave of new methods in the 1990’s that took advantage of advances in artificial

intelligence concepts. Control strategies based on neural networks[44][45][46],

fuzzy logic[47][48] and learning algorithms[49] all began to emerge. Similar to

the previous wave of advanced controllers, these techniques soon were applied

to the problem of force-position control with success[50][51][52][53][54].

The rapid increase in new techniques for position control and force/-

position control of robot manipulators started to slow in the mid-2000’s,

at which point the focus of the research began towards applying the new

methods to real-world problems. Problems such as soil excavation[55], robot

locomotion[56] and metal grinding[57], to name a few, have been areas where

force-position control has been successfully applied. Within the field of health

care in particular, there have been many different areas where the use of

force-position control has been applied, including limb rehabilitation[58][59],

needle/catheter insertion[60][61] and robotic surgery[62].

It is worth noting that the majority of the recent research into advanced

force/position control techniques and their application to real-world problems

is limited to simulations, with only a few exceptional papers validating their

controllers experimentally[21][57][58].

Robotic surgery is a particularly promising field for the use of force/-

position controlled robotics. The widespread use of the Da Vinci robot in

laproscopic surgery is evidence of this[64], but there also exist many other

non-laproscopic surgical tasks that robotics can assist with. One surgical task

that has not yet received significant attention from robotics researchers is the

cutting of skin. This task is an important part of many different surgical

3

operations and clearly involves fine control of both the position and applied

force of a tool. Some work by Duchemin et al. in the early 2000’s successfully

applied hybrid force/position control to the related problem of skin harvesting

for reconstructive surgery[65][66][67], however there has been little attention

to the area since then.

The application of force/position control to the problem of skin cutting in

robotic surgery was thus identified as a potential area for development. Using

simulations to test developed controllers would be a beneficial contribution in

the area, but an even stronger contribution would be to validate developed

controllers through physical experimentation. The focus of this thesis was set

with this area for contribution in mind.

Figure 1.1: Photo of existing 3-DOF SCARA manipulator

An existing Selective Compliance Articulated Robot Arm (SCARA) ma-

nipulator with 3 Degrees of Freedom (DOF), shown in Figure 1.1, was con-

4

sidered to be a good base to build off of into a robot that could be used in a

surgical cutting application. In order for it to be made suitable for surgical

skin cutting, it would need a fourth DOF to be added, allowing for control

of the orientation of the cutting tool relative to the direction of its travel

along the skin. Thus, the development of a force/position controller for a

4-DOF SCARA manipulator was set as the focus of this thesis. It would be

developed and tested through simulations, as is done in the majority of the

literature, but with a specific focus on eventual experimental validation on a

modified version of the existing 3-DOF SCARA manipulator. Efforts to make

the required modifications to the robot were also pursued in parallel to the

development of the controllers, and are discussed in Appendix A.

It is also worth mentioning that although the state of the art in modern hy-

brid force/position control is in the application of advanced (adaptive, sliding

mode, robust, etc...) controllers and artificial intelligence techniques (neural

networks, fuzzy logic, learning algorithms, etc...) to the problem - the fun-

damental control methods (PID control, feedback linearization, feedforward

control, etc...) are often able to match their performance with a much simpler

approach. An example of this is in [66], where Dombre et al. use PID con-

trol to achieve effective hybrid force/position control in their experimentally

validated skin harvesting robot. Thus, the focus of this thesis was the applica-

tion of fundamental control methods to the problem of hybrid force/position

control.

This thesis will be organized into six chapters. This introduction consti-

tutes the first, and a more detailed technical discussion into the background

of hybrid force/position control will follow in the second chapter. The third

chapter will discuss the development of the mathematical model and simula-

tions of the 4-DOF SCARA manipulator. The fourth chapter will discuss the

development of the position controller for the robot, and the fifth chapter will

discuss the development of the force/position controller. Finally, the sixth

chapter will be a conclusion to the thesis. Two appendices are also included,

one containing information on the construction of the physical robot, and one

containing all of the thesis’s source code.

5

2 Background

Figure 2.1: Typical SCARA robot shown with and without joint
identification[68]

The robot configuration that was investigated for this thesis was the Selective

Compliance Articulated Robot Arm (SCARA), which is serial manipulator

that has three degrees of freedom (DOF) in its most basic format. Moving

from the fixed base of the robot out towards its end effector, the first two

joints are revolute, while the last is prismatic. This configuration is useful due

to its inherent simplicity and maneuverability. In this thesis, a fourth DOF is

added to the configuration to make it more applicable the the task of surgical

skin cutting. Many generalized conclusions about the control or modelling

of the 4-DOF SCARA robot from this study will also be applicable to any

other serial robot manipulator configuration, aside from the implications of

6

2.1. Position Control

increased/lowered mathematical complexity involved in different robot config-

urations (i.e. computing power, accumulation of uncertainties, etc...). Figure

2.1 below shows a typical 3-DOF SCARA robot with its three joints identified.

2.1 Position Control

While this study focuses specifically on hybrid force-position control, position

control of the end effector forms the basis on which the force-position controller

must be built upon, and therefore must be introduced independently.

Position controllers for robot manipulators require a desired trajectory of

the end effector (both the position and orientation of the end effector expressed

as a time series) as input. The job of the position controller is to take this

desired trajectory, and to apply actuating forces and torques at each of the

robot’s joints in a coordinated manner, such that the position and orientation

of the end effector will converge upon the desired trajectory over time. Typi-

cally, the robot is equipped with optical encoders at each joint that measure

the actual angles of rotation for revolute joints and the joint displacements for

prismatic joints. These sensors allow for closed-loop feedback control, where

the controller is constantly comparing its actual position/orientation to the

desired trajectory, and uses the difference between the two to decide on what

signals to send to the system’s actuators. A block diagram of a typical position

controller is shown below in Figure 2.2.

Figure 2.2: Block diagram of a typical position controller

The simplest control strategy for a robot manipulator is one that treats

each joint as an independent system, and with a separate controller for each.

7

2.1. Position Control

This is known as a decentralized control strategy, as there is no centralized

controller that coordinates the movements of the joints with each other. These

types of controllers are easy to understand, build and troubleshoot, but lack

in performance because they fail to deal with coupling between joints. The

motion of one motor in, say, the third joint of a robot may create reaction

forces that affect the dynamics of the the first joint of the robot. A decentral-

ized controller cannot account for these dynamics, which will ultimately lead

to increased tracking error and reduced performance[6].

However, if near-zero tracking error is not required, and the controller

designer is willing to accept a reduced performance in favour of simplicity - a

decentralized control strategy may be best. If this is the case, a commonly used

controller type for each of the individual joints is the Proportional Derivative

(PD) controller. This controller uses two fixed gain constants, KP and KD,

to calculate the command forces/torques to be sent to the motors using the

control law shown below:

τC = KP qe +KD q̇e (2.1)

Where τC represents the command force/torque sent to the joint, and

qe represents the tracking error, that is to say the difference between the

measured joint variable (from the joint sensor) and the desired joint variable

(from the desired trajectory).

If the control gains are properly selected, an independent joint PD con-

troller can force a robot to successfully track a desired trajectory. However, in

the presence on non-linearities and coupling between joints, there will always

be a significant tracking error, and even at steady-state there will be an error

due to gravity. The size of these errors will be inversely proportional to the

size of the control gains, but there are functional limits on the control gains

based on the motor saturation limits[69].

A typical solution to the problem of the tracking error is to introduce a

third control action into the PD controller called the Integral action. Such

8

2.1. Position Control

a controller is thus referred to as a PID controller. The control gain KI is

introduced into the previous control as shown below:

τC = KP qe +KD q̇e +KI

∫ t

0
qedt (2.2)

This additional term turns the closed loop system into a third orders sys-

tem, which allows the controller to reject step input (i.e. constant) distur-

bances, most notably the effects of gravity[69]. If the nonlinearities of the

robot system are known to be bounded, that is to say it is known that they

will not exceed a certain maximum, the system can be modelled with a step

disturbance of such a size and the PID gains can be set to guarantee conver-

gence. This has a dramatic positive effect on the performance of the system

without adding much complexity to the controller. It does not, however, take

account of the coupling between the joints.

In order to account for the coupling, a centralized controller must be used.

The simplest version of a centralized controller is the state feedback controller.

This controller assumes that the robot system is linear (although it is not),

and represents it in state space form shown below:

ẋ = Ax+Bu (2.3)

Where x represents the n × 1 state vector of the linearized system, A

represents the n×n state matrix that defines the linear relationships between

the states, B represents the n×m input matrix defining the linear relationships

between the system’s states and the system’s input variables, and u represents

the m× 1 input variable vector. Let n represent the order of the system (i.e.

the number of states), and m represent to number of input variables. Note

that the linearized representation of a robot manipulator in state space will

always be of an order (n) that is double the number of joints (one state for each

joint’s variable, and one for the first derivative thereof), and that the number

of input variables (m) will be equal to the number of joints (the command

torque sent to each joint).

9

2.1. Position Control

The control law shown below can be used to stablize the system[70]:

u = −Kx+ xd (2.4)

Where K represents a m×n matrix of appropriately selected control gains,

and xd represents an n× 1 vector of desired state variable values (taken from

the given desired trajectory). When Equation 2.4 is substituted into Equation

2.3 the following closed loop dynamics result:

ẋ = Ax+B(−Kx+ xd) (2.5)

ẋ = Ax−BKx+Bxd (2.6)

ẋ = (A−BK)x+Bxd (2.7)

Note that the closed loop dynamics in Equation 2.7 take the same form as

the base state space representation in Equation 2.3, just with the new state

space matrix being A−BK and the system input changed to xd. State space

control theory dictates that if the system in Equation 2.3 is controllable, that

is to say that it satisfies the following inequality[69]:

det
[
B AB A2B · · · An−1B

]
6= 0 (2.8)

... then there exists a control gain matrix K that, when used in the con-

trol law 2.4, can force the poles of the closed-loop system to anywhere in the

complex plane. This means that as long as the natural limits of the system’s

actuators are respected (i.e. the motor saturation limits), the tracking perfor-

mance of the robot manipulator can be made to be asymptotically stable [71].

Typically, an optimization strategy known as the Linear Quadratic Regulator

is used to determine the pole locations in the complex plane that will maximize

system tracking performance without over-saturating the motors[71].

Much like the PD controller, a state feedback controller has two states

(one for joint position and one for joint velocity) for each of the joints, and

10

2.1. Position Control

so it will always be able to at least match the performance of the PD control

action. In applications where some linear coupling exists between joints (such

as in a 4-DOF SCARA manipulator), it will out-perform the decentralized

PD controller, as it will be equipped to deal with these dynamics (due to the

effect of the non-diagonal elements of the system’s A matrix).

The state feedback controller does however fall short in the same main

way that the PD controller does, which is in dealing with nonlinearities. The

asymptotic stability of the system is only guaranteed insofar as the system can

be accurately modelled as purely linear time-invariant (LTI) [70]. Robotic

manipulators unfortunately do not fall into this category. In fact, if a sys-

tem’s linear coupling is not significant, a decentralized PID controller will

outperform the state feedback controller, as the integral action will be able to

eliminate some or all of the steady-state error that comes from the unmodeled

nonlinear system elements.

The previously mentioned controllers are all linear controllers, and thus

will not properly stabilize the system in the presence of nonlinear dynamics.

In order to deal with the nonlinear dynamics, a feedforward control scheme

can be adopted. In order to demonstrate how such a scheme works, the

manipulator dynamic system can be represented in the form shown below:

τ = g(q, q̇, q̈) + h(q, q̇) (2.9)

Where τ represents the forces/torques experienced at each joint, q repre-

sents a vector of all of the joint variables, g represents all the of the system’s

linear dynamics, and h represents all of the system’s nonlinear dynamics. The

feedforward control approach uses h(qd, q̇d) as an estimation of the system’s

nonlinear dynamics and adds them into one of the linear control laws men-

tioned above that can stabilize the remaining linear dynamics (g(q, q̇, q̈)). The

control law below shows a PID inner loop controller with a feedforward com-

pensator for the nonlinear dynamics:

11

2.1. Position Control

τC = h(qd, q̇d) +KP qe +KD q̇e +KI

∫ t

0
qedt (2.10)

Where qd represents a vector of desired joint variables. This controller

is efficient because the nonlinear dynamics of the desired trajectory can be

pre-calculated as soon as the dynamic model of the system and the desired

trajectory are known, reserving online computing power for the simpler lin-

ear controller. This method of pre-calculating the expected forces/torques

from the nonlinear dynamic terms based on the known desired trajectory is

also sometimes referred to as the computed torque method. When the dy-

namic model is an accurate representation of the system, this controller is

very effective, but because modelling error and uncertainty are inevitable, its

performance will always be negatively affected by them[72]. Figure 2.3 below

shows a block diagram of a feedforward control strategy:

Figure 2.3: Block diagram of a feedforward controller

Because the feedforward element of the controller is using only the desired

trajectory in its calculations, whenever the robot’s pose differs from the desired

pose, the nonlinear elements of the system dynamics will not be completely

cancelled, which will act as a disturbance on the linear controller. In order to

overcome this issue, the actual measured joint variables are used in Equation

2.11 in lieu of the desired joint variables. This control law is shown below:

12

2.1. Position Control

τC = h(q, q̇) +KP qe +KD q̇e +KI

∫ t

0
qedt (2.11)

This control strategy is often known as inverse dynamics control[69], and

a block diagram of it is shown below in Figure 2.4:

Figure 2.4: Block diagram of an inverse dynamics controller

The inverse dynamics controller will represent an increase in performance

when compared to the feedforward controller, but will come at the expense of

an increased requirement for online processing power, as the nonlinear dynam-

ics of the robot must be calculated using live sensor data from the robot[72].

Both the feedforward and inverse dynamics controllers use a nonlinear con-

trol method known as feedback linearization, where the a nonlinear system is

manipulated with an outer feedback loop to attempt to cancel the nonlin-

earities and convert it into a linear system. This ”linearized” system can be

controlled using the PD/PID/state space method described earlier, and if the

linearization is exact, the system will be asymptotically stable[70].

Beyond these feedback linearization methods, there exist more advanced

controllers that can deal with the nonlinearities inherent in robot manipula-

tors. In particular, sliding mode control[37][38], adaptive control[34][35][36]

and robust control[39][40] have been proven to be very useful when applied

to end-effector position control. These control methods are significantly dif-

ferent than the linear control and feedback linearization methods that have

been previously discussed, as their theoretical formulation is based off of the

13

2.2. Force Control

Lyapunov Stability of the system which is applicable to all dynamic systems,

whether linear or nonlinear. The use of such methods is helpful when seek-

ing to achieve strong trajectory-tracking in the presence of uncertainties, or

unmodeled dynamics in a system. These requirements are important, but

outside the scope of this thesis, so further details of these advanced position

control methods will not be discussed.

2.2 Force Control

First, it should be noted that the term ”force control” can refer not only to the

control of the forces exerted by a robot manipulator on its external environ-

ment, but also to the control of torques exerted on its external environment.

Much like how ”position control” refers to the control of both the position and

the orientation of the end effector, the same linear-rotational duality exists in

the force/torque domain.

Force control of robot manipulators is a significantly less discussed topic

than that of position control. Almost every robot manipulator requires end

point position control, and while many also require force control, many do not.

This means that there are many robots that require only position controllers,

and there are very few robots that require only force controllers. There are

very few applications where force/torque (but not position/orientation) needs

to be controlled, and a robot manipulator is the tool chosen to complete the

task. When searching for an example of such a task, one might think of

tightening of a bolt. The external torque that must be applied cannot exceed

a certain amount so as not to damage the bolt, but it also must reach a certain

minimum for the bolt to be properly installed. However, in order for the bolt

to be tightened, it must be rotated in place, which means that the orientation

of the end-effector of a robot performing this task would in fact also need a

position controller.

If a force needs to be controller but the position does not, it is unlikely

that a robot manipulator will be selected to perform the task. As such, it

is important to understand that force control for robot manipulators always

14

2.2. Force Control

exists within the context of position control. This relationship is ultimately the

focus of this thesis, and will be discussed at length later, but at the moment

force control will be separated from position control in order to discuss its

theory independently.

Force control refers to controlling the forces and torques that a robot

manipulator applies to its external environment. These forces and torques can

be represented by a 6 × 1 combined force/torque vector fext shown below:

fext =

fext,x

fext,y

fext,z

τext,x

τext,y

τext,z

(2.12)

Where fext,i represents a component of the force that the end effector exerts

on the environment in the i direction, and τext,i represents a component of the

torque that the end effector exerts on the environment in the i direction. Note

that while x, y and z were selected as the coordinate system, any orthogonal,

right-hand coordinate frame can be used. Typically, the coordinate frame

is selected based on the task that the force control is being used for. For

example, if the task assigned to the robot manipulator is to apply a force

normal to a surface, the coordinate frame might be set up to have the z

axis perpendicular to the surface. Another frame that could be used for the

coordinate system of the external force vector would be the frame associated

with the end effector (i.e. the tool frame). The force/torque sensor used to

generate feedback for the force controller is usually installed at or near to the

origin of the the tool frame, and there is convenience associated with having

matching coordinate systems for the measured external forces/torques and the

desired forces/torques[29].

The goal of a force controller is to take a desired force/torque vector (fd)

as an input, and then come up with a command force/torque to apply at each

15

2.2. Force Control

of the robot’s motors that will cause the actual external forces/torques that

the robot applies to its environment (fext) to converge to fd. It does this

by taking measurements of fext from a force/torque sensor mounted on the

end effector of the robot, and then plugging them into a force control law to

calculate a command force/torque (τC).

The development of the force control law is highly dependent on the ex-

ternal force model that the designer of the controller adopts, and this model

will be highly dependent on the task that the robot is being used for. For

position control of the robot, the system model generally will always take the

same form, whereas in force control there is no real limit to the number of

different models that can be used. For instance, a robot designed to polish

metal using a high-speed rotary brush will experience significantly different

forces and torques when in contact with its environment than a robot designed

to make a surgical incision would.

The modelling of the external forces for this study will be discussed in

detail in later on, so for now they will only be treated in general terms. A

block diagram of a closed-loop force controlled system is shown below in Figure

2.5:

Figure 2.5: Block diagram of a closed-loop force controlled system

Typically the types of force controllers that are used are made up of similar

types of actions as those previously discussed in Section 2.1, that is to say lin-

ear PID controllers with feedforward or computed torque elements to achieve

16

2.3. Force-Position Control

feedback linearization. One exception does exist, however, as a result of the

nature of the measurements made by the force/torque sensor. Typically, these

measurements are extremely noisy, which means that when numerical deriva-

tives are taken, the signal is almost completely useless. Thus, the derivative

control action is rarely used, and the linear controllers are left simply with

their PI (Proportional and Integral) actions[19].

2.3 Force-Position Control

Controlling both the position and the contact forces exerted by the end ef-

fector simultaneously is not possible using the previously discussed position

controllers or force controllers alone. In order to achieve proper tracking of

both a desired position/orientation trajectory and a desired contact force tra-

jectory, the two objectives must somehow be merged and controlled together.

Force-Position control methods can be grouped into two categories, the

first being indirect methods and the second being direct methods. In the first

category, the contact force between the robot’s end-effector and the environ-

ment is modelled as a function of the end-effector’s position (and time deriva-

tives thereof)[73]. The inverse of this function allows the controller to deter-

mine an adjusted position/orientation trajectory that, when used as input for

a simple position controller, will achieve both the desired position/orientation

trajectory and also the desired force/torque output.

The most widely-used of these indirect methods is known as impedance

control, where the relationship between the position and the contact force

is modelled as a second order mass-spring-damper system with adjustable

parameters. The resistance posed by this mass-spring-damper system, also

known as the mechanical impedance of the robot’s external environment, is

simply added into the robot’s internal dynamic model, and a position con-

troller can be built to stabilize the system[14][15][16].

While impedance control and other indirect methods of force-position con-

trol represent an elegant simplification of the problem, they can only guarantee

contact force tracking insofar as the external force model is accurate[28]. In

17

2.3. Force-Position Control

reality, external forces acting on robot manipulators are often very complex,

time-variant, or unknown. If more deliberate force tracking is desired, the di-

rect methods of force-position control are more appropriate. In these methods,

an explicit closed force feedback loop is used to directly control the output

forces exerted by the manipulator. Hybrid force/position control falls firmly

into this category[73].

In hybrid force/position control, two feedback loops run in parallel to each

other. One controls the position/orientation of the end effector, and the other

controls the forces/torques exerted by the end effector on the external environ-

ment. Both controllers produce command signals that would achieve stability

for their respective goals, and the two signals are both sent to a supervisory

controller. The supervisory controller prioritizes the competing goals of po-

sition tracking and force tracking, and then sends the system’s actuators a

single command signal that is built from the two signals it received[19]. The

structure is shown below in Figure 2.6.

It is at this point that one of the fundamental problems in force/position

control should be mentioned. The problem is that it is the desired forces/-

torques and the desired trajectories are not guaranteed to be compatible with

each other, that is to say it may be impossible to achieve both targets at

once. Imagine a robot tasked with erasing a chalkboard, and that the plane

of the chalkboard is normal to the x axis of a global coordinate frame. The

position controller will attempt to force the robot to follow a trajectory with

a constant value for the x position of the end effector (while moving along

the changing paths in the y and z directions), while the force controller will

attempt to force the robot to exert a constant force in the x direction. If

there is some compliance in the chalkboard, the exertion of a constant force

against it will cause it to deform in the x direction, which means that in order

for the robot to maintain its desired force, it will need to deviate from its

target of holding the end effector position constant in the x direction. In this

case, there is no possible way to achieve both targets, because the targets are

mutually exclusive.

Indeed, unless the two trajectories are perfectly compatible, it is impossible

18

2.3. Force-Position Control

F
ig

u
re

2.
6:

S
tr

u
ct

u
re

of
a

h
y
b

ri
d

fo
rc

e/
p

os
it

io
n

co
n
tr

ol
le

r

19

2.3. Force-Position Control

to build a controller that can track both force and positions perfectly. If the

user of the robot knows enough about the environment that it operates in to be

able to come up with desired position and force trajectories that are perfectly

compatible, they could simply build their controller using this knowledge and

use a single closed-loop feedback system to track one of the trajectories alone.

This is a fundamental problem in hybrid force-position control: the desired

position and force inputs can often contain conflicting requirements, and the

controller needs to be able to prioritize the correct requirements depending on

the situation.

The solution to this problem lies in a deeper understanding of the na-

ture of the tasks assigned to the force/position controlled robot manipulator.

In [17], Mason explains that if the six degrees of freedom of an end effector

(three dimensions of translation and three axes of rotation) are analyzed in-

dependently, each one can be assigned as either having natural constraints or

artificial constraints. The natural constraints are those that are imposed by

the environment, while the artificial constraints are imposed by the robot’s

controller. These constraints can either limit the position/orientation of the

end effector, or the forces/torques that it can exert on its environment in that

direction.

To continue with the example of the robot manipulator tasked with erasing

the chalkboard, where the chalkboard is aligned with the y−z plane, the task

can be broken down into natural and artificial constraints in the following

manner:

Table 2.1: Natural and artificial constraints for a chalkboard-erasing robot

Natural Constraints Artificial Constraints
vx = 0 fx = fext,x
fy = 0 vy = ẏE
fz = 0 vz = żE
τx = 0 ωx = ωE,x
ωy = 0 τy = 0
ωz = 0 τz = 0

20

2.3. Force-Position Control

Note that vi represents the velocity of the eraser in the i direction, fi

represents the contact force between the eraser and its environment in the i

direction, fext,i represents the desired contact force between the eraser and its

environment, and ẏE and żE represent the desired velocity of the eraser in the

y and z directions, respectively. Also, ωi represents the rotational velocity of

the eraser about the i axis, ωE,i represents the desired rotational velocity of

the eraser about the i axis, and τi represents the contact torque about the i

axis between the eraser and the chalkboard.

It is important to recognize that the natural constraints of fy, fz and τx

assume a frictionless sliding interaction as the eraser rotates and moves later-

ally along the chalkboard. This is obviously an oversimplification, and these

constraints could be more realistically modelled as functions of the normal

force between the chalkboard and the eraser, the velocity of the eraser in the

y and z directions, and the rotational velocity of the eraser about the x axis.

If this sort of model were to be used, the expressions that represent the re-

spective friction forces and torques would be set equal to fy, fz and τx and

they would remain as natural constraints.

In this breakdown of constraints based on the nature of the task, there are

twelve constraints representing the position, orientation, forces and torques

each broken down into the three axes of the task frame. For most tasks that

involve a robot interacting with stiff, immobile solids, a similar breakdown

can be made[17]. With these natural and artificial constraints defined, the

problem of conflicting requirements can be resolved.

The solution to the problem is to ask the controller to only impose the ar-

tificial constraints on to the robot, while allowing the environment to impose

the natural constraints on the robot. As long as there no more than six arti-

ficial constraints and they are all mutually orthogonal (i.e. no linear artificial

constraints in the same direction as each other, and no rotational artificial

constraints about the same axis as each other), there will be no conflicting

requirements that the controller needs to prioritize between.

The supervisory controller in the hybrid force/position control scheme is

21

2.3. Force-Position Control

responsible for taking the two independent sets of command signals sent by the

position controller and the force controller, and then deciding upon a single set

of command signals to be sent to the robot’s actuators. It does this by break-

ing the task down into its natural and artificial constraints, and determining

whether the force command or the position command is the appropriate signal

to be used for each of the artificial constraints[19]. Continuing on with the

chalkboard-erasing robot example, the supervisory controller would send the

command signals from the force/torque control loop for the linear x direction

and the rotational y and z directions, and it would send the command signals

from the position/orientation control loop for the linear y and z directions

and the rotational x direction.

Decomposing and rebuilding these command signals from global coordi-

nate frames, to task frames, and then mapping them into signals to be sent to

the robot’s actuators, is a complex tasks that requires significant processing

power and knowledge of the robot model. However, as these transformations

rely heavily on the robot model, the environmental force model, and the se-

lection of the task frame, their explanation will be discussed later in Chapter

5.

Hybrid force/position control will be the focus of the remainder of this

thesis. The next chapter will deal with the development of the mathematical

model of the robot that was investigated

22

3 Model Development

The first step in the control system design was the development of a theoreti-

cal model of the robot. This process included the creating a kinematic model

of the robot using the Denavit-Hartenburg (D-H) Convention, deriving the

inverse kinematics and robot workspace, using differential kinematics to de-

termine the singular positions, creating the dynamic model using the Lagrange

method, and finally recreating the entire model in MatLab/Simulink.

3.1 Kinematic Model

The development of the kinematic model of the robot was the critical founda-

tion for the remainder of the project. Any mistakes made here might not have

been immediately apparent, but would have had dramatic effects on later re-

sults. It was also important that the frames were assigned and nomenclature

selected in an intuitive manner to allow for more straightforward analysis of

results and troubleshooting of problems.

The kinematic modelling for the robot was performed without any specific

physical parameters of any of the links or motors. All parameters were left

as variables. The starting point of the development was simply the 4-DOF

SCARA manipulator configuration. This approach made it so that design

choices on the physical parameters of the robot could be made with more

knowledge of how they would effect its performance.

23

3.1. Kinematic Model

3.1.1 Frame Assignment

The first step in the development of the kinematic model was the assign-

ment of frames of reference to each link using the Denavit-Hartenberg (D-H)

Convention[74]. In the the D-H Convention, each link is numbered starting

from the fixed base of the arm, which is called link 0. The moving link at-

tached to link 0 is called link 1, and so on all the way until the end effector is

reached. Likewise, the joints of the robot are also numbered such that joint i

forms the connection between link i− 1 and link i.

The z axis of each frame i (i.e. zi) is set parallel to the joint axis of the

joint i + 1. Next, the xi axis is set as the common normal between the zi−1

and the zi axes. When the zi−1 and zi axes are parallel (as is commonly the

case), the xi axis can be set arbitrarily to wherever is most convenient for the

frame assigner. With the zi and xi axes established, the origin of the frame,

Oi, is set as the intersection of the two, and the yi axis is set as direction

normal to the xi-zi plane that originates from Oi in the direction compliant

with the right-hand rule for frames of reference.

The origin of frame i is set at the intersection of the common normal of

the zi and zi+1 axes (i.e. ai+1) and the zi axis. T Note that if the axes zi

and zi+1 are parallel (as is commonly the case), there are an infinite number

of common normals between them, and thus an infinite number of locations

for the origin of frame i. In this case, the origin may be set wherever is most

convenient.

24

3.1. Kinematic Model

Figure 3.1: Schematic of SCARA manipulator with frame assignments

A special case exists for the assignment of the base frame of the robot (i.e.

frame 0). As with all other frames, the z0 axis must align with the axis of

joint 1. However, because there exists no frame before it, no common normal

can be used to set the x0 axis. Thus, the x0 axis (and furthermore the origin

and y0 axis) are all set arbitrarily. In this case, they should be set to align the

origin with some known reference point in the environment wherein the robot

operates. The base frame is the only fixed frame, so it will be used to define

the motion of the robot’s end-effector in its operating environment. Thus, it is

best to set the origin at some known reference point in the environment that

coincides with the z0 axis. A good choice for this is the point where the fixed

arm of the robot is attached to its operating environment (i.e. the ground, or

a platform on which it is operating).

A second special case exists for the assignment of frame n, where n repre-

sents the number of joints in the robot. Because there is no joint n + 1, the

zn axis must be set arbitrarily. Typically, the zn axis is chosen to be set to

be aligned with zn−1, or to be aligned with the approach vector of the end

effector. Once zn is set, the same rules apply for setting the location of On,

and the xn and yn axes.

25

3.1. Kinematic Model

Figure 3.1 shows a schematic of the SCARA manipulator and the frames

that were assigned to each joint using the D-H Convention.

3.1.2 Link Connection Definitions

Once frames are assigned to each joint, the D-H Convention uses four variables

to describe the transformations between successive frames (i.e. the geomet-

ric characteristics of the robot links). These four variables are called link

length, link offset, link twist and joint angles (represented by ai, di, αi and θi,

respectively).

The link length, ai, (as previously described) represents the length of the

common normal between the zi−1 and zi axes. The link twist, αi, represents

the angle of rotation about the xi axis that is required to bring the zi−1 axis

parallel to the zi axis. Once the transformations defined by ai and αi are done,

the link offset, di, represents the distance along the zi axis that Oi−1 must be

translated in order for it to be coincident with Oi. Finally, once these three

transformations are done, the joint angle, θi, represents the rotation about

the zi axis required to align the xi−1 and xi axes.

26

3.1. Kinematic Model

Figure 3.2: Schematic of SCARA manipulator showing link connection vari-
ables

Figure 3.2 shows an updated schematic of the 4-DOF SCARA manipulator

with the important link connection variables labelled. These variables were

collected and then listed in Table 3.1. It is important to note that the variables

θ1, θ2, d3 and θ4 could vary over time, as they were the variables associated

with the movement of each joint in the RRPR configuration. The variables l0,

l1, l2 and l4 represent the fixed lengths of each link in the robot. They were

left as variables so that they could be parameterized during any future design

process.

Table 3.1: D-H Table for 4-DOF SCARA manipulator

Link ai di αi θi
1 l1 l0 0 θ1

2 l2 0 π θ2

3 0 d3 0 0
4 0 l4 0 θ4

27

3.1. Kinematic Model

3.1.3 Forward Kinematics

With the link connection variables defined, the D-H Convention provides a

straightforward path to kinematic equations by using homogeneous transfor-

mation matrices. These 4 × 4 matrices are a mechanism that can be used to

convert a point or a vector from one frame into another, both by rotating it

and translating it. The homogeneous transformation that converts a vector

from i to frame i− 1 is represented by Ai−1
i , and can be calculated using the

following formula:

Ai−1
i =

cθi −sθicαi sθisαi aicθi

sθi cθicαi −cθisαi aisθi

0 sαi cαi di

0 0 0 1

 (3.1)

Note that the notations s and c are shorthand for sine and cosine, si and

ci are shorthand for sinθi and cosθi, sij and cij are shorthand for sin(θi + θj)

and cos(θi + θj), and finally that sij̄ and cij̄ are shorthand for sin(θi− θj) and

cos(θi − θj). Also note that moving forward, the vector q shall represent a

vector of the four joint variables, that is to say q =
[
θ1 θ2 d3 θ4

]T
.

Homogeneous transforms can be concatenated by post-multiplying them,

thus yielding the overall homogeneous transform from the end effector to the

base frame. Thus, the overall homogeneous transform for the 4-DOF SCARA

robot was calculated as follows:

28

3.1. Kinematic Model

A0
4(q) = A0

1(q)A1
2(q)A2

3(q)A3
4(q) (3.2)

A0
4(q) =

c1 −s1 0 l1

s1 c1 0 0

0 0 1 l0

0 0 0 1

c2 s2 0 l2

s2 −c2 0 0

0 0 −1 0

0 0 0 1

1 0 0 0

0 1 0 0

0 0 1 d3

0 0 0 1

c4 −s4 0 0

s4 c4 0 0

0 0 1 l4

0 0 0 1

(3.3)

A0
4(q) =

c124̄ s124̄ 0 l1c1 + l2c12

s124̄ −c124̄ 0 l1s1 + l2s12

0 0 −1 l0 − l4 − d3

0 0 0 1

 (3.4)

This homogeneous transform contains all the information needed to com-

plete the kinematic model. Rows 1 through 3 of columns 1 through 3 make

up the rotation matrix (i.e. a description of the orientation of the end effector

with respect to the base frame), and rows 1 through 3 of column 4 make up

the position vector of the end effector in the base frame. The rotation matrix

will be represented by R0
4 and the position vector will be represented by P 0

4 :

R0
4(q) =

c124̄ s124̄ 0

s124̄ −c124̄ 0

0 0 −1

 P 0
4 (q) =

l1c1 + l2c12

l1s1 + l2s12

l0 − l4 − d3

 (3.5)

These results made intuitive sense for a number of reasons. First, the z

component of P 0
4 is l0 − l4 − d3. Just by inspecting Figure 3.2 it can be seen

that this should be the case. The x and y components of P 0
4 are functions of

only θ1 and θ2, which also makes intuitive sense. Additionally, θ4 has no effect

on the position of the end effector, and d3 has no effect on the orientation of

it. These intuitive observations confirmed the validity of the D-H convention

methods and that they were effectively employed in this application.

With these results, the position and orientation of the end effector could

be determined if the state of each joint variable was known. For control of the

29

3.1. Kinematic Model

end effector, however, it was important to be able to determine the required

set of joint variables that would result in a given end effector position and

orientation. This is called inverse kinematics, and was the next step in the

full development of the model.

3.1.4 Inverse Kinematics

Inverse kinematics are developed by taking the forward kinematic equations,

and simply re-configuring the equations to solve for the joint variables, instead

of the end effector position and orientation. This process is complicated by

the fact that multiple solutions often exist.

Before going further, it is necessary to establish the convention that the

position and orientation of the end effector will be described with. The posi-

tion of the end effector will be relatively simple. The vector PE will represent

the location of the end effector in the base frame, and will be made up of the

three components xE , yE and zE . The orientation of the end effector is more

complex to describe.

There exist many ways to describe transformations in orientations, but

the one that will be used here will be roll-pitch-yaw. In this method, three

successive elementary rotations are made. The first is the ”roll” rotation, of

an angle ψ about the x0 axis. The next is the ”pitch” rotation, of an angle

ν about the y0 axis, and the final is the ”yaw” rotation of an angle φ about

the z0 axis. Because the axes of rotation for all three are all part of a fixed

frame, the determination of the overall rotation matrix can be found using

pre-multiplication:

30

3.1. Kinematic Model

RE = Rz(φ)Ry(ν)Rx(ψ) (3.6)

RE =

cφ −sφ 0

sφ cφ 0

0 0 1

 cν 0 sν

0 1 0

−sν 0 cν

1 0 0

0 cψ −sψ
0 sψ cψ

 (3.7)

RE =

cφcν cφsνsψ − sφcψ cφsνcψ + sφsψ

sφcν sφsνsψ + cφcψ sφsνcψ − cφsψ
−sν cνsψ cνcψ

 (3.8)

The goal of the inverse kinematics will be to produce a solution for each

joint variable when given a set of ZYX Euler Angles, along with a location of

the end effector.

The first and simplest component to solve for in this case was for the third

joint, d3, as it was only present in one part of the forward kinematic solution,

zE :

zE = l0 − l4 − d3 (3.9)

d3 = l0 − l4 − zE (3.10)

Next, the ZYX Euler Angle rotation matrix from Equation 3.8 was com-

pared with R0
4 from 3.5 to come up with obsevations regarding ν and ψ:

R0
4(q) =

c124̄ s124̄ 0

s124̄ −c124̄ 0

0 0 −1

 RE =

cφcν cφsνsψ − sφcψ cφsνcψ + sφsψ

sφcν sφsνsψ + cφcψ sφsνcψ − cφsψ
−sν cνsψ cνcψ

(3.11)

Looking at r31 in both matrices, it could be seen that sν = 0, which meant

that ν would always be either 0 or π. Substituting this result into r32 and r33

showed that ψ would be π when ν was 0, or it would be 0 when ν was π. In

31

3.1. Kinematic Model

the ZYX Euler Angle framework, a rotation of π about either the fixed x axis

or the fixed y axis produced the same result, so there will exist no solution

that differentiates between the two possibilities. Therefore, it was arbitrarily

chosen that ν would be set to 0 and that ψ would be set to π. With this set,

comparing r11, r21, r12 and r22 between the two rotation matrices showed that

φ would always be equal to θ1 + θ2 − θ4.

