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ABSTRACT 

Kim, James Jaehak, M.Sc., Royal Military College of Canada, March, 2016, New and 

Extended Results in Renewal and Queueing Theories. Supervised by Dr. M.L. Chaudhry. 

 

 

This thesis encompasses new and extended results in renewal and queueing 

theories. 

In the renewal theory portion of this thesis, the asymptotic result of renewal mass 

function and new asymptotic moments are found using the method of generating 

functions. This method is not only simple but also provides the extra constant terms in the 

asymptotic second moment which are unavailable in the literature. Higher asymptotic 

moments and their corresponding extra constant terms can also be found using the 

method of generating functions. Previous results in the existing literature do not have 

these extra constant terms. Recent work in renewal theory has the extra constant terms in 

a non-bulk renewal processes. The purpose of this thesis is to extend that recent work to 

the bulk-renewal processes in discrete-time.  

In the queueing theory portion of this thesis, the imbedded Markov chain 

technique is used to determine the distributions of the number of uncompleted service 

stages, the number of customers in the system, and the waiting-time-in-queue. Single-

server queues with a fixed number of service stages have been analyzed by many authors, 

some of whom state that there is no simple way to analyze the queue 𝐺𝐼/𝐸𝑋/1. The 

purpose of this thesis is to review and extend the previous work on 𝐺𝐼/𝐸𝑟/1 to the more 

general model 𝐺𝐼/𝐸𝑋/1 in which the number of stages is randomly distributed. 

Keywords: Stochastic processes, Markov chains, Renewal theory, Discrete-time, 

Bulk-renewal processes, Queueing theory, Single-server queues, Service stages. 
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RÉSUMÉ 

Kim, James Jaehak, M.Sc., Collège militaire royal du Canada, mars, 2016, Les Résultats 

Nouveaux et Etendus en Théorie des Ensembles Renouvelés et des Files D’attente. Dirigé 

par Dr. M.L. Chaudhry 

 

 

Cette thèse comprend des résultats nouveaux et étendus en théorie des ensembles 

renouvelés et des files d’attente.  

 Dans la portion de la théorie des ensembles renouvelés de cette thèse, la fonction 

de masse de renouvellement asymptotique et de nouveaux moments asymptotiques sont 

trouvés en employant la méthode de la fonction génératrice. Des résultats précédents dans 

la littérature actuelle n’ont pas ces termes constants supplémentaires. Du travail récent 

dans la théorie des ensembles renouvelés aux termes constants supplémentaires dans un 

processus de renouvellement non-vrac. L’objectif de cette thèse est d’étendre ce travail 

récent à un processus de renouvellement vrac en temps discret.  

Dans la portion de la théorie des files d’attente de cette thèse, la technique 

intégrée de la chaîne de Markov est utilisée pour déterminer les distributions du nombre 

des étapes de service, du nombre de clients dans le système, et le temps d’attente dans la 

file d’attente. Les files d’attente de serveursuniques avec un nombre fixe d’étapes de 

service ont été analysées par plusieurs auteurs, dont certains ont déclaré qu’il n’y a 

aucune manière simple d’analyser la file 𝐺𝐼/𝐸𝑋/1. L’objectif de cette note est de revoir et 

d’étendre le travail précédent de 𝐺𝐼/𝐸𝑟/1 à un modèle plus général de 𝐺𝐼/𝐸𝑋/1, dans 

laquelle le nombre d’étapes est distribué de façon aléatoire.  

Mots-clés: Le processus stochastique, la chaîne Markov, la théorie des ensembles 

renouvelés, temps discret, processus de renouvellement vrac, la théorie des files d’attente, 

les files d’attente de serveurs uniques, les étapes de service. 
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(𝑖−1)!
𝑒−𝜇𝑥𝑑𝑥, (𝑡 ≥ 0)

𝑡

0
∞
𝑖=1  

(24) �̅�(𝑧, 𝜔) = ∫ 𝑒−𝜔𝑡𝑄(𝑧, 𝑡)𝑑𝑡 =
∞

0

1

𝜔
− 𝜆

(1−�̅�(𝜔))(1−𝑧)

𝜔2(1−𝑧�̅�(𝜔))
 

(25) 𝑄𝑛 = {
1 − 𝜌 + 𝑃(𝑀𝑎( 𝑤𝑞

−) = 0),                              (𝑛 = 0)  