These results made sense, as there was no way that any of the joints could

have been manipulated to change the orientation of the end effector about the

x0 or y0 axes, and the orientation of the end effector about the z0 axis was

simply a linear combination of the joint angles 1, 2 and 4.

Figure 3.3: Two dimensional representation of links 1 and 2

In order to solve for θ1 and θ2, some new geometric intermediate variables

were required. Figure 3.3 shows them all and what they represent. The first

solution that will be shown is for θ2, using cosine law:

32

3.1. Kinematic Model

c2 = a2 + b2 − 2abcosβ (3.12)(√
xE2 + yE2

)2
= l1

2 + l2
2 − 2l1l2cos (180− θ2) (3.13)

xE
2 + yE

2 = l1
2 + l2

2 + 2l1l2cosθ2 (3.14)

θ2 = ±arccos

(
xE

2 + yE
2 − l12 − l22

2l1l2

)
(3.15)

It is important to note that there are two possible solutions for θ2: one

where it is positive and one where it is negative. These two cases correspond

to the ”elbow-up” and ”elbow-down” configurations of the second joint. This

kinematic ambiguity had major implications in the path-planning and control

of the robot.

In order to calculate θ1, sine law was used:

sinγ

l2
=

sinβ

c
(3.16)

sin (θT − θ1)

l2
=

sin (180− θ2)√
xE2 + yE2

(3.17)

sin (arctan2(yE , xE)− θ1) = l2
sinθ2√

xE2 + yE2
(3.18)

θ1 = arctan2(yE , xE)− arcsin

(
l2sinθ2√
xE2 + yE2

)
(3.19)

At this point the two calculated values of θ2 from Equation 3.15 could be

substituted into Equation 3.19 to determine the two corresponding values for

θ1. Thus, the inverse kinematic equations of the robot were:

θ1 = arctan2(yE , xE)− arcsin

(
l2sinθ2√
xE2 + yE2

)
(3.20)

θ2 = ±arccos

(
xE

2 + yE
2 − l12 − l22

2l1l2

)
(3.21)

d3 = l0 − l4 − zE (3.22)

θ4 = θ1 − θ2 − φ (3.23)

33

3.1. Kinematic Model

3.1.5 Workspace

With the forward and inverse kinematic models fully developed, the shape of

the robot’s workspace could be determined. Given the physical parameters

of the robot (link lengths, joint limits), the workspace could be plotted and

visualized.

Figure 3.4: 2D representation of robot workspace with varied physical param-
eters

34

3.1. Kinematic Model

As the forward kinematic model of the robot found in Section 3.1.3 showed,

the fourth joint contributed only to the orientation of the end effector, and

not to its position. Additionally, Equation 3.9 showed that the third joint

(and the only the third joint) contributed only to the zE position of the end

effector. This meant that the determination of the workspace was largely a

two-variable problem, governed by the limits of joints 1 and 2. Using the same

logic, the only two link connection variables that could change the shape of

the workspace were l1 and l2.

The workspace was plotted using a number of arbitrary values for l1, l2 and

for the upper and lower limits of θ1 and θ2. These plots are shown in Figure

3.4. The red areas represent the regions of the workspace that were accessible

only in the ”elbow-up” configuration, while the blue areas represent those only

accessible in the ”elbow-down” configuration. The purple areas represent the

regions that were accessible with both configurations.

These images of course only show a two dimensional cross-section of the

workspace over the x-y plane. Figure 3.5 below shows a full three dimensional

representation of the workspace.

35

3.2. Differential Kinematics

Figure 3.5: 3D representation of robot workspace

With the workspace, the forward kinematics and the inverse kinematics all

determined, the kinematic model of the robot could be considered complete.

3.2 Differential Kinematics

The next step in the development of the robot model was to determine the

differential kinematic equations that represented the movement of its joints

and links through space and time. By taking the kinematic equations for

each joint from Equation 3.4 and differentiating them once with respect to

time, the relationship between each of the joint velocities and the end effector

velocity could be ascertained. This relationship between joint and end effector

velocities is represented by a matrix called the Jacobian, which is used in many

subsequent levels of robot model development.

36

3.2. Differential Kinematics

3.2.1 Computing the Jacobian

To find this Jacobian, the generalized velocity of the end effector first had to

be calculated. The generalized velocity vector shall be represented by v, and

shall be a combination of the linear velocity (Ṗ) and angular velocity (ω):

v0
4 =

[
Ṗ 0

4

ω0
4

]
(3.24)

The linear and angular velocities of the end effector were calculated it-

eratively, by calculating the linear and angular velocities of each successive

joint. The following generalized equations were used to calculate each frame’s

velocities once the velocities of the previous frame were known:

Ṗ 0
i = Ṗ 0

i−1 + Ṗ 0
i−1,i +

(
ω0
i−1 × P 0

i−1,i

)
(3.25)

ω0
i = ω0

i−1 + ω0
i−1,i (3.26)

In these equations, the subscripts and superscripts can be explained as

follows. Using the example of Ṗ 0
2,3, the superscript 0 represents the frame of

reference that the variable (in this case the linear velocity) was being compared

to. The subscript 2,3 means that the velocity that was being measured was

the linear velocity of the origin of frame 3 with respect to the origin of frame

2. If the subscript is a single number, then it simply means that the variable

in question is being measured in absolute terms, not as one frame with respect

to another.

These two equations could be expressed more clearly when it is known

whether the joint i is a prismatic or revolute joint. For prismatic joints, it

is known that ω0
i−1,i = 0 and that Ṗ 0

i−1,i = ḋiz
0
i−1, where z0

i−1 represents the

third (i.e. right-most) column of the rotation matrix R0
i−1. Thus, Equations

3.25 and 3.26 could be simplified to the following in the case of prismatic

joints:

37

3.2. Differential Kinematics

Ṗ 0
i = Ṗ 0

i−1 + ḋiz
0
i−1 +

(
ω0
i−1 × P 0

i−1,i

)
(3.27)

ω0
i = ω0

i−1 (3.28)

For revolute joints, it is known that ω0
i−1,i = θ̇iz

0
i−1 and that Ṗ 0

i−1,i =

ω0
i−1,i × P 0

i−1,i. Substituting this into Equation 3.25 yielded the following:

Ṗ 0
i = Ṗ 0

i−1 +
(
ω0
i−1,i × P 0

i−1,i

)
+
(
ω0
i−1 × P 0

i−1,i

)
(3.29)

Ṗ 0
i = Ṗ 0

i−1 +
(
ω0
i−1,i + ω0

i−1

)
× P 0

i−1,i (3.30)

Ṗ 0
i = Ṗ 0

i−1 + ω0
i × P 0

i−1,i (3.31)

And substituting into Equation 3.26 yielded the following:

ω0
i = ω0

i−1 + θ̇iz
0
i−1 (3.32)

Using Equations 3.27, 3.28, 3.31 and 3.32, one can calculate the generalized

velocity vector for each frame if the generalized velocity vector of the previous

frame is already known. By starting at the base frame (whose generalized

velocity vector was 0 in all directions), one could calculate the vector for each

successive frame until finally, the end effector was reached. Each successive

joint made the equations longer and more complex, which made sense based

on the increasing effects of coupling between the joints moving away from the

base frame.

Using the MatLab script shown in Appendix A, the end effector generalized

velocity vector was found to be:

38

3.2. Differential Kinematics

v0
4 =

[
Ṗ 0

4

ω0
4

]
=

−l2
(
θ̇1 + θ̇2

)
sin (θ1 + θ2)− l1θ̇1sinθ1

l2

(
θ̇1 + θ̇2

)
cos (θ1 + θ2) + l1θ̇1cosθ1

−ḋ3

0

0

θ̇1 + θ̇2 − θ̇4

(3.33)

These results confirmed the validity of the MatLab script, as Ṗ 0
4 is equal

to the first derivative of P 0
4 (from Equation 3.5) with respect to time. Ad-

ditionally, in Equation 3.5, it was clear that the rotation matrix was just an

elementary rotation of θ1 +θ2−θ4 about the base frame’s z-axis. These results

confirmed that ω0
4 is also equal to the first derivative with respect to time of

such a rotation.

The Jacobian of the robot, represented by a 6 × n matrix J(q), can pri-

marily defined as the matrix that maps the joint velocities, q̇, to the robot’s

end effector generalized velocity vector v:

v = J(q)q̇ (3.34)

Looking at the results in Equation 3.33, the Jacobian for the 4-DOF

SCARA manipulator was found to be:

J(q) =

−l2sin (θ1 + θ2)− l1sinθ1 −l2sin (θ1 + θ2) 0 0

l2cos (θ1 + θ2) + l1cosθ1 l2cos (θ1 + θ2) 0 0

0 0 −1 0

0 0 0 0

0 0 0 0

1 1 0 −1

(3.35)

Note that the Jacobian can be broken down into the translational Jacobian

JP and the rotational Jacobian JO:

39

3.2. Differential Kinematics

J =

[
JP

JO

]
(3.36)

JP =

−l2s12 − l1s1 −l2s12 0 0

l2c12 + l1c1 l2c12 0 0

0 0 −1 0

 JO =

0 0 0 0

0 0 0 0

1 1 0 −1

 (3.37)

3.2.2 Kinematic Singularities

By analyzing the Jacobian from Equation 3.37 it was possible to confirm some

things that were already known about the robot’s kinematics, and also possible

to learn some new information.

The first observation of importance was that the fourth and fifth rows

of the matrix were all zeroes. Looking back at Equation 3.33, this meant

that there was no way to change the angular velocities of the end effector

about the base frame’s x or y axes of rotation, and thus no way to change

the angular orientation of the end effector about those same axes. This was

a manifestation of the fact that the SCARA arm only had four degrees of

freedom, and so was not a new piece of information.

The third and fourth columns of the Jacobian clearly showed that the

linear velocity of the end effector in the z-direction and the angular velocity

of the end effector about the z axis of rotation could both be controlled at all

configurations of the robot directly by the velocities of the third and fourth

joints, respectively. This confirmed the existing understanding of the robot’s

kinematic model.

The more interesting conclusion that could be derived from the Jacobian

was in consideration of the first two columns. These columns represented the

effects that changes in the velocities of joints 1 and 2 had on the generalized

velocity of the end effector. It could be seen that the third, fourth and fifth

rows of these two columns were zeroes, and the sixth row was just one. This

meant that the first two joint velocities had no effect on the z-position, the

x-orientation nor the y-orientation of the end effector. It also meant that

40

3.2. Differential Kinematics

the effect it had on the z-orientation of the end effector was simply a linear

combination of the effect that the fourth joint had. However, the first two rows

of these first two columns show expressions that represent the only means that

the robot had of controlling the x or y positions of the end effector (because

the first two rows of the third and fourth columns were all zeroes). These four

elements are shown in a smaller matrix below, which will be referred to as

J12:

J12 =

[
−l2s12 − l1s1 −l2s12

l2c12 + l1c1 l2c12

]
(3.38)

Since J12 represented the whole connection between the robot’s joint ve-

locities and the end effector’s linear velocity in two directions (x and y), it

can be said that if J12 ever became rank-deficient (i.e. the columns became

linearly-dependent), the robot end effector would be in a position of reduced

mobility of the end effector (in the x-y plane). To be more specific, this would

mean that a finite velocity of the end effector in a certain direction would

require an infinite joint velocity for at least one of the joints. These config-

urations of reduced mobility are referred to as ”kinematic singularities” or

”singular positions”. To find them, the determinant of J12 was set to zero:

det (J12) = 0 = (−l2s12 − l1s1)(l2c12)− (−l2s12)(l2c12 + l1c1) (3.39)

0 = −l22s12c12 − l1l2s1c12 + l2
2s12c12 + l1l2c1s12 (3.40)

0 = l1l2
(
c1s12 − s1c12

)
(3.41)

0 = l1l2
(
sin (θ1 + θ2 − θ1)

)
(3.42)

0 = sin (θ2) (3.43)

θ2 = 0 or θ2 = π (3.44)

This meant that if the second joint was set to either 0 or π radians, the

robot would be in a singular position. This made sense, because if the second

joint was at 0, the first two links would be fully extended, meaning that

41

3.3. Dynamic Model

the robot would no longer be able to move in the direction parallel to the

first two links. If the second joint was at π radians that would mean that

the first two joints would be parallel again, and the robot would be at the

internal boundary of its workspace. These kinematic singularities are known

as boundary singularities.

3.3 Dynamic Model

The final step in the development of the mathematical model of the robot

was to incorporate information on the masses and moments of inertia of each

link. Doing so would progress the model from a kinematic model to a dynamic

model. This was extremely important, because it would allow for an analysis

of the forces acting on the robot, and in turn to analyze the forces (or torques)

required by each joint’s motor in order to control the robot.

The Lagrange Method was used to generate the dynamic model of the

robot. In this method, the potential and kinetic energies of each link are

considered and modelled mathematically. The resulting expressions can be

differentiated with respect to time and to the the joint variables, and combined

to create a general set of dynamic equations.

First, expressions had to be built for the positions, rotational velocities

(ω0
CGi

) and translational velocities (Ṗ 0
CGi

) of the centres of mass of each link

i, expressed in frame 0. Equations 3.25 and 3.26 were used to come up with

the following expressions:

42

3.3. Dynamic Model

Ṗ 0
CG1

=

−θ̇1

(
l1s1) + lc1xs1) + lc1yc1)

)
θ̇1

(
l1c1) + lc1xc1)− lc1ys1)

)
0

Ṗ 0
CG2

=

(
θ̇1 + θ̇2

)(
lc2yc12 − lc2xs12

)
− θ̇1

(
l1s1 + l2s12

)
− θ̇2l2s12(

θ̇1 + θ̇2

)(
lc2xc12 + lc2ys12

)
+ θ̇1

(
l1c1 + l2c12

)
+ θ̇2l2c12

0

Ṗ 0
CG3

=

(
θ̇1 + θ̇2

)(
lc3yc12 − lc3xs12

)
− θ̇1

(
l1s1 + l2s12

)
− θ̇2l2s12(

θ̇1 + θ̇2

)(
lc3xc12 + lc3ys12

)
+ θ̇1

(
l1c1 + l2c12

)
+ θ̇2l2c12

−ḋ3

Ṗ 0
CG4

=

(
θ̇1 + θ̇2 − θ̇4

)(
lc4yc124̄ − lc4xs124̄

)
− θ̇1

(
l1s1 + l2s12

)
− θ̇2l2s12(

θ̇1 + θ̇2 − θ̇4

)(
lc4xc124̄ + lc4ys124̄

)
+ θ̇1

(
l1c1 + l2c12

)
+ θ̇2l2c12

−ḋ3

ω0
CG1

=

 0

0

θ̇1

ω0
CG2

=

 0

0

θ̇1 + θ̇2

ω0
CG3

=

 0

0

θ̇1 + θ̇2

ω0
CG4

=

 0

0

θ̇1 + θ̇2 − θ̇4

Note that the variables in the form lcix or lciy represent the x and y coor-

dinates of the location of the centre of gravity of link i, expressed with respect

43

3.3. Dynamic Model

to the frame i.

The next step in the Lagrange Method was to build expressions that rep-

resented the kinetic energy (ki) and the gravitational potential energy (ui) of

each link i in the robot. The formulae to calculate these expressions is shown

below:

ki =
1

2
mi(Ṗ

0
CGi

)TṖ 0
CGi

+
1

2
(ω0
CGi

)TICiω
0
CGi

(3.45)

ui = −mig
TPCi (3.46)

In these equations, mi represented the mass of link i in kilograms, g repre-

sented the acceleration due to gravity in metres per square second, expressed

as vector with respect to frame 0, and PCi represented the position of the

centre of mass of link i, expressed with respect to frame 0. ICi represented

the inertia tensor of link i at its centre of mass, which took the form:

ICi =

 Ixxi −Ixyi −Ixzi
−Ixyi Iyyi −Iyzi
−Ixzi −Iyzi Izzi

 (3.47)

In this tensor, Ixxi , Iyyi and Izzi represented the mass moments of inertia

of the link, while Ixyi , Ixzi and Iyzi represented the mass products of inertia.

Each of them was measured in kilogram square metres. When the inertia

tensor is measured at the centre of mass of the link, the mass products of

inertia will all equal zero. The entire inertia tensor was a physical property of

each link that was held constant as long as the geometry and the density of

the link does not change.

k(t) =k1 + k2 + k3 + k4 (3.48)

u(t) =u1 + u2 + u3 + u4 (3.49)

44

3.3. Dynamic Model

Once ki and ui were calculated for each link, they were added all together to

produce expressions that represented the total kinetic (k(t)) and gravitational

potential (u(t)) energies of the robot as a function of the robot’s geometric

and inertial constant properties, as well as the time-variant joint positions

and velocities. Because the joint positions and velocities could change over

time, the total kinetic and gravitational potential energies of the robot could

be expressed as functions of time. Unfortunately, these expressions were too

long to be shown on paper, but they can be re-calculated using the MatLab

scripts shown in Appendix A.

The expressions for k(t) and u(t) were then plugged into Lagrange’s equa-

tion below to solve for the dynamic equations of the robot:

τi =
d

dt

(
∂k

∂θ̇i

)
− ∂k

∂θi
+
∂u

∂θi
(3.50)

In this formula, τi represents the force or torque (in Newtons or Newton

metres) required at joint i to maintain the kinetic/potential energies that were

plugged into the right-hand side of the equation. The generalized joint force/-

torque vector τ =
[
τ1 τ2 τ3 τ4

]T
could be created by stacking Equation

3.50 calculated for each joint on top of one another. The expression that was

calculated to be equal to the vector τ represented the force/torque required

at each joint to counteract the inertial, centrifugal, Coriolis, and gravitational

forces/torques acting on the robot. It did not, however, represent the forces/-

torques required to overcome any frictional forces (in the motors or otherwise),

any electrical forces internal to the motors, or any external applied forces/-

torques acting on the end effector.

The generalized force/torque vector τ could be broken down into the three

types of forces/torques that it represented, the mass/inertial, the centrifugal/-

Coriolis and the gravitational forces/torques:

τ = M(θ)θ̈ + C(θ, θ̇) +G(θ) (3.51)

45

3.3. Dynamic Model

τ =

τ1

τ2

f3

τ4

 (3.52)

θ =

θ1

θ2

d3

θ4

 (3.53)

In this form, M(θ) represents the mass matrix, C(θ, θ̇) represents the vec-

tor of centrifugal and Coriolis terms, and G(θ) represents the vector of gravi-

tational forces. While the entire expression for τ was so large that it does not

show well in one piece, if it was broken down into these individual elements it

can be shown:

46

3.3. Dynamic Model

M(θ) =

M11 M12 0 M14

M21 M22 0 M24

0 0 m3 +m4 0

M41 M42 0 m4(lc4x
2 + lc4y

2) + Izz4

 (3.54)

M11 = Izz1 + Izz2 + Izz3 + Izz4 +m1

(
(l1 + lc1x)2 + lc1y

2
)

+m2

(
l1

2 + (l2 + lc2x)2 + lc2y
2 +m3

(
l1

2 + (l2 + lc3x)2 + lc3y
2
)

+m4

(
l1

2 + l2
2 + lc4x

2 + lc4y
2
)

+
(
m2 +m3 +m4

)
l1l2c2

)
+m2l1

(
lc2xc2 + lc2ys2

)
+m3l1

(
lc3xc2 + lc3ys2

)
+m4

(
lc4x(l1c24̄) + 2l2c4) + lc4y(l1s24̄ − 2l2s4)

)
(3.55)

M12 = M21 = Izz2 + Izz3 + Izz4 +m2

(
(l2 + lc2x)2 + lc2y

2
)

+m3

(
(l2 + lc3x)2 + lc3y

2
)

+m4

(
l2

2 + lc4x
2 + lc4y

2
)

+
(
m2 +m3 +m4

)
l1l2c2 +m2l1

(
lc2xc2 + lc2ys2

)
+m3l1

(
lc3xc2 + lc3ys2

)
+m4

(
lc4x(l1c24̄ + 2l2c4)

+ lc4y(l1s24̄ − 2l2s4)
)

(3.56)

M22 = Izz2 + Izz3 + Izz4 +m2

(
(l2 + lc2x)2 + lC2y

2
)

+m3

(
(l2 + lc3x)2 + lc3y

2
)

+m4

(
l2

2 + lc4x
2 + lc4y

2 + 2l2(lc4xc4 + lc4ys4)
)

(3.57)

M14 = M41 = −m4

(
lc4x(lc4x + l2c4 + l1c24̄) + lc4y(lc4y − l2s4 + l1s24̄)

)
− Izz4 (3.58)

M24 = M42 = −m4

(
lc4x

2 + lc4y
2 + l2(lc4xc4 + lc4ys4)

)
− Izz4 (3.59)

Note that many of the terms in the mass matrix came in pairs, because

the mass matrix must always be a positive semi-definite matrix.

47

3.3. Dynamic Model

C(θ, θ̇) =

C1

C2

C3

C4

 (3.60)

C1 = 0 (3.61)

C2 = l1θ̇1

((
θ̇1 + θ̇2

)(
(m2 +m3 +m4)l2s2 + (m2lc2x +m3lc3x)s2

)
− l1θ̇1

((
θ̇1 + θ̇2

)
(m2lc2y +m3lc3y)c2

+
(
θ̇1 + θ̇2 − θ̇4

)(
m4lc4xs24̄ −m4lc4yc24̄

))
(3.62)

C3 = 0 (3.63)

C4 = m4

(
θ̇1 + θ̇2 − θ̇4

)(
l2(θ̇1 + θ̇2)(lc4yc4 + lc4xs4)

+m4

(
θ̇1 + θ̇2 − θ̇4

)
l1θ̇1(lc4yc24̄ − lc4xs24̄)

)
(3.64)

And finally the vector of gravitational forces:

G(θ) =

0

0

g(m3 +m4)

0

 (3.65)

Once the expressions for M(θ), C(θ, θ̇) and G(θ) were found, the dynamic

equations for the robot were nearly complete. However, as mentioned earlier,

Equation 3.51 did not take into account any external forces/torques applied

at the end effector. In order for the robot to perform any useful tasks (lifting,

carrying, etc...) the model had to be be built to account for these external

forces/torques. To account for these additional strains on the motors, a simple

term was added to the end of the equation:

τ = M(θ)θ̈ + C(θ, θ̇) +G(θ) + JTfext (3.66)

48

3.4. MatLab/Simulink Model

Where fext represented the generalized end-effector force-torque vector

(i.e. the x, y and z forces stacked on top of the x, y and z torques). These

forces/torques had to be expressed with respect to frame 0.

This additional term at the end takes advantage of a convenient property

of the robot’s Jacobian. Not only could it be used to map the end effector

velocity to the joint velocities, it could also be used to map the end effector

force/torque vector to the joint forces/torques due to the concept of virtual

work[69].

3.4 MatLab/Simulink Model

With a mathematical model representing the robot in place, the model had to

be implemented virtually to enable simulations. The model had to be built as

a system that took applied joint forces/torques (τ) as inputs, and produced

an end-effector trajectory as output (xE(t), yE(t), zE(t)). The individual joint

variables (q(t)) and joint velocities (q̇(t)) would be internal states of the sys-

tem.

The first step in the development of the virtual model was the assignment

of shapes and weights to each of the links so that their inertial properties could

be calculated. In order to do this, each of the four links, along with a base

piece were all built in Solidworks. Images of these models are shown below in

Figure 3.6:

Figure 3.6: Solidworks models of all four robot links and the base

49

3.4. MatLab/Simulink Model

Next, the parts were all imported into MatLab’s Simscape Multibody App,

and linked together. Simscape Multibody allows users to assign densities to

solid objects, and so all parts were assigned densities of 1000 kg
m3 . Figure 3.7

below shows the assembled configuration of all the parts:

Figure 3.7: Simscape Multibody Assembly of Robot Links

With the densities and geometries of all the parts known, the inertial

properties could all be calculated. The results of these calculations are shown

below in Table 3.2:

Table 3.2: Inertial parameters for robot model links

Link Link 1 Link 2 Link 3 Link 4

Length (m) 0.4 0.4 d3 0.15
Mass (kg) 6.01 5.37 4.03 0.91

Density
(kg

m3

)
1000 1000 1000 1000

lcix (m) -0.185 -0.224 0 0
lciy (m) 0 0 0 0
lciz (m) 0 0 -0.201 -0.122

Ixxi (kg ·m2) 0.0132 0.0234 0.0802 0.0016
Iyyi (kg ·m2) 0.1810 0.1261 0.0802 0.0016
Izzi (kg ·m2) 0.1807 0.1558 0.0064 0.0025

50

3.4. MatLab/Simulink Model

An important observation from this table is that all of the links had centres

of mass that were displaced from their associated frames of reference in only

one of the three dimensions, due to rotational symmetry. This simplified the

dynamic equations considerably, as many of the terms disappearred when lcix,

lciy or lciz were zero. With these values substituted in, the M matrix was thus

simplified to:

M(θ) =

2.34cosθ2 + 3.23 1.17cosθ2 + 1.12 0 −0.0025

1.17cosθ2 + 1.12 1.12 0 −0.0025

0 0 4.94 0

−0.0025 −0.0025 0 0.0025

 (3.67)

... and the C and G vectors were simplified to:

C(θ, θ̇) =

0

1.17θ̇1

(
θ̇1 + θ̇2

)
sinθ2

0

0

 G(θ) =

0

0

−48.4

0

 (3.68)

The only variables that made any changes to the dynamic equations of

motion were θ2, θ̇1 and θ̇2. This made sense, because the angle θ2 was the

only joint variable that could affect the configuration of the robot in a way that

would have an effect on the other joints (if the elbow was extended the entire

arm would require more torque at joint 1 to rotate than if it was retracted).

Additionally, it made sense that θ̇1 and θ̇2 would affect the C matrix, as they

would increase the centrifugal/Coriolis forces acting on joint 2.

With the physical properties of the robot model established, it became

possible to model the dynamic system in MatLab’s Simulink. The dynamic

system was modelled to take torque commands as inputs, and to produce

joint angles/positions, velocities, and accelerations as output. In order to do

so, Equation 3.51 was rearranged as follows:

51

3.4. MatLab/Simulink Model

τ = M(θ)θ̈ + C(θ, θ̇) +G(θ) + JTfext (3.69)

M(θ)θ̈ = τ − C(θ, θ̇)−G(θ) + JTfext (3.70)

θ̈ = M(θ)−1
(
τ − C(θ, θ̇)−G(θ) + JTfext

)
(3.71)

Using Simulink, the calculated θ̈ signal could then have two numerical

integrations performed on it to come up with θ̇ and θ signals. These two

signals could be fed back into the equation through a feedback loop to continue

the simulation, and could also be used as the system output. Put together in

Simulink, the model of the system dynamics is shown below in Figure 3.8.

Note that the MatLab function block M_inv had the following internal

code:

function Minv = M inv (theta2)

Minv = [−0.0027974/(0 .0034132∗ cos (theta2) ˆ2 −
0 .0058971) , (0 .0029211∗ cos (theta2) + 0.0027974)

/(0 .0034132∗ cos (theta2) ˆ2 − 0 .0058971) , 0 ,

(0 .0029211∗ cos (theta2)) /(0 .0034132∗ cos (theta2) ˆ2 −
0 .0058971) ; (0 .0029211∗ cos (theta2) + 0.0027974)

/(0 .0034132∗ cos (theta2) ˆ2 − 0 .0058971) ,

−(1 .0∗(0 .0058422∗ cos (theta2) + 0.0080676))

/(0 .0034132∗ cos (theta2) ˆ2 − 0 .0058971) , 0 ,

−(1 .0∗(0 .0029211∗ cos (theta2) + 0.0052703))

/(0 .0034132∗ cos (theta2) ˆ2 − 0 .0058971) ; 0 , 0 ,

0 .20243 , 0 ; (0 .0029211∗ cos (theta2)) /(0 .0034132∗ cos (

theta2) ˆ2 − 0 .0058971) , −(1 .0∗(0 .0029211∗ cos (theta2)

+ 0.0052703)) /(0 .0034132∗ cos (theta2) ˆ2 − 0 .0058971) ,

0 , (1 .3653∗ cos (theta2) ˆ2 − 2 .3641) /(0 .0034132∗ cos (

theta2) ˆ2 − 0 .0058971)] ;

... and the MatLab function block C was made up of the following code:

function C = C(theta2 , theta1dot , theta2dot)

52

3.4. MatLab/Simulink Model

F
ig

u
re

3.
8:

S
im

u
li

n
k

M
o
d

el
of

S
y
st

em
D

y
n

am
ic

s

53

3.4. MatLab/Simulink Model

C = [0 ; (18257∗ sin (theta2) ∗ theta1dot ˆ2) /15625 +

(18257∗ theta2dot ∗ sin (theta2) ∗ theta1dot) /15625; 0 ; 0] ;

With this model established, controllers could be developed and tested in

Simulink. An additional model was built in Simscape Multibody that could

be used in parallel to the pure Simulink model. This would allow for a visual

representation of the robot arm movement, as well as a troubleshooting/com-

parison aide for the Simulink model. Figure 3.9 below shows the Simscape

Multibody model of the robot that was developed.

54

3.4. MatLab/Simulink Model

F
ig

u
re

3.
9:

S
im

S
ca

p
e

M
u

lt
ib

o
d

y
M

o
d

el
of

S
y
st

em
D

y
n

am
ic

s

55

4 Position Control

With the model of the robot fully developed both theoretically and in simu-

lations, a set of command signals to send to each of the joints was required in

order to test it. In order to come up with a set of command forces/torques, a

controller had to be developed.

The focus of this project was to develop a hybrid force/position controller,

and the approach to this development was to move forward incrementally

through each level of complexity. The first and simplest level of the controller

that could be developed was the position controller.

Position control of the end effector of a robot is a well-developed science

and can be achieved through a wide variety of different methods. Some of

these methods are simple, and some are very complex. Generally, the sim-

plicity of the controller comes at a cost of lower performance, while the more

complex controllers can achieve stronger performance. To be specific, the

term ”performance” in this case refers to the ability of the controller to force

the robot’s end effector to follow a given trajectory within its workspace with

minimal tracking error.

4.1 Decentralized PID Control

A Decentralized Proportional-Integral-Derivative controller was among the

simplest options that could effectively be used to control the position of the

end effector. PID is a commonly used type of linear controller known for

its simplicity and robustness (in comparison to other linear controllers). The

56

4.1. Decentralized PID Control

functionality of a PID controller can be described as follows:

1. A desired trajectory is provided as input for the controller. This tra-

jectory must be provided as a set of desired positions as a function of

time.

2. The first time derivative and integrals of the desired trajectory are taken

numerically and stored.

3. Measurements of the state of the controlled variables are taken using

sensors, and numerical derivatives and integrals are taken of these signals

as well.

4. The difference between the measured state and the desired state is mul-

tiplied by the proportional gain (KP), and added to the difference be-

tween the derivatives of the measured and desired states multiplied by

the derivative gain (KD), which is then added to the difference between

the integrals of the measured and desired states multiplied by the inte-

gral gain (KI).

5. This resulting signal is then applied as command signal to the system

actuator(s).

This algorithm can be represented with the following simple control law:

τ = KDė(t) +KP e(t) +KI

∫ t

0
e(t)dt (4.1)

... where e(t) represents the difference between the desired trajectory and

the actual position of each joint.

For any linear system, it is known that there exists some set of controller

gains (KP , KI and KD) that will cause the actual state of the controlled

variable to converge to certain types of desired trajectories. For step input

trajectories, a properly designed PID controller will yield asymptotic stability.

For linear ramp input trajectories, a properly designed PID controller will yield

stability, albeit with a non-zero steady-state error [71].

Unfortunately, the robot system in question was highly nonlinear. The M

matrix and C vector contained multiple sinusoidal functions that themselves

57

4.1. Decentralized PID Control

were nonlinear, and the C vector also contained polynomials that made it

more nonlinear. In order to linearize the system for the PID controller, it

could be assumed that the robot was always in its fully extended (i.e. θ2 = 0)

configuration. This configuration would be the most mechanically intensive

for the controller to move, so this assumption would be more likely to cause

the controller to be over-powered than to be under-powered, which was good

for performance. The new M matrix and C vector were shown below with the

θ2 = 0 assumption in place:

M(θ) =

5.57 2.29 0 −0.0025

2.29 1.12 0 −0.0025

0 0 4.94 0

−0.0025 −0.0025 0 0.0025

 C(θ, θ̇) =

0

0

0

0

 (4.2)

As can be seen below in Equation 4.3, if gravity was ignored, the θ2 = 0

assumption fully linearized the system. It must be noted of course, that using

this assumption would certainly introduce tracking error to the system. This

was because the system’s nonlinearities would act as unmodeled disturbances

that the linearized PID controller was not equipped to deal with. Luckily, due

to the PID controller’s robustness (in particular, the higher order introduced

through the integral term), as long as these ”disturbances” remained bounded

over time, that is to say they would not continue to increase as t approaches

infinity, the error that they initially caused could eventually be reduced to

zero.

τ = M(θ)θ̈ + C(θ, θ̇) =

5.57θ̈1 + 1.29θ̈2 − 0.0025θ̈4

1.29θ̈1 + 1.12θ̈2 − 0.0025θ̈4

4.94d̈3

−0.0025θ̈1 − 0.0025θ̈2 + 0.0025θ̈4

 (4.3)

To further simplify the system, all of the coupling between joints would

be ignored and each joint would only be controlled as if it were the only

58

4.1. Decentralized PID Control

one moving. Thus, each joint would effectively be running its own separate

controller, operating independently of the other three joint controllers. It was

for this reason that this strategy was called Decentralized PID Control. This

would certainly reduce the performance of the robot, but as long as the speeds

of the system were low the effects would be small. By ignoring coupling, the

system dynamics could be reduced to:

τ =

5.57θ̈1

1.12θ̈2

4.94d̈3

0.0025θ̈4

 (4.4)

The transfer functions of these four equations were thus:

θ1(s)

τ(s)
=

1

5.57s2
(4.5)

θ2(s)

τ(s)
=

1

1.12s2
(4.6)

D3(s)

τ(s)
=

1

4.94s2
(4.7)

θ4(s)

τ(s)
=

1

0.0025s2
(4.8)

Each of these transfer functions was then put into the block diagram shown

below in Figure 4.1:

Figure 4.1: General PID controller block diagram

Note that in this diagram, PD(s) represented the desired trajectory of the

joint variable being controlled, while PA(s) represented the actual trajectory

59

4.1. Decentralized PID Control

of the joint variable. The block diagram was then simplified to find the closed-

loop system characteristic equations below:

Joint 1:

s3 +
KD

5.57
s2 +

KP

5.57
s+

KI

5.57
= 0 (4.9)

Joint 2:

s3 +
KD

1.12
s2 +

KP

1.12
s+

KI

1.12
= 0 (4.10)

Joint 3:

s3 +
KD

4.94
s2 +

KP

4.94
s+

KI

4.94
= 0 (4.11)

Joint 4:

s3 +
KD

0.0025
s2 +

KP

0.0025
s+

KI

0.0025
= 0 (4.12)

Next, the target poles of the system were arbitrarily set to -8, -9 and -10.

Poles this far into the left-hand side of the complex plane would guarantee

stability for the linearized system. If the system was not performing well

enough, these could be pushed further left, and if it was performing well but

requiring unrealistic command torques and forces from the motors, these could

be pushed further to the right. If these two trade-offs were proving difficult to

compromise between, the Linear Quadratic Regulator (LQR) could be used

to optimize the best location for the poles, and if this didn’t work a different

controller type would be selected. With these poles, the target characteristic

equation was worked out to be:

(s+ 8)(s+ 9)(s+ 10) = 0 (4.13)

s3 + 27s2 + 242s+ 720 = 0 (4.14)

Which yielded final control gains of:

60

4.1. Decentralized PID Control

F
ig

u
re

4.
2:

S
im

u
li

n
k

m
o
d

el
of

P
ID

p
os

it
io

n
co

n
tr

ol
le

r

61

4.1. Decentralized PID Control

KP =

1347.94

271.04

1195.48

0.605

 KI =

4010.4

806.4

3556.8

1.8

 KD =

150.39

30.24

133.38

0.0675

 (4.15)

Figure 4.2 shows the assembled PID position controller in Simulink. Note

that the same exact controller was used for both the Simulink and the Sim-

scape Multibody models.

To test the performance of the Decentralized PID controller, a three-

dimensional trajectory was built using a combination of sinusoidal curves.

The desired trajectory r(t) was arbitrarily set to be:

r(t) =

xd

yd

zd

ψd

νd

φd

=

0.8− 0.4 t
T − 0.05sin

(
4πt
T

)
−0.2 t

T + 0.15sin
(

3πt
2T

)
0.25− 0.1 t

T − 0.005sin
(

15πt
T

)
0

0

0

(4.16)

Where T represented the total trial time for the simulation (in this case

set to 10 seconds). This trajectory was chosen because to challenge the con-

troller to follow a non-linear end effector path without violating the workspace

boundaries. It also stayed within the zone that was accessible using both the

elbow-up and elbow-down configurations (i.e. the purple areas from Figure

3.4).

Figure 4.3 below shows both the reference trajectory r(t) in black, and the

Decentralized PID controller’s output trajectory in a rainbow colour, starting

at blue and ending in red. From this image alone we can see that the De-

centralized PID controller was able to track the reference trajectory, although

with a relatively large tracking error at the beginning of the trial. Figures

4.4 and 4.5 show the performance of each individual joint’s controller, again

62

4.1. Decentralized PID Control

Figure 4.3: Decentralized PID controller 3D tracking results

showing that the reference trajectory was well-tracked, but with significant

tracking error during the first second of the trial.

The tracking errors (defined as the difference between the desired trajec-

tory and the actual trajectory) are shown in Figure 4.6. Note that both the

error from the main Simulink simulation and from the Simscape Multibody

trials are shown. Because the errors were relatively stable after 2 seconds, the

final 8 seconds of the trial are not shown. allowing a better focus on the first

second of the trial.

An important observation from Figure 4.6 is that although the results from

the Simulink trials and the Simscape Multibody trials were similar, they were

not exactly the same. They followed the same trends, but they did not always

have the exact same magnitudes. In fact, this slight difference in performance

was a good indicator that the Simulink model that was built from scratch is

valid. Because there was a non-zero difference in performance, we know that

there were two separate sets of solvers being used, but because the results

63

4.1. Decentralized PID Control

F
ig

u
re

4
.4

:
J
oi

n
t

1
an

d
2

tr
ac

k
in

g
p

er
fo

rm
an

ce
fo

r
D

ec
en

tr
al

iz
ed

P
ID

co
n
tr

ol
le

r

64

4.1. Decentralized PID Control

F
ig

u
re

4
.5

:
J
oi

n
t

3
an

d
4

tr
ac

k
in

g
p

er
fo

rm
an

ce
fo

r
D

ec
en

tr
al

iz
ed

P
ID

co
n
tr

ol
le

r

65

4.1. Decentralized PID Control

Figure 4.6: Decentralized PID controller joint errors

were very similar, we know that the model built from scratch replicated the

dynamic model that formed the basis of the Simscape Multibody platform.

Another important observation is that the discrepancy between the Simulink

results and the Simscape Multibody results did not seem to exist for Joint 3.

In Figure 4.6, the Joint 3 Simscape Multibody line was never visible because

it was exactly the same as the Joint 3 Simulink line. This was initially con-

cerning, because it suggested that there was be some unintended link between

the two models, or perhaps that the Joint 3 Simscape Multibody data simply

didn’t exist. After further investigation however, it was found that the two

data sets were in fact distinct, they were just so similar that it was impossible

to see the difference in the plot. The reason that the Joint 3 data sets were

so much more similar than the other three joints, was because the scaling for

Joint 3 was necessarily different. Since Joint 3 was the only prismatic joint,

66

4.2. Decentralized PID Control with Feedback Linearization

it was the only Joint whose error was denominated in metres, not radians.

Additionally, because Joint 3 was the only joint that was affected by gravity

(see Equation 3.65), the performance of its controller was significantly worse

than that of the other three joints. This meant that error for Joint 3 was much

larger than the other three joints (but the fact that it was the only prismatic

joint meant that it would be scaled on the plot to match the other three), and

therefore the difference between the Simulink and Simscape Multibody errors

would be dramatically less noticeable.

While the Decentralized PID controller was able to successfully track the

trajectory, it did so with some significant tracking error. In order to increase

the position tracking performance prior to moving forward with the force

control, an increased layer of sophistication was added.

4.2 Decentralized PID Control with Feedback

Linearization

The majority of the tracking error for the Decentralized PID Controller came

from the system’s nonlinearities that were ignored during the linearization

process. To reduce these errors, an internal feedback loop could be added to

the control law to linearize the system dynamically, that is to say to linearize

it with more appropriate assumptions than simply assuming the robot was in

its fully extended configuration at all times.

First, we will recall the system’s dynamic equations (3.66), and rewrite

them in the following form:

τ = Mlinearθ̈ +Mnonlinear(θ)θ̈ + C(θ, θ̇) +G(θ) + JTfext (4.17)

Where Mlinear represented the linear, time-invariant parts of the M ma-

trix, and Mnonlinear(θ) represented the nonlinear/time-variant parts of the M

matrix. From Equation 3.67 we can see that they were be equal to:

67

4.2. Decentralized PID Control with Feedback Linearization

Mlinear =

3.23 1.12 0 −0.0025

1.12 1.12 0 −0.0025

0 0 4.94 0

−0.0025 −0.0025 0 0.0025

 (4.18)

Mnonlinear(θ) =

2.34cosθ2 1.17cosθ2 0 0

1.17cosθ2 0 0 0

0 0 0 0

0 0 0 0

 (4.19)

Using the following change of variables from τ to u:

u = τ −Mnonlinear(θ)θ̈ − C(θ, θ̇)−G(θ) (4.20)

... and again assuming that fext = 0 because we were still only modelling

the free movement of the robot through space, we were left with the following

linearized system dynamics:

u = Mlinearθ̈ (4.21)

Using the same process as was used in the development of the previous

controller, a set of new PID gains (KP2, KI2 and KD2) was developed to

ensure convergence. Using the same desired poles of -8. -9 and -10, and again

ignoring the coupling (i.e. non-diagonal) elements in Mlinear to maintain the

decentralized control strategy, the following new PID gains were found:

KP2 =

781.66

271.04

1195.48

0.605

 KI2 =

2325.6

806.4

3556.8

1.8

 KD2 =

87.21

30.24

133.38

0.0675

 (4.22)

68

4.2. Decentralized PID Control with Feedback Linearization

Using the same algorithm as from Equation 4.1, the simple dynamics of

Equation 4.21 could be stabilized with the following control law:

u = KD2ė(t) +KP2e(t) +KI2

∫ t

0
e(t)dt (4.23)

This PID control law could then be combined with the feedback lineariza-

tion inner loop from Equation 4.24 to create the following overall control law:

τ = KD2ė(t) +KP2e(t) +KI2

∫ t

0

e(t)dt+Mnonlinear(θ)θ̈ + C(θ, θ̇) +G(θ) (4.24)

A rough block diagram showing the implementation of a Feedback Lineariza-

tion/PID strategy is shown in Figure 4.7.

Figure 4.7: Feedback Linearization/PID control block diagram

Note that in order to implement this law, the controller had to have access to

θ, θ̇ and θ̈ which would either require velocity and acceleration sensors (on top of

the already-necessary position/angle sensors), or the use of numerical derivatives

(potentially even double derivatives) that could be significantly noisy and prone to

measurement error. This would not make a major effect on the performance in the

simulations, as we had easy access to these values, but it would certainly be an

important factor to consider in the actual physical controller. The Simulink block

diagram for the Decentralized PID with Feedback Linearization controller is shown

in Figure 4.8.

69

4.2. Decentralized PID Control with Feedback Linearization

F
ig

u
re

4
.8

:
S

im
u

li
n

k
m

o
d

el
of

P
ID

p
os

it
io

n
co

n
tr

ol
le

r
w

it
h

F
ee

d
b

ac
k

L
in

ea
ri

za
ti

on

70

4.2. Decentralized PID Control with Feedback Linearization

Figure 4.9: Joint errors for Decentralized PID/Feedback Linearization con-
troller

When implemented, the Decentralized PID/Feedback Linearization controller

out-performed its predecessor, as expected. The resulting errors for each joint are

shown again in Figure 4.9:

The significant improvement in performance showed up almost exclusively in Joint

3. The reason for this was because Joint 3 had previously been affected significantly by

gravity, and the new controller included a gravity compensation term. The resultant

error for Joint 3 was very minimal, only slight periodic undulations as a result of the

sinusoidal nature of the desired trajectory. Notably, Joint 3 was the only joint that did

not have a significant error at the start of the trial that was slowly cancelled over time.

This was because Joint 3’s dynamics being completely decoupled (i.e. independent)

of the other three joints, as can be seen in Equations 3.67 and 3.68. Because of

this decoupling, the Decentralized PID controller with Feedback Linearization did

not need to ignore any dynamics. In the other three joints, the coupling had to be

ignored, and thus was a source of error. The third position controller that was built

was an attempt to reduce that error.

71

4.3. Centralized Control with Feedback Linearization

As previously mentioned, this improved performance came at a cost of increased

complexity, and an increased requirement for online computation and/or sensors.

These simulations did not accurately reflect this cost, and so it must always be men-

tioned when discussing the results. If this computational/sensor cost were too much

of a problem, the control law could be slightly modified to reduce it. Instead of us-

ing online measured data from the robot’s sensors, the values for θ, θ̇ and θ̈ could

have been pre-computed using the values of θ from the desired trajectory. This pre-

computing would reduce the computational burden on the controller at the cost of

slightly increased error, due to the fact that the desired values of θ would not always

be guaranteed to be equal to the actual value of θ during the trial. This control

strategy is known as the Computed Torque method.

4.3 Centralized Control with Feedback

Linearization

The largest remaining source of error in the previous controller came from ignoring

the coupling between the joints in pursuit of a decentralized approach. In order to

reduce those errors, the logical solution was to use a centralized controller that could

account for the dynamic coupling between the joints. A full state feedback control

law is a classic example of a centralized controller for linear systems, and combining

it with an inner feedback linearization loop would allow for the benefits of centralized

control to be applied to a nonlinear, time-variant system.

We will start with Equation 4.21, which was used in the development of the

previous controller. The same feedback linearization was be used in this controller,

but instead of using PID control to stabilize the system, full state feedback was used.

Full state feedback requires the system to be represented in state-space form. To

achieve this, two state variables, x1 and x2 were be introduced, each one representing

a 4× 1 vector in itself:

x1 = θ =

θ1

θ2

d3

θ4

 x2 = θ̇ =

θ̇1

θ̇2

ḋ3

θ̇4

 (4.25)

These two states were then used to represent Equation 4.21 in state space:

72

4.3. Centralized Control with Feedback Linearization

[
ẋ1

ẋ2

]
=

[
0 I4

0 0

][
x1

x2

]
+

[
0

M−1

]
u (4.26)

Note that here, the A matrix was 8 × 8 and the B matrix was 8 × 4, and were

equal to:

A =

[
0 I4

0 0

]
B =

[
0

M−1

]
(4.27)

...and that M−1 was the inverse of Mlinear:

M−1 =

0.4739 −0.4739 0 0

−0.4739 1.3688 0 0.8949

0 0 0.2024 0

0 0.8949 0 400.8949

 (4.28)

If the rank of the controllability matrix, MC (Equation 2.8), was greater than the

number of states (in this case 8), then it is said that the system is fully controllable.

Using MatLab’s ctrb() function, MC was found to have a rank of 8, meaning that

the system was fully controllable. This meant that a control law in the following

form:

u = −K

[
x1

x2

]
+ θd (4.29)

...could force the closed-loop poles to any desired location in the s-plane. Note

that K represents a 4 × 8 gain matrix. Again, arbitrarily setting the locations of

desired poles to -8.0, -8.1, -8.2, -8.3, -8.4, -8.5, -8.6 and -8.7, MatLab’s place()

function yielded the following K matrix:

73

4.3. Centralized Control with Feedback Linearization

K =
[
K1 K2

]
(4.30)

K1 =

228.9897 76.5359 0.7344 1.6829

78.7720 78.4412 −0.2282 1.3943

3.8678 −6.2185 339.3889 −6.0836

−0.1742 −0.1743 −0.0019 0.1664

 (4.31)

K2 =

54.4107 18.5250 0.0906 0.1828

18.7917 18.7500 −0.0260 0.1455

0.4604 −0.7347 81.9093 −0.7304

−0.0418 −0.0418 −0.0002 0.0408

 (4.32)

The complete control law for the full state feedback linearization controller was

thus:

τ = −K

[
θ

θ̇

]
+ θd +Mnonlinear(θ)θ̈ + C(θ, θ̇) +G(θ) (4.33)

Figure 4.10 below shows the Simulink implementation of the Full State Feedback

Linearization controller. Note that the full state feedback controller was significantly

more simple than the PID controller in this form, due to the simplicity of its control

law.

When the Full State Feedback Linearization model was tested, the results were

very poor. After some extensive troubleshooting, it became clear that the model

itself was not faulty, and that the only thing likely to be causing the problem was an

error in the K gain matrix itself. The controller clearly was working to force the end

effector to follow the desired trajectory, it was just not very successful at doing so.

One hint as to why the blame could be attributed to a sub-optimal K matrix comes

from investigating its third row. Referencing Equation 4.29 we can see that this third

row would be multiplied by the vectors in Equation 4.25 to yield the following formula

for the control signal u3:

u3 = 3.8678θ1 − 6.2185θ2 + 339.3889d3 − 6.0836θ4 (4.34)

+ 0.4604θ̇1 − 0.7347θ̇2 + 81.9093ḋ3 − 0.7304θ̇4 (4.35)

74

4.3. Centralized Control with Feedback Linearization

F
ig

u
re

4.
10

:
S

im
u

li
n

k
m

o
d

el
of

F
u

ll
S

ta
te

F
ee

d
b

ac
k

L
in

ea
ri

za
ti

on
co

n
tr

ol
le

d
sy

st
em

75

4.3. Centralized Control with Feedback Linearization

Recalling from Equation 4.17 that d3 had no dynamic coupling with any of the

other three joints (due to it operating purely in the z direction while the other joints

operated exclusively on the x-y plane), it did not make sense for the control signal

u3 to have any dependence on θ1, θ2, θ4, θ̇1, θ̇2 or θ̇4. Equation 4.35 showed us

that this K matrix did include contributions from these other joints, which although

significantly lower in magnitude than the contributions of d3 and ḋ3, were certainly

not optimal. This points to potential flaws in MatLab’s place() function.

When thinking about how to manually determine a better K matrix, the problem

became more clear. The K matrix was the matrix which would force the matrix

A − BK to have eigenvalues equal to the desired poles - in this case -8.0, -8.1, -8.2,

-8.3, -8.4, -8.5, -8.6 and -8.7. To give an idea of the complexity of this task, the matrix

A−BK (with significant rounding to allow for it to fit) is shown below:

A− BK =

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

0.5K11 −0.5K12 0 0 0.5K15 −0.5K16 0 0

−0.5K21 1.4K22 0 0.9K24 −0.5K25 1.4K26 0 0.9K28

0 0 0.2K33 0 0 0 0.2K37 0

0 0.9K42 0 401K44 0 0.9K46 0 401K48

The eigenvalues of this matrix were all equal to very long expressions which made

it difficult to solve for the individual elements of the K matrix. They were certainly

too long to solve for by hand, and it seemed that MatLab’s place() function used

a numerical optimization to do so, so clearly the dimensionality (i.e. n = 8) of this

optimization was too great for its effective application to this problem. An attempt

was made to improve the performance of the system by using desired poles that were

10 times more negative (i.e. more stable), even though this improvement would come

at the known cost of significantly better system actuators. The results yielded no

improvement.

Another attempt was made to improve the results by using MatLab’s lqr()

function, which employs the Linear Quadratic Regulator to choose an optimal set of

poles and a corresponding gain matrix K according to a user-defined set of priorities

on error vs. actuation requirement minimization. The gain matrix that it came up

with is shown below:

76

4.3. Centralized Control with Feedback Linearization

K =

1 0 0 0 2.6837 0.5078 0 −0.0011

0 1 0 0 0.5078 1.7268 0 −0.0016

0 0 1 0 0 0 3.2987 0

0 0 0 1 −0.0011 −0.0016 0 1.0025

 (4.36)

This change clearly solved the problem of the motion of Joints 1, 2 and 4 affect-

ing u3, which was a good sign. When tested, it did make an improvement to the

performance of the controller, but not anywhere close to enough to replicate the per-

formance of the PID-based controllers. Figures 4.11 and 4.12 show the performance

of the controller using the new LQR-generated gain matrix.

Clearly, the performance was not satisfactory. The controller succeeded in pushing

each joint in the correct direction, but was not able to accurately track the reference

trajectory anywhere close to as well as the PID-based controllers.

Given that two separate methods of finding an appropriate gain matrix yielded

unsatisfactory results, it was clear that either the implementation of the Full State

Feedback Linearization controller was done incorrectly, or the it was an inferior con-

troller type for this application. Assuming the latter, one possible explanation for

its inferior performance was that it was comparable to a PD controller, not a PID

controller. The control law from Equation 4.29 can be rewritten as:

u = K1θ +K2θ̇ + θd (4.37)

This was not dissimilar to the control law for a Proportional-Derivative (PD)

controller, with the gain matrices K1 and K2 serving in similar roles to the KP and

KD gains. Given that the previous controllers were based on a PID action, it made

sense that reverting to a PD action (and thus losing the benefits of the integral action)

would lead to a decrease in performance. In a PID controller, the integral action is

known to reduce tracking error at the expense of stability, while the derivative action

is known to increases the damping of the system (i.e. reduce oscillations) at the

expense of the tracking error. In a trial such as this where the system was being

asked to track a constantly-changing reference trajectory, it made sense that losing

the integral action could be responsible for the significant decrease in performance

for the Full State Feedback Linearization controller.

While unfortunately the Full State Feedback Linearization controller proved to

be a failure, there was a second option available to deal with the coupling in the

77

4.3. Centralized Control with Feedback Linearization

F
ig

u
re

4.
11

:
J
oi

n
ts

1
a
n

d
2

F
u

ll
S

ta
te

F
ee

d
b

ac
k

L
in

ea
ri

za
ti

on
co

n
tr

ol
le

r
re

su
lt

s
u

si
n

g
L

Q
R

-g
en

er
a
te

d
ga

in
m

at
ri

x

78

4.3. Centralized Control with Feedback Linearization

F
ig

u
re

4.
12

:
J
oi

n
ts

3
a
n

d
4

F
u

ll
S

ta
te

F
ee

d
b

ac
k

L
in

ea
ri

za
ti

on
co

n
tr

ol
le

r
re

su
lt

s
u

si
n

g
L

Q
R

-g
en

er
a
te

d
ga

in
m

at
ri

x

79

4.3. Centralized Control with Feedback Linearization

system, and to hopefully create a more centralized control strategy. This option would

simply see a transfer of all the non-diagonal terms from the Mlinear matrix to the

Mnonlinear(θ) matrix, and then using the same Feedback Linearization/PID strategy

that was previously successful. This way, the coupling would be counteracted with

the Feedback Linearization, and the PID controller would be left with (theoretically)

linear dynamics. In this strategy, the new breakdown between the two M matrices

would be:

Mlinear =

3.23 0 0 0

0 1.12 0 0

0 0 4.94 0

0 0 0 0.0025

 (4.38)

Mnonlinear(θ) =

2.34cosθ2 1.17cosθ2 + 1.12 0 −0.0025

1.17cosθ2 + 1.12 0 0 −0.0025

0 0 0 0

−0.0025 −0.0025 0 0

 (4.39)

Plugging these two new matrices into the same control law as shown in Equation

4.24, and also the same Simulink model as shown in Figure 4.8, yielded the errors

shown in Figure 4.13. Comparing these results to the Decentralized PID/Feedback

Linearization controller, we saw a slight reduction in the tracking error for Joint 4, no

change for Joint 3, and slight increases in the tracking error for Joints 1 and 2. Given

that the performance of Joints 1 and 2 were more consequential for force position

control than the performance of Joint 4 was (they controlled the end effector position

and orientation, while Joint 4 only controlled its orientation), it was determined

that the Centralized Feedback Linearization/PID Controller actually slightly under-

performed its predecessor.

The reasons behind this under-performance likely were that the coupling between

the joints was relatively insignificant while operating at low speeds, and because the

tracking errors in both controllers were probably largely the result of the non-constant

nature of the desired trajectory.

This represented the end of the trials of the different position controllers, and from

this point on, the position controller that was used was the Decentralized Feedback

Linearization/PID Controller due to its superior performance.

80

4.4. Position Control Workspace Trial

Figure 4.13: Joint errors for Centralized PID/Feedback Linearization con-
troller

4.4 Position Control Workspace Trial

As discussed in Section 3.1.5, there existed three zones within the robot’s workspace

that were each accessible by a different set of possible robot configurations. One zone

was accessible only in the elbow-up configuration (i.e. θ2 > 0), another was accessible

only in the elbow-down configuration (i.e. θ2 < 0), and the third zone was accessible

in either configuration.

This fact presented a problem for the inverse kinematics component of the control

algorithm. When given a reference trajectory for the robot to track, the proper elbow

configuration had to be selected to ensure continuity from start to finish. Certain

trajectories that traversed from the elbow-up-only zone to the elbow-down-only zone

would require a configuration switch mid-trial. To solve this issue, the controller

analyzed the entire reference trajectory prior to the trial and determined which zones

it would need to enter. If the reference trajectory stayed in the zone that allowed

both configurations, the elbow-up configuration was arbitrarily selected for the entire

81

4.4. Position Control Workspace Trial

Figure 4.14: Configuration switch trial results

run. If the reference trajectory included travel into one of the areas that required a

specific configuration, that configuration would be implemented for the entire run.

If the reference trajectory required a configuration switch mid-run, the algorithm

would immediately switch the configuration being used for the inverse kinematics

and continue.

Figure 4.14 shows the results of a trial where the position controller was provided

such a reference trajectory (where the configuration had to be switched mid-run).

The black, horizontal line represents the reference trajectory, while the multi-coloured

line represents the path of the end effector due to the position controller (starting

at dark blue and ending in red). Note that the reference trajectory’s starting point

was displaced from the home position of the robot, so the trial began with a large,

82

4.4. Position Control Workspace Trial

fast correction move to get it on track. The trial proceeded normally, and then

once the robot reached the border between the elbow-up only zone and the zone

where both configurations would work (around where the path turned teal), the

controller switched to using the elbow-down inverse kinematic equations. This meant

that the robot was suddenly very far from its desired position, so it made a rapid,

dramatic correction manoeuvre that involved it completely extending Joint 2 (and

thus touching the edge of the workspace) and then actually leaving the workspace

for a while (the joint limits were not programmed into the simulation). After a short

break, the robot was able to successfully continue tracking the reference trajectory.

This trial demonstrated that the robot could successfully switch configurations

mid-trial if necessary.

83

5 Force-Position Control

.

With the position controller fully developed, it was time to proceed to the devel-

opment of the force-position controller. Before this could happen, however, the model

had to be modified in order to make it so that the robot could encounter external

reaction forces at its end effector.

5.1 Reaction Surface Model Development

This modification took the form a theoretical reaction surface in the robot’s workspace

that would exert a normal force against the end effector whenever it made contact

with it. For simplicity’s sake, the surface was made to be perfectly flat and aligned

with the global z axis, and it was also assumed to be frictionless. The only reaction

force that it would generate would be a normal force, which would be calculated with

the following formula:

FN = krs(zrs − zE) (5.1)

... where FN represents the normal reaction force that would be applied to the

end effector, krs represents the stiffness of the reaction surface (set here to 10 kN/m)

and zrs represents the z coordinate of the reaction surface. Figure 5.1 shows the

Simulink model updated to include the surface reaction forces.

The internal workings of the reactionforces function are shown below as well:

function r e a c t i o n f o r c e s = r e a c t i o n f o r c e s (x , y , z , rx , ry , rz)

rsymax = 0 . 4 ;

84

5.1. Reaction Surface Model Development

F
ig

u
re

5.
1:

U
p

d
at

ed
S

im
u

li
n

k
m

o
d

el
in

cl
u

d
in

g
re

ac
ti

on
su

rf
ac

e
fo

rc
es

85

5.1. Reaction Surface Model Development

rsymin = −0.4;

rsxmax = 0 . 6 ;

rsxmin = 0 . 2 ;

r s zba s e = 0 . 1 3 ;

r s s t i f f n e s s = 10000 ;

i f x < rsxmin | x > rsxmax | y < rsymin | y > rsymax | z >

r s zba s e

r e a c t i o n f o r c e s = [0 ;

0 ;

0 ;

0 ;

0 ;

0] ;

else

r e a c t i o n f o r c e s = [0 ;

0 ;

− r s s t i f f n e s s ∗(r s zba s e − z) ;

0 ;

0 ;

0] ;

end

The model first used the x, y and z position of the end effector, and the defined

limits of the reaction surface plane (rsxmax, rsxmin, rsymax, rsymin and rszbase)

to determine if the end effector was in contact with the reaction surface or whether

it was still in free space. If it was found that it was in contact, the reaction force was

calculated using Equation 5.1. As can be seen in Figure 5.1, this reaction force was

then multiplied by the transpose of the Jacobian (as per Equation 3.66) and added

to the M(θ)θ̈, C(θ, θ̇), and G(θ) terms already present.

In order to test the functionality of the updated model, a new trajectory was

established. This trajectory would start at the robot’s home position (where are joint

variables were equal to zero), travel in a straight line for 2 seconds to a point on the

reaction surface, and then would transition to a sine wave that would repeatedly test

the reaction surface. This trajectory is shown below:

86

5.1. Reaction Surface Model Development

r(t) =

xd

yd

zd

ψd

νd

φd

=

0.8− 1.5sin t
T

−1.5sin t
T

0.25− (0.25− zrs)sin t
0.2T

0

0

0

(5.2)

... for t < 2 seconds, and to:

r(t) =

xd

yd

zd

ψd

νd

φd

=

0.5

−0.3 + 0.75sin(tT − 0.2)

zrs − 0.025sin(10π(tT − 0.2))

0

0

0

(5.3)

... for t ≥ 2 seconds. Figure 5.2 below shows the trajectory in black, as well as

the reaction surface in yellow.

Figure 5.2: Reaction surface testing trajectory

87

5.2. Hybrid Force-Position Controller

When the position controller that was developed in the previous chapter was

used on this updated model and desired trajectory, the results were predictably poor.

They are shown below in Figures 5.3 and 5.4. The tracking of the desired trajectory

is solid for joints 1, 2 and 4, comparable to the performance obtained in free space.

This was because the reaction surface was aligned normal to the global z axis, and

the motion of these three joints had no effect on the z position of the end effector

(see the third row of Equation 3.37).

However, there was a very serious effect on the position-tracking performance

of the third joint, which was fully aligned with the global z axis. The position

tracking was good up until the point when it came into contact with the reaction

surface, at which point it lost its ability to keep up with the desired trajectory as

it descended below the surface. Even once the desired trajectory resurfaced into

free space, the effect of the integral action in the position controller kept it from

immediately regaining satisfactory tracking. In fact, the controller wasn’t able to

fully converge before the desired trajectory once again dipped below the reaction

surface, causing it to relapse into unsatisfactory tracking. It is worth noting that due

to the slight compliance of the reaction surface, the end effector was able to descend

a little bit below the reaction surface, but not anywhere close to enough.

These results were exactly what was expected when implementing the position

controller on the new model that included the reaction surface. This meant that

the new model of the physical system could be considered as verified. With this

verification complete, the force control strategy could be developed.

5.2 Hybrid Force-Position Controller

In order to develop and test force control strategies, the hybrid force-position control

architecture had to be established first. This was challenging, because it involved

building an outer control structure when one of the inner loops (the force controller)

had not been developed. Due to the nature of hybrid force-position control, it was

possible to build the entire outer loop while maintaining complete dominance of the

position controller in the control of the system (using the selection matrix S), which

allowed for troubleshooting and ensured functionality prior to the development of the

force controller.

The algorithm for robot hybrid force-position control can be described using the

following steps:

88

5.2. Hybrid Force-Position Controller

F
ig

u
re

5.
3:

J
o
in

ts
1

an
d

2
p

os
it

io
n

co
n
tr

ol
le

r
re

su
lt

s
w

it
h

re
ac

ti
on

su
rf

a
ce

m
o
d

el

89

5.2. Hybrid Force-Position Controller

F
ig

u
re

5.
4:

J
o
in

ts
3

an
d

4
p

os
it

io
n

co
n
tr

ol
le

r
re

su
lt

s
w

it
h

re
ac

ti
on

su
rf

a
ce

m
o
d

el

90

5.2. Hybrid Force-Position Controller

1. A set of desired position trajectories and desired force trajectories are pro-

vided as the system’s inputs. Typically, both the desired force and position

trajectories are expressed in Cartesian coordinates, because the task the robot

is assigned to is usually not affected by the configuration of the robot. These

trajectories may need to be converted to joint space if the controllers or sensors

in the system so demand it.

a) If the position trajectories need to be converted from Cartesian space to

joint space, this can be done using the robot’s inverse kinematics.

b) If the force trajectories need to be converted from Cartesian space to joint

space, this can be done by the transpose of the Jacobian matrix.

2. The actual position and force experienced at the end effector are measured

using sensors.

a) Typically, the positions are measured using optical encoders on each

joint’s motors, and thus are expressed in joint space. A numerical in-

tegration can be performed on these positions to obtain joint velocities

and then another numerical integration will yield the joint accelerations.

b) The force experienced at the end effector is usually measured with a force-

torque sensor mounted near the end of the robot manipulator. This signal

will usually require some extensive processing to remove measurement

noise as well as the inertial, centrifugal/Coriolis effects that will come

purely from the motion of the robot arm. With these effects removed,

the signal representing the external force acting on the end effector may

need to be multiplied by the transpose of the appropriate Jacobian matrix

to convert it to joint space, if necessary.

3. The measured positions, velocities, accelerations, and external forces are then

fed into the two independent position control and force control loops, along with

the desired position and force trajectories. Each loop will produce a separate

set of control forces/torques (either in joint space or Cartesian space) as their

outputs.

a) The goal of the position control loop is to produce a set of force/torques

that will cause the actual position of the end effector to converge on the

desired position. It usually will operate without using the force sensor

data as an input.

b) The goal of the force control loop is to produce a set of force/torques that

will cause the external force experienced by the end effector to converge

91

5.2. Hybrid Force-Position Controller

on the desired force. Sometimes it will only use the force sensor data as

input, but sometimes it will also use some of the position sensor data.

4. If they are expressed joint space, the output forces/torques from the two control

loops must be converted to Cartesian space using the inverse of the transpose

of the Jacobian matrix.

5. The force/torque output vector from the position control loop is multiplied by

the selection matrix S, while the force/torque output vector from the force

control loop is multiplied by the difference between the identity matrix and the

selection matrix, I − S. These two products are added together to create the

unified hybrid force-position control signal.

6. This unified control force/torque signal is then multiplied by the transpose of

the Jacobian matrix to convert it back into joint space, and is then sent to the

robot’s motors to actuate the system.

7. New measurements are taken by the robot’s sensors and Steps 2 through 7

repeat themselves.

In designing the hybrid force-position control architecture for this project, two

main sets of decisions had to be made. The first surrounded the choice of the selection

matrix S, and the second was when to express the signals in joint space vs. Cartesian

space.

5.2.1 Establishing the Selection Matrix

To come up with an appropriate selection matrix, the task that would be assigned to

the robot had to first be defined. Given that the reaction surface model established

in the simulation could only exert a force in the global z direction, the desired force

trajectories in the x and y directions, as well as the desired external torques about

the x, y and z directions all were set to zero. Knowing that the reaction surface’s

stiffness was 10 kN/m and that the z height of the entire robot workspace was only

0.25m, it made sense for the desired force trajectory to be set around 200 N in the z

direction. Thus, the desired force trajectory would be set to zero in all coordinates

except the z direction, where it would be kept around 200 N.

To keep some alignment with the position trajectories established in Equations

5.2 and 5.3, the desired force would be set to zero until the robot had a chance to

come into contact with the reaction surface at 2 seconds. However it is important to

92

5.2. Hybrid Force-Position Controller

note that for t ≥ 2 seconds, the desired force would be in conflict with the desired

position, as the desired position often would surface above the reaction surface, thus

allowing no contact force to exist. This conflict between the desired position and the

desired force was exactly the reason for which the selection matrix (and in fact the

entire hybrid force-position control architecture) was required.

Table 5.1: Natural and artificial constraints for 4 DOF SCARA robot

Natural Constraints Artificial Constraints
fx = 0 x = xd
fy = 0 y = yd
τz = 0 φ = φd

z = zrs −
fext,z,d
krs

fz = fext,z,d
τx = 0
τy = 0
ψ = 0
ν = 0

To decide on how to make the selection matrix, the task was broken down into

natural and artificial constraints, shown in Table 5.1. All twelve entries in this table

should be discussed, as they all held some significance.

The simplest constraints to discuss are the two natural constraints of ψ = 0 and

ν = 0. These constraints were imposed on the robot simply due to its number of

degrees of freedom. It was simply not possible for a 4 DOF SCARA robot configured

as in this project to achieve any rotation of the end effector about the global x or y

axes, thus ψ and ν by definition had to always be zero.

Next, we could establish the natural constraints of fx = 0, fy = 0, τx = 0, τy = 0

and τz = 0. These external forces acting on the end effector had to always be zero

simply because the reaction surface defined in this model had no ability to exert

external forces or torques other than a reaction force in the global z direction. If

the model included non-normal forces such as friction, or if the reaction surface was

aligned on an oblique plane, or if the surface was curved, these constraints would not

necessarily be true. However, with this model, they did hold true.

Next we can discuss the artificial constraints of x = xd, y = yd and φ = φd.

These constraints were called ”artificial” because they were imposed via the position

controller. Because there was no possibility of an external force being applied in the x

or y directions, nor an external torque about the z axis, the position controller would

93

5.2. Hybrid Force-Position Controller

be free to constrain the motion of the end effector in these three degrees of freedom

as if the motion were through free space.

Finally, we must discuss the final two constraints - the artificial constraint of

fz = fext,z,d and its twin, the natural constraint of z = zrs − fext,z,d

krs
. These two

constraints were the two that were acting in the all-important z direction, where the

reaction surface would provide an impediment to position control as shown in Figure

??. Because position control would not be effective in this direction, we could not

use the position controller to establish an artificial constraint on the z position of the

end effector. Additionally, we had a desired force trajectory that we were aiming to

track in the z direction of fext,z,d, which meant that fz = fext,z,d should be defined as

the artificial constraint. The natural constraint that would arise from Equation 5.1

would thus be z = zrs− fext,z,d

krs
. In defining the natural and artificial constraints this

way, we were effectively telling the hybrid force-position controller to prioritize force

control in the z direction and to accept that the z position of the end effector would

be determined by the dynamics of the reaction surface, not by the desired position

trajectory.

From these natural and artificial constraints, we could create the selection matrix

S. This matrix was a 6×6 diagonal matrix where all of the diagonal elements si were

between 0 and 1 (i.e. S = diag(s1, s2, s3, s4, s5, s6) such that all si ∈ (0, 1)). The

control law wherein the selection matrix is used is shown below:

τ = JT
(
[S]τp + [I − S]τf

)
(5.4)

... where I represents a 6×6 identity matrix, and τp and τf represent the actuating

forces/torques generated by the position and force control loops, respectively. Note

that τp and τf had to be expressed in the Cartesian base frame, while the unified

actuating force/torque vector that was sent to the system as input, τ , was expressed

in joint space.

The S matrix had to select the directions and axes of rotation which would be

artificially constrained by the position controller, and had to leave unselected the

directions and axes of rotations which would be artificially constrained by the force

controller. In our example, since the x and y axes of rotation would not be artificially

constrained by the position controller nor the force controller, it did not matter what

the s4 and s5 entries were. Because we were asking the controller to completely

prioritize position control for the first two seconds of the trial, the selection matrix

for the first 2 seconds of the trial was set to:

94

5.2. Hybrid Force-Position Controller

S0−2 =

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

(5.5)

... while the selection matrix from 2 seconds onward was set to:

S2−10 =

1 0 0 0 0 0

0 1 0 0 0 0

0 0 0 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

(5.6)

This simple deletion of one element of the selection matrix would ultimately lead

to the prioritization of force control in the z direction. If we wanted the controller

to slowly transition to force control from position control, we could have established

a time variant S matrix where the s3 element would gradually change from 0 to 1

over time. If we wanted to have the controller compromise between both force and

position tracking error at the same time, we could have set s3 to a value somewhere

between 0 and 1 and held it there. Finally, if the task frame (and thus the natural

and artificial constraints) were expressed in a frame of reference that was the same

as the global frame of reference, or was time variant, the force/torque vectors τp and

τf would have had to be multiplied by an appropriate rotation matrix to account

for this. Additionally the entire right hand side of Equation 5.4 would have had to

be multiplied by the inverse of this rotation matrix to convert it back to the global

reference frame prior to multiplication by the transpose of the Jacobian to convert

it into joint space. For this application, however, there was no need to make such

modifications.

5.2.2 Joint Space/Cartesian Space Signal Assignments

With the selection matrix established, the remaining decisions in the development of

the hybrid force-position control architecture involved deciding which signals would

95

5.2. Hybrid Force-Position Controller

be expressed in Cartesian coordinates, and which would be expressed in joint space.