∫ 𝑃(𝑀𝑎( 𝑤𝑞
−) = 𝑛| 𝑤𝑞

− = 𝑡)𝑑𝑊𝑞
−(𝑡),

∞

0
       (𝑛 ≥ 1)  

 

(26) 𝐺𝑁𝑞(𝑧) = 1 − 𝜌 + ∫ 𝑄(𝑧, 𝑡)
∞

0
𝑑𝑊𝑞

−(𝑡) 

(27) 𝐺𝑁𝑞(𝑧) = 𝑄0 +𝑄1𝑧 + 𝑄2𝑧
2 + 𝑄3𝑧

3+. . . , (|𝑧| ≤ 1) 

(28) 𝑅𝑛 = {

1 − 𝜌,                 (𝑛 = 0)

𝜌 − 1 + 𝑄0,       (𝑛 = 1)

𝑄𝑛−1,                   (𝑛 ≥ 2)
 

(29) 𝑀𝑝ℎ𝑎𝑠𝑒 = ∑ 𝑖∞
𝑖=1 𝑝𝑖 

(30) 𝐿𝑞 = ∑ 𝑛∞
𝑛=1 𝑄𝑛 

(31) 𝐿𝑠 = ∑ 𝑛∞
𝑛=1 𝑅𝑛 

(32) 𝐿𝑞 = 𝐿𝑠 − 𝜌 

(33) 𝐸𝑊𝑞− = ∫ 𝑡𝑑 𝑊𝑞
−(𝑡)

∞

0
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(34) 𝐸𝑊− = 𝐸𝑊𝑞− +
𝑠

𝜇

̅
 

(35) 𝐿𝑞 = 𝜆𝐸𝑊𝑞− 

(36) 𝐿𝑠 = 𝜆𝐸𝑊− 
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1 INTRODUCTION 

1.1 Problem Description 

This thesis addresses two different but related problems in renewal and queueing 

theories. 

1.1.1 Problem description in renewal theory 

Renewal theory is the study of renewal processes: Processes that count randomly 

occurring events (known as renewals) over duration of time in either continuous or 

discrete-time domain. Renewals can occur individually (single-renewal) or in groups 

(bulk-renewal). In applying renewal theory to real world problems, the asymptotic results 

of renewal processes serve as an important tool whenever there is a need to observe the 

long term behaviour of the number of renewals. Despite their importance, such 

asymptotic results were historically difficult to determine due to lack of available 

computing power and techniques to handle lengthy and complex expressions. In recent 

studies, asymptotic results in the discrete-time single-renewal processes were found, but 

the extended results in the discrete-time bulk-renewal processes are yet to be determined. 

In addition, the connection between the asymptotic results in continuous and discrete-

time domains is unavailable in literature. Acquiring new asymptotic results in the 

discrete-time bulk-renewal processes and building the connection with their equivalent 

results in the continuous-time bulk-renewal processes would further the knowledge and 

understanding of asymptotic results in renewal theory. Such findings would also enable 

researchers to apply renewal theory across both analog and digital spectrums (also 

perform conversion between spectrums) which is considered an important practical 

application of renewal theory in engineering and telecommunications. 
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1.1.2 Problem description in queueing theory 

A queue forms whenever and wherever demand exceeds supply. It is for this 

reason that a study of queues naturally emerged as a practical field of study known as 

queueing theory. Among many different types of queues, queues with multi-staged 

service (multi-staged queues) are particularly useful in modeling cases where a customer 

must proceed through several service stages. Queues of this type are evident when 

observing manufacturing lines, annual medical check-ups, or scheduled inspections of 

any sort. In the past, extensive studies have been done on models with a server that has a 

fixed number of service stages. On the contrary, almost no work has been done on models 

with a server that has a random number of service stages. This is mainly due to 

difficulties in handling the random nature of service stages and the associated 

probabilities. In review of previous work done by others, Yao et al. (1984) state that 

“there is no simple way to analyze queues with server that has random number of 

service stages”. A thorough and a complete analysis of these queues would not only 

address such a statement, but would also enhance previous knowledge of multi-staged 

queues and provide queueing theorists and practitioners with a new problem solving tool. 

1.2 Thesis Objectives 

The objective of this thesis is two-fold: To present new and extended results in 

renewal and queueing theories. 

1.2.1 Objectives in renewal theory 

- To derive new asymptotic results in the discrete-time bulk-renewal processes. 