When reading through the seven-step description of the algorithm at the beginning

of this section, there are many points where it was mentioned that a signal could be

expressed in either Cartesian or joint space. The conversion between the two involves

using the forward or inverse kinematics when discussing positions, multiplication by

the Jacobian or by the inverse of the Jacobian when discussing velocities, and multi-

plying by the transpose of the Jacobian or the inverse of the transpose of the Jacobian

when discussing forces. Each one of these conversions comes at a computational cost,

and thus conversions were minimized as much as possible.

To make the decisions on where to make the conversions, it was important to first

identify certain points in the overall algorithm where the signal had to be in one of

the two forms (Cartesian space or joint space). As recently discussed, we knew that

the actuating torque outputs from each of the position and force control loops had

to be expressed in Cartesian coordinates in order for them to be used in the selection

matrix control law (Equation 5.4). We also knew that after being processed by the

selection matrix, the signal had to be converted back into joint space in order to be

sent to each of the joint’s motors. Thus, there had to be at least one multiplication

by the transpose of the Jacobian.

Next we had to consider the position controller that has already been developed

in the previous chapter. This position controller worked exclusively in joint space,

using inverse kinematics to pre-compute the joint space equivalent of the desired

position trajectory, which was provided in Cartesian coordinates (Equations 5.2 and

5.3). When the position controller was being used on its own to control the robot,

it was convenient for the actuating force/torque vector to be expressed in joint space

so that it could be directly sent to each of the robot’s motors. Unfortunately, this

meant that the position controller’s output had to be multiplied by the inverse of

the transpose of the Jacobian in order to be converted to Cartesian space prior to

being sent to the selection matrix. This was a relatively significant issue, because the

transpose of the Jacobian was not always invertible.

The first issue with the invertibility of the Jacobian matrix was a result of it

being a 6×4 matrix. Any non-square matrix is, by definition, not invertible. Luckily,

because two of the rows in the Jacobian were all zeroes (because of the inaccessibility

of the rotational degrees of freedom about the x and y axes), the Jacobian could easily

be made square by simply removing the two empty rows. The second issue was that

even once the Jacobian was made square, it could still become uninvertible when its

determinant was equal to zero. From Section 3.2.2, we recall that this condition arose

96

5.2. Hybrid Force-Position Controller

when the robot was in a singular configuration (when θ2 = 0 or π). This was more

challenging to deal with, but could be avoided through some clever programming.

The problem that would arise when the determinant was equal to zero was that in

calculating the inverse of the matrix, there would be a requirement to divide by zero,

thus breaking the control loop. There existed no issue if we were dividing by 0.0001

or by -0.0001, so we could monitor the value of θ2 being used in the calculation,

and if it ever went between -0.0001 and 0.0001, we could just manually adjust it to

-0.0001 or 0.0001, whichever was closer. This would lead to a slight inaccuracy in

the conversion from joint space to Cartesian space, but as long as the manipulator

did not stay near the kinematic singularity for too long the inaccuracy would have a

negligible effect. Once these two problems were taken care of in the manner outlined

above, the inverse of the transpose of Jacobian could always be taken without risking

a mathematical error. Once the inverse was taken, the two rows of zeros were added

back in the appropriate places to yield the following matrix:

(JT)−1 =

2.5 cos(θ1+θ2)
sinθ2

−2.5 cos(θ1+θ2)+cosθ1
sinθ2

0 −2.5 cosθ1
sinθ2

2.5 sin(θ1+θ2)
sinθ2

−2.5 sin(θ1+θ2)+sinθ1
sinθ2

0 −2.5 sinθ1
sinθ2

0 0 −1 0

0 0 0 0

0 0 0 0

0 0 0 −1

(5.7)

With the inverse of the transpose of the Jacobian complete, the only remaining

conversions that were necessary were for the force control loop. Luckily, because the

force controller would be used only in the context of a hybrid force-position controller,

it could be set up to require no conversions. The desired force trajectories were easiest

to provide in Cartesian space - the force/torque measurements in our simulation could

be easily accessed (without having to process force/torque sensor data) in Cartesian

space so there was never a need to convert into joint space. The entire force control

loop was thus be built in Cartesian space and then the loop output τf would require

no conversion prior to being sent to the selection matrix.

A block diagram showing the different signals as they flowed through the hybrid

force-position controller architecture is shown in Figure 5.5. Note that signals with a

j subscript referred to signals in joint space, and those with C subscripts referred to

signals in Cartesian space.

The Simulink implementation of the entire hybrid force-position control scheme

97

5.2. Hybrid Force-Position Controller

Figure 5.5: Block diagram of hybrid force-position controller architecture

is shown in Figure 5.6. The supervisory controller is blown up to show it in further

detail. Note that the image also shows the force controller, despite their having been

no discussion of its development as of yet. This discussion will follow in Section 5.3.

The MatLab Function block labelled S is the selection matrix. The function inside

of it is as follows:

function [S , IS] = S(u)

i f u>0

S = [1 0 0 0 0 0 ;0 1 0 0 0 0 ;0 0 0 0 0 0 ;0 0 0 1 0 0 ;0 0

0 0 1 0 ; 0 0 0 0 0 1] ;

else

S = eye (6) ;

end

IS = eye (6) − S ;

In Figure 5.6 it can be seen that the input ”u” to the ”S” function was a step

98

5.2. Hybrid Force-Position Controller

Figure 5.6: Simulink implementation of hybrid force-position controller

99

5.3. Force Control

input. This step input was set to zero for 0 ≤ t < 2 and switched to 1 for t ≥ 2.

It functioned as a trigger to force the S matrix to change from pure position control

dominance, to the hybrid force-position control structure detailed above.

Note also in Figure 5.6 the two other MatLab function blocks. The one that is

blown up in the magnified area is the transpose of the Jacobian. Unfortunately, the

top right of the two is not blown up for better visibility, but it is the inverse of the

transpose of the Jacobian matrix. These two functions were the minimum requirement

for Cartesian to joint space (and vice versa) signal conversion as discussed above, and

they were placed in the scheme in the locations specified in Figure 5.5.

5.3 Force Control

The control of the external force applied by the end effector was a very different

problem compared to control of the position of the end effector. Firstly, if a hybrid

force-position control strategy is being used, it is likely because there is some degree of

uncertainty about the dynamics of the environment that will be generating the contact

forces (otherwise impedance control could easily be implemented). This means that

the force controller can not be designed using control laws derived from the system’s

dynamic equations to the same degree that a position controller can. Secondly, force

and position are very different concepts theoretically, in that they are separated by two

orders of integration and have completely different relationships with other relevant

variables such as velocity, acceleration and mass. Finally, the sensors that can be used

to measure force produce much noisier signals compared to position sensors (although

in a simulated environment this is less important).

The first issue is the most important to explain, as it was the cause of significant

confusion during the force controller development, and ultimately determined the

design process that was used. Originally it was assumed that to develop the force

controller, a similar process to the position controller development should be used.

The dynamic equations would be written out, and then manipulated until a control

law could be arrived at. That control law would produce a control force/torque

vector which would be mathematically guaranteed to achieve convergence between

the desired contact force and the actual contact force.

Unfortunately, that process, when applied to the force control problem, would

require precise knowledge of the dynamics of the reaction surface. While models for

such dynamics were available, one of the main reasons hybrid force-position control

is used is for situations when knowledge of the dynamics of the environment are

100

5.3. Force Control

unknown, or too complex to mathematically model accurately. When the dynamics

of the environment are known, it is simple enough to build an impedance controller

that will convert the desired force into a desired ”virtual position” that the position

controller can track on its own. To build the force controller in a hybrid force-position

control scheme using the known dynamic equations of the reaction surface would be to

subvert the purpose of this project. Thus, the force controller had to be built without

consideration of the dynamics of the environment in which it would be operating.

The implications of this reality were that there could not be a guarantee of con-

vergence for the force controller in the same way that there was for the position

controller. Additionally, any control gains that would be used could not be calcu-

lated based on theoretical knowledge of the dynamic equations, they would generally

have to be found through a process of trial and error. It is possible that there exists

a better way to come up with a control law and controller gains without information

on the dynamics of the environment, but throughout the survey of the literature it

was never discovered. This certainly could represent a future improvement on the

work done in this thesis.

The second major difference between the development of the force controller in

comparison to the position controller was the simply fact that forces and torques are

mathematically much different than positions and angles. In the position controller,

the robot could be thought of as a system that took a force/torque vector as input,

and produced a linear/angular position vector as output. The nonlinear dynamics of

the plant could be nullified with feedback linearization, leaving a clean second-order

linear system (Newton’s Second Law states that force/torque is proportional to the

second derivative of linear/angular position) that could be controlled using established

linear control methods such as PID control. For force control, the position-related

terms (M(θ), C(θ, θ̇) and G(θ)) of the dynamic equation (Equation 3.66) could be

cancelled using a process similar to feedback linearization, but what was left (shown

below) was not a second-order differential equation:

τCartesian = fext (5.8)

The simplicity of this dynamic equation suggested that the controller be built

using a feedforward control law similar to the law shown below:

τCartesian = fd (5.9)

101

5.3. Force Control

... where fd represents the desired force trajectory expressed in Cartesian coordi-

nates. This simple control law of course would not be enough to achieve satisfactory

force tracking, but it would at least need to form the basis of the control law.

The final important distinction between force control and position control lay in

the difference between the measurement hardware for the two feedback loops. In

position control, the sensors used to generate the feedback for the controller are

typically optical encoders on each of the motors. These encoders can very accurately

measure the position of the joint, without significant measurement noise. In force

control, the sensor providing the feedback is usually a force/torque sensor mounted on

the end effector. This sensor works through the use of a strain gauge, which produces

a very noisy signal. Filtering mechanisms do exist that can reduce the noise, but these

come with a computational cost and also can muffle important feedback information.

The existence of this strain gauge measurement noise creates a significant chal-

lenge when taking a numerical derivative. There are many different ways to take

a numerical derivative, but at their core they all must take the difference between

previous measurements and divide it by the time interval between them. Because

taking a larger time interval will create a larger lag in the measurements with respect

to the current signal, an optimal numerical derivative is one that uses as small of a

time interval as possible. When a numerical derivative is taken of a noisy signal, espe-

cially when the time interval is small, there is a very large chance that the difference

between the two sampled measurements will not be a reflection of the overall trend

in the rate of change of the signal. This means that any measurement noise will get

amplified when a numerical derivative is taken. If a second numerical derivative must

be taken, the measurement noise will get amplified even further, often to the point

where the signal is no longer present amid all the noise.

The implication of this is that it is feasible to take the numerical derivative of a

signal that comes from an optical encoder much moreso than it is to take one from a

signal coming from a strain gauge. In the previous chapter, PID control with feedback

linearization was used to control the position of the robot. This involved taking a

numerical derivative of the joint angles/positions both in the feedback linearization

and in the derivative part of the PID controller. Additionally, the signal had to

undergo a second numerical derivative for use in the cancellation of the coupled

terms of the M matrix of the feedback linearization. Unfortunately in the force

control scheme, due to the expected noisiness of the sensor data, it was best to avoid

the use of numerical derivatives.

It is important to note that because this controller was being developed using

102

5.3. Force Control

a simulation where there was no measurement noise, it was functionally possible to

take a numerical derivative of the feedback. This avoidance of numerical derivatives

was a self-imposed constraint designed to make the developed force controller more

applicable to reality.

Without the ability to take a numerical derivative, there was no way to implement

the derivative component of a PID controller. This was unfortunate, due to the

flexibility and simplicity of PID control. However, the benefits of PID control did

not all have to be discarded, because the P (proportional) and I (integral) terms

do not require numerical derivatives. Thus, a PI controller was thought of as an

appropriate choice for the force control.

5.3.1 PI/Feedforward Controller

The two deductions from the above analysis on the differences between position and

force control were that both feedforward control and PI control would be appropriate

for the force controller. Thus, the first force control law that was proposed was:

τ = fd +Kfp(fd − f) +Kfi

∫ t

0

(fd − f)dt (5.10)

... where τ represents the control torque (in Cartesian space), fd and f represent

the desired and actual external forces, respectively, and Kfp and Kfi represent the

proportional and integral force control gains, respectively. The Simulink implemen-

tation of this control law is shown in Figure 5.7.

As mentioned above, no clear method was found to select the control gains Kfp

and Kfi, so they were selected through trial and error. For this robot, this was

relatively simple, in that the force control only had to operate through the one joint

that was aligned with the z axis. This would not be so simple under many other

circumstances, including:

• If the reaction surface generated forces that did not act only in the normal

direction

• If the reaction surface was not aligned perfectly with the x− y plane

• If the reaction surface was not perfectly flat

• If the robot manipulator had more than one joint that could generate forces in

the z direction

103

5.3. Force Control

Figure 5.7: Simulink implementation of PI/Feedforward force controller

104

5.3. Force Control

• If the robot manipulator did have only one joint that could generate forces in

the z direction, but that joint was able to generate forces in the x and/or y

directions as well

• If the selection matrix required force control in more directions than just z

In all of these cases, different control gains would be required for each of the 6

Cartesian degrees of freedom. This would be much more difficult to set up using trial

and error alone, although not necessarily impossible.

To perform the trial and error search, the controller was first run with both gains

set to zero. The feedforward controller alone created a tracking response, but only

one that oscillated significantly about the desired value. Next, the value of Kfp was

increased from zero in small increments until the point when the increases no longer

corresponded to an improvement in the controller’s performance. It was found that

this value was somewhere around 20. At this point, the robot could track the desired

force, although with a significant oscillatory response following the transition from

position control to force control at 2 seconds. Additionally, there was a slight steady-

state error in the response. The Kfi term was then increased until the steady-state

error disappeared, at a value of around 5. These gains were accepted as somewhere

close to optimal, as a better response could not be obtained with any different set

of gains. The results of the PI/Feedforward controller implemented with these gains

are shown in Figure 5.8.

These results were promising, in that they represented a functional hybrid force-

position control scheme. The position controller was able to reliably track the desired

trajectory for the first two seconds, and then when the selection matrix dictated that

the force controller was to take over in the z direction, it did so. The position tracking

in the x and y directions were not compromised, while the position control in the z

direction was abandoned in favour of the force controller (as intended).

Where these results fell short was in the quality of the force controller’s perfor-

mance. Not only did it take a long time for the controller to converge on the desired

value (roughly one second), it did so with a very large overshoot (almost 100%) and

some serious oscillation in the response.

The next iteration of the force controller was designed to improve this perfor-

mance.

105

5.3. Force Control

Figure 5.8: Results of the PI/Feedforward force controller

5.3.2 PI/Feedforward/Velocity Damping Controller

The issues with the response of the PI/Feedforward force controller were a significant

overshoot, a slow settling time, and a significantly oscillatory response. In a normal

PID scheme, these issues are taken care of with the derivative term, however in this

project it was decided that derivative control would be avoided for the force controller

due to issues with taking a numerical derivative of noisy force/torque sensor signals.

A typical derivative term in a PID controller comes in the form KD(ẋd − ẋ),

where KD is the derivative gain, xd is the desired system output, and x is the actual

measured output. Thus, the command signal sent to the system’s actuators has

a negative-proportional relationship with the time derivative of the output of the

system. Thus, the derivative term can be thought of as a sort of ”artificial damping”

of the system, removing kinetic energy when the system becomes over-excited. This

removal of energy during peak excitation of the system has a strong stabilizing effect

106

5.3. Force Control

on the controller’s performance which can reduce/eliminate overshoot and oscillatory

behaviour.

Thus, a clever substitute for a derivative control term was used. Instead of using

the derivative of the noisy force/torque sensor data, a derivative of the position of

the end effector was fed into the force controller. As previously stated, there was

no problem with taking a numerical derivative of the position sensor data, because

it contained very little measurement noise. As long as the control law ensured an

negative-proportional relationship between the velocity of the end effector and the

command signal, the ”artificial damping” effect could be replicated. Thus, a ”velocity

damping” term was added to the end of the PI/Feedforward control law, as shown

below in Equation 5.11:

τ = fd +Kfp(fd − f) +Kfi

∫ t

0

(fd − f)dt−KvdẊ (5.11)

... where Kvd represents the velocity damping gain, and Ẋ represents the Carte-

sian expression of the end-effector’s velocity:

Ẋ =

ẋ

ẏ

ż

ψ̇

ν̇

φ̇

= J(θ)θ̇ (5.12)

The Simulink implementation of this control law is shown in Figure 5.9.

The same process was used to determine the appropriate value for Kvd as was

used for the other two force control gains - trial and error. The value was raised in

small increments from zero all the way until the increases no longer had a positive

impact on the performance of the controller. The optimal value was found to be

approximately 2000. The performance of the controller with Kvd set to this optimal

value are shown in Figure 5.10.

These results were thought to be excellent. As with the PI/Feedforward controller,

the position tracking was excellent up until t = 2 seconds in the x, y and z directions.

For t ≥ 2 seconds, the x and y position tracking continued to be excellent, while

107

5.3. Force Control

Figure 5.9: Simulink implementation of PI/Feedforward/Velocity Damping
force controller

108

5.3. Force Control

Figure 5.10: Results of the PI/Feedforward/Velocity Damping force controller

the position tracking in the z direction was ignored in favour of the force tracking.

The performance of the force controller represented the major improvement against

the previous controller, as the overshoot and settling time were dramatically reduced,

while the oscillation was completely eliminated. This meant that the velocity damping

term was working exactly as was intended.

This performance was considered to be fully satisfactory in terms of the aims

of this project, in that the goal of hybrid force-position control had been achieved.

To further test the capabilities of the controller, another trial was run, except that

instead of asking the force controller to track a constant 200N desired force in the z

direction, it was asked to track a z-force trajectory of:

fz = 200
(
1 + sin

(10t

T
− 0.2

))
(5.13)

109

5.3. Force Control

Figure 5.11: Results of variable force tracking

The results of the attempt to track this variable force trajectory are shown in

Figure 5.11. Again, the performance was excellent. It was particularly notable that

the controller was able to bring the force all the way down to 0N by bringing the end

effector up to the edge of the reaction surface without encountering any disruptive

behaviour at this boundary. The tracking was almost perfect, with just a slight lag

and a small overshoot.

The success of this force controller within the overall hybrid force-position control

scheme represented the conclusion of the simulation work that was done in this thesis.

More discussion on future directions in which this work could be explored can be found

in Chapter 6. The primary application for this controller was to be for use with a

physical robot, the details of which will be discussed in the subsequent chapter.

110

6 Conclusion and

Recommendations

The goal of this thesis was to develop a hybrid force-position controller for a 4-DOF

SCARA manipulator, and this was successfully completed. However, throughout the

course of the project, many different areas for further investigation were discovered

and will be discussed in further detail here.

The first and most obvious area for future work would be in the completion of the

construction of the physical robot. The decision to stop building it was made in this

thesis not because it wasn’t a worthwhile objective, but because of internal challenges

specific to the project (software availability, time constraints). The construction of

the robot would have allowed for testing of the controller on a real robot, which (if

successful) would have represented a major success. Implementing a controller on

a simulation is one thing, but dealing with a physical robot comes with an entirely

separate suite of challenges. Some of these challenges can be resolved without having

to change too much in the controller, but it is also possible to encounter challenges

that might invalidate core assumptions within the design of the controller, necessi-

tating major changes. Implementing the controller developed in this thesis on an

actual physical robot would be the most valuable direction for future work, especially

considering the design work that has already been done towards rebuilding the robot.

One important part of implementing the controller on a physical robot would be

the redevelopment of the mathematical model of the robot, in order to properly cal-

culate control gains and feedback linearization functions. This redevelopment would

certainly require the determination of the physical characteristics of the robot, in-

cluding the masses, moments of inertia, lengths, centre of mass locations and motor

constants for all of the joints and links. In addition to this, a more accurate model of

the robot’s dynamics would have included a model for friction in each of the joints,

111

and also the motor dynamics. While many of these characteristics (mass, lengths,

motor constants) can be found relatively easily and accurately, other characteristics

(moments of inertia, centre of mass locations, friction constants) aren’t easily deter-

mined, and are very specific to the setup of the robot.

In order to accurately determine these values, a process called dynamic identifica-

tion can be used. In this process, the robot motors are given time-varying sequences

of input voltages at each of the actuating motors, and the resulting joint positions and

angles are measured over time. Then, a numerical optimization of all of the unknown

parameters of the robot would have to be performed. In this optimization process,

many different combinations of parameters would be proposed, and then used to map

the known input voltages into corresponding output joint positions and angles. The

combinations of parameters that generated output joint positions and angles that

most closely matched the actual measured output joint positions and angles would

form the best possible estimates of these parameters. The optimization process would

continue until a set of parameters was found than generated output joint positions

and angles that were deemed a close enough fit, and then these would be assumed to

be actual representations of the real parameter values. This dynamic identification

would ensure that the mathematical model upon which the robot controller was built

would be an accurate representation of reality.

There are also many ways that the development of the controller itself could have

been pushed further, with or without being implemented on a physical robot. Most of

these areas for work involve removing one or more of the assumptions that simplified

the work done in this thesis. These directions are listed below:

1. The reaction surface with which the robot had to interact could have been

made an oblique plane (i.e. not perpendicular to the z axis), forcing the robot

to prioritize between force and position control in more joints than just the

prismatic joint.

2. The reaction surface could have been made to be a curved surface, forcing the

supervisory controller to constantly re-evaluate the directions of the natural

and artificial constraints.

3. The forces generated by the reaction surface could have been made to be more

than just a normal force (i.e. the addition of a friction model), necessitating a

new balance between the natural and artificial constraints in the plane tangent

to the reaction surface.

112

4. The supervisory controller’s selection matrix could have been made more in-

telligent, giving it the ability to determine on its own when to switch from

position dominance to force dominance based on its position relative to the

reaction surface.

5. The entire controller could have been improved to make it more robust, making

it so that it would not produce erratic and crazy performance failures when

presented with challenging boundary conditions or unexpected inputs.

6. The model could have been updated to include random measurement noise to

test the robustness of the developed controllers.

Beyond all of these possible improvements to the quality of the controller, a

major improvement to the controller could have been achieved if a more math-based

approach was taken to determine the force controller’s feedback gains than simply

trial and error. As mentioned during the discussion of the development of the force

controller, a more theoretically valid approach for this was never found throughout

the literature, but this does not necessarily mean that such an approach does not

exist.

Despite all of these areas for future work, this thesis was totally successful in its

aim of developing a hybrid force-position controller for a 4-DOF SCARA manipula-

tor. A kinematic model of the robot was developed with the DH convention, and then

manipulated to find the robot’s inverse kinematics and workspace. By differentiating

the kinematic equations, the robot’s Jacobian was found, and this was used to deter-

mine the locations of its kinematic singularities. The Lagrange method was used to

develop the robot’s dynamic equations and complete the mathematical model of the

robot.

A simplified model of a 4-DOF SCARA robot was built in Solidworks, and the

physical properties of this model were plugged into the mathematical model to gen-

erate a simulation of the model in Simulink, and also SimScape. Multiple position

controllers were built for both simulations, and when they were applied, the system

outputs were very similar - validating the mathematical model of the robot. Ulti-

mately, the most successful of the position controllers was the Decentralized Feedback

Linearization/PID controller.

The simulations were then rebuilt to include a reaction surface that would gen-

erate an external normal force acting on the end effector if it was interacted with.

This allowed for the development of a force controller, the most successful of which

113

was a PI/Feedforward/Velocity Damping controller. Finally, the two controllers (po-

sition and force) were combined in a hybrid force-position control scheme that was

successfully able to prioritize between position and force tracking goals.

114

Bibliography

[1] Goel, R., Gupta, P. (2020). Robotics and Industry 4.0. In: Nayyar, A., Kumar,

A. (eds) A Roadmap to Industry 4.0: Smart Production, Sharp Business and Sus-

tainable Development. Advances in Science, Technology & Innovation. Springer,

Cham. https://doi.org/10.1007/978-3-030-14544-6 9

[2] Dupont, P. E., Nelson, B. J., Goldfarb, M., Hannaford, B., Menciassi, A.,

O’Malley, M. K., Simaan, N., Valdastri, P., & Yang, G.-Z. (2021). A decade

retrospective of Medical Robotics Research from 2010 to 2020. Science Robotics,

6(60). https://doi.org/10.1126/scirobotics.abi8017

[3] Xiao, B., Chen, C., & Yin, X. (2022). Recent advancements

of robotics in construction. Automation in Construction, 144.

https://doi.org/10.1016/j.autcon.2022.104591

[4] Bogue, R. (2019). Strong prospects for robots in retail. Industrial Robot: the

International Journal of Robotics Research and Application, 46(3), 326–331.

https://doi.org/10.1108/ir-01-2019-0023

[5] Craig, J. J. (2018). Introduction to robotics: Mechanics and control. Pearson.

[6] Siciliano, B., Sciavicco, L., & Villani, L. (2009). Robotics modelling, planning and

control. New York: Springer.

[7] Hogan, N. (1984). Impedance Control: An Approach to Manipulation. 1984 Amer-

ican Control Conference. doi:10.23919/acc.1984.4788393

[8] Mohammadzadegan, A. F., Ashrafzadeh, F., & Moodi, H. (2019). Hy-

brid force and position control of a 4DOF surgical robot with Disturbance

Observer. 2019 27th Iranian Conference on Electrical Engineering (ICEE).

https://doi.org/10.1109/iraniancee.2019.8786635

115

Bibliography

[9] Oh, S., Woo, H., & Kong, K. (2014). Frequency-shaped impedance

control for safe human–robot interaction in reference tracking appli-

cation. IEEE/ASME Transactions on Mechatronics, 19(6), 1907–1916.

https://doi.org/10.1109/tmech.2014.2309118

[10] Park, H., Bae, J.-H., Park, J.-H., Baeg, M.-H., & Park, J. (2013). Intuitive Peg-

in-hole assembly strategy with a compliant manipulator. IEEE ISR 2013, 1–5.

https://doi.org/10.1109/isr.2013.6695699

[11] Song, H.-C., Kim, Y.-L., & Song, J.-B. (2016). Guidance algorithm for complex-

shape peg-in-hole strategy based on geometrical information and force control. Ad-

vanced Robotics, 30(8), 552–563. https://doi.org/10.1080/01691864.2015.1130172

[12] Salisbury, J. K. (1980). Active stiffness control of a manipulator in Cartesian co-

ordinates. 1980 19th IEEE Conference on Decision and Control Including the Sym-

posium on Adaptive Processes, 95–100. https://doi.org/10.1109/cdc.1980.272026

[13] Salisbury, J. K., & Craig, J. J. (1982). Articulated Hands: Force Control and

Kinematic Issues. The International Journal of Robotics Research, 1(1), 4–17.

https://doi.org/10.1177/027836498200100102

[14] Hogan, N. (1985). Impedance Control: An approach to manipulation: Part

I—theory. Journal of Dynamic Systems, Measurement, and Control, 107(1), 1–7.

https://doi.org/10.1115/1.3140702

[15] Hogan, N. (1985). Impedance Control: An approach to manipulation: Part

II—implementation. Journal of Dynamic Systems, Measurement, and Control,

107(1), 8–16. https://doi.org/10.1115/1.3140713

[16] Hogan, N. (1985). Impedance Control: An approach to manipulation: Part

III—applications. Journal of Dynamic Systems, Measurement, and Control,

107(1), 17–24. https://doi.org/10.1115/1.3140701

[17] Mason, M. T. (1981). Compliance and Force Control for Computer Controlled

Manipulators. IEEE Transactions on Systems, Man, and Cybernetics, 11(6), 418-

432. doi:10.1109/tsmc.1981.4308708

[18] Craig, J. J., & Raibert, M. H. (1979). A systematic method of hybrid position/-

force control of a manipulator. COMPSAC 79. Proceedings. Computer Software

and The IEEE Computer Society’s Third International Applications Conference,

1979., 446–451. https://doi.org/10.1109/cmpsac.1979.762539

116

Bibliography

[19] Raibert, M. H., & Craig, J. J. (1981). Hybrid Position/Force Control of Manip-

ulators. Journal of Dynamic Systems, Measurement and Control, 102, 126-133.

[20] Zeng, G., & Hemami, A. (1997). An overview of Robot Force Control. Robotica,

15(5), 473–482. https://doi.org/10.1017/s026357479700057x

[21] Chiaverini, S., Siciliano, B., & Villani, L. (1999). A survey of Robot Interaction

Control Schemes with experimental comparison. IEEE/ASME Transactions on

Mechatronics, 4(3), 273–285. https://doi.org/10.1109/3516.789685

[22] Schumacher, M., Wojtusch, J., Beckerle, P., & von Stryk, O. (2019). An intro-

ductory review of active compliant control. Robotics and Autonomous Systems,

119, 185–200. https://doi.org/10.1016/j.robot.2019.06.009

[23] Yoshikawa, T. (1987). Dynamic hybrid position/force control of robot

manipulators–description of hand constraints and calculation of Joint Driv-

ing Force. IEEE Journal on Robotics and Automation, 3(5), 386–392.

https://doi.org/10.1109/jra.1987.1087120

[24] Chiaverini, S., & Sciavicco, L. (1993). The parallel approach to force/position

control of robotic manipulators. IEEE Transactions on Robotics and Automation,

9(4), 361–373. https://doi.org/10.1109/70.246048

[25] Anderson, R. J., & Spong, M. W. (1988). Hybrid impedance control of

robotic manipulators. IEEE Journal on Robotics and Automation, 4(5), 549–556.

https://doi.org/10.1109/56.20440

[26] Liu, G. J., & Goldenberg, A. A. (1991). Robust hybrid impedance control

of robot manipulators. Proceedings. 1991 IEEE International Conference on

Robotics and Automation, 287–292. https://doi.org/10.1109/robot.1991.131589

[27] Lawrence, D. A. (1988). Impedance control stability properties in common im-

plementations. Proceedings. 1988 IEEE International Conference on Robotics and

Automation, 2, 1185–1190. https://doi.org/10.1109/robot.1988.12222

[28] An, C. H., & Hollerbach, J. M. (1989). The role of dynamic models in Cartesian

force control of manipulators. The International Journal of Robotics Research,

8(4), 51–72. https://doi.org/10.1177/027836498900800403

[29] Yoshikawa, T. (2000). Force control of robot manipulators. Proceedings 2000

ICRA. Millennium Conference. IEEE International Conference on Robotics

and Automation. Symposia Proceedings (Cat. No.00CH37065), 1, 220–226.

https://doi.org/10.1109/robot.2000.844062

117

Bibliography

[30] McClamroch, N. H., & Wang, D. (1988). Feedback stabilization and tracking

of constrained robots. IEEE Transactions on Automatic Control, 33(5), 419–426.

https://doi.org/10.1109/9.1220

[31] Zhang, H., & Paul, R. (1985). Hybrid control of robot manipulators. Proceed-

ings. 1985 IEEE International Conference on Robotics and Automation, 602–607.

https://doi.org/10.1109/robot.1985.1087304

[32] Zhang, H. (1989). Kinematic stability of robot manipulators under force con-

trol. Proceedings, 1989 International Conference on Robotics and Automation, 1,

80–85. https://doi.org/10.1109/robot.1989.99971

[33] Fisher, W. D., & Mujtaba, M. S. (1992). Hybrid position/force control: A cor-

rect formulation. The International Journal of Robotics Research, 11(4), 299–311.

https://doi.org/10.1177/027836499201100403

[34] Craig, J., Hsu, P., & Sastry, S. (1986). Adaptive control of mechanical ma-

nipulators. Proceedings. 1986 IEEE International Conference on Robotics and

Automation. https://doi.org/10.1109/robot.1986.1087661

[35] Hsia, T. (1986). Adaptive control of robot manipulators - A Review. Proceed-

ings. 1986 IEEE International Conference on Robotics and Automation, 183–189.

https://doi.org/10.1109/robot.1986.1087696

[36] Slotine, J.-J. E., & Li, W. (1987). On the adaptive control of robot

manipulators. The International Journal of Robotics Research, 6(3), 49–59.

https://doi.org/10.1177/027836498700600303

[37] Slotine, J.-J. E. (1984). Sliding controller design for Non-

linear Systems. International Journal of Control, 40(2), 421–434.

https://doi.org/10.1080/00207178408933284

[38] Utkin, V. I., & Drakunov, S. V. (1992). Sliding mode control in

Dynamic Systems. International Journal of Control, 55(4), 1029–1037.

https://doi.org/10.1109/cdc.1993.325637

[39] Slotine, J.-J. E. (1985). The robust control of robot manipula-

tors. The International Journal of Robotics Research, 4(2), 49–64.

https://doi.org/10.1177/027836498500400205

[40] Slotine, J.-J. E., & Spong, M. W. (1985). Robust robot control

with bounded input torques. Journal of Robotic Systems, 2(4), 329–352.

https://doi.org/10.1002/rob.4620020402

118

Bibliography

[41] Colbaugh, R., Seraji, H., & Glass, K. (1993). Direct adaptive impedance

control of robot manipulators. Journal of Robotic Systems, 10(2), 217–248.

https://doi.org/10.1002/rob.4620100205

[42] Zhen, R. R. Y., & Goldenberg, A. A. (1994). Robust position and

force control of robots using sliding mode. Proceedings of the 1994

IEEE International Conference on Robotics and Automation, 1, 623–628.

https://doi.org/10.1109/robot.1994.351416

[43] Su, C.-Y., Leung, T.-P., & Zhou, Q.-J. (1992). Force/motion control of con-

strained robots using sliding mode. IEEE Transactions on Automatic Control,

37(5), 668–672. https://doi.org/10.1109/9.135513

[44] Narendra, K. S., & Parthasarathy, K. (1990). Identification and control of dy-

namical systems using Neural Networks. IEEE Transactions on Neural Networks,

1(1), 4–27. https://doi.org/10.1109/72.80202

[45] Miyamoto, H., Kawato, M., Setoyama, T., & Suzuki, R. (1988). Feedback-error-

learning neural network for trajectory control of a robotic manipulator. Neural

Networks, 1(3), 251–265. https://doi.org/10.1016/0893-6080(88)90030-5

[46] Fukuda, T., & Shibata, T. (1992). Theory and applications of neural networks

for industrial control systems. IEEE Transactions on Industrial Electronics, 39(6),

472–489. https://doi.org/10.1109/41.170966

[47] Lee, C. C. (1990). Fuzzy logic in control systems: Fuzzy Logic Controller.

I. IEEE Transactions on Systems, Man, and Cybernetics, 20(2), 404–418.

https://doi.org/10.1109/21.52551

[48] Li, Y. F., & Lau, C. C. (1989). Development of fuzzy algorithms

for Servo Systems. IEEE Control Systems Magazine, 9(3), 65–72.

https://doi.org/10.1109/37.24814

[49] Arimoto, S. (1990). Learning control theory for robotic motion. Interna-

tional Journal of Adaptive Control and Signal Processing, 4(6), 543–564.

https://doi.org/10.1002/acs.4480040610

[50] Jung, S., & Hsia, T. C. (1995). Neural network techniques for robust force con-

trol of robot manipulators. Proceedings of Tenth International Symposium on

Intelligent Control, 111–116. https://doi.org/10.1109/isic.1995.525046

119

Bibliography

[51] Kuo, R.-J. (1997). A robotic die polishing system through Fuzzy Neural Net-

works. Computers in Industry, 32(3), 273–280. https://doi.org/10.1016/s0166-

3615(96)00078-4

[52] Bogdan, S., & Kovacic, Z. (1993). Fuzzy rule-based adaptive force control of a

single DOF Mechanisms. Proceedings of 8th IEEE International Symposium on

Intelligent Control, 469–474. https://doi.org/10.1109/isic.1993.397668

[53] Cheah, C. C., & Wang, D. (1998). Learning impedance control for robotic ma-

nipulators. Proceedings of 1995 IEEE International Conference on Robotics and

Automation, 452–465. https://doi.org/10.1109/robot.1995.526026

[54] Jeon, D., & Tomizuka, M. (1993). Learning Hybrid Force and position control of

robot manipulators. Proceedings 1992 IEEE International Conference on Robotics

and Automation, 9(4), 423–431. https://doi.org/10.1109/robot.1992.220146

[55] Nguyen, Q. H., Ha, Q. P., Rye, D. C., & Durrant-Whyte, H. F. (2000). Force/-

position tracking for electrohydraulic systems of a robotic excavator. Proceedings

of the 39th IEEE Conference on Decision and Control (Cat. No.00CH37187), 5,

5224–5229. https://doi.org/10.1109/cdc.2001.914787

[56] Kim, K.-H., & Kim, J.-Y. (2022). Effective landing strategy of robot

leg using Hybrid Force/position control. Intelligent Service Robotics.

https://doi.org/10.1007/s11370-022-00441-7

[57] Xu, X., Zhu, D., Zhang, H., Yan, S., & Ding, H. (2019). Application of

novel force control strategies to enhance robotic abrasive belt grinding qual-

ity of aero-engine blades. Chinese Journal of Aeronautics, 32(10), 2368–2382.

https://doi.org/10.1016/j.cja.2019.01.023

[58] Brahmi, B., Saad, M., Rahman, M. H., & Brahmi, A. (2020). Adaptive Force

and position control based on quasi-time delay estimation of exoskeleton robot

for rehabilitation. IEEE Transactions on Control Systems Technology, 28(6),

2152–2163. https://doi.org/10.1109/tcst.2019.2931522

[59] Chen, G., Zhou, H., & Yang, P. (2022). Force/Position Control Strategy of 3-

PRS Ankle Rehabilitation Robot. International Journal of Innovative Computing,

Information and Control, 16(2), 481–494.