- To build a connection between asymptotic results of discrete and continuous 

time-bulk renewal processes. 



3 

 

 

- To provide new numerical examples of asymptotic results in the discrete-time 

bulk-renewal processes. 

1.2.2 Objectives in queueing theory 

- To extend the queueing model 𝐺𝐼/𝐸𝑘/1 to 𝐺𝐼/𝐸𝑋/1. 

- To solve and derive several relations between different findings in 𝐺𝐼/𝐸𝑋/1. 

- To provide new numerical examples of 𝐺𝐼/𝐸𝑋/1. 
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2 RENEWAL THEORY 

 Readers may refer to Appendix A.1 for summaries on probability theory and 

stochastic processes, which are important topics that lead to renewal theory. The 

definitions and properties of a discrete r.v. and its moments, generating function (g.f.), 

probability generating function (p.g.f.), and double generating function (d.g.f.) are 

provided in Appendix A.3. In addition, all supplementary proofs, derivation, and theorem 

that are used in discussing renewal theory are provided in Appendix B. 

2.1 Literature review 

Renewal theory can be divided into continuous and discrete-time renewal theories, 

both of which are important tools of application when solving problems in areas such as 

failure and replacement of equipment, traffic-flow, risk-based asset management models 

and queues (see Van Noortwijk, 2003).  

In literature, Cox (1962) and Feller (1968) are among the most prominent of the 

various authors who discuss the theoretical (and analytical) aspect of renewal theory. 

Their ideas are reiterated in the works of Heyman and Sobel (1982), Tijms (2003) and 

Beichelt (2006). The computational aspect of renewal theory had been limited in the past 

mainly due to lack of computing power, software, and known techniques to perform such 

computations. 

Particular interest in both continuous and discrete-time renewal theories is in 

finding their asymptotic results. Asymptotic results consist of the asymptotic result of 

renewal mass function (in discrete-time) or asymptotic result of renewal density (in 

continuous-time) and asymptotic moments of the number of renewals. Such results are 

important in practical applications of renewal theory due to their readily interpretable and 
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measurable way of describing the number of renewals in the long run. However, despite 

their importance, asymptotic results were historically difficult to determine due to lack of 

computing power and complex derivations that lead to such results (Fisher 2014). 

In continuous-time renewal theory, Cox (1962) provides the renewal density, and 

the first and second moments of the number of renewals in the continuous-time single-

renewal processes. For the same processes, he also derives the asymptotic renewal 

density, as well as the asymptotic first and second moments of the number of renewals 

using Laurent series. Cox (1962)’s results are largely theoretical and his asymptotic 

second moment is missing the extra constant terms. Chaudhry (1995) discusses the 

computational aspect of continuous-time renewal theory, where he considers several 

different patterns of renewal periods in the continuous-time single-renewal processes. To 

compute renewal density and the moments of the number of renewals, one has to first 

take the L.T. of what is being computed. In doing so, Chaudhry (1995) classifies these 

L.T.’s into three distinct groups (rational, irrational, and those that cannot be represented 

in a closed-form) and shows how to perform computations for each group. Using the 

computational technique established by Chaudhry (1995), Chaudhry et al. (2013) provide 

various numerical examples in the continuous-time single-renewal processes. In their 

work, Padé approximation (see Appendix A.2.6) is used for the group of L.T.’s that 

Chaudhry (1995) classifies as irrational. Though the work by Chaudhry (1995), and 

Chaudhry, Yang and Ong (2013) cover several examples including the asymptotic results, 

the extra constant terms in their asymptotic second moment is still missing. 

In extending previous works on the continuous-time single-renewal processes, 

Fisher and Chaudhry (2014) provide new results in the continuous-time bulk-renewal 

processes. In their derivations, the method of L.T. used by Chaudhry (1995) is extended 
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to a bulk-renewal case. Fisher and Chaudhry (2014) also provide the extra constant terms 

in the asymptotic second moment. 

In discrete-time renewal theory, the asymptotic first and second moments in the 

discrete-time single-renewal processes are available in the study by van der Weide et al. 

(2007). This result provides extra constant terms in the second moment yet states that it is 

not clear from Feller (1949) as to how to obtain those terms using g.f.’s. The same 

problem persists in Feller (1968) and Hunter (1983). Recently, Chaudhry and Fisher 

(2012) have responded to this problem by providing the asymptotic first and second 

moments in the discrete-time single-renewal processes using g.f.’s. 

2.2 Discrete-time single-renewal processes 

The discrete-time single-renewal processes are stochastic processes that count the 

number of randomly occurring events known as ‘renewals’ over a discrete period of time. 

These processes have been studied by several researchers in the past using various 

techniques. For details, see Feller (1968), Hunter (1983), and recent work by Chaudhry 

and Fisher (2012). A review of basic concepts in the discrete-time single-renewal 

processes is required prior to discussing the discrete-time bulk-renewal processes. 

2.2.1 Renewal periods 

The fundamental building blocks of the discrete-time single-renewal processes are 

renewal periods, which are time intervals between renewals. In the discrete-time single-

renewal processes, renewals occur individually at instances of time 𝜎1
′, 𝜎2

′ , 𝜎3
′ , …, and 

renewal periods 𝑇𝑛 = 𝜎𝑛
′ − 𝜎𝑛−1

′  , 𝑛 ≥ 1, with 𝜎0
′ = 0 are independent identically 

distributed random variables (i.i.d.r.v.’s) that are distributed as 𝑇. As well, 𝑇 has a 

probability mass function (p.m.f.) 𝑓𝑘 = 𝑃(𝑇 = 𝑘), 𝑘 ≥ 1, 𝑓0 = 0 and a probability 
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generating function (p.g.f.) 𝑓(𝑣) = ∑ 𝑓𝑘𝑣
𝑘∞

𝑘=1 , (|𝑣| ≤ 1) with mean 𝜇 ≡ 𝜇1 = 𝐸[𝑇] <

∞, variance 𝜎2 = 𝐸[𝑇2] − 𝐸2[𝑇] < ∞, 𝑎𝑛 =
𝑑𝑛

𝑑𝑣𝑛
𝑓(𝑣)|𝑣=1, (𝑛 ≥ 1) and 𝑛-th 

moment 𝜇𝑛 = 𝐸[𝑇
𝑛], (𝑛 ≥ 1). If 𝑊𝑛 is the waiting time until the 𝑛-th renewal, then 

𝑊𝑛 = ∑ 𝑇𝑖
𝑛
𝑖=1  . The p.g.f. of 𝑊𝑛 is 

𝐸[𝑣𝑊𝑛] = 𝐸[𝑣∑ 𝑇𝑖
𝑛
𝑖=1 ], (𝑛 > 0, 𝑣 ≥ 1) 

= 𝐸[𝑣𝑇1+𝑇2+...+𝑇𝑛] 

Given that 𝑇𝑖’s are i.i.d.r.v.’s distributed as 𝑇, without loss of generality, the p.g.f 

of 𝑊𝑛 can also be written as 

𝐸[𝑣𝑊𝑛] = 𝐸[𝑣𝑛𝑇] = {𝐸[𝑣𝑇]}𝑛 = 𝑓𝑛(𝑣) 

The stochastic processes {𝑇𝑛, 𝑛 ≥ 1} is called recurrent if 𝑓(1) = 1, and transient 

if 𝑓(1) < 1. 

2.2.2 Renewal mass function 

The renewal mass function is the probability of an event that there is a renewal at 

time 𝑘. It can be described as 

𝑚𝑘 = 𝑃(renewal at 𝑘) 

where 𝑘 ≥ 1. It is important to indicate that the renewal mass function is not a p.m.f. 

since ∑ 𝑚𝑘
∞
𝑘=0 ≠ 1. Intuitively, 𝑚𝑘 would consist of several different possibilities that 

lead to a renewal at 𝑘. For instance, assuming that there is no renewal prior to 𝑘, 

then 𝑚𝑘 would be the same as 𝑓𝑘. Alternately, assuming that there is a renewal prior 

to 𝑘 (say at 1), then 𝑚𝑘 would be 𝑚1𝑓𝑘−1. Different possibilities that lead to a renewal 

at 𝑘 are depicted in Figure 1 below. 
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Figure 1: Different possibilities that lead to a renewal at 𝒌. 