[60] Jayender, J., Patel, R. V., & Nikumb, S. (2006). Robot-assisted catheter

insertion using hybrid impedance control. Proceedings 2006 IEEE Interna-

tional Conference on Robotics and Automation, 2006. ICRA 2006., 607–612.

https://doi.org/10.1109/robot.2006.1641777

120

Bibliography

[61] Xie, Y., Sun, D., Liu, C., Tse, H. Y., & Cheng, S. H. (2009). A force control ap-

proach to a robot-assisted cell microinjection system. The International Journal of

Robotics Research, 29(9), 1222–1232. https://doi.org/10.1177/0278364909354325

[62] Navarro-Alarcon, D., Liu, Y., & Li, P. (2011). Stable force/position con-

trol of a robotic endoscope holder for constrained tasks in nasal surgery.

2011 9th World Congress on Intelligent Control and Automation, 1195–1200.

https://doi.org/10.1109/wcica.2011.5970705

[63] Saeidi, H., Opfermann, J. D., Kam, M., Wei, S., Leonard, S., Hsieh,

M. H., Kang, J. U., & Krieger, A. (2022). Autonomous robotic la-

paroscopic surgery for intestinal anastomosis. Science Robotics, 7(62).

https://doi.org/10.1126/scirobotics.abj2908

[64] Zidane, I. F., Khattab, Y., Rezeka, S., & El-Habrouk, M. (2022).

Robotics in laparoscopic surgery - A Review. Robotica, 1–48.

https://doi.org/10.1017/s0263574722001175

[65] Duchemin, G., Dombre, E., Pierrot, F., & Poignet, P. (2003). Robo-

tized skin harvesting. Springer Tracts in Advanced Robotics, 5, 404–413.

https://doi.org/10.1007/3-540-36268-1 36

[66] Dombre, E., Duchemin, G., Poignet, P., & Pierrot, F. (2003). Dermarob: A safe

robot for reconstructive surgery. IEEE Transactions on Robotics and Automation,

19(5), 876–884. https://doi.org/10.1109/tra.2003.817067

[67] Duchemin, G., Maillet, P., Poignet, P., Dombre, E., & Pierrot, F. (2005). A

hybrid position/force control approach for identification of deformation models of

skin and underlying tissues. IEEE Transactions on Biomedical Engineering, 52(2),

160–170. https://doi.org/10.1109/tbme.2004.840505

[68] [SCARA Robot]. (n.d.). Retrieved May 17, 2021, from https://www.allied-

automation.com/new-low-cost-scara-robots/

[69] Spong, M. W., & Vidyasagar, M. (1989). Robot Modeling and Control.

[70] Khalil, H. K. (2002). Nonlinear Systems (3rd ed.). Upper Saddle River, NJ, New

Jersey: Prentice Hall.

[71] Stefani, R. T., Shahian, B., Savant, C. J., Jr., & Hosteller, G. H. (2002). Design

of Feedback Control Systems (4th ed.). New York: Oxford University Press.

121

Bibliography

[72] Khosla, P. K., & Kanade, T. (1986). Experimental Evaluation of the Feedforward

Compensation and Computed-Torque Control Schemes. 1986 American Control

Conference. doi:10.23919/acc.1986.4789043

[73] Siciliano, B., & Villani, L. (1999). Robot Force Control. Boston: Kluwer Aca-

demic.

[74] Hartenberg, R. S., & Denavit, J. (1964). Kinematic synthesis of linkages.

McGraw-Hill.

122

Appendices

123

A Appendix A: Physical Robot

Construction

Figure A.1: Photo of existing 3-DOF SCARA manipulator

In addition to the simulation work done in this thesis, a parallel effort was made to

design and build a 4-DOF SCARA robot on which the controller could be tested.

Previous students had built a 3-DOF SCARA manipulator (shown in Figure A.1)

124

A.1. Eliminating Mechanical Backlash

that originally was going to be used as a base, and augmented to add the fourth

degree of freedom, as well as a force/torque sensor. This previous model also had

some significant mechanical backlash that had to be rectified in order to make it

useful for a high-precision task such as force-position control. Thus, the physical

robot construction was broken down into three main lines of effort:

1. Add a fourth degree of freedom

2. Add a force/torque sensor

3. Eliminate mechanical backlash

Unfortunately, due mainly to concerns regarding the accessibility of the software

required to interface between the robot motors and the controller, the physical con-

struction of the robot was put on hold and eventually removed from the aims of this

thesis. Thus, this chapter will discuss the work that was done, although ultimately a

functional 4-DOF SCARA manipulator was never built.

A.1 Eliminating Mechanical Backlash

The first and most significant task in the rebuild of the robot was to get rid of the

mechanical backlash in the existing robot. In machine design, mechanical backlash

occurs when two moving parts within an assembly have too much clearance between

them. A classic example of this is when the teeth of a gear become worn and no

longer fit perfectly into the gears they are paired with, thus leaving some room for

the gears to move around without any intentional driving force/torque. This example

is depicted below in Figure A.2:

125

A.1. Eliminating Mechanical Backlash

Figure A.2: Example of mechanical backlash

In a robot manipulator, even a small amount of mechanical backlash in any of

the joints can lead to the end effector swinging around uncontrollably, which is a

significant issue when precision control (such as in this project) is the goal. While it

was difficult to determine where in the existing robot’s mechanical chain the backlash

was being generated, it was assumed to be in two different places.

The first was in the drive trains of the first and second (shoulder and elbow)

motors. It was assumed to be here, because the end effector would swing left and

right in a manner that could only have been caused by looseness in the two rotary

joints, and the connections between the motor housings and shafts to the robot links

all seemed to be quite tight. Thus, the internal drive train of each of the motors was

thought to be the only other place where this horizontal movement of the end effector

could have been coming from.

The second place that backlash was assumed to be coming from was in the two

bearings of each of the first and second (shoulder and elbow) joints. It was assumed

to be here, because the end effector would sag down a bit, and could also be lifted

up - indicating some looseness in the vertical plane. This could have come from the

prismatic joint, but this motor was driven by a worm gear which is a mechanism

known to have very low backlash, and the prismatic joint itself seemed to have been

assembled quite tightly. When the robot was disassembled, it could be clearly seen

that the vertical backlash was coming from some bending at each of the two rotary

joints, which indicated that the bearings were not serving their purpose properly.

126

A.1. Eliminating Mechanical Backlash

Figure A.4: Existing elbow joint thrust (left) and radial (right) bearings

Figure A.3: Existing shoulder joint thrust bearing

These two sources of backlash had to be dealt with separately. The easier of the

two sources to eliminate was the vertical backlash of the end effector coming from

the loose vertical bearings in the shoulder and elbow joints. The thrust bearing for

the shoulder joint is shown in Figure A.3. For the elbow joint, a combination of one

thrust bearing and one radial bearing was used, both are shown in Figure A.4.

The thrust bearings were very strong to support the axial load of the robot arm,

and the elbow joint’s combination of the thrust and radial bearing was useful for

radial loads as well. However, neither joint was well set up to deal with the bending

127

A.1. Eliminating Mechanical Backlash

moment loads that were placed on them with the robot in an outstretched position.

This bending load was where the most mechanical play was discovered, and so it was

decided that both joints had to be re-designed with new bearings more capable of

dealing with bending loads.

Figure A.5: Face-mounted crossed-roller bearing

The bearings that were selected with this criteria in mind were face-mounted

crossed-roller bearings, shown in Figure A.5. These bearings consist of an inner

ring that rotates independently from an outer ring, with both rings capable of being

fixed to independently moving parts. These bearings are more expensive than typical

bearings, at around $100 each, but they are able to deal with thrust, radial and

bending loads. Thus, two of these bearings were purchased for the re-design, which

was considered to be a good solution to the mechanical backlash in the vertical plane.

Dealing with the horizontal-plane backlash was more challenging. Since it was

assumed that this backlash was coming from looseness in the drive trains of each of

the rotary motors for the first two joints, the simplest solution would have simply been

to purchase new low-backlash motors. These, however were too large and outside of

the budget for this build. If the same motors were to be used, a new, low-backlash

power transmission element would need to be installed between the output shaft of

the motor and the subsequent driven link in the robot arm.

128

A.1. Eliminating Mechanical Backlash

Figure A.6: Graphic demonstrating the strain wave principle (left) and photo
of a disassembled Harmonic Drive (right)

Such a low-backlash power transmission device was hard to find. In a stroke of

good luck, a gear system known as a Harmonic Drive was available at RMC which

was perfectly suited to the task. Harmonic Drives operate on a complex mechanical

principle called ”strain wave gearing” which is difficult to explain. Figure A.6 shows

two images, on the right it shows a photo of a disassembled Harmonic Drive, and on

the left it shows a graphic demonstrating the principle. Without going into further

detail, the Harmonic Drive can be understood to simply act as a gear reducer, but

without any backlash.

The Harmonic Drive was perfect for this application, and would thus be used

for the shoulder joint - because the shoulder joint was the place where mechanical

backlash would lead to the most movement at the end effector. Thus, the entire first

joint was be redesigned to include the Harmonic Drive, as well as the face-mounted

crossed-roller bearing. After a few iterations and changes to components to allow

them to be more easily built at the RMC Machine Shop, the final design for the

first joint was completed, and can be seen in Figure A.7. Unfortunately during the

construction of this first joint, the software concerns were realized, which led to a halt

in the development of the physical robot - so it was never fully built.

While the Harmonic Drive solved the issue of backlash in the shoulder motor,

a solution was still needed for the elbow motor. Unfortunately, only one Harmonic

129

A.1. Eliminating Mechanical Backlash

F
ig

u
re

A
.7

:
E

x
p

lo
d

ed
v
ie

w
of

co
m

p
le

te
d

es
ig

n
fo

r
th

e
n

ew
fi

rs
t

jo
in

t

130

A.1. Eliminating Mechanical Backlash

Drive was available, and buying another one was outside of the budget of this build.

Thus, a cheaper solution had to be developed. After some research, the concept of a

”cycloidal drive” was discovered. A cycloidal drive is another gear reduction system

that works with a similar principle to the Harmonic Drive, only just not manufactured

and sold under a patent. Off-the-shelf cycloidal drives can be purchased, but are even

more expensive than Harmonic Drives, so the idea to manufacture one at the RMC

Machine Shop was considered.

A functional prototype (shown in Figure A.8) of a custom cycloidal drive was

designed on Solidworks and 3D printed at the RMC Machine Shop. This initial

prototype was built with the purpose of determining whether the concept could work,

and the physical model showed that it was a potentially valid solution to the elbow

joint’s backlash. A second prototype was planned to be built with CNC-machined

rotors and proper bearings and bushings, but again, the physical robot construction

was halted before it could be built.

Figure A.8: Images of the cycloidal drive prototype

This represented the full extent of the work that was done to eliminate the back-

lash in the physical robot. While plenty of work still remains in order to get a

functional robot built, assuming that the cycloidal drive is effective in reducing the

elbow joint’s backlash, all that must to be done is to design and put together all of

131

A.2. Force/Torque Sensor and Fourth DOF

Figure A.9: Robotiq 6-axis force-torque sensor

the pieces.

A.2 Force/Torque Sensor and Fourth DOF

The approach to rebuilding the robot was to start by designing and building the

first joint, and then to move on and design/build each subsequent link and joint

in the order they appeared in the robot’s kinematic chain. Thus, the addition of

a force/torque sensor and the fourth degree of freedom had not even began by the

time that the physical construction had been halted due to the concerns surrounding

software availability.

The only exception to this, was the actual purchasing of the force-torque sensor,

as it had to be done early on in the project due to its price. After some searching

on the market, a 6-axis force-torque sensor made by a company called Robotiq was

deemed to be the most suitable option and was purchased, and can be seen in Figure

A.9. This force-torque sensor was to be installed directly after the fourth rotary joint

in the kinematic chain.

This represents all of the work that was done towards the goal of building the

physical robot for testing. While it was certainly unfortunate that it was not com-

pleted, significant progress was made, and hopefully future work will see it finished.

132

B Appendix B: Source Code

B.1 Robot Model Development

t ic

syms the ta 1 (t) the ta 2 (t) d 3 (t) the ta 4 (t)

syms th e ta 1 do t the ta 2 do t d 3 dot the ta 4 do t

syms the ta 1 ddot the ta 2 ddot d 3 ddot the ta 4 ddot

syms theta1 theta2 d3 theta4

syms m0 m1 m2 m3 m4

syms g

syms l 0 l 1 l 2 l 3 l 4

syms l c0x l c0y l c 0 z l c1x l c1y l c 1 z l c2x l c2y l c 2 z l c3x l c3y

l c 3 z l c4x l c4y l c 4 z

syms I0xx I0yy I0zz I1xx I1yy I1zz I1xy I1yz I1xz I2xx I2yy

I2zz I2xy I2yz I2xz I3xx I3yy I3zz I3xy I3yz I3xz I4xx

I4yy I4zz I4xy I4yz I4xz

%% Generate the robot ’ s k inemat ic model us ing the f o l l o w i n g

DH Table :

% Link a a lpha d t h e t a

% 1 l 1 0 l 0 t h e t a 1

% 2 l 2 p i 0 t h e t a 2

% 3 0 0 d3 0

% 4 0 0 l 4 t h e t a 4

133

B.1. Robot Model Development

% F i r s t genera te the homogeneous t rans format ion matr ices :

A 0 1 = [cos (the ta 1 (t)) , −sin (the ta 1 (t)) , 0 , l 1 ∗cos (

the ta 1 (t)) ;

sin (the ta 1 (t)) , cos (the ta 1 (t)) , 0 , l 1 ∗ sin (

the ta 1 (t)) ;

0 , 0 , 1 , l 0

;

0 , 0 , 0 , 1

;] ;

A 1 2 = [cos (the ta 2 (t)) , sin (the ta 2 (t)) , 0 , l 2 ∗cos (

the ta 2 (t)) ;

sin (the ta 2 (t)) , −cos (the ta 2 (t)) , 0 , l 2 ∗ sin (

the ta 2 (t)) ;

0 , 0 , −1 , 0

;

0 , 0 , 0 , 1

;] ;

A 2 3 = [1 , 0 , 0 , 0

;

0 , 1 , 0 , 0

;

0 , 0 , 1 , d 3 (t)

;

0 , 0 , 0 , 1

;] ;

A 3 4 = [cos (the ta 4 (t)) , −sin (the ta 4 (t)) , 0 , 0

;

sin (the ta 4 (t)) , cos (the ta 4 (t)) , 0 , 0

;

0 , 0 , 1 , l 4

;

0 , 0 , 0 , 1

134

B.1. Robot Model Development

;] ;

A 0 2 = s i m p l i f y (A 0 1∗A 1 2) ;

A 0 3 = s i m p l i f y (A 0 2∗A 2 3) ;

A 0 4 = s i m p l i f y (A 0 3∗A 3 4) ;

%Extrac t the r o t a t i o n matr ices and o t her important i n f o from

trans format ion

%matr ices :

R 0 1 = A 0 1 (1 : 3 , 1 : 3) ;

R 0 2 = A 0 2 (1 : 3 , 1 : 3) ;

R 0 3 = A 0 3 (1 : 3 , 1 : 3) ;

R 0 4 = A 0 4 (1 : 3 , 1 : 3) ;

r 0 1 = A 0 1 (1 : 3 , 4) ;

r 1 2 = R 0 1∗A 1 2 (1 : 3 , 4) ;

r 2 3 = R 0 2∗A 2 3 (1 : 3 , 4) ;

r 3 4 = R 0 3∗A 3 4 (1 : 3 , 4) ;

z 0 1 = R 0 1 (1 : 3 , 3) ;

z 0 2 = R 0 2 (1 : 3 , 3) ;

z 0 3 = R 0 3 (1 : 3 , 3) ;

z 0 4 = R 0 4 (1 : 3 , 3) ;

%Compute the t r a n s l a t i o n a l and r o t a t i o n a l v e l o c i t y v e c t o r s o f

each frame

%using the i t e r a t i v e method :

w 0 = [0 ; 0 ; 0] ;

w 1 = w 0 + the ta 1 do t ∗ [0 ; 0 ; 1] ;

w 2 = w 1 + the ta 2 do t ∗ z 0 1 ;

w 3 = w 2 ;

w 4 = w 3 + the ta 4 do t ∗ z 0 3 ;

p dot 0 = zeros (3 , 1) ;

p dot 1 = p dot 0 + cross (w 1 , r 0 1) ;

135

B.1. Robot Model Development

p dot 2 = p dot 1 + cross (w 2 , r 1 2) ;

p dot 3 = p dot 2 + cross (w 3 , r 2 3) + d 3 dot ∗ z 0 2 ;

= p dot 3 + cross (w 4 , r 3 4) ;

%Set the v e l o c i t i e s e q u a l to zero and s o l v e to f i n e the

t r a n s l a t i o n a l and

%r o t a t i o n a l Jacobian matr ices :

eqns1 = [w 1 (1) ==0, w 1 (2) ==0, w 1 (3) ==0];

vars1 = [t he ta 1 do t] ;

[J 01 , ˜] = equationsToMatrix (eqns1 , vars1) ;

eqns2 = [w 2 (1) ==0, w 2 (2) ==0, w 2 (3) ==0];

vars2 = [theta 1 dot , t h e ta 2 do t] ;

[J 02 , ˜] = equationsToMatrix (eqns2 , vars2) ;

eqns3 = [w 3 (1) ==0, w 3 (2) ==0, w 3 (3) ==0];

vars3 = [theta 1 dot , the ta 2 dot , d 3 dot] ;

[J 03 , ˜] = equationsToMatrix (eqns3 , vars3) ;

eqns4 = [w 4 (1) ==0, w 4 (2) ==0, w 4 (3) ==0];

vars4 = [theta 1 dot , the ta 2 dot , d 3 dot , th e t a 4 do t] ;

[J 04 , ˜] = equationsToMatrix (eqns4 , vars4)

eqns1 = [p dot 1 (1) ==0, p dot 1 (2) ==0, p dot 1 (3) ==0];

vars1 = [t he ta 1 do t] ;

[J P1 , ˜] = equationsToMatrix (eqns1 , vars1) ;

eqns2 = [p dot 2 (1) ==0, p dot 2 (2) ==0, p dot 2 (3) ==0];

vars2 = [theta 1 dot , t h e ta 2 do t] ;

[J P2 , ˜] = equationsToMatrix (eqns2 , vars2) ;

eqns3 = [p dot 3 (1) ==0, p dot 3 (2) ==0, p dot 3 (3) ==0];

vars3 = [theta 1 dot , the ta 2 dot , d 3 dot] ;

[J P3 , ˜] = equationsToMatrix (eqns3 , vars3) ;

eqns4 = [p dot 4 (1) ==0, p dot 4 (2) ==0, p dot 4 (3) ==0];

vars4 = [theta 1 dot , the ta 2 dot , d 3 dot , th e t a 4 do t] ;

[J P4 , ˜] = equationsToMatrix (eqns4 , vars4)

J 4 = [J P4 ; J 04] ;

136

B.1. Robot Model Development

disp (’ Jacobian Computed ’)

toc

%% Generate a dynamic model f o r the ro bo t us ing Lagrange ’ s

Method :

%F i r s t e s t a b l i s h the dynamic parameters :

I c1 = [I1xx 0 0 ;0 I1yy 0 ; 0 0 I1zz] ;

I c2 = [I2xx 0 0 ;0 I2yy 0 ; 0 0 I2zz] ;

I c3 = [I3xx 0 0 ;0 I3yy 0 ; 0 0 I3zz] ;

I c4 = [I4xx 0 0 ;0 I4yy 0 ; 0 0 I4zz] ;

l c 1 wr t0 = R 0 1 ∗ [l c 1x ; l c1y ; l c 1 z] ;

l c 2 wr t0 = R 0 2 ∗ [l c 2x ; l c2y ; l c 2 z] ;

l c 3 wr t0 = R 0 3 ∗ [l c 3x ; l c3y ; l c 3 z] ;

l c 4 wr t0 = R 0 4 ∗ [l c 4x ; l c4y ; l c 4 z] ;

%Next genera te e x p r e s s i o n s f o r the t r a n s l a t i o n a l and

r o t a t i o n a l v e l o c i t i e s ,

%and the p o s i t i o n s o f the c e n t r e s o f masses o f each l i n k :

q1 dot = [the ta 1 do t] ;

q2 dot = [the ta 1 do t ; th e ta 2 do t] ;

q3 dot = [the ta 1 do t ; th e ta 2 do t ; d 3 dot] ;

q4 dot = [the ta 1 do t ; th e ta 2 do t ; d 3 dot ; th e ta 4 do t] ;

vc1 = 0 + cross (J 01 ∗q1 dot , l c 1 wr t0) ;

vc2 = J P1∗ q1 dot + cross (J 02 ∗q2 dot , l c 2 wr t0) ;

vc3 = J P2∗ q2 dot + cross (J 03 ∗q3 dot , l c 3 wr t0) ;

vc4 = J P3∗ q3 dot + cross (J 04 ∗q4 dot , l c 4 wr t0) ;

omega1 = J 01 ∗ q1 dot ;

omega2 = inv (R 0 2) ∗ J 02 ∗ q2 dot ;

omega3 = inv (R 0 3) ∗ J 03 ∗ q3 dot ;

omega4 = inv (R 0 4) ∗ J 04 ∗ q4 dot ;

137

B.1. Robot Model Development

Pc1 = lc1 wr t0 ;

Pc2 = A 0 1 (1 : 3 , 4) + l c2 wr t0 ;

Pc3 = A 0 2 (1 : 3 , 4) + l c3 wr t0 ;

Pc4 = A 0 3 (1 : 3 , 4) + l c4 wr t0 ;

%Use t h e s e to f i n d e x p r e s s i o n s f o r the k i n e t i c and p o t e n t i a l

e n e r g i e s o f

%each l i n k as a f u n c t i o n o f each o f the j o i n t v a r i a b l e s (

which each are

%r e p r e s e n t e d as a f u n c t i o n o f time) :

k1 = 0.5∗m1∗ t ranspose (vc1) ∗vc1 + 0.5∗ t ranspose (omega1) ∗ I c1 ∗
omega1 ;

k2 = 0.5∗m2∗ t ranspose (vc2) ∗vc2 + 0.5∗ t ranspose (omega2) ∗ I c2 ∗
omega2 ;

k3 = 0.5∗m3∗ t ranspose (vc3) ∗vc3 + 0.5∗ t ranspose (omega3) ∗ I c3 ∗
omega3 ;

k4 = 0.5∗m4∗ t ranspose (vc4) ∗vc4 + 0.5∗ t ranspose (omega4) ∗ I c4 ∗
omega4 ;

k = k1+k2+k3+k4 ;

g1 = −m1∗ [0 0 g]∗ Pc1 ;

g2 = −m2∗ [0 0 g]∗ Pc2 ;

g3 = −m3∗ [0 0 g]∗ Pc3 ;

g4 = −m4∗ [0 0 g]∗ Pc4 ;

g = g1+g2+g3+g4 ;

g = s i m p l i f y (g) ;

%Change v a r i a b l e s and d i f f e r e n t i a t e to cont inue Lagrange ’ s

Method :

k = subs (subs (subs (subs (k , theta 1 , theta1) , theta 2 , theta2) , d 3

, d3) , theta 4 , theta4)

g = subs (subs (subs (subs (g , theta 1 , theta1) , theta 2 , theta2) , d 3

, d3) , theta 4 , theta4)

138

B.1. Robot Model Development

dk dtheta dot = [d i f f (k , th e ta 1 do t) ; d i f f (k , th e ta 2 do t) ; d i f f

(k , d 3 dot) ; d i f f (k , th e ta 4 do t)] ;

dk dtheta dot = subs (subs (subs (subs (dk dtheta dot , the ta 1 dot

, d i f f (theta 1 , t)) , the ta 2 dot , d i f f (theta 2 , t)) , d 3 dot ,

d i f f (d 3 , t)) , the ta 4 dot , d i f f (theta 4 , t)) ;

t i m e d e r i v a t i v e d k d t h e t a d o t = d i f f (dk dtheta dot , t) ;

dk dtheta = [d i f f (k , theta1) ; d i f f (k , theta2) ; d i f f (k , d3) ; d i f f (k ,

theta4)] ;

dk dtheta = subs (subs (subs (subs (dk dtheta , theta1 , the ta 1) ,

theta2 , the ta 2) , d3 , d 3) , theta4 , the ta 4) ;

dg dtheta = [d i f f (g , theta1) ; d i f f (g , theta2) ; d i f f (g , d3) ; d i f f (g ,

theta4)] ;

dg dtheta = subs (subs (subs (subs (dg dtheta , theta1 , the ta 1) ,

theta2 , the ta 2) , d3 , d 3) , theta4 , the ta 4) ;

tau = t i m e d e r i v a t i v e d k d t h e t a d o t − dk dtheta + dg dtheta ;

tau = subs (tau , [d i f f (the ta 1 (t) , t , t) , d i f f (the ta 2 (t) , t , t) ,

d i f f (d 3 (t) , t , t) , d i f f (the ta 4 (t) , t , t)] , [theta 1 ddot ,

theta 2 ddot , d 3 ddot , the ta 4 ddot]) ;

tau = s i m p l i f y (tau) ;

tau = subs (tau , [the ta 1 (t) , the ta 2 (t) , d 3 (t) , the ta 4 (t)] , [

theta1 , theta2 , d3 , theta4]) ;

M = tau − subs (tau , [theta 1 ddot , theta 2 ddot , d 3 ddot ,

the ta 4 ddot] , [0 , 0 , 0 , 0])

G = tau − subs (tau , [g] , [0])

G = s i m p l i f y (G) ;

C = tau − M − G

C = s i m p l i f y (C)

M11 = s i m p l i f y ((M(1) − subs (M(1) , theta 1 ddot , 0)) /

the ta 1 ddot) ;

M12 = s i m p l i f y ((M(1) − subs (M(1) , theta 2 ddot , 0)) /

the ta 2 ddot) ;

M13 = s i m p l i f y ((M(1) − subs (M(1) , d 3 ddot , 0)) / d 3 ddot) ;

M14 = s i m p l i f y ((M(1) − subs (M(1) , theta 4 ddot , 0)) /

139

B.1. Robot Model Development

the ta 4 ddot) ;

M21 = s i m p l i f y ((M(2) − subs (M(2) , theta 1 ddot , 0)) /

the ta 1 ddot) ;

M22 = s i m p l i f y ((M(2) − subs (M(2) , theta 2 ddot , 0)) /

the ta 2 ddot) ;

M23 = s i m p l i f y ((M(2) − subs (M(2) , d 3 ddot , 0)) / d 3 ddot) ;

M24 = s i m p l i f y ((M(2) − subs (M(2) , theta 4 ddot , 0)) /

the ta 4 ddot) ;

M31 = s i m p l i f y ((M(3) − subs (M(3) , theta 1 ddot , 0)) /

the ta 1 ddot) ;

M32 = s i m p l i f y ((M(3) − subs (M(3) , theta 2 ddot , 0)) /

the ta 2 ddot) ;

M33 = s i m p l i f y ((M(3) − subs (M(3) , d 3 ddot , 0)) / d 3 ddot) ;

M34 = s i m p l i f y ((M(3) − subs (M(3) , theta 4 ddot , 0)) /

the ta 4 ddot) ;

M41 = s i m p l i f y ((M(4) − subs (M(4) , theta 1 ddot , 0)) /

the ta 1 ddot) ;

M42 = s i m p l i f y ((M(4) − subs (M(4) , theta 2 ddot , 0)) /

the ta 2 ddot) ;

M43 = s i m p l i f y ((M(4) − subs (M(4) , d 3 ddot , 0)) / d 3 ddot) ;

M44 = s i m p l i f y ((M(4) − subs (M(4) , theta 4 ddot , 0)) /

the ta 4 ddot) ;

M matrix = [M11,M12,M13,M14 ;M21,M22,M23,M24 ;M31,M32,M33,M34 ;

M41,M42,M43,M44]

M inv = inv (M matrix)

C11 = s i m p l i f y ((C(1) − subs (C(1) , the ta 1 dot , 0)) / the ta 1 do t)

;

C12 = s i m p l i f y ((C(1) − subs (C(1) , the ta 2 dot , 0)) / the ta 2 do t)

;

C13 = s i m p l i f y ((C(1) − subs (C(1) , d 3 dot , 0)) / d 3 dot) ;

C14 = s i m p l i f y ((C(1) − subs (C(1) , the ta 4 dot , 0)) / the ta 4 do t)

;

C21 = s i m p l i f y ((C(2) − subs (C(2) , the ta 1 dot , 0)) / the ta 1 do t)

;

C22 = s i m p l i f y ((C(2) − subs (C(2) , the ta 2 dot , 0)) / the ta 2 do t)

140

B.2. Position Control Simulation

;

C23 = s i m p l i f y ((C(2) − subs (C(2) , d 3 dot , 0)) / d 3 dot) ;

C24 = s i m p l i f y ((C(2) − subs (C(2) , the ta 4 dot , 0)) / the ta 4 do t)

;

C31 = s i m p l i f y ((C(3) − subs (C(3) , the ta 1 dot , 0)) / the ta 1 do t)

;

C32 = s i m p l i f y ((C(3) − subs (C(3) , the ta 2 dot , 0)) / the ta 2 do t)

;

C33 = s i m p l i f y ((C(3) − subs (C(3) , d 3 dot , 0)) / d 3 dot) ;

C34 = s i m p l i f y ((C(3) − subs (C(3) , the ta 4 dot , 0)) / the ta 4 do t)

;

C41 = s i m p l i f y ((C(4) − subs (C(4) , the ta 1 dot , 0)) / the ta 1 do t)

;

C42 = s i m p l i f y ((C(4) − subs (C(4) , the ta 2 dot , 0)) / the ta 2 do t)

;

C43 = s i m p l i f y ((C(4) − subs (C(4) , d 3 dot , 0)) / d 3 dot) ;

C44 = s i m p l i f y ((C(4) − subs (C(4) , the ta 4 dot , 0)) / the ta 4 do t)

;

C matrix = [C11 , C12 , C13 , C14 ; C21 , C22 , C23 , C24 ; C31 , C32 , C33 , C34 ;

C41 , C42 , C43 , C44]

B.2 Position Control Simulation

t ic

close a l l

%% E s t a b l i s h s i m u l a t i o n parameters us ing the f o l l o w i n g v a l u e s

:

g = −9.8;

l 0 = 0 . 5 ;

l 1 = 0 . 4 ;

l 2 = 0 . 4 ;

l 4 = 0 . 1 5 ;

141

B.2. Position Control Simulation

m1 = 6 . 0 1 ;

m2 = 5 . 3 7 ;

m3 = 4 . 0 3 ;

m4 = 0 . 9 1 ;

I 1 z z = 0 . 1 8 0 7 ;

I 2 z z = 0 . 1 5 5 8 ;

I 3 z z = 0 . 0 0 6 4 ;

I 4 z z = 0 . 0 0 2 5 ;

l c 1 x = −0.185;

l c 2 x = −0.224;

l c 3 x = 0 ;

l c 4 x = 0 ;

l c 1 y = 0 ;

l c 2 y = 0 ;

l c 3 y = 0 ;

l c 4 y = 0 ;

l c 1 z = 0 ;

l c 2 z = 0 ;

l c 3 z = −0.201;

l c 4 z = −0.122;

the ta1uppe r l im i t = pi /2 ;

t h e t a 1 l o w e r l i m i t = −the ta1uppe r l im i t ;

the ta2uppe r l im i t = 7∗pi /8 ;

t h e t a 2 l o w e r l i m i t = −the ta2uppe r l im i t ;

d3upper l imit = 0 . 3 5 ;

d3 l ower l im i t = 0 . 1 ;

the ta4uppe r l im i t = pi ;

t h e t a 4 l o w e r l i m i t = −the ta4uppe r l im i t ;

j o i n t 1 m o t o r l i m i t = 1000 ;

j o i n t 2 m o t o r l i m i t = 1000 ;

j o i n t 3 m o t o r l i m i t = 1000 ;

j o i n t 4 m o t o r l i m i t = 1000 ;

M inv = subs (M inv ,{ g , l0 , l1 , l2 , l4 , m1, m2, m3, m4, I1zz ,

I2zz , I3zz , I4zz , lc1x , lc2x , lc3x , lc4x , lc1y , lc2y , lc3y

142

B.2. Position Control Simulation

, l c 4y } ,{ g , l 0 , l 1 , l 2 , l 4 , m1 , m2 , m3 , m4 ,

I1zz , I2zz , I3zz , I4zz , l c1x , l c2x , l c3x , l c4x ,

l c1y , l c2y , l c3y , l c 4 y }) ;

M = subs (M matrix ,{ g , l0 , l1 , l2 , l4 , m1, m2, m3, m4, I1zz ,

I2zz , I3zz , I4zz , lc1x , lc2x , lc3x , lc4x , lc1y , lc2y , lc3y

, l c4y } ,{ g , l 0 , l 1 , l 2 , l 4 , m1 , m2 , m3 , m4 ,

I1zz , I2zz , I3zz , I4zz , l c1x , l c2x , l c3x , l c4x ,

l c1y , l c2y , l c3y , l c 4 y }) ;

C = subs (C matrix ,{ g , l0 , l1 , l2 , l4 , m1, m2, m3, m4, I1zz ,

I2zz , I3zz , I4zz , lc1x , lc2x , lc3x , lc4x , lc1y , lc2y , lc3y

, l c4y } ,{ g , l 0 , l 1 , l 2 , l 4 , m1 , m2 , m3 , m4 ,

I1zz , I2zz , I3zz , I4zz , l c1x , l c2x , l c3x , l c4x ,

l c1y , l c2y , l c3y , l c 4 y }) ;

G = subs (G,{ g , l0 , l1 , l2 , l4 , m1, m2, m3, m4, I1zz , I2zz ,

I3zz , I4zz , lc1x , lc2x , lc3x , lc4x , lc1y , lc2y , lc3y , l c4y

} ,{ g , l 0 , l 1 , l 2 , l 4 , m1 , m2 , m3 , m4 , I1zz ,

I2zz , I3zz , I4zz , l c1x , l c2x , l c3x , l c4x , l c1y ,

l c2y , l c3y , l c 4 y }) ;

%% F i r s t we p l o t the workspace o f the rob o t

zz1 = [] ;

zz2 = [] ;

n = 50 ;

co rne r r = sqrt ((l 1 ∗cos (the ta1upper l im i t) + l 2 ∗cos (

the ta1uppe r l im i t+the ta2upper l im i t)) ˆ2 + (l 1 ∗ sin (

the ta1uppe r l im i t) + l 2 ∗ sin (the ta1upper l im i t+

the ta2uppe r l im i t)) ˆ2) ;

co rne rang l e = acos (l 1 ∗cos (the ta1upper l im i t) + l 2 ∗cos (

the ta1uppe r l im i t+the ta2upper l im i t) / co rne r r) ;

s u r f a c e 1 t h e t a = t h e t a 1 l o w e r l i m i t : (theta1upper l imi t −
t h e t a 1 l o w e r l i m i t) /n : the ta1upper l im i t ;

s u r f a c e 1 r = co rne r r : ((l 1 + l 2)−co rne r r) /n : l 1 + l 2 ;

143

B.2. Position Control Simulation

xx2 = zeros (n+1,n+1) ;

yy2 = zeros (n+1,n+1) ;

for i = 1 : n+1

angle1 = the ta1upper l im i t + (co rne rang l e −
the ta1uppe r l im i t) ∗(i −1)/n ;

ang le2 = (co rne rang l e − the ta1uppe r l im i t) ∗(i −1)/n ;

rad iu s = sqrt ((l 1 ∗cos (ang le2)) ˆ2 − l 1 ˆ2 +l 2 ˆ2) + l 1 ∗
cos (ang le2) ;

for j = 1 : n+1

t h i c k n e s s = (n+1− j) /n ;

xx2 (i , j) = (co rne r r +(radius−co rne r r) ∗ t h i c k n e s s) ∗cos (

ang le1) ;

yy2 (i , j) = (co rne r r +(radius−co rne r r) ∗ t h i c k n e s s) ∗ sin (

ang le1) ;

end

end

xx3 = zeros (n+1,n+1) ;

yy3 = zeros (n+1,n+1) ;

for i = 1 : n+1

angle1 = t h e t a 1 l o w e r l i m i t + (− co rne rang l e −
t h e t a 1 l o w e r l i m i t) ∗(i −1)/n ;

ang le2 = (− co rne rang l e − t h e t a 1 l o w e r l i m i t) ∗(i −1)/n ;

rad iu s = sqrt ((l 1 ∗cos (ang le2)) ˆ2 − l 1 ˆ2 +l 2 ˆ2) + l 1 ∗
cos (ang le2) ;

for j = 1 : n+1

t h i c k n e s s = (n+1− j) /n ;

xx3 (i , j) = (co rne r r +(radius−co rne r r) ∗ t h i c k n e s s) ∗cos (

ang le1) ;

yy3 (i , j) = (co rne r r +(radius−co rne r r) ∗ t h i c k n e s s) ∗ sin (

ang le1) ;

end

end

[thetatheta , r r] = meshgrid ([s u r f a c e 1 t h e t a] , [s u r f a c e 1 r]) ;

144

B.2. Position Control Simulation

xx1 = r r .∗ cos (the ta the ta) ;

yy1 = r r .∗ sin (the ta the ta) ;

z4 = l 0 − l 4 − d3upper l imit : (d3upper l imit − d3 lower l im i t) /

n : l 0 − l 4 − d3 lower l im i t ;

x4 = (l 1 +l 2) ∗cos (s u r f a c e 1 t h e t a) ;

y4 = (l 1 +l 2) ∗ sin (s u r f a c e 1 t h e t a) ;

yy4 = [] ;

for i = 1 : n+1

yy4 = [yy4 ; y4] ;

end

[xx4 , zz4] = meshgrid ([x4] , [z4]) ;

z5 = l 0 − l 4 − d3upper l imit : (d3upper l imit − d3 lower l im i t) /

n : l 0 − l 4 − d3 lower l im i t ;

x5 = l 1 ∗cos (the ta1upper l im i t) + l 2 ∗cos (the ta1upper l im i t :

the ta2uppe r l im i t /n : the ta1upper l im i t+the ta2upper l im i t) ;

y5 = l 1 ∗ sin (the ta1upper l im i t) + l 2 ∗ sin (the ta1upper l im i t :

the ta2uppe r l im i t /n : the ta1upper l im i t+the ta2upper l im i t) ;

yy5 = [] ;

for i = 1 : n+1

yy5 = [yy5 ; y5] ;

end

[xx5 , zz5] = meshgrid ([x5] , [z5]) ;

z6 = l 0 − l 4 − d3upper l imit : (d3upper l imit − d3 lower l im i t) /

n : l 0 − l 4 − d3 lower l im i t ;

x6 = l 1 ∗cos (t h e t a 1 l o w e r l i m i t) + l 2 ∗cos (t h e t a 1 l o w e r l i m i t :

t h e t a 2 l o w e r l i m i t /n : t h e t a 1 l o w e r l i m i t+t h e t a 2 l o w e r l i m i t) ;

y6 = l 1 ∗ sin (t h e t a 1 l o w e r l i m i t) + l 2 ∗ sin (t h e t a 1 l o w e r l i m i t :

t h e t a 2 l o w e r l i m i t /n : t h e t a 1 l o w e r l i m i t+t h e t a 2 l o w e r l i m i t) ;

145

B.2. Position Control Simulation

yy6 = [] ;

for i = 1 : n+1

yy6 = [yy6 ; y6] ;

end

[xx6 , zz6] = meshgrid ([x6] , [z6]) ;

z7 = l 0 − l 4 − d3upper l imit : (d3upper l imit − d3 lower l im i t) /

n : l 0 − l 4 − d3 lower l im i t ;

x7 = (co rne r r) ∗cos (linspace(−cornerang le , cornerang le , n+1)) ;

y7 = (co rne r r) ∗ sin (linspace(−cornerang le , cornerang le , n+1)) ;

yy7 = [] ;

for i = 1 : n+1

yy7 = [yy7 ; y7] ;

end

[xx7 , zz7] = meshgrid ([x7] , [z7]) ;

grey = [0 . 1 , 0 . 1 , 0 . 1] ;

for i = 1 : n+1

zzz = [] ;

for j = 1 : n+1

zzz = [zzz , l 0 − l 4 − d3 lower l im i t] ;

end

zz1 = [zz1 ; zzz] ;

end

for i = 1 : n+1

zzz = [] ;

for j = 1 : n+1

zzz = [zzz , l 0 − l 4 − d3upper l imit] ;

end

zz2 = [zz2 ; zzz] ;

end

146

B.2. Position Control Simulation

f igure (1)

surf (xx1 , yy1 , zz1 , ’ FaceColor ’ , grey , ’ FaceAlpha ’ , . 1 , ’ EdgeColor ’ ,

’ none ’) ;

get (gcf , ’ Renderer ’) ;

hold on

surf (xx1 , yy1 , zz2 , ’ FaceColor ’ , grey , ’ FaceAlpha ’ , . 1 , ’ EdgeColor ’ ,

’ none ’) ;

get (gcf , ’ Renderer ’) ;

hold on

surf (xx2 , yy2 , zz1 , ’ FaceColor ’ , grey , ’ FaceAlpha ’ , . 1 , ’ EdgeColor ’ ,

’ none ’) ;

get (gcf , ’ Renderer ’) ;

hold on

surf (xx2 , yy2 , zz2 , ’ FaceColor ’ , grey , ’ FaceAlpha ’ , . 1 , ’ EdgeColor ’ ,

’ none ’) ;

get (gcf , ’ Renderer ’) ;

hold on

surf (xx3 , yy3 , zz1 , ’ FaceColor ’ , grey , ’ FaceAlpha ’ , . 1 , ’ EdgeColor ’ ,

’ none ’) ;

get (gcf , ’ Renderer ’) ;

hold on

surf (xx3 , yy3 , zz2 , ’ FaceColor ’ , grey , ’ FaceAlpha ’ , . 1 , ’ EdgeColor ’ ,

’ none ’) ;

get (gcf , ’ Renderer ’) ;

hold on

surf (xx4 , yy4 , zz4 , ’ FaceColor ’ , grey , ’ FaceAlpha ’ , . 1 , ’ EdgeColor ’ ,

’ none ’) ;

get (gcf , ’ Renderer ’) ;

hold on

surf (xx4 , yy4 , zz4 , ’ FaceColor ’ , grey , ’ FaceAlpha ’ , . 1 , ’ EdgeColor ’ ,

’ none ’) ;

get (gcf , ’ Renderer ’) ;

hold on

surf (xx5 , yy5 , zz5 , ’ FaceColor ’ , grey , ’ FaceAlpha ’ , . 1 , ’ EdgeColor ’ ,

’ none ’) ;

get (gcf , ’ Renderer ’) ;

hold on

147

B.2. Position Control Simulation

surf (xx5 , yy5 , zz5 , ’ FaceColor ’ , grey , ’ FaceAlpha ’ , . 1 , ’ EdgeColor ’ ,

’ none ’) ;

get (gcf , ’ Renderer ’) ;

hold on

surf (xx6 , yy6 , zz6 , ’ FaceColor ’ , grey , ’ FaceAlpha ’ , . 1 , ’ EdgeColor ’ ,

’ none ’) ;

get (gcf , ’ Renderer ’) ;

hold on

surf (xx6 , yy6 , zz6 , ’ FaceColor ’ , grey , ’ FaceAlpha ’ , . 1 , ’ EdgeColor ’ ,

’ none ’) ;

get (gcf , ’ Renderer ’) ;

hold on

plot3 (x4 , y4 , linspace (l 0 − l 4 − d3upper l imit , l 0 − l 4 −
d3upper l imit , n+1) , ’ b lack ’)

hold on

plot3 (x4 , y4 , linspace (l 0 − l 4 − d3 lower l imi t , l 0 − l 4 −
d3 lower l imi t , n+1) , ’ b lack ’)

hold on

plot3 (x5 , y5 , linspace (l 0 − l 4 − d3upper l imit , l 0 − l 4 −
d3upper l imit , n+1) , ’ b lack ’)

hold on

plot3 (x5 , y5 , linspace (l 0 − l 4 − d3 lower l imi t , l 0 − l 4 −
d3 lower l imi t , n+1) , ’ b lack ’)

hold on

plot3 (x6 , y6 , linspace (l 0 − l 4 − d3upper l imit , l 0 − l 4 −
d3upper l imit , n+1) , ’ b lack ’)

hold on

plot3 (x6 , y6 , linspace (l 0 − l 4 − d3 lower l imi t , l 0 − l 4 −
d3 lower l imi t , n+1) , ’ b lack ’)

hold on

plot3 (x7 , y7 , linspace (l 0 − l 4 − d3upper l imit , l 0 − l 4 −
d3upper l imit , n+1) , ’ b lack ’)

hold on

plot3 (x7 , y7 , linspace (l 0 − l 4 − d3 lower l imi t , l 0 − l 4 −
d3 lower l imi t , n+1) , ’ b lack ’)

hold on

plot3 ([c o rne r r ∗cos (co rne rang l e) , c o rne r r ∗cos (co rne rang l e)] , [

148

B.2. Position Control Simulation

co rne r r ∗ sin (co rne rang l e) , c o rne r r ∗ sin (co rne rang l e)] ,

linspace (l 0 − l 4 − d3 lower l imi t , l 0 − l 4 − d3upper l imit

, 2) , ’ b lack ’)

hold on

plot3 ([c o rne r r ∗cos(− co rne rang l e) , c o rne r r ∗cos(− co rne rang l e)] , [

c o rne r r ∗ sin(− co rne rang l e) , c o rne r r ∗ sin(− co rne rang l e)] ,

linspace (l 0 − l 4 − d3 lower l imi t , l 0 − l 4 − d3upper l imit

, 2) , ’ b lack ’)

hold on

f igure (5)

surf (xx1 , yy1 , zz1 , ’ FaceColor ’ , grey , ’ FaceAlpha ’ , . 1 , ’ EdgeColor ’ ,

’ none ’) ;

get (gcf , ’ Renderer ’) ;

hold on

surf (xx1 , yy1 , zz2 , ’ FaceColor ’ , grey , ’ FaceAlpha ’ , . 1 , ’ EdgeColor ’ ,

’ none ’) ;

get (gcf , ’ Renderer ’) ;

hold on

surf (xx2 , yy2 , zz1 , ’ FaceColor ’ , grey , ’ FaceAlpha ’ , . 1 , ’ EdgeColor ’ ,

’ none ’) ;

get (gcf , ’ Renderer ’) ;

hold on

surf (xx2 , yy2 , zz2 , ’ FaceColor ’ , grey , ’ FaceAlpha ’ , . 1 , ’ EdgeColor ’ ,

’ none ’) ;

get (gcf , ’ Renderer ’) ;

hold on

surf (xx3 , yy3 , zz1 , ’ FaceColor ’ , grey , ’ FaceAlpha ’ , . 1 , ’ EdgeColor ’ ,

’ none ’) ;

get (gcf , ’ Renderer ’) ;

hold on

surf (xx3 , yy3 , zz2 , ’ FaceColor ’ , grey , ’ FaceAlpha ’ , . 1 , ’ EdgeColor ’ ,

’ none ’) ;

get (gcf , ’ Renderer ’) ;

hold on

surf (xx4 , yy4 , zz4 , ’ FaceColor ’ , grey , ’ FaceAlpha ’ , . 1 , ’ EdgeColor ’ ,

’ none ’) ;

149

B.2. Position Control Simulation

get (gcf , ’ Renderer ’) ;

hold on

surf (xx4 , yy4 , zz4 , ’ FaceColor ’ , grey , ’ FaceAlpha ’ , . 1 , ’ EdgeColor ’ ,

’ none ’) ;

get (gcf , ’ Renderer ’) ;

hold on

surf (xx5 , yy5 , zz5 , ’ FaceColor ’ , grey , ’ FaceAlpha ’ , . 1 , ’ EdgeColor ’ ,

’ none ’) ;

get (gcf , ’ Renderer ’) ;

hold on

surf (xx5 , yy5 , zz5 , ’ FaceColor ’ , grey , ’ FaceAlpha ’ , . 1 , ’ EdgeColor ’ ,

’ none ’) ;

get (gcf , ’ Renderer ’) ;

hold on

surf (xx6 , yy6 , zz6 , ’ FaceColor ’ , grey , ’ FaceAlpha ’ , . 1 , ’ EdgeColor ’ ,

’ none ’) ;

get (gcf , ’ Renderer ’) ;

hold on

surf (xx6 , yy6 , zz6 , ’ FaceColor ’ , grey , ’ FaceAlpha ’ , . 1 , ’ EdgeColor ’ ,

’ none ’) ;

get (gcf , ’ Renderer ’) ;

hold on

plot3 (x4 , y4 , linspace (l 0 − l 4 − d3upper l imit , l 0 − l 4 −
d3upper l imit , n+1) , ’ b lack ’)

hold on

plot3 (x4 , y4 , linspace (l 0 − l 4 − d3 lower l imi t , l 0 − l 4 −
d3 lower l imi t , n+1) , ’ b lack ’)

hold on

plot3 (x5 , y5 , linspace (l 0 − l 4 − d3upper l imit , l 0 − l 4 −
d3upper l imit , n+1) , ’ b lack ’)

hold on

plot3 (x5 , y5 , linspace (l 0 − l 4 − d3 lower l imi t , l 0 − l 4 −
d3 lower l imi t , n+1) , ’ b lack ’)

hold on

plot3 (x6 , y6 , linspace (l 0 − l 4 − d3upper l imit , l 0 − l 4 −
d3upper l imit , n+1) , ’ b lack ’)

hold on

150

B.2. Position Control Simulation

plot3 (x6 , y6 , linspace (l 0 − l 4 − d3 lower l imi t , l 0 − l 4 −
d3 lower l imi t , n+1) , ’ b lack ’)

hold on

plot3 (x7 , y7 , linspace (l 0 − l 4 − d3upper l imit , l 0 − l 4 −
d3upper l imit , n+1) , ’ b lack ’)

hold on

plot3 (x7 , y7 , linspace (l 0 − l 4 − d3 lower l imi t , l 0 − l 4 −
d3 lower l imi t , n+1) , ’ b lack ’)

hold on

plot3 ([c o rne r r ∗cos (co rne rang l e) , c o rne r r ∗cos (co rne rang l e)] , [

c o rne r r ∗ sin (co rne rang l e) , c o rne r r ∗ sin (co rne rang l e)] ,

linspace (l 0 − l 4 − d3 lower l imi t , l 0 − l 4 − d3upper l imit

, 2) , ’ b lack ’)

hold on

plot3 ([c o rne r r ∗cos(− co rne rang l e) , c o rne r r ∗cos(− co rne rang l e)] , [

c o rne r r ∗ sin(− co rne rang l e) , c o rne r r ∗ sin(− co rne rang l e)] ,

linspace (l 0 − l 4 − d3 lower l imi t , l 0 − l 4 − d3upper l imit

, 2) , ’ b lack ’)

hold on

%% Generate and p l o t the non−r i g i d s u r f a c e (nrs) t h a t the

ro bo t w i l l i n t e r a c t wi th

nrs ymax = 0 . 4 ;

nrs ymin = −0.4;

nrs xmax = 0 . 6 ;

nrs xmin = 0 . 2 ;

n r s zba s e = 0 . 1 3 ;

n r s s t i f f n e s s = 10000;

n r s f r i c t i o n c o e f f i c i e n t = 0 . 2 ;

n r s x = linspace (nrs xmin , nrs xmax , n+1) ;

nr s y = linspace (nrs ymin , nrs ymax , n+1) ;

n r s z z = [] ;

151

B.2. Position Control Simulation

for i = 1 : n+1

n r s z = [] ;

for j = 1 : n+1

n r s z = [nrs z , n r s zba s e] ;

end

n r s z z = [n r s z z ; n r s z] ;

end

[nrs xx , nrs yy] = meshgrid ([n r s x] , [n r s y]) ;

%% Plot the r e a c t i o n s u r f a c e

% f i g u r e (1)

% s u r f (nrs xx , nrs yy , n r s z z , ’ FaceColor ’ , [1 , 1 , 0] , ’ FaceAlpha

’ , . 8 , ’ EdgeColor ’ , ’ none ’) ;

% g e t (gc f , ’ Renderer ’) ;

% ho ld on

% p l o t 3 (nrs x , l i n s p a c e (nrs ymax , nrs ymax , n+1) , n r s z z (n+1 ,:) , ’

b lack ’)

% ho ld on

% p l o t 3 (nrs x , l i n s p a c e (nrs ymin , nrs ymin , n+1) , n r s z z (1 , :) , ’

b lack ’)

% ho ld on

% p l o t 3 (l i n s p a c e (nrs xmax , nrs xmax , n+1) , nrs y , n r s z z (: , n+1) , ’

b lack ’)

% ho ld on

% p l o t 3 (l i n s p a c e (nrs xmin , nrs xmin , n+1) , nrs y , n r s z z (: , 1) , ’

b lack ’)

% ho ld on

%% Generate the d e s i r e d t r a j e c t o r y and the corresponding

j o i n t ang l e t i m e s e r i e s us ing the i n v e r s e k inematics , as

w e l l as the d e s i r e d normal and f r i c t i o n f o r c e s :

t r i a l t i m e = 10 ;

s t e p s i z e = 0 . 0 0 5 ;

152

B.2. Position Control Simulation

x d = [] ;

y d = [] ;

z d = [] ;

zo d = [] ;

the ta 1 d = [] ;

the ta 2 d = [] ;

the ta 1 d1 = [] ;

the ta 2 d1 = [] ;

the ta 4 d1 = [] ;

the ta 1 d2 = [] ;

the ta 2 d2 = [] ;

the ta 4 d2 = [] ;

d 3 d = [] ;

z base = [] ;

the ta 4 d = [] ;

f normal d = [] ;

f f r i c t i o n d = [] ;

t = [] ;

DOFs = [] ;

spline = [] ;

for i = 0 : s t e p s i z e : t r i a l t i m e − s t e p s i z e

t = [t ; i] ;

j = i / t r i a l t i m e ;

% Line from s t a r t i n g p o s i t i o n to s u r f a c e

% x d = l 1 + l 2 − j ∗(l 1 + l 2 − (nrs xmin + nrs xmax)

/2) ;

% y d = j ∗(nrs ymin + 0.1∗ (nrs ymax − nrs ymin)) ;

% z d = l 0 − l 4 − d 3 l o w e r l i m i t − j ∗(l 0 − l 4 −
d 3 l o w e r l i m i t − n r s z z (n/10 ,n/2)) ;

% S q u i g g l e w i t h i n s i n g l e area

% x d = 0.5 + j ∗0 . 2 ;

% y d = −0.2 + j ∗0 . 4 ;

% z d = 0.05 + j ∗0.15 + 0.025∗ s i n (j ∗10∗ p i) ;

% S q u i g g l e w i t h i n two areas

% x d = 0.1 + j ∗0 . 4 ;

% y d = −0.4 + j ∗0 . 6 ;

153

B.2. Position Control Simulation

% z d = 0.05 + j ∗0.15 + 0.025∗ s i n (j ∗10∗ p i) ;

% S q u i g g l e w i t h i n t h r e e areas

% x d = 0 . 2 5 ;

% y d = −0.4 + j ∗0 . 8 ;

% z d = 0.05 + j ∗0.15 + 0.025∗ s i n (j ∗10∗ p i) ;

% NRS t e s t l i n e

% x d = 0 . 5 ;

% y d = −0.2 + j ∗0 . 4 ;

% z d = 0.08 + 0.025∗ s i n (j ∗10∗ p i) ;

% P o s i t i o n Only C o n t r o l l e r Test Line ;

x d = 0 .8 − 0 .4∗ j − 0 .05∗ sin (j ∗4∗pi) ;

y d = −0.2∗ j + 0 .15∗ sin (j ∗1 .5∗ pi) ;

z d = 0.25 − 0 .1∗ j − 0 .005∗ sin (j ∗15∗pi) ;

spline = [spline ; x d y d z d] ;

zo d = 0 ;

x d = [x d ; x d] ;

y d = [y d ; y d] ;

z d = [z d ; z d] ;

zo d = [zo d ; zo d] ;

t h e t a 2 d 1 = acos ((x d ˆ2 + y d ˆ2 − l 1 ˆ2 − l 2 ˆ2) /(2∗
l 1 ∗ l 2)) ;

t h e t a 2 d 2 = −acos ((x d ˆ2 + y d ˆ2 − l 1 ˆ2 − l 2 ˆ2) /(2∗
l 1 ∗ l 2)) ;

t h e t a 1 d 1 = atan2 (y d , x d) − asin (l 2 ∗ sin (t h e t a 2 d 1

) /(sqrt (x d ˆ2 + y d ˆ2))) ;

t h e t a 1 d 2 = atan2 (y d , x d) − asin (l 2 ∗ sin (t h e t a 2 d 2

) /(sqrt (x d ˆ2 + y d ˆ2))) ;

d 3 d = −z d + l 0 − l 4 ;

t h e t a 4 d 1 = zo d − t h e t a 1 d 1 − t h e t a 2 d 1 ;

t h e t a 4 d 2 = zo d − t h e t a 1 d 2 − t h e t a 2 d 2 ;

the ta 2 d1check = or (t h e t a 2 d 1 < the ta2 l ower l im i t ,

t h e t a 2 d 1 > the ta2uppe r l im i t) ;

the ta 2 d2check = or (t h e t a 2 d 2 < the ta2 l ower l im i t ,

t h e t a 2 d 2 > the ta2uppe r l im i t) ;

the ta 1 d1check = or (t h e t a 1 d 1 < the ta1 l ower l im i t ,

t h e t a 1 d 1 > the ta1uppe r l im i t) ;

the ta 1 d2check = or (t h e t a 1 d 2 < the ta1 l ower l im i t ,

154

B.2. Position Control Simulation

t h e t a 1 d 2 > the ta1uppe r l im i t) ;

i f or (theta 2 d1check , the ta 1 d1check) == 0

i f or (theta 2 d2check , the ta 1 d2check) == 0

DOFs = [DOFs ; 2] ;

t h e t a 1 d = t h e t a 1 d 1 ;

t h e t a 2 d = t h e t a 2 d 1 ;

t h e t a 4 d = t h e t a 4 d 1 ;

else

DOFs = [DOFs ; 1 . 1] ;

t h e t a 1 d = t h e t a 1 d 1 ;

t h e t a 2 d = t h e t a 2 d 1 ;

t h e t a 4 d = t h e t a 4 d 1 ;

end

else

i f or (theta 2 d2check , the ta 1 d2check) == 0

DOFs = [DOFs ; 1 . 2] ;

t h e t a 1 d = t h e t a 1 d 2 ;

t h e t a 2 d = t h e t a 2 d 2 ;

t h e t a 4 d = t h e t a 4 d 2 ;

else

DOFs = [DOFs ; 0] ;

t h e t a 1 d = t h e t a 1 d 1 ;

t h e t a 2 d = t h e t a 2 d 1 ;

t h e t a 4 d = t h e t a 4 d 1 ;

end

end

the ta 1 d = [the ta 1 d ; t h e t a 1 d] ;

the ta 2 d = [the ta 2 d ; t h e t a 2 d] ;

the ta 4 d = [the ta 4 d ; t h e t a 4 d] ;

the ta 1 d1 = [the ta 1 d1 ; t h e t a 1 d 1] ;

the ta 2 d1 = [the ta 2 d1 ; t h e t a 2 d 1] ;

the ta 4 d1 = [the ta 4 d1 ; t h e t a 4 d 1] ;

the ta 1 d2 = [the ta 1 d2 ; t h e t a 1 d 2] ;

the ta 2 d2 = [the ta 2 d2 ; t h e t a 2 d 2] ;

the ta 4 d2 = [the ta 4 d2 ; t h e t a 4 d 2] ;

d 3 d = [d 3 d ; d 3 d] ;

z base = [z base ; l 0 − l 4 − nr s zba s e] ;

155

B.2. Position Control Simulation

f normal d = [f normal d ; 1 0 0] ;

f f r i c t i o n d = [f f r i c t i o n d ; 2 0] ;

end

i f sum(DOFs == 0) > 0

disp (’The d e s i r e d t r a j e c t o r y i s not f u l l y enc l o s ed in the

reachab l e workspace ’)

else

i f and (sum(DOFs == 1 . 1) > 0 ,sum(DOFs == 1 . 2) > 0)

disp (’The d e s i r e d t r a j e c t o r y has at l e a s t one

i n f l e c t i o n po int ’)

else

i f sum(DOFs == 1 . 1) > 0

the ta 1 d = the ta 1 d1 ;

the ta 2 d = the ta 2 d1 ;

end

i f sum(DOFs == 1 . 2) > 0

the ta 1 d = the ta 1 d2 ;

the ta 2 d = the ta 2 d2 ;

end

end

end

figure (2)

subplot (4 , 2 , 1)

plot (t , the ta 1 d)

xlabel (’Time (seconds) ’)

ylabel (’ \ the ta 1 (rad ians) ’)

t i t l e (’ Des i red and Actual Angle f o r Jo int 1 ’)

legend (’ Des i red Angle ’)

hold on

subplot (4 , 2 , 3)

plot (t , the ta 2 d)

xlabel (’Time (seconds) ’)

ylabel (’ \ the ta 2 (rad ians) ’)

t i t l e (’ Des i red and Actual Angle f o r Jo int 2 ’)

156

B.2. Position Control Simulation

legend (’ Des i red Angle ’)

hold on

subplot (4 , 2 , 5)

plot (t , d 3 d)

xlabel (’Time (seconds) ’)

ylabel (’ d 3 (metres) ’)

t i t l e (’ Des i red and Actual Pos i t i on f o r Jo int 3 ’)

legend (’ Des i red Pos i t i on ’)

hold on

subplot (4 , 2 , 7)

plot (t , the ta 4 d)

xlabel (’Time (seconds) ’)

ylabel (’ \ the ta 4 (rad ians) ’)

t i t l e (’ Des i red and Actual Angle f o r Jo int 4 ’)

legend (’ Des i red Angle ’)

hold on

the ta 1 d = [t , the ta 1 d] ;

the ta 2 d = [t , the ta 2 d] ;

d 3 d = [t , d 3 d] ;

the ta 4 d = [t , the ta 4 d] ;

f igure (1)

plot3 (x d , y d , z d , ’ c o l o r ’ , ’ b lack ’ , ’ l i n ew id th ’ , 2) ;

hold on

%% E s t a b l i s h the t i m e s e r i e s o f e x t e r n a l f o r c e s / t o r q u e s

a p p l i e d to the end e f f e c t o r %%

f e x t = [] ;

for i = 0 : s t e p s i z e : t r i a l t i m e − s t e p s i z e

j = i / t r i a l t i m e ;

i f i > t r i a l t i m e /2

f e x t = [f e x t ; i , 0 , 0 , 0 , 0 , 0 , 0] ;

157

B.2. Position Control Simulation

else

f e x t = [f e x t ; i , 0 , 0 , 0 , 0 , 0 , 0] ;

end

end

%% Run the s i m u l a t i o n and p l o t the r e s u l t s

Kp = [1 3 4 7 . 9 4 ; 2 7 1 . 2 2 ; 1 1 9 2 . 9 ; 0 . 6 0 5] ;

Kd = [1 5 0 . 3 9 ; 3 0 . 2 6 ; 1 3 3 . 1 ; 0 . 0 6 7 5] ;

Ki = [4 0 1 0 . 4 ; 8 0 6 . 9 ; 354 9 . 0 3 ; 1 . 8] ;

sim (’ RobotSimDecentralizedPID ’)

sim (’ RobotSimscapeDecentral izedPID ’)

t = [] ;

c o l o r = jet (1+ round(t r i a l t i m e / s t e p s i z e)) ;

x = [] ;

y = [] ;

z = [] ;

e r r o r x = [] ;

e r r o r y = [] ;

e r r o r z = [] ;

for i = 0 : s t e p s i z e : t r i a l t i m e − s t e p s i z e

t = [t ; i] ;

j = round(i / s t e p s i z e) ;

x = [x ; l 1 ∗cos (the ta out (j +1 ,1)) + l 2 ∗cos (the ta out (j

+1 ,1) + the ta out (j +1 ,2))] ;

y = [y ; l 1 ∗ sin (the ta out (j +1 ,1)) + l 2 ∗ sin (the ta out (j

+1 ,1) + the ta out (j +1 ,2))] ;

z = [z ; l 0 − l 4 − the ta out (j +1 ,3)] ;

e r r o r x = [e r r o r x ; x d (j +1) − x (length (x))] ;

e r r o r y = [e r r o r y ; y d (j +1) − y (length (y))] ;

e r r o r z = [e r r o r z ; z d (j +1) − z (length (z))] ;

plot3 ([l 1 ∗cos (the ta out (j +1 ,1)) + l 2 ∗cos (the ta out (j

158

B.2. Position Control Simulation

+1 ,1) + theta out (j +1 ,2)) , l 1 ∗cos (the ta out (j +2 ,1)) +

l 2 ∗cos (the ta out (j +2 ,1) + the ta out (j +2 ,2))] , [l 1 ∗
sin (the ta out (j +1 ,1)) + l 2 ∗ sin (the ta out (j +1 ,1) +

theta out (j +1 ,2)) , l 1 ∗ sin (the ta out (j +2 ,1)) + l 2 ∗ sin (

the ta out (j +2 ,1) + the ta out (j +2 ,2))] , [l 0 − l 4 −
the ta out (j +1 ,3) , l 0 − l 4 − the ta out (j +2 ,3)] , ’ c o l o r ’

, c o l o r (j +1 , :) , ’ l i n ew id th ’ , 3)

%s c a t t e r 3 (l 1 ∗ cos (t h e t a o u t (j +1 ,1)) + l 2 ∗ cos (t h e t a o u t (j

+1 ,1) + t h e t a o u t (j +1 ,2)) , l 1 ∗ s i n (t h e t a o u t (j +1 ,1)) +

l 2 ∗ s i n (t h e t a o u t (j +1 ,1) + t h e t a o u t (j +1 ,2)) , l 0 − l 4

− t h e t a o u t (j +1 ,3) ,10 , c o l o r (j +1 ,:) , ’ f i l l e d ’) ;

hold on

end

e r r o r 1 = [] ;

e r r o r 2 = [] ;

e r r o r 3 = [] ;

e r r o r 4 = [] ;

e r r o r 1 s i m s c a p e = [] ;

e r r o r 2 s i m s c a p e = [] ;

e r r o r 3 s i m s c a p e = [] ;

e r r o r 4 s i m s c a p e = [] ;

for i = 1 : 1 : length (the ta out (: , 1))−1

e r r o r 1 = [e r r o r 1 ; the ta out (i +1 ,1) − the ta 1 d (i , 2)] ;

e r r o r 2 = [e r r o r 2 ; the ta out (i +1 ,2) − the ta 2 d (i , 2)] ;

e r r o r 3 = [e r r o r 3 ; the ta out (i +1 ,3) − d 3 d (i , 2)] ;

e r r o r 4 = [e r r o r 4 ; the ta out (i +1 ,4) − the ta 4 d (i , 2)] ;

end

for i = 1 : 1 : length (the ta out s imscape (: , 1))−1

e r r o r 1 s i m s c a p e = [e r r o r 1 s i m s c a p e ; the ta out s imscape (

i +1 ,1) − the ta 1 d (i , 2)] ;

e r r o r 2 s i m s c a p e = [e r r o r 2 s i m s c a p e ; the ta out s imscape (

i +1 ,2) − the ta 2 d (i , 2)] ;

e r r o r 3 s i m s c a p e = [e r r o r 3 s i m s c a p e ; the ta out s imscape (

i +1 ,3) − d 3 d (i , 2)] ;

159

B.2. Position Control Simulation

e r r o r 4 s i m s c a p e = [e r r o r 4 s i m s c a p e ; the ta out s imscape (

i +1 ,4) − the ta 4 d (i , 2)] ;

end

s c a t t e r 3 (x (1) , y (1) , z (1) ,50 , c o l o r (1 , :) , ’ d ’ , ’ f i l l e d ’ , ’

markeredgeco lor ’ , ’w ’)

s c a t t e r 3 (x (round(t r i a l t i m e / s t e p s i z e)) , y (round(t r i a l t i m e /

s t e p s i z e)) , z (round(t r i a l t i m e / s t e p s i z e)) ,50 , c o l o r (round(

t r i a l t i m e / s t e p s i z e) , :) , ’ d ’ , ’ f i l l e d ’ , ’ markeredgeco lor ’ , ’w ’

)

set (gca , ’ DataAspectRatio ’ , [1 1 1])

set (gcf , ’ Po s i t i on ’ , [150 50 1250 9 0 0])

hold o f f

t2 = [t ; t r i a l t i m e] ;

f igure (2)

subplot (4 , 2 , 1)

plot (t2 , the ta out (: , 1))

legend (’ Des i red Angle ’ , ’ Actual Angle ’)

subplot (4 , 2 , 3)

plot (t2 , the ta out (: , 2))

legend (’ Des i red Angle ’ , ’ Actual Angle ’)

subplot (4 , 2 , 5)

plot (t2 , the ta out (: , 3))

% p l o t (t , z b a s e)

legend (’ Des i red Pos i t i on ’ , ’ Actual Pos i t i on ’)%, ’Non−Rigid

Sur face Height ’)%

subplot (4 , 2 , 7)

plot (t2 , the ta out (: , 4))

legend (’ Des i red Angle ’ , ’ Actual Angle ’)

tau maxes = [max(tau out (: , 1)) , max(tau out (: , 2)) , max(

tau out (: , 3)) , max(tau out (: , 4))] ;

160

B.2. Position Control Simulation

tau mins = [min(tau out (: , 1)) , min(tau out (: , 2)) , min(

tau out (: , 3)) , min(tau out (: , 4))] ;

t a u d i f f s = tau maxes− tau mins ;

er ror maxes = [max(e r r o r 1) , max(e r r o r 2) , max(e r r o r 3) ,

max(e r r o r 4)] ;

e r ro r mins = [min(e r r o r 1) , min(e r r o r 2) , min(e r r o r 3) ,

min(e r r o r 4)] ;

e r r o r d i f f s = error maxes − e r ro r mins ;

upperyl ims = [max([tau maxes (1) / t a u d i f f s (1) , e r ror maxes (1) /

e r r o r d i f f s (1) , 0]) + 0 .1 , max([tau maxes (2) / t a u d i f f s (2) ,

er ror maxes (2) / e r r o r d i f f s (2) , 0]) + 0 . 1 , max([tau maxes (3)

/ t a u d i f f s (3) , e r ror maxes (3) / e r r o r d i f f s (3) , 0]) + 0 . 1 , max

([tau maxes (4) / t a u d i f f s (4) , e r ror maxes (4) / e r r o r d i f f s (4)

, 0]) + 0 . 1] ;

l owery l ims = [min ([tau mins (1) / t a u d i f f s (1) , e r ro r mins (1) /

e r r o r d i f f s (1) , 0]) − 0 . 1 , min ([tau mins (2) / t a u d i f f s (2) ,

e r ro r mins (2) / e r r o r d i f f s (2) , 0]) − 0 . 1 , min ([tau mins (3) /

t a u d i f f s (3) , e r ro r mins (3) / e r r o r d i f f s (3) , 0]) − 0 . 1 , min ([

tau mins (4) / t a u d i f f s (4) , e r ro r mins (4) / e r r o r d i f f s (4) , 0])

− 0 . 1] ;

subplot (4 , 2 , 2)

yyax i s l e f t

plot (t , e r r o r 1 , ’ r ’)

xlabel (’Time (seconds) ’)

ylabel (’ Error (rad) ’)

set (gca , ’ y co l o r ’ , ’ r ’)

yl im ([lowery l ims (1) ∗ e r r o r d i f f s (1) , upperyl ims (1) ∗ e r r o r d i f f s

(1)])

yyax i s r i g h t

plot (t2 , tau out (: , 1) , ’ g ’)

ylabel (’ \ tau 1 (N m) ’)

set (gca , ’ y co l o r ’ , ’ g ’)

yl im ([lowery l ims (1) ∗ t a u d i f f s (1) , upperyl ims (1) ∗ t a u d i f f s (1)])

t i t l e (’ Jo int 1 Error and Torque Command ’)

161

B.2. Position Control Simulation

legend (’ Jo int Error ’ , ’Command Torque ’)

grid on

hold on

subplot (4 , 2 , 4)

yyax i s l e f t

plot (t , e r r o r 2 , ’ r ’)

xlabel (’Time (seconds) ’)

ylabel (’ Error (rad) ’)

set (gca , ’ y co l o r ’ , ’ r ’)

yl im ([lowery l ims (2) ∗ e r r o r d i f f s (2) , upperyl ims (2) ∗ e r r o r d i f f s

(2)])

yyax i s r i g h t

plot (t2 , tau out (: , 2) , ’ g ’)

ylabel (’ \ tau 2 (N m) ’)

set (gca , ’ y co l o r ’ , ’ g ’)

yl im ([lowery l ims (2) ∗ t a u d i f f s (2) , upperyl ims (2) ∗ t a u d i f f s (2)])

t i t l e (’ Jo int 2 Error and Torque Command ’)

legend (’ Jo int Error ’ , ’Command Torque ’)

grid on

hold on

subplot (4 , 2 , 6)

yyax i s l e f t

plot (t , e r r o r 3 , ’ r ’)

xlabel (’Time (seconds) ’)

ylabel (’ Error (m) ’)

set (gca , ’ y co l o r ’ , ’ r ’)

yl im ([lowery l ims (3) ∗ e r r o r d i f f s (3) , upperyl ims (3) ∗ e r r o r d i f f s

(3)])

yyax i s r i g h t

plot (t2 , tau out (: , 3) , ’ g ’)

ylabel (’ \ tau 3 (N) ’)

set (gca , ’ y co l o r ’ , ’ g ’)

yl im ([lowery l ims (3) ∗ t a u d i f f s (3) , upperyl ims (3) ∗ t a u d i f f s (3)

+0.000000001])

t i t l e (’ Jo int 3 Error and Torque Command ’)

162

B.2. Position Control Simulation

legend (’ Jo int Error ’ , ’Command Torque ’)

grid on

hold on

subplot (4 , 2 , 8)

yyax i s l e f t

plot (t , e r r o r 4 , ’ r ’)

xlabel (’Time (seconds) ’)

ylabel (’ Error (rad) ’)

set (gca , ’ y co l o r ’ , ’ r ’)

yl im ([lowery l ims (4) ∗ e r r o r d i f f s (4) , upperyl ims (4) ∗ e r r o r d i f f s

(4)])

yyax i s r i g h t

plot (t2 , tau out (: , 4) , ’ g ’)

ylabel (’ \ tau 4 (N m) ’)

set (gca , ’ y co l o r ’ , ’ g ’)

yl im ([lowery l ims (4) ∗ t a u d i f f s (4) , upperyl ims (4) ∗ t a u d i f f s (4)])

t i t l e (’ Jo int 4 Error and Torque Command ’)

legend (’ Jo int Error ’ , ’Command Torque ’)

grid on

hold on

set (gcf , ’ Po s i t i on ’ , [100 50 1250 9 0 0])

f igure (3)

subplot (4 , 1 , 1)

plot (t , the ta 1 d (: , 2))

hold on

xlabel (’Time (seconds) ’)

ylabel (’ \ the ta 1 (rad ians) ’)

t i t l e (’ Des i red and Actual Angle f o r Jo int 1 ’)

plot (t2 , the ta out (: , 1))

legend (’ Des i red Angle ’ , ’ Actual Angle ’)

hold o f f

subplot (4 , 1 , 2)

plot (t , the ta 2 d (: , 2))

163

B.2. Position Control Simulation

hold on

xlabel (’Time (seconds) ’)

ylabel (’ \ the ta 2 (rad ians) ’)

t i t l e (’ Des i red and Actual Angle f o r Jo int 2 ’)

plot (t2 , the ta out (: , 2))

legend (’ Des i red Angle ’ , ’ Actual Angle ’)

hold o f f

subplot (4 , 1 , 3)

plot (t , d 3 d (: , 2))

hold on

xlabel (’Time (seconds) ’)

ylabel (’ d 3 (metres) ’)

t i t l e (’ Des i red and Actual Pos i t i on f o r Jo int 3 ’)

plot (t2 , the ta out (: , 3))

legend (’ Des i red Pos i t i on ’ , ’ Actual Pos i t i on ’)

hold o f f

subplot (4 , 1 , 4)

plot (t , the ta 4 d (: , 2))

hold on

xlabel (’Time (seconds) ’)

ylabel (’ \ the ta 4 (rad ians) ’)

t i t l e (’ Des i red and Actual Angle f o r Jo int 4 ’)

plot (t2 , the ta out (: , 4))

legend (’ Des i red Angle ’ , ’ Actual Angle ’)

hold o f f

set (gcf , ’ Po s i t i on ’ , [5 0 50 800 9 0 0])

combined error maxes = [max(e r r o r 1) , max(e r r o r 2) , max(

e r r o r 3) , max(e r r o r 4) , max(e r r o r 1 s i m s c a p e) , max(

e r r o r 2 s i m s c a p e) , max(e r r o r 3 s i m s c a p e) , max(

e r r o r 4 s i m s c a p e)] ;

combined error mins = [min(e r r o r 1) , min(e r r o r 2) , min(

e r r o r 3) , min(e r r o r 4) , min(e r r o r 1 s i m s c a p e) , min(

e r r o r 2 s i m s c a p e) , min(e r r o r 3 s i m s c a p e) , min(

164

B.2. Position Control Simulation

e r r o r 4 s i m s c a p e)] ;

c o m b i n e d e r r o r d i f f s = max(combined error maxes) − min(

combined error mins) ;

f igure (4)

plot (t , e r r o r 1 , ’ c o l o r ’ , [1 0 .563 0])

hold on

plot (t , e r r o r 2 , ’b ’)

plot (t , e r r o r 3 , ’ c o l o r ’ , [0 0 . 5 0])

plot (t , e r r o r 4 , ’ c o l o r ’ , [0 . 7 8 1 0 1])

plot (t , e r r o r 1 s imscape , ’−− ’ , ’ c o l o r ’ , [1 0 .563 0])

plot (t , e r r o r 2 s imscape , ’b−− ’)

plot (t , e r r o r 3 s imscape , ’−− ’ , ’ c o l o r ’ , [0 0 . 5 0])

plot (t , e r r o r 4 s imscape , ’−− ’ , ’ c o l o r ’ , [0 . 7 8 1 0 1])

xlabel (’Time (seconds) ’)

ylabel (’ Error (rad or m) ’)

xlim ([0 , 2])

t i t l e (’ Jo int Errors ’)

legend (’ Jo int 1 Error ’ , ’ Jo int 2 Error ’ , ’ Jo int 3 Error ’ , ’ Jo int

4 Error ’ , ’ Jo int 1 Error (SimScape) ’ , ’ Jo int 2 Error (

SimScape) ’ , ’ Jo int 3 Error (SimScape) ’ , ’ Jo int 4 Error (

SimScape) ’)

grid on

hold o f f

%% Run the D e c e n t r a l i z e d PID with Feedback L i n e a r i z a t i o n

C o n t r o l l e r and p l o t the r e s u l t s

Kp2 = [7 8 1 . 6 6 ; 2 7 1 . 2 2 ; 1 1 9 2 . 9 ; 0 . 6 0 5] ;

Kd2 = [8 7 . 2 1 ; 3 0 . 2 6 ; 1 3 3 . 1 ; 0 . 0 6 7 5] ;

Ki2 = [2 3 2 5 . 6 ; 8 0 6 . 9 ; 354 9 . 0 3 ; 1 . 8] ;

sim (’ RobotSimFLDecentralizedPID ’)

sim (’ RobotSimscapeFLDecentralizedPID ’)

f igure (5)

165

B.2. Position Control Simulation

plot3 (x d , y d , z d , ’ c o l o r ’ , ’ b lack ’ , ’ l i n ew id th ’ , 2) ;

hold on

t = [] ;

c o l o r = jet (1+ round(t r i a l t i m e / s t e p s i z e)) ;

x = [] ;

y = [] ;

z = [] ;

e r r o r x = [] ;

e r r o r y = [] ;

e r r o r z = [] ;

for i = 0 : s t e p s i z e : t r i a l t i m e − s t e p s i z e

t = [t ; i] ;

j = round(i / s t e p s i z e) ;

x = [x ; l 1 ∗cos (the ta out (j +1 ,1)) + l 2 ∗cos (the ta out (j

+1 ,1) + the ta out (j +1 ,2))] ;

y = [y ; l 1 ∗ sin (the ta out (j +1 ,1)) + l 2 ∗ sin (the ta out (j

+1 ,1) + the ta out (j +1 ,2))] ;

z = [z ; l 0 − l 4 − the ta out (j +1 ,3)] ;

e r r o r x = [e r r o r x ; x d (j +1) − x (length (x))] ;

e r r o r y = [e r r o r y ; y d (j +1) − y (length (y))] ;

e r r o r z = [e r r o r z ; z d (j +1) − z (length (z))] ;

plot3 ([l 1 ∗cos (the ta out (j +1 ,1)) + l 2 ∗cos (the ta out (j

+1 ,1) + theta out (j +1 ,2)) , l 1 ∗cos (the ta out (j +2 ,1)) +

l 2 ∗cos (the ta out (j +2 ,1) + the ta out (j +2 ,2))] , [l 1 ∗
sin (the ta out (j +1 ,1)) + l 2 ∗ sin (the ta out (j +1 ,1) +

theta out (j +1 ,2)) , l 1 ∗ sin (the ta out (j +2 ,1)) + l 2 ∗ sin (

the ta out (j +2 ,1) + the ta out (j +2 ,2))] , [l 0 − l 4 −
the ta out (j +1 ,3) , l 0 − l 4 − the ta out (j +2 ,3)] , ’ c o l o r ’

, c o l o r (j +1 , :) , ’ l i n ew id th ’ , 3)

%s c a t t e r 3 (l 1 ∗ cos (t h e t a o u t (j +1 ,1)) + l 2 ∗ cos (t h e t a o u t (j

+1 ,1) + t h e t a o u t (j +1 ,2)) , l 1 ∗ s i n (t h e t a o u t (j +1 ,1)) +

l 2 ∗ s i n (t h e t a o u t (j +1 ,1) + t h e t a o u t (j +1 ,2)) , l 0 − l 4

166

B.2. Position Control Simulation

− t h e t a o u t (j +1 ,3) ,10 , c o l o r (j +1 ,:) , ’ f i l l e d ’) ;

hold on

end

e r r o r 1 = [] ;

e r r o r 2 = [] ;

e r r o r 3 = [] ;

e r r o r 4 = [] ;

e r r o r 1 s i m s c a p e = [] ;

e r r o r 2 s i m s c a p e = [] ;

e r r o r 3 s i m s c a p e = [] ;

e r r o r 4 s i m s c a p e = [] ;

for i = 1 : 1 : length (the ta out (: , 1))−1

e r r o r 1 = [e r r o r 1 ; the ta out (i +1 ,1) − the ta 1 d (i , 2)] ;

e r r o r 2 = [e r r o r 2 ; the ta out (i +1 ,2) − the ta 2 d (i , 2)] ;

e r r o r 3 = [e r r o r 3 ; the ta out (i +1 ,3) − d 3 d (i , 2)] ;

e r r o r 4 = [e r r o r 4 ; the ta out (i +1 ,4) − the ta 4 d (i , 2)] ;

end

for i = 1 : 1 : length (the ta out s imscape (: , 1))−1

e r r o r 1 s i m s c a p e = [e r r o r 1 s i m s c a p e ; the ta out s imscape (

i +1 ,1) − the ta 1 d (i , 2)] ;

e r r o r 2 s i m s c a p e = [e r r o r 2 s i m s c a p e ; the ta out s imscape (

i +1 ,2) − the ta 2 d (i , 2)] ;

e r r o r 3 s i m s c a p e = [e r r o r 3 s i m s c a p e ; the ta out s imscape (

i +1 ,3) − d 3 d (i , 2)] ;

e r r o r 4 s i m s c a p e = [e r r o r 4 s i m s c a p e ; the ta out s imscape (

i +1 ,4) − the ta 4 d (i , 2)] ;

end

s c a t t e r 3 (x (1) , y (1) , z (1) ,50 , c o l o r (1 , :) , ’ d ’ , ’ f i l l e d ’ , ’

markeredgeco lor ’ , ’w ’)

s c a t t e r 3 (x (round(t r i a l t i m e / s t e p s i z e)) , y (round(t r i a l t i m e /

s t e p s i z e)) , z (round(t r i a l t i m e / s t e p s i z e)) ,50 , c o l o r (round(

t r i a l t i m e / s t e p s i z e) , :) , ’ d ’ , ’ f i l l e d ’ , ’ markeredgeco lor ’ , ’w ’

)

167

B.2. Position Control Simulation

set (gca , ’ DataAspectRatio ’ , [1 1 1])

set (gcf , ’ Po s i t i on ’ , [200 50 1250 9 0 0])

hold o f f

f igure (6)

subplot (4 , 1 , 1)

plot (t , the ta 1 d (: , 2))

hold on

xlabel (’Time (seconds) ’)

ylabel (’ \ the ta 1 (rad ians) ’)

t i t l e (’ Des i red and Actual Angle f o r Jo int 1 ’)

plot (t2 , the ta out (: , 1))

legend (’ Des i red Angle ’ , ’ Actual Angle ’)

hold o f f

subplot (4 , 1 , 2)

plot (t , the ta 2 d (: , 2))

hold on

xlabel (’Time (seconds) ’)

ylabel (’ \ the ta 2 (rad ians) ’)

t i t l e (’ Des i red and Actual Angle f o r Jo int 2 ’)

plot (t2 , the ta out (: , 2))

legend (’ Des i red Angle ’ , ’ Actual Angle ’)

hold o f f

subplot (4 , 1 , 3)

plot (t , d 3 d (: , 2))

hold on

xlabel (’Time (seconds) ’)

ylabel (’ d 3 (metres) ’)

t i t l e (’ Des i red and Actual Pos i t i on f o r Jo int 3 ’)

plot (t2 , the ta out (: , 3))

legend (’ Des i red Pos i t i on ’ , ’ Actual Pos i t i on ’)

hold o f f

subplot (4 , 1 , 4)

plot (t , the ta 4 d (: , 2))

168

B.2. Position Control Simulation

hold on

xlabel (’Time (seconds) ’)

ylabel (’ \ the ta 4 (rad ians) ’)

t i t l e (’ Des i red and Actual Angle f o r Jo int 4 ’)

plot (t2 , the ta out (: , 4))

legend (’ Des i red Angle ’ , ’ Actual Angle ’)

hold o f f

set (gcf , ’ Po s i t i on ’ , [250 50 800 9 0 0])

combined error maxes = [max(e r r o r 1) , max(e r r o r 2) , max(

e r r o r 3) , max(e r r o r 4) , max(e r r o r 1 s i m s c a p e) , max(

e r r o r 2 s i m s c a p e) , max(e r r o r 3 s i m s c a p e) , max(

e r r o r 4 s i m s c a p e)] ;

combined error mins = [min(e r r o r 1) , min(e r r o r 2) , min(

e r r o r 3) , min(e r r o r 4) , min(e r r o r 1 s i m s c a p e) , min(

e r r o r 2 s i m s c a p e) , min(e r r o r 3 s i m s c a p e) , min(

e r r o r 4 s i m s c a p e)] ;

c o m b i n e d e r r o r d i f f s = max(combined error maxes) − min(

combined error mins) ;

f igure (7)

plot (t , e r r o r 1 , ’ c o l o r ’ , [1 0 .563 0])

hold on

plot (t , e r r o r 2 , ’b ’)

plot (t , e r r o r 3 , ’ c o l o r ’ , [0 0 . 5 0])

plot (t , e r r o r 4 , ’ c o l o r ’ , [0 . 7 8 1 0 1])

plot (t , e r r o r 1 s imscape , ’−− ’ , ’ c o l o r ’ , [1 0 .563 0])

plot (t , e r r o r 2 s imscape , ’b−− ’)

plot (t , e r r o r 3 s imscape , ’−− ’ , ’ c o l o r ’ , [0 0 . 5 0])

plot (t , e r r o r 4 s imscape , ’−− ’ , ’ c o l o r ’ , [0 . 7 8 1 0 1])

xlabel (’Time (seconds) ’)

ylabel (’ Error (rad or m) ’)

xlim ([0 , 2])

t i t l e (’ Jo int Errors ’)

legend (’ Jo int 1 Error ’ , ’ Jo int 2 Error ’ , ’ Jo int 3 Error ’ , ’ Jo int

169

B.2. Position Control Simulation

4 Error ’ , ’ Jo int 1 Error (SimScape) ’ , ’ Jo int 2 Error (

SimScape) ’ , ’ Jo int 3 Error (SimScape) ’ , ’ Jo int 4 Error (

SimScape) ’)

grid on

hold o f f

%% Implement and p l o t r e s u l t s f o r f u l l s t a t e f e e d b a c k

l i n e a r i z a t i o n c o n t r o l l e r

M l inea r inv = [0 . 4 7 3 9 , −0.4739 , 0 , 0 ; −0.4739 , 1 .3688 ,

0 , 0 .8949 ; 0 , 0 , 0 .2024 , 0 ; 0 , 0 .8949 , 0 ,

4 0 0 . 8 9 4 9] ;

A = [zeros (4) , eye (4) ; zeros (4) , zeros (4)] ;

B = [zeros (4) ; M l inea r inv] ;

K = place (A,B, [−8 .0 , −8.1 , −8.2 , −8.3 , −8.4 , −8.5 , −8.6 ,

−8.7])

Q = [eye (4) , zeros (4) ; zeros (4) , eye (4)] ;

R = eye (4) ;

K = l q r (A,B,Q,R)

sim (’ RobotSimFLCentralizedPID ’)

sim (’ RobotSimscapeFLCentralizedPID ’)

f igure (8)

plot3 (x d , y d , z d , ’ c o l o r ’ , ’ b lack ’ , ’ l i n ew id th ’ , 2) ;

hold on

t = [] ;

c o l o r = jet (1+ round(t r i a l t i m e / s t e p s i z e)) ;

x = [] ;

y = [] ;

z = [] ;

e r r o r x = [] ;

170

B.2. Position Control Simulation

e r r o r y = [] ;

e r r o r z = [] ;

for i = 0 : s t e p s i z e : t r i a l t i m e − s t e p s i z e

t = [t ; i] ;

j = round(i / s t e p s i z e) ;

x = [x ; l 1 ∗cos (the ta out (j +1 ,1)) + l 2 ∗cos (the ta out (j

+1 ,1) + the ta out (j +1 ,2))] ;

y = [y ; l 1 ∗ sin (the ta out (j +1 ,1)) + l 2 ∗ sin (the ta out (j

+1 ,1) + the ta out (j +1 ,2))] ;

z = [z ; l 0 − l 4 − the ta out (j +1 ,3)] ;

e r r o r x = [e r r o r x ; x d (j +1) − x (length (x))] ;

e r r o r y = [e r r o r y ; y d (j +1) − y (length (y))] ;

e r r o r z = [e r r o r z ; z d (j +1) − z (length (z))] ;

plot3 ([l 1 ∗cos (the ta out (j +1 ,1)) + l 2 ∗cos (the ta out (j

+1 ,1) + theta out (j +1 ,2)) , l 1 ∗cos (the ta out (j +2 ,1)) +

l 2 ∗cos (the ta out (j +2 ,1) + the ta out (j +2 ,2))] , [l 1 ∗
sin (the ta out (j +1 ,1)) + l 2 ∗ sin (the ta out (j +1 ,1) +

theta out (j +1 ,2)) , l 1 ∗ sin (the ta out (j +2 ,1)) + l 2 ∗ sin (

the ta out (j +2 ,1) + the ta out (j +2 ,2))] , [l 0 − l 4 −
the ta out (j +1 ,3) , l 0 − l 4 − the ta out (j +2 ,3)] , ’ c o l o r ’

, c o l o r (j +1 , :) , ’ l i n ew id th ’ , 3)

%s c a t t e r 3 (l 1 ∗ cos (t h e t a o u t (j +1 ,1)) + l 2 ∗ cos (t h e t a o u t (j

+1 ,1) + t h e t a o u t (j +1 ,2)) , l 1 ∗ s i n (t h e t a o u t (j +1 ,1)) +

l 2 ∗ s i n (t h e t a o u t (j +1 ,1) + t h e t a o u t (j +1 ,2)) , l 0 − l 4

− t h e t a o u t (j +1 ,3) ,10 , c o l o r (j +1 ,:) , ’ f i l l e d ’) ;

hold on

end

e r r o r 1 = [] ;

e r r o r 2 = [] ;

e r r o r 3 = [] ;

e r r o r 4 = [] ;

e r r o r 1 s i m s c a p e = [] ;

e r r o r 2 s i m s c a p e = [] ;

e r r o r 3 s i m s c a p e = [] ;

171

B.2. Position Control Simulation

e r r o r 4 s i m s c a p e = [] ;

for i = 1 : 1 : length (the ta out (: , 1))−1

e r r o r 1 = [e r r o r 1 ; the ta out (i +1 ,1) − the ta 1 d (i , 2)] ;

e r r o r 2 = [e r r o r 2 ; the ta out (i +1 ,2) − the ta 2 d (i , 2)] ;

e r r o r 3 = [e r r o r 3 ; the ta out (i +1 ,3) − d 3 d (i , 2)] ;

e r r o r 4 = [e r r o r 4 ; the ta out (i +1 ,4) − the ta 4 d (i , 2)] ;

end

for i = 1 : 1 : length (the ta out s imscape (: , 1))−1

e r r o r 1 s i m s c a p e = [e r r o r 1 s i m s c a p e ; the ta out s imscape (

i +1 ,1) − the ta 1 d (i , 2)] ;

e r r o r 2 s i m s c a p e = [e r r o r 2 s i m s c a p e ; the ta out s imscape (

i +1 ,2) − the ta 2 d (i , 2)] ;

e r r o r 3 s i m s c a p e = [e r r o r 3 s i m s c a p e ; the ta out s imscape (

i +1 ,3) − d 3 d (i , 2)] ;

e r r o r 4 s i m s c a p e = [e r r o r 4 s i m s c a p e ; the ta out s imscape (

i +1 ,4) − the ta 4 d (i , 2)] ;

end

s c a t t e r 3 (x (1) , y (1) , z (1) ,50 , c o l o r (1 , :) , ’ d ’ , ’ f i l l e d ’ , ’

markeredgeco lor ’ , ’w ’)

s c a t t e r 3 (x (round(t r i a l t i m e / s t e p s i z e)) , y (round(t r i a l t i m e /

s t e p s i z e)) , z (round(t r i a l t i m e / s t e p s i z e)) ,50 , c o l o r (round(

t r i a l t i m e / s t e p s i z e) , :) , ’ d ’ , ’ f i l l e d ’ , ’ markeredgeco lor ’ , ’w ’

)

set (gca , ’ DataAspectRatio ’ , [1 1 1])

set (gcf , ’ Po s i t i on ’ , [300 50 1250 9 0 0])

hold o f f

f igure (9)

subplot (4 , 1 , 1)

plot (t , the ta 1 d (: , 2))

hold on

xlabel (’Time (seconds) ’)

ylabel (’ \ the ta 1 (rad ians) ’)

t i t l e (’ Des i red and Actual Angle f o r Jo int 1 ’)

172

B.2. Position Control Simulation

plot (t2 , the ta out (: , 1))

legend (’ Des i red Angle ’ , ’ Actual Angle ’)

hold o f f

subplot (4 , 1 , 2)

plot (t , the ta 2 d (: , 2))

hold on

xlabel (’Time (seconds) ’)

ylabel (’ \ the ta 2 (rad ians) ’)

t i t l e (’ Des i red and Actual Angle f o r Jo int 2 ’)

plot (t2 , the ta out (: , 2))

legend (’ Des i red Angle ’ , ’ Actual Angle ’)

hold o f f

subplot (4 , 1 , 3)

plot (t , d 3 d (: , 2))

hold on

xlabel (’Time (seconds) ’)

ylabel (’ d 3 (metres) ’)

t i t l e (’ Des i red and Actual Pos i t i on f o r Jo int 3 ’)

plot (t2 , the ta out (: , 3))

legend (’ Des i red Pos i t i on ’ , ’ Actual Pos i t i on ’)

hold o f f

subplot (4 , 1 , 4)

plot (t , the ta 4 d (: , 2))

hold on

xlabel (’Time (seconds) ’)

ylabel (’ \ the ta 4 (rad ians) ’)

t i t l e (’ Des i red and Actual Angle f o r Jo int 4 ’)

plot (t2 , the ta out (: , 4))

legend (’ Des i red Angle ’ , ’ Actual Angle ’)

hold o f f

set (gcf , ’ Po s i t i on ’ , [350 50 800 9 0 0])

combined error maxes = [max(e r r o r 1) , max(e r r o r 2) , max(

173

B.3. Hybrid Force-Position Control Simulation

e r r o r 3) , max(e r r o r 4) , max(e r r o r 1 s i m s c a p e) , max(

e r r o r 2 s i m s c a p e) , max(e r r o r 3 s i m s c a p e) , max(

e r r o r 4 s i m s c a p e)] ;

combined error mins = [min(e r r o r 1) , min(e r r o r 2) , min(

e r r o r 3) , min(e r r o r 4) , min(e r r o r 1 s i m s c a p e) , min(

e r r o r 2 s i m s c a p e) , min(e r r o r 3 s i m s c a p e) , min(

e r r o r 4 s i m s c a p e)] ;

c o m b i n e d e r r o r d i f f s = max(combined error maxes) − min(

combined error mins) ;

f igure (10)

plot (t , e r r o r 1 , ’ c o l o r ’ , [1 0 .563 0])

hold on

plot (t , e r r o r 2 , ’b ’)

plot (t , e r r o r 3 , ’ c o l o r ’ , [0 0 . 5 0])

plot (t , e r r o r 4 , ’ c o l o r ’ , [0 . 7 8 1 0 1])

plot (t , e r r o r 1 s imscape , ’−− ’ , ’ c o l o r ’ , [1 0 .563 0])

plot (t , e r r o r 2 s imscape , ’b−− ’)

plot (t , e r r o r 3 s imscape , ’−− ’ , ’ c o l o r ’ , [0 0 . 5 0])

plot (t , e r r o r 4 s imscape , ’−− ’ , ’ c o l o r ’ , [0 . 7 8 1 0 1])

xlabel (’Time (seconds) ’)

ylabel (’ Error (rad or m) ’)

xlim ([0 , 2])

t i t l e (’ Jo int Errors ’)

legend (’ Jo int 1 Error ’ , ’ Jo int 2 Error ’ , ’ Jo int 3 Error ’ , ’ Jo int

4 Error ’ , ’ Jo int 1 Error (SimScape) ’ , ’ Jo int 2 Error (

SimScape) ’ , ’ Jo int 3 Error (SimScape) ’ , ’ Jo int 4 Error (

SimScape) ’)

grid on

hold o f f

toc

B.3 Hybrid Force-Position Control Simulation

174

B.3. Hybrid Force-Position Control Simulation

t ic

close a l l

%% E s t a b l i s h s i m u l a t i o n parameters us ing the f o l l o w i n g v a l u e s

:

g = −9.8;

l 0 = 0 . 5 ;

l 1 = 0 . 4 ;

l 2 = 0 . 4 ;

l 4 = 0 . 1 5 ;

m1 = 6 . 0 1 ;

m2 = 5 . 3 7 ;

m3 = 4 . 0 3 ;

m4 = 0 . 9 1 ;

I 1 z z = 0 . 1 8 0 7 ;

I 2 z z = 0 . 1 5 5 8 ;

I 3 z z = 0 . 0 0 6 4 ;

I 4 z z = 0 . 0 0 2 5 ;

l c 1 x = −0.185;

l c 2 x = −0.224;

l c 3 x = 0 ;

l c 4 x = 0 ;

l c 1 y = 0 ;

l c 2 y = 0 ;

l c 3 y = 0 ;

l c 4 y = 0 ;

l c 1 z = 0 ;

l c 2 z = 0 ;

l c 3 z = −0.201;

l c 4 z = −0.122;

the ta1uppe r l im i t = pi /2 ;

t h e t a 1 l o w e r l i m i t = −the ta1uppe r l im i t ;

the ta2uppe r l im i t = 7∗pi /8 ;

t h e t a 2 l o w e r l i m i t = −the ta2uppe r l im i t ;

175

B.3. Hybrid Force-Position Control Simulation

d3upper l imit = 0 . 3 5 ;

d3 l ower l im i t = 0 . 1 ;

the ta4uppe r l im i t = pi ;

t h e t a 4 l o w e r l i m i t = −the ta4uppe r l im i t ;

j o i n t 1 m o t o r l i m i t = 1000 ;

j o i n t 2 m o t o r l i m i t = 1000 ;

j o i n t 3 m o t o r l i m i t = 1000 ;

j o i n t 4 m o t o r l i m i t = 1000 ;

M inv = subs (M inv ,{ g , l0 , l1 , l2 , l4 , m1, m2, m3, m4, I1zz ,

I2zz , I3zz , I4zz , lc1x , lc2x , lc3x , lc4x , lc1y , lc2y , lc3y

, l c4y } ,{ g , l 0 , l 1 , l 2 , l 4 , m1 , m2 , m3 , m4 ,

I1zz , I2zz , I3zz , I4zz , l c1x , l c2x , l c3x , l c4x ,

l c1y , l c2y , l c3y , l c 4 y }) ;

C = subs (C matrix ,{ g , l0 , l1 , l2 , l4 , m1, m2, m3, m4, I1zz ,

I2zz , I3zz , I4zz , lc1x , lc2x , lc3x , lc4x , lc1y , lc2y , lc3y

, l c4y } ,{ g , l 0 , l 1 , l 2 , l 4 , m1 , m2 , m3 , m4 ,

I1zz , I2zz , I3zz , I4zz , l c1x , l c2x , l c3x , l c4x ,

l c1y , l c2y , l c3y , l c 4 y }) ;

G = subs (G,{ g , l0 , l1 , l2 , l4 , m1, m2, m3, m4, I1zz , I2zz ,

I3zz , I4zz , lc1x , lc2x , lc3x , lc4x , lc1y , lc2y , lc3y , l c4y

} ,{ g , l 0 , l 1 , l 2 , l 4 , m1 , m2 , m3 , m4 , I1zz ,

I2zz , I3zz , I4zz , l c1x , l c2x , l c3x , l c4x , l c1y ,

l c2y , l c3y , l c 4 y }) ;

%% F i r s t we p l o t the workspace o f the rob o t

zz1 = [] ;

zz2 = [] ;

n = 50 ;

co rne r r = sqrt ((l 1 ∗cos (the ta1upper l im i t) + l 2 ∗cos (

the ta1uppe r l im i t+the ta2upper l im i t)) ˆ2 + (l 1 ∗ sin (

the ta1uppe r l im i t) + l 2 ∗ sin (the ta1upper l im i t+

the ta2uppe r l im i t)) ˆ2) ;

176

B.3. Hybrid Force-Position Control Simulation

co rne rang l e = acos (l 1 ∗cos (the ta1upper l im i t) + l 2 ∗cos (

the ta1uppe r l im i t+the ta2upper l im i t) / co rne r r) ;

s u r f a c e 1 t h e t a = t h e t a 1 l o w e r l i m i t : (theta1upper l imi t −
t h e t a 1 l o w e r l i m i t) /n : the ta1upper l im i t ;

s u r f a c e 1 r = co rne r r : ((l 1 + l 2)−co rne r r) /n : l 1 + l 2 ;

xx2 = zeros (n+1,n+1) ;

yy2 = zeros (n+1,n+1) ;

for i = 1 : n+1

angle1 = the ta1upper l im i t + (co rne rang l e −
the ta1uppe r l im i t) ∗(i −1)/n ;

ang le2 = (co rne rang l e − the ta1uppe r l im i t) ∗(i −1)/n ;

rad iu s = sqrt ((l 1 ∗cos (ang le2)) ˆ2 − l 1 ˆ2 +l 2 ˆ2) + l 1 ∗
cos (ang le2) ;

for j = 1 : n+1

t h i c k n e s s = (n+1− j) /n ;

xx2 (i , j) = (co rne r r +(radius−co rne r r) ∗ t h i c k n e s s) ∗cos (

ang le1) ;

yy2 (i , j) = (co rne r r +(radius−co rne r r) ∗ t h i c k n e s s) ∗ sin (

ang le1) ;

end

end

xx3 = zeros (n+1,n+1) ;

yy3 = zeros (n+1,n+1) ;

for i = 1 : n+1

angle1 = t h e t a 1 l o w e r l i m i t + (− co rne rang l e −
t h e t a 1 l o w e r l i m i t) ∗(i −1)/n ;

ang le2 = (− co rne rang l e − t h e t a 1 l o w e r l i m i t) ∗(i −1)/n ;

rad iu s = sqrt ((l 1 ∗cos (ang le2)) ˆ2 − l 1 ˆ2 +l 2 ˆ2) + l 1 ∗
cos (ang le2) ;

for j = 1 : n+1

t h i c k n e s s = (n+1− j) /n ;

xx3 (i , j) = (co rne r r +(radius−co rne r r) ∗ t h i c k n e s s) ∗cos (

177

B.3. Hybrid Force-Position Control Simulation

angle1) ;

yy3 (i , j) = (co rne r r +(radius−co rne r r) ∗ t h i c k n e s s) ∗ sin (

ang le1) ;

end

end

[thetatheta , r r] = meshgrid ([s u r f a c e 1 t h e t a] , [s u r f a c e 1 r]) ;

xx1 = r r .∗ cos (the ta the ta) ;

yy1 = r r .∗ sin (the ta the ta) ;

z4 = l 0 − l 4 − d3upper l imit : (d3upper l imit − d3 lower l im i t) /

n : l 0 − l 4 − d3 lower l im i t ;

x4 = (l 1 +l 2) ∗cos (s u r f a c e 1 t h e t a) ;

y4 = (l 1 +l 2) ∗ sin (s u r f a c e 1 t h e t a) ;

yy4 = [] ;

for i = 1 : n+1

yy4 = [yy4 ; y4] ;

end

[xx4 , zz4] = meshgrid ([x4] , [z4]) ;

z5 = l 0 − l 4 − d3upper l imit : (d3upper l imit − d3 lower l im i t) /

n : l 0 − l 4 − d3 lower l im i t ;

x5 = l 1 ∗cos (the ta1upper l im i t) + l 2 ∗cos (the ta1upper l im i t :

the ta2uppe r l im i t /n : the ta1upper l im i t+the ta2upper l im i t) ;

y5 = l 1 ∗ sin (the ta1upper l im i t) + l 2 ∗ sin (the ta1upper l im i t :

the ta2uppe r l im i t /n : the ta1upper l im i t+the ta2upper l im i t) ;

yy5 = [] ;

for i = 1 : n+1

yy5 = [yy5 ; y5] ;

end

[xx5 , zz5] = meshgrid ([x5] , [z5]) ;

178

B.3. Hybrid Force-Position Control Simulation

z6 = l 0 − l 4 − d3upper l imit : (d3upper l imit − d3 lower l im i t) /

n : l 0 − l 4 − d3 lower l im i t ;

x6 = l 1 ∗cos (t h e t a 1 l o w e r l i m i t) + l 2 ∗cos (t h e t a 1 l o w e r l i m i t :

t h e t a 2 l o w e r l i m i t /n : t h e t a 1 l o w e r l i m i t+t h e t a 2 l o w e r l i m i t) ;

y6 = l 1 ∗ sin (t h e t a 1 l o w e r l i m i t) + l 2 ∗ sin (t h e t a 1 l o w e r l i m i t :

t h e t a 2 l o w e r l i m i t /n : t h e t a 1 l o w e r l i m i t+t h e t a 2 l o w e r l i m i t) ;

yy6 = [] ;

for i = 1 : n+1

yy6 = [yy6 ; y6] ;

end

[xx6 , zz6] = meshgrid ([x6] , [z6]) ;

z7 = l 0 − l 4 − d3upper l imit : (d3upper l imit − d3 lower l im i t) /

n : l 0 − l 4 − d3 lower l im i t ;

x7 = (co rne r r) ∗cos (linspace(−cornerang le , cornerang le , n+1)) ;

y7 = (co rne r r) ∗ sin (linspace(−cornerang le , cornerang le , n+1)) ;

yy7 = [] ;

for i = 1 : n+1

yy7 = [yy7 ; y7] ;

end

[xx7 , zz7] = meshgrid ([x7] , [z7]) ;

grey = [0 . 1 , 0 . 1 , 0 . 1] ;

for i = 1 : n+1

zzz = [] ;

for j = 1 : n+1

zzz = [zzz , l 0 − l 4 − d3 lower l im i t] ;

end

zz1 = [zz1 ; zzz] ;

end

for i = 1 : n+1

179

B.3. Hybrid Force-Position Control Simulation

zzz = [] ;

for j = 1 : n+1

zzz = [zzz , l 0 − l 4 − d3upper l imit] ;

end

zz2 = [zz2 ; zzz] ;

end

figure (1)

surf (xx1 , yy1 , zz1 , ’ FaceColor ’ , grey , ’ FaceAlpha ’ , . 1 , ’ EdgeColor ’ ,

’ none ’) ;

get (gcf , ’ Renderer ’) ;

hold on

surf (xx1 , yy1 , zz2 , ’ FaceColor ’ , grey , ’ FaceAlpha ’ , . 1 , ’ EdgeColor ’ ,

’ none ’) ;

get (gcf , ’ Renderer ’) ;

hold on

surf (xx2 , yy2 , zz1 , ’ FaceColor ’ , grey , ’ FaceAlpha ’ , . 1 , ’ EdgeColor ’ ,

’ none ’) ;

get (gcf , ’ Renderer ’) ;

hold on

surf (xx2 , yy2 , zz2 , ’ FaceColor ’ , grey , ’ FaceAlpha ’ , . 1 , ’ EdgeColor ’ ,

’ none ’) ;

get (gcf , ’ Renderer ’) ;

hold on

surf (xx3 , yy3 , zz1 , ’ FaceColor ’ , grey , ’ FaceAlpha ’ , . 1 , ’ EdgeColor ’ ,

’ none ’) ;

get (gcf , ’ Renderer ’) ;

hold on

surf (xx3 , yy3 , zz2 , ’ FaceColor ’ , grey , ’ FaceAlpha ’ , . 1 , ’ EdgeColor ’ ,

’ none ’) ;

get (gcf , ’ Renderer ’) ;

hold on

surf (xx4 , yy4 , zz4 , ’ FaceColor ’ , grey , ’ FaceAlpha ’ , . 1 , ’ EdgeColor ’ ,

’ none ’) ;

get (gcf , ’ Renderer ’) ;

hold on

surf (xx4 , yy4 , zz4 , ’ FaceColor ’ , grey , ’ FaceAlpha ’ , . 1 , ’ EdgeColor ’ ,

180

B.3. Hybrid Force-Position Control Simulation

’ none ’) ;

get (gcf , ’ Renderer ’) ;

hold on

surf (xx5 , yy5 , zz5 , ’ FaceColor ’ , grey , ’ FaceAlpha ’ , . 1 , ’ EdgeColor ’ ,

’ none ’) ;

get (gcf , ’ Renderer ’) ;

hold on

surf (xx5 , yy5 , zz5 , ’ FaceColor ’ , grey , ’ FaceAlpha ’ , . 1 , ’ EdgeColor ’ ,

’ none ’) ;

get (gcf , ’ Renderer ’) ;

hold on

surf (xx6 , yy6 , zz6 , ’ FaceColor ’ , grey , ’ FaceAlpha ’ , . 1 , ’ EdgeColor ’ ,

’ none ’) ;

get (gcf , ’ Renderer ’) ;

hold on

surf (xx6 , yy6 , zz6 , ’ FaceColor ’ , grey , ’ FaceAlpha ’ , . 1 , ’ EdgeColor ’ ,

’ none ’) ;

get (gcf , ’ Renderer ’) ;

hold on

plot3 (x4 , y4 , linspace (l 0 − l 4 − d3upper l imit , l 0 − l 4 −
d3upper l imit , n+1) , ’ b lack ’)

hold on

plot3 (x4 , y4 , linspace (l 0 − l 4 − d3 lower l imi t , l 0 − l 4 −
d3 lower l imi t , n+1) , ’ b lack ’)

hold on

plot3 (x5 , y5 , linspace (l 0 − l 4 − d3upper l imit , l 0 − l 4 −
d3upper l imit , n+1) , ’ b lack ’)

hold on

plot3 (x5 , y5 , linspace (l 0 − l 4 − d3 lower l imi t , l 0 − l 4 −
d3 lower l imi t , n+1) , ’ b lack ’)

hold on

plot3 (x6 , y6 , linspace (l 0 − l 4 − d3upper l imit , l 0 − l 4 −
d3upper l imit , n+1) , ’ b lack ’)

hold on

plot3 (x6 , y6 , linspace (l 0 − l 4 − d3 lower l imi t , l 0 − l 4 −
d3 lower l imi t , n+1) , ’ b lack ’)

hold on

181

B.3. Hybrid Force-Position Control Simulation

plot3 (x7 , y7 , linspace (l 0 − l 4 − d3upper l imit , l 0 − l 4 −
d3upper l imit , n+1) , ’ b lack ’)

hold on

plot3 (x7 , y7 , linspace (l 0 − l 4 − d3 lower l imi t , l 0 − l 4 −
d3 lower l imi t , n+1) , ’ b lack ’)

hold on

plot3 ([c o rne r r ∗cos (co rne rang l e) , c o rne r r ∗cos (co rne rang l e)] , [

c o rne r r ∗ sin (co rne rang l e) , c o rne r r ∗ sin (co rne rang l e)] ,

linspace (l 0 − l 4 − d3 lower l imi t , l 0 − l 4 − d3upper l imit

, 2) , ’ b lack ’)

hold on

plot3 ([c o rne r r ∗cos(− co rne rang l e) , c o rne r r ∗cos(− co rne rang l e)] , [

c o rne r r ∗ sin(− co rne rang l e) , c o rne r r ∗ sin(− co rne rang l e)] ,

linspace (l 0 − l 4 − d3 lower l imi t , l 0 − l 4 − d3upper l imit

, 2) , ’ b lack ’)

hold on

f igure (5)

surf (xx1 , yy1 , zz1 , ’ FaceColor ’ , grey , ’ FaceAlpha ’ , . 1 , ’ EdgeColor ’ ,

’ none ’) ;

get (gcf , ’ Renderer ’) ;

hold on

surf (xx1 , yy1 , zz2 , ’ FaceColor ’ , grey , ’ FaceAlpha ’ , . 1 , ’ EdgeColor ’ ,

’ none ’) ;

get (gcf , ’ Renderer ’) ;

hold on

surf (xx2 , yy2 , zz1 , ’ FaceColor ’ , grey , ’ FaceAlpha ’ , . 1 , ’ EdgeColor ’ ,

’ none ’) ;

get (gcf , ’ Renderer ’) ;

hold on

surf (xx2 , yy2 , zz2 , ’ FaceColor ’ , grey , ’ FaceAlpha ’ , . 1 , ’ EdgeColor ’ ,

’ none ’) ;

get (gcf , ’ Renderer ’) ;

hold on

surf (xx3 , yy3 , zz1 , ’ FaceColor ’ , grey , ’ FaceAlpha ’ , . 1 , ’ EdgeColor ’ ,

’ none ’) ;

get (gcf , ’ Renderer ’) ;

182

B.3. Hybrid Force-Position Control Simulation

hold on

surf (xx3 , yy3 , zz2 , ’ FaceColor ’ , grey , ’ FaceAlpha ’ , . 1 , ’ EdgeColor ’ ,

’ none ’) ;

get (gcf , ’ Renderer ’) ;

hold on

surf (xx4 , yy4 , zz4 , ’ FaceColor ’ , grey , ’ FaceAlpha ’ , . 1 , ’ EdgeColor ’ ,

’ none ’) ;

get (gcf , ’ Renderer ’) ;

hold on

surf (xx4 , yy4 , zz4 , ’ FaceColor ’ , grey , ’ FaceAlpha ’ , . 1 , ’ EdgeColor ’ ,

’ none ’) ;

get (gcf , ’ Renderer ’) ;

hold on

surf (xx5 , yy5 , zz5 , ’ FaceColor ’ , grey , ’ FaceAlpha ’ , . 1 , ’ EdgeColor ’ ,

’ none ’) ;

get (gcf , ’ Renderer ’) ;

hold on

surf (xx5 , yy5 , zz5 , ’ FaceColor ’ , grey , ’ FaceAlpha ’ , . 1 , ’ EdgeColor ’ ,

’ none ’) ;

get (gcf , ’ Renderer ’) ;

hold on

surf (xx6 , yy6 , zz6 , ’ FaceColor ’ , grey , ’ FaceAlpha ’ , . 1 , ’ EdgeColor ’ ,

’ none ’) ;

get (gcf , ’ Renderer ’) ;

hold on

surf (xx6 , yy6 , zz6 , ’ FaceColor ’ , grey , ’ FaceAlpha ’ , . 1 , ’ EdgeColor ’ ,

’ none ’) ;

get (gcf , ’ Renderer ’) ;

hold on

plot3 (x4 , y4 , linspace (l 0 − l 4 − d3upper l imit , l 0 − l 4 −
d3upper l imit , n+1) , ’ b lack ’)

hold on

plot3 (x4 , y4 , linspace (l 0 − l 4 − d3 lower l imi t , l 0 − l 4 −
d3 lower l imi t , n+1) , ’ b lack ’)

hold on

plot3 (x5 , y5 , linspace (l 0 − l 4 − d3upper l imit , l 0 − l 4 −
d3upper l imit , n+1) , ’ b lack ’)

183

B.3. Hybrid Force-Position Control Simulation

hold on

plot3 (x5 , y5 , linspace (l 0 − l 4 − d3 lower l imi t , l 0 − l 4 −
d3 lower l imi t , n+1) , ’ b lack ’)

hold on

plot3 (x6 , y6 , linspace (l 0 − l 4 − d3upper l imit , l 0 − l 4 −
d3upper l imit , n+1) , ’ b lack ’)

hold on

plot3 (x6 , y6 , linspace (l 0 − l 4 − d3 lower l imi t , l 0 − l 4 −
d3 lower l imi t , n+1) , ’ b lack ’)

hold on

plot3 (x7 , y7 , linspace (l 0 − l 4 − d3upper l imit , l 0 − l 4 −
d3upper l imit , n+1) , ’ b lack ’)

hold on

plot3 (x7 , y7 , linspace (l 0 − l 4 − d3 lower l imi t , l 0 − l 4 −
d3 lower l imi t , n+1) , ’ b lack ’)

hold on

plot3 ([c o rne r r ∗cos (co rne rang l e) , c o rne r r ∗cos (co rne rang l e)] , [

c o rne r r ∗ sin (co rne rang l e) , c o rne r r ∗ sin (co rne rang l e)] ,

linspace (l 0 − l 4 − d3 lower l imi t , l 0 − l 4 − d3upper l imit

, 2) , ’ b lack ’)

hold on

plot3 ([c o rne r r ∗cos(− co rne rang l e) , c o rne r r ∗cos(− co rne rang l e)] , [

c o rne r r ∗ sin(− co rne rang l e) , c o rne r r ∗ sin(− co rne rang l e)] ,

linspace (l 0 − l 4 − d3 lower l imi t , l 0 − l 4 − d3upper l imit

, 2) , ’ b lack ’)

hold on

%% Generate the r e a c t i o n s u r f a c e (rs) t h a t the robo t w i l l

i n t e r a c t wi th

rs ymax = 0 . 4 ;

rs ymin = −0.4;

rs xmax = 0 . 6 ;

rs xmin = 0 . 2 ;

r s z b a s e = 0 . 1 3 ;

r s x = linspace (rs xmin , rs xmax , n+1) ;

184

B.3. Hybrid Force-Position Control Simulation

r s y = linspace (rs ymin , rs ymax , n+1) ;

r s z z = [] ;

for i = 1 : n+1

r s z = [] ;

for j = 1 : n+1

r s z = [r s z , r s z b a s e] ;

end

r s z z = [r s z z ; r s z] ;

end

[r s xx , r s yy] = meshgrid ([r s x] , [r s y]) ;

%% Plot the r e a c t i o n s u r f a c e

f igure (1)

surf (rs xx , rs yy , r s z z , ’ FaceColor ’ , [1 , 1 , 0] , ’ FaceAlpha ’ , . 8 , ’

EdgeColor ’ , ’ none ’) ;

get (gcf , ’ Renderer ’) ;

hold on

plot3 (r s x , linspace (rs ymax , rs ymax , n+1) , r s z z (n+1 , :) , ’ b lack ’

)

hold on

plot3 (r s x , linspace (rs ymin , rs ymin , n+1) , r s z z (1 , :) , ’ b lack ’)

hold on

plot3 (linspace (rs xmax , rs xmax , n+1) , r s y , r s z z (: , n+1) , ’ b lack ’

)

hold on

plot3 (linspace (rs xmin , rs xmin , n+1) , r s y , r s z z (: , 1) , ’ b lack ’)

hold on

%% Generate the d e s i r e d t r a j e c t o r y and the corresponding

j o i n t ang l e t i m e s e r i e s us ing the i n v e r s e k inematics , as

w e l l as the d e s i r e d normal and f r i c t i o n f o r c e s :

t r i a l t i m e = 10 ;

185

B.3. Hybrid Force-Position Control Simulation

s t e p s i z e = 0 . 0 0 5 ;

x d = [] ;

y d = [] ;

z d = [] ;

zo d = [] ;

the ta 1 d = [] ;

the ta 2 d = [] ;

the ta 1 d1 = [] ;

the ta 2 d1 = [] ;

the ta 4 d1 = [] ;

the ta 1 d2 = [] ;

the ta 2 d2 = [] ;

the ta 4 d2 = [] ;

d 3 d = [] ;

z base = [] ;

the ta 4 d = [] ;

f e x t x d = [] ;

f e x t y d = [] ;

f e x t z d = [] ;

f e x t r x d = [] ;

f e x t r y d = [] ;

f e x t r z d = [] ;

t = [] ;

DOFs = [] ;

spline = [] ;

for i = 0 : s t e p s i z e : t r i a l t i m e − s t e p s i z e

t = [t ; i] ;

j = i / t r i a l t i m e ;

% Line from s t a r t i n g p o s i t i o n to s u r f a c e

% x d = l 1 + l 2 − j ∗(l 1 + l 2 − (nrs xmin + nrs xmax)

/2) ;

% y d = j ∗(nrs ymin + 0.1∗ (nrs ymax − nrs ymin)) ;

% z d = l 0 − l 4 − d 3 l o w e r l i m i t − j ∗(l 0 − l 4 −
d 3 l o w e r l i m i t − n r s z z (n/10 ,n/2)) ;

% S q u i g g l e w i t h i n s i n g l e area

186

B.3. Hybrid Force-Position Control Simulation

% x d = 0.5 + j ∗0 . 2 ;

% y d = −0.2 + j ∗0 . 4 ;

% z d = 0.05 + j ∗0.15 + 0.025∗ s i n (j ∗10∗ p i) ;

% S q u i g g l e w i t h i n two areas

% x d = 0.1 + j ∗0 . 4 ;

% y d = −0.4 + j ∗0 . 6 ;

% z d = 0.05 + j ∗0.15 + 0.025∗ s i n (j ∗10∗ p i) ;

% S q u i g g l e w i t h i n t h r e e areas

% x d = 0 . 2 5 ;

% y d = −0.4 + j ∗0 . 8 ;

% z d = 0.05 + j ∗0.15 + 0.025∗ s i n (j ∗10∗ p i) ;

% RS t e s t l i n e

i f j < 0 .2

x d = 0 .8 − j ∗ 1 . 5 ;

y d = −j ∗ 1 . 5 ;

z d = 0.25 − j ∗ (0 . 25 − r s z b a s e) / 0 . 2 ;

else

x d = 0 . 5 ;

y d = −0.3 + (j −0.2) ∗0 . 7 5 ;

z d = r s z b a s e − 0 .025∗ sin ((j −0.2) ∗10∗pi) ;

end

% P o s i t i o n Only C o n t r o l l e r Test Line ;

% x d = 0.8 − 0.4∗ j − 0.05∗ s i n (j ∗4∗ p i) ;

% y d = −0.2∗ j + 0.15∗ s i n (j ∗1.5∗ p i) ;

% z d = 0.25 − 0.1∗ j − 0.005∗ s i n (j ∗15∗ p i) ;

f e x t x d = 0 ;

f e x t y d = 0 ;

f e x t r x d = 0 ;

f e x t r y d = 0 ;

f e x t r z d = 0 ;

i f j < 0 .2

f e x t z d = 0 ;

else

f e x t z d = −200 −200∗sin (j ∗10) ;

% f e x t z d = −200;

end

spline = [spline ; x d y d z d] ;

187

B.3. Hybrid Force-Position Control Simulation

zo d = 0 ;

x d = [x d ; x d] ;

y d = [y d ; y d] ;

z d = [z d ; z d] ;

zo d = [zo d ; zo d] ;

t h e t a 2 d 1 = acos ((x d ˆ2 + y d ˆ2 − l 1 ˆ2 − l 2 ˆ2) /(2∗
l 1 ∗ l 2)) ;

t h e t a 2 d 2 = −acos ((x d ˆ2 + y d ˆ2 − l 1 ˆ2 − l 2 ˆ2) /(2∗
l 1 ∗ l 2)) ;

t h e t a 1 d 1 = atan2 (y d , x d) − asin (l 2 ∗ sin (t h e t a 2 d 1

) /(sqrt (x d ˆ2 + y d ˆ2))) ;

t h e t a 1 d 2 = atan2 (y d , x d) − asin (l 2 ∗ sin (t h e t a 2 d 2

) /(sqrt (x d ˆ2 + y d ˆ2))) ;

d 3 d = −z d + l 0 − l 4 ;

t h e t a 4 d 1 = zo d − t h e t a 1 d 1 − t h e t a 2 d 1 ;

t h e t a 4 d 2 = zo d − t h e t a 1 d 2 − t h e t a 2 d 2 ;

the ta 2 d1check = or (t h e t a 2 d 1 < the ta2 l ower l im i t ,

t h e t a 2 d 1 > the ta2uppe r l im i t) ;

the ta 2 d2check = or (t h e t a 2 d 2 < the ta2 l ower l im i t ,

t h e t a 2 d 2 > the ta2uppe r l im i t) ;

the ta 1 d1check = or (t h e t a 1 d 1 < the ta1 l ower l im i t ,

t h e t a 1 d 1 > the ta1uppe r l im i t) ;

the ta 1 d2check = or (t h e t a 1 d 2 < the ta1 l ower l im i t ,

t h e t a 1 d 2 > the ta1uppe r l im i t) ;

i f or (theta 2 d1check , the ta 1 d1check) == 0

i f or (theta 2 d2check , the ta 1 d2check) == 0

DOFs = [DOFs ; 2] ;

t h e t a 1 d = t h e t a 1 d 1 ;

t h e t a 2 d = t h e t a 2 d 1 ;

t h e t a 4 d = t h e t a 4 d 1 ;

else

DOFs = [DOFs ; 1 . 1] ;

t h e t a 1 d = t h e t a 1 d 1 ;

t h e t a 2 d = t h e t a 2 d 1 ;

t h e t a 4 d = t h e t a 4 d 1 ;

end

else

188

B.3. Hybrid Force-Position Control Simulation

i f or (theta 2 d2check , the ta 1 d2check) == 0

DOFs = [DOFs ; 1 . 2] ;

t h e t a 1 d = t h e t a 1 d 2 ;

t h e t a 2 d = t h e t a 2 d 2 ;

t h e t a 4 d = t h e t a 4 d 2 ;

else

DOFs = [DOFs ; 0] ;

t h e t a 1 d = t h e t a 1 d 1 ;

t h e t a 2 d = t h e t a 2 d 1 ;

t h e t a 4 d = t h e t a 4 d 1 ;

end

end

the ta 1 d = [the ta 1 d ; t h e t a 1 d] ;

the ta 2 d = [the ta 2 d ; t h e t a 2 d] ;

the ta 4 d = [the ta 4 d ; t h e t a 4 d] ;

the ta 1 d1 = [the ta 1 d1 ; t h e t a 1 d 1] ;

the ta 2 d1 = [the ta 2 d1 ; t h e t a 2 d 1] ;

the ta 4 d1 = [the ta 4 d1 ; t h e t a 4 d 1] ;

the ta 1 d2 = [the ta 1 d2 ; t h e t a 1 d 2] ;

the ta 2 d2 = [the ta 2 d2 ; t h e t a 2 d 2] ;

the ta 4 d2 = [the ta 4 d2 ; t h e t a 4 d 2] ;

d 3 d = [d 3 d ; d 3 d] ;

z base = [z base ; l 0 − l 4 − r s z b a s e] ;

f e x t x d = [f e x t x d ; f e x t x d] ;

f e x t y d = [f e x t y d ; f e x t y d] ;

f e x t z d = [f e x t z d ; f e x t z d] ;

f e x t r x d = [f e x t r x d ; f e x t r x d] ;

f e x t r y d = [f e x t r y d ; f e x t r y d] ;

f e x t r z d = [f e x t r z d ; f e x t r z d] ;

end

i f sum(DOFs == 0) > 0

disp (’The d e s i r e d t r a j e c t o r y i s not f u l l y enc l o s ed in the

reachab l e workspace ’)

else

i f and (sum(DOFs == 1 . 1) > 0 ,sum(DOFs == 1 . 2) > 0)

disp (’The d e s i r e d t r a j e c t o r y has at l e a s t one

189

B.3. Hybrid Force-Position Control Simulation

i n f l e c t i o n po int ’)

else

i f sum(DOFs == 1 . 1) > 0

the ta 1 d = the ta 1 d1 ;

the ta 2 d = the ta 2 d1 ;

end

i f sum(DOFs == 1 . 2) > 0

the ta 1 d = the ta 1 d2 ;

the ta 2 d = the ta 2 d2 ;

end

end

end

the ta 1 d = [t , the ta 1 d] ;

the ta 2 d = [t , the ta 2 d] ;

d 3 d = [t , d 3 d] ;

the ta 4 d = [t , the ta 4 d] ;

f e x t x d = [t , f e x t x d] ;

f e x t y d = [t , f e x t y d] ;

f e x t z d = [t , f e x t z d] ;

f e x t r x d = [t , f e x t r x d] ;

f e x t r y d = [t , f e x t r y d] ;

f e x t r z d = [t , f e x t r z d] ;

f igure (1)

plot3 (x d , y d , z d , ’ c o l o r ’ , ’ b lack ’ , ’ l i n ew id th ’ , 2) ;

hold on

%% Run the D e c e n t r a l i z e d PID with Feedback L i n e a r i z a t i o n

C o n t r o l l e r and p l o t the r e s u l t s

Kp2 = [7 8 1 . 6 6 ; 2 7 1 . 2 2 ; 1 1 9 2 . 9 ; 0 . 6 0 5] ;

Kd2 = [8 7 . 2 1 ; 3 0 . 2 6 ; 1 3 3 . 1 ; 0 . 0 6 7 5] ;

Ki2 = [2 3 2 5 . 6 ; 8 0 6 . 9 ; 354 9 . 0 3 ; 1 . 8] ;

Kpf = 20 ;

190

B.3. Hybrid Force-Position Control Simulation

Kif = 5 ;

Kvd = 2000 ;

sim (’RobotSimFORCEShybridforcepositionYESVELOCITYDAMPING ’)

% sim (’ RobotSimscapeFORCEShybridforceposition ’)

f igure (1)

plot3 (x d , y d , z d , ’ c o l o r ’ , ’ b lack ’ , ’ l i n ew id th ’ , 2) ;

hold on

t = [] ;

c o l o r = jet (1+ round(t r i a l t i m e / s t e p s i z e)) ;

x = [] ;

y = [] ;

z = [] ;

e r r o r x = [] ;

e r r o r y = [] ;

e r r o r z = [] ;

for i = 0 : s t e p s i z e : t r i a l t i m e − s t e p s i z e

t = [t ; i] ;

j = round(i / s t e p s i z e) ;

x = [x ; l 1 ∗cos (the ta out (j +1 ,1)) + l 2 ∗cos (the ta out (j

+1 ,1) + the ta out (j +1 ,2))] ;

y = [y ; l 1 ∗ sin (the ta out (j +1 ,1)) + l 2 ∗ sin (the ta out (j

+1 ,1) + the ta out (j +1 ,2))] ;

z = [z ; l 0 − l 4 − the ta out (j +1 ,3)] ;

e r r o r x = [e r r o r x ; x d (j +1) − x (length (x))] ;

e r r o r y = [e r r o r y ; y d (j +1) − y (length (y))] ;

e r r o r z = [e r r o r z ; z d (j +1) − z (length (z))] ;

plot3 ([l 1 ∗cos (the ta out (j +1 ,1)) + l 2 ∗cos (the ta out (j

+1 ,1) + theta out (j +1 ,2)) , l 1 ∗cos (the ta out (j +2 ,1)) +

l 2 ∗cos (the ta out (j +2 ,1) + the ta out (j +2 ,2))] , [l 1 ∗
sin (the ta out (j +1 ,1)) + l 2 ∗ sin (the ta out (j +1 ,1) +

191

B.3. Hybrid Force-Position Control Simulation

the ta out (j +1 ,2)) , l 1 ∗ sin (the ta out (j +2 ,1)) + l 2 ∗ sin (

the ta out (j +2 ,1) + the ta out (j +2 ,2))] , [l 0 − l 4 −
the ta out (j +1 ,3) , l 0 − l 4 − the ta out (j +2 ,3)] , ’ c o l o r ’

, c o l o r (j +1 , :) , ’ l i n ew id th ’ , 3)

%s c a t t e r 3 (l 1 ∗ cos (t h e t a o u t (j +1 ,1)) + l 2 ∗ cos (t h e t a o u t (j

+1 ,1) + t h e t a o u t (j +1 ,2)) , l 1 ∗ s i n (t h e t a o u t (j +1 ,1)) +

l 2 ∗ s i n (t h e t a o u t (j +1 ,1) + t h e t a o u t (j +1 ,2)) , l 0 − l 4

− t h e t a o u t (j +1 ,3) ,10 , c o l o r (j +1 ,:) , ’ f i l l e d ’) ;

hold on

end

e r r o r 1 = [] ;

e r r o r 2 = [] ;

e r r o r 3 = [] ;

e r r o r 4 = [] ;

e r r o r 1 s i m s c a p e = [] ;

e r r o r 2 s i m s c a p e = [] ;

e r r o r 3 s i m s c a p e = [] ;

e r r o r 4 s i m s c a p e = [] ;

for i = 1 : 1 : length (the ta out (: , 1))−1

e r r o r 1 = [e r r o r 1 ; the ta out (i +1 ,1) − the ta 1 d (i , 2)] ;

e r r o r 2 = [e r r o r 2 ; the ta out (i +1 ,2) − the ta 2 d (i , 2)] ;

e r r o r 3 = [e r r o r 3 ; the ta out (i +1 ,3) − d 3 d (i , 2)] ;

e r r o r 4 = [e r r o r 4 ; the ta out (i +1 ,4) − the ta 4 d (i , 2)] ;

end

% f o r i = 1 : 1 : l e n g t h (t h e t a o u t s i m s c a p e (: , 1))−1

% e r r o r 1 s i m s c a p e = [e r r o r 1 s i m s c a p e ;

t h e t a o u t s i m s c a p e (i +1 ,1) − t h e t a 1 d (i , 2)] ;

% e r r o r 2 s i m s c a p e = [e r r o r 2 s i m s c a p e ;

t h e t a o u t s i m s c a p e (i +1 ,2) − t h e t a 2 d (i , 2)] ;

% e r r o r 3 s i m s c a p e = [e r r o r 3 s i m s c a p e ;

t h e t a o u t s i m s c a p e (i +1 ,3) − d 3 d (i , 2)] ;

% e r r o r 4 s i m s c a p e = [e r r o r 4 s i m s c a p e ;

t h e t a o u t s i m s c a p e (i +1 ,4) − t h e t a 4 d (i , 2)] ;

% end

192

B.3. Hybrid Force-Position Control Simulation

s c a t t e r 3 (x (1) , y (1) , z (1) ,50 , c o l o r (1 , :) , ’ d ’ , ’ f i l l e d ’ , ’

markeredgeco lor ’ , ’w ’)

s c a t t e r 3 (x (round(t r i a l t i m e / s t e p s i z e)) , y (round(t r i a l t i m e /

s t e p s i z e)) , z (round(t r i a l t i m e / s t e p s i z e)) ,50 , c o l o r (round(

t r i a l t i m e / s t e p s i z e) , :) , ’ d ’ , ’ f i l l e d ’ , ’ markeredgeco lor ’ , ’w ’

)

set (gca , ’ DataAspectRatio ’ , [1 1 1])

set (gcf , ’ Po s i t i on ’ , [200 50 1250 7 0 0])

hold o f f

t2 = [t ; t r i a l t i m e] ;

f igure (2)

subplot (4 , 1 , 1)

plot (t , the ta 1 d (: , 2))

hold on

xlabel (’Time (seconds) ’)

ylabel (’ \ the ta 1 (rad ians) ’)

t i t l e (’ Des i red and Actual Angle f o r Jo int 1 ’)

plot (t2 , the ta out (: , 1))

legend (’ Des i red Angle ’ , ’ Actual Angle ’)

hold o f f

subplot (4 , 1 , 2)

plot (t , the ta 2 d (: , 2))

hold on

xlabel (’Time (seconds) ’)

ylabel (’ \ the ta 2 (rad ians) ’)

t i t l e (’ Des i red and Actual Angle f o r Jo int 2 ’)

plot (t2 , the ta out (: , 2))

legend (’ Des i red Angle ’ , ’ Actual Angle ’)

hold o f f

subplot (4 , 1 , 3)

plot (t , d 3 d (: , 2))

hold on

193

B.3. Hybrid Force-Position Control Simulation

xlabel (’Time (seconds) ’)

ylabel (’ d 3 (metres) ’)

t i t l e (’ Des i red and Actual Pos i t i on f o r Jo int 3 ’)

plot (t2 , the ta out (: , 3))

plot ([0 , t r i a l t i m e] , [− r s z b a s e + l 0 − l 4 ,− r s z b a s e + l 0 −
l 4])

legend (’ Des i red Pos i t i on ’ , ’ Actual Pos i t i on ’ , ’ React ion Sur face

’)

hold o f f

subplot (4 , 1 , 4)

plot (t , the ta 4 d (: , 2))

hold on

xlabel (’Time (seconds) ’)

ylabel (’ \ the ta 4 (rad ians) ’)

t i t l e (’ Des i red and Actual Angle f o r Jo int 4 ’)

plot (t2 , the ta out (: , 4))

legend (’ Des i red Angle ’ , ’ Actual Angle ’)

hold o f f

set (gcf , ’ Po s i t i on ’ , [250 50 800 7 0 0])

combined error maxes = [max(e r r o r 1) , max(e r r o r 2) , max(

e r r o r 3) , max(e r r o r 4) , max(e r r o r 1 s i m s c a p e) , max(

e r r o r 2 s i m s c a p e) , max(e r r o r 3 s i m s c a p e) , max(

e r r o r 4 s i m s c a p e)] ;

combined error mins = [min(e r r o r 1) , min(e r r o r 2) , min(

e r r o r 3) , min(e r r o r 4) , min(e r r o r 1 s i m s c a p e) , min(

e r r o r 2 s i m s c a p e) , min(e r r o r 3 s i m s c a p e) , min(

e r r o r 4 s i m s c a p e)] ;

c o m b i n e d e r r o r d i f f s = max(combined error maxes) − min(

combined error mins) ;

f igure (3)

plot (t , e r r o r 1 , ’ c o l o r ’ , [1 0 .563 0])

hold on

194

B.3. Hybrid Force-Position Control Simulation

plot (t , e r r o r 2 , ’b ’)

plot (t , e r r o r 3 , ’ c o l o r ’ , [0 0 . 5 0])

plot (t , e r r o r 4 , ’ c o l o r ’ , [0 . 7 8 1 0 1])

% p l o t (t , e rror 1 s imscape , ’ −− ’ , ’ co lor ’ , [1 0.563 0])

% p l o t (t , e rror 2 s imscape , ’ b−−’)

% p l o t (t , e rror 3 s imscape , ’ −− ’ , ’ co lor ’ , [0 0 .5 0])

% p l o t (t , e rror 4 s imscape , ’ −− ’ , ’ co lor ’ , [0 . 7 8 1 0 1])

xlabel (’Time (seconds) ’)

ylabel (’ Error (rad or m) ’)

t i t l e (’ Jo int Errors ’)

%l ege nd (’ Jo in t 1 Error ’ , ’ Jo in t 2 Error ’ , ’ Jo in t 3 Error ’ , ’

Jo in t 4 Error ’ , ’ Jo in t 1 Error (SimScape) ’ , ’ Jo in t 2 Error (

SimScape) ’ , ’ J o in t 3 Error (SimScape) ’ , ’ Jo in t 4 Error (

SimScape) ’)

legend (’ Jo int 1 Error ’ , ’ Jo int 2 Error ’ , ’ Jo int 3 Error ’ , ’ Jo int

4 Error ’)

grid on

hold o f f

f igure (4)

subplot (3 , 2 , 1)

plot (t , x d)

hold on

plot (t , x)

hold o f f

yl im ([min ([x ; x d]) − 0 . 1∗ (max([x ; x d])−min ([x ; x d])) ,max([x ;

x d])+ 0 . 1∗ (max([x ; x d])−min ([x ; x d]))])

xlabel (’Time (seconds) ’)

ylabel (’ Po s i t i on (m) ’)

legend (’ Des i red ’ , ’ Actual ’)

t i t l e (’End E f f e c t o r x−p o s i t i o n ’)

subplot (3 , 2 , 3)

plot (t , y d)

hold on

plot (t , y)

195

B.3. Hybrid Force-Position Control Simulation

hold o f f

yl im ([min ([y ; y d]) − 0 . 1∗ (max([y ; y d])−min ([y ; y d])) ,max([y ;

y d])+ 0 . 1∗ (max([y ; y d])−min ([y ; y d]))])

xlabel (’Time (seconds) ’)

ylabel (’ Po s i t i on (m) ’)

legend (’ Des i red ’ , ’ Actual ’)

t i t l e (’End E f f e c t o r y−p o s i t i o n ’)

subplot (3 , 2 , 5)

plot (t , z d)

hold on

plot (t , z)

plot ([0 , t r i a l t i m e] , [r s zbase , r s z b a s e])

hold o f f

yl im ([min ([z ; z d]) − 0 . 1∗ (max([z ; z d])−min ([z ; z d])) ,max([z ;

z d])+ 0 . 1∗ (max([z ; z d])−min ([z ; z d]))])

xlabel (’Time (seconds) ’)

ylabel (’ Po s i t i on (m) ’)

legend (’ Des i red ’ , ’ Actual ’ , ’ React ion Sur face ’)

t i t l e (’End E f f e c t o r z−p o s i t i o n ’)

f e x t x = f e x t o u t c a r t e s i a n (: , 1) ;

f e x t y = f e x t o u t c a r t e s i a n (: , 2) ;

f e x t z = f e x t o u t c a r t e s i a n (: , 3) ;

subplot (3 , 2 , 2)

plot (t , f e x t x d (: , 2))

hold on

plot (t2 , f e x t x)

hold o f f

yl im ([min ([min(f e x t x) ,min(f e x t x d)]) − 0 . 1∗ (max([max(f e x t x

) ,max(f e x t x d)])−min ([min(f e x t x) ,min(f e x t x d)])) ,max([

max(f e x t x) ,max(f e x t x d)])+ 0 . 1∗ (max([max(f e x t x) ,max(

f e x t x d)])−min ([min(f e x t x) ,min(f e x t x d)]))])

xlabel (’Time (seconds) ’)

ylabel (’ Force (N) ’)

legend (’ Des i red ’ , ’ Actual ’)

196

B.3. Hybrid Force-Position Control Simulation

t i t l e (’End E f f e c t o r x−Reaction Force ’)

subplot (3 , 2 , 4)

plot (t , f e x t y d (: , 2))

hold on

plot (t2 , f e x t y)

hold o f f

yl im ([min ([min(f e x t y) ,min(f e x t y d)]) − 0 . 1∗ (max([max(f e x t y

) ,max(f e x t y d)])−min ([min(f e x t y) ,min(f e x t y d)])) ,max([

max(f e x t y) ,max(f e x t y d)])+ 0 . 1∗ (max([max(f e x t y) ,max(

f e x t y d)])−min ([min(f e x t y) ,min(f e x t y d)]))])

xlabel (’Time (seconds) ’)

ylabel (’ Force (N) ’)

legend (’ Des i red ’ , ’ Actual ’)

t i t l e (’End E f f e c t o r y−Reaction Force ’)

subplot (3 , 2 , 6)

plot (t , f e x t z d (: , 2))

hold on

plot (t2 , f e x t z)

hold o f f

yl im ([min ([min(f e x t z) ,min(f e x t z d)]) − 0 . 1∗ (max([max(f e x t z

) ,max(f e x t z d)])−min ([min(f e x t z) ,min(f e x t z d)])) ,max([

max(f e x t z) ,max(f e x t z d)])+ 0 . 1∗ (max([max(f e x t z) ,max(

f e x t z d)])−min ([min(f e x t z) ,min(f e x t z d)]))])

xlabel (’Time (seconds) ’)

ylabel (’ Force (N) ’)

legend (’ Des i red ’ , ’ Actual ’)

t i t l e (’End E f f e c t o r z−Reaction Force ’)

set (gcf , ’ Po s i t i on ’ , [300 50 1000 7 0 0])

toc

197

	Acknowledgements
	Abstract
	Résumé
	List of Tables
	List of Figures
	List of Symbols
	Introduction
	Background
	Position Control
	Force Control
	Force-Position Control

	Model Development
	Kinematic Model
	Frame Assignment
	Link Connection Definitions
	Forward Kinematics
	Inverse Kinematics
	Workspace

	Differential Kinematics
	Computing the Jacobian
	Kinematic Singularities

	Dynamic Model
	MatLab/Simulink Model

	Position Control
	Decentralized PID Control
	Decentralized PID Control with Feedback Linearization
	Centralized Control with Feedback Linearization
	Position Control Workspace Trial

	Force-Position Control
	Reaction Surface Model Development
	Hybrid Force-Position Controller
	Establishing the Selection Matrix
	Joint Space/Cartesian Space Signal Assignments

	Force Control
	PI/Feedforward Controller
	PI/Feedforward/Velocity Damping Controller

	Conclusion and Recommendations
	Bibliography
	Appendices
	Appendix A: Physical Robot Construction
	Eliminating Mechanical Backlash
	Force/Torque Sensor and Fourth DOF

	Appendix B: Source Code
	Robot Model Development
	Position Control Simulation
	Hybrid Force-Position Control Simulation