 

 

By considering all different possibilities that lead to a renewal at 𝑘, the renewal mass 

function can be expressed in terms of what is known as the renewal equation: 

𝑚𝑘 = 𝑓𝑘 +∑𝑚𝑘−𝑗𝑓𝑗

𝑘

𝑗=1

 

with 𝑚1 = 𝑓1 and 𝑚0 = 0 (implying that there is no renewal at time 0). The left-hand side 

of the renewal equation is the probability of a renewal taking place at time 𝑘. The right-

hand side of the equation is either a probability of the first renewal at time 𝑘 or a previous 

renewal at time 𝑘 − 𝑗, (1 ≤ 𝑗 ≤ 𝑘) with probability 𝑚𝑘−𝑗 and a subsequent renewal 

after 𝑗 time units with probability 𝑓𝑗 . Let 𝑚(𝑣) be the g.f. of 𝑚𝑘, which can be found by 

taking the g.f. of the renewal equation such that 

𝑚(𝑣) = ∑𝑚𝑘𝑣
𝑘

∞

𝑘=1

=∑(𝑓𝑘 +∑𝑚𝑘−𝑗𝑓𝑗

𝑘

𝑗=1

)

∞

𝑘=1

𝑣𝑘                                   

=∑𝑓𝑘𝑣
𝑘 +∑∑𝑚𝑘−𝑗𝑓𝑗

𝑘

𝑗=1

𝑣𝑘
∞

𝑘=1

∞

𝑘=1

                                                  

=∑𝑓𝑘𝑣
𝑘 +

∞

𝑘=1

(∑𝑚𝑘−𝑗𝑣
𝑘−𝑗

∞

𝑘=𝑗

)(∑𝑓𝑗𝑣
𝑗

∞

𝑗=1

)                             
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or alternately expressed as 

= 𝑓(𝑣) + 𝑚(𝑣)𝑓(𝑣) 

and the g.f. of renewal mass function is 

𝑚(𝑣) =
𝑓(𝑣)

1 − 𝑓(𝑣)
, (|𝑣| < 1)                                                  (1) 

2.2.3 Number of renewals 

With the understanding of time duration between renewals (renewal periods) and 

the likelihood of a renewal at a particular point in time (renewal mass function), the 

probability of the number of renewals over a time interval can be discussed. Let {𝑁𝑘, 𝑘 ≥

1} be the discrete-time single-renewal processes where 𝑁𝑘 counts the number of renewals 

in the time interval (0, 𝑘]. The average (mean) number of renewals in (0, 𝑘] is referred to 

as the renewal function and defined as 𝑀𝑘 = 𝐸[𝑁𝑘], (𝑘 ≥ 1). There exists a relation 

between 𝑀𝑘  and 𝑚𝑘, such that 

𝑀𝑘 =∑𝑚𝑖

𝑘

𝑖=1

 

The proof for the above relation is provided in Appendix B.1.1. To count the number of 

renewals in a window of time, the following three relations between 𝑁𝑘 and 𝑊𝑛 must be 

used: 

a) 𝑁𝑘 ≥ 𝑛 ↔ 𝑊𝑛 ≤ 𝑘 

b) 𝑁𝑘 ≤ 𝑛 ↔ 𝑊𝑛+1 > 𝑘 

both of which are true for 𝑛 ≥ 0 and 𝑘 ≥ 1. The two relations above between 𝑁𝑘 and 𝑊𝑛 

can be each explained as follows: 

First relation: There are at least 𝑛 renewals during (0, 𝑘] if and only if the time 

until the 𝑛-th renewal is at most 𝑘. 
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Second relation: There are at most 𝑛 renewals during (0, 𝑘] if and only if the 

time until the (𝑛 + 1)-th renewal is at least 𝑘 + 1. 

The importance of the above two relations is reflected in the fact that the number of 

renewals can be described in terms of renewal periods (thus confirming the statement in 

Subsection 2.2.1 that the fundamental building blocks of {𝑁𝑘, 𝑘 ≥ 1} are renewal 

periods). Let the p.m.f. of 𝑁𝑘 be 𝑃𝑛(𝑘) = 𝑃(𝑁𝑘 = 𝑛), (𝑛 ≥ 0). Using the first relation 

above, it can be expressed as 

𝑃𝑛(𝑘) = 𝑃(𝑁𝑘 = 𝑛) = 𝑃(𝑁𝑘 ≥ 𝑛) − 𝑃(𝑁𝑘 ≥ 𝑛 + 1) 

= 𝑃(𝑊𝑛 ≤ 𝑘) − 𝑃(𝑊𝑛+1 ≤ 𝑘) 

Since 𝑁𝑘 is a random variable (r.v.) of stochastic processes, the number of 

renewals depends on the renewal periods. The stochastic nature of 𝑁𝑘 allows it to have a 

double generating function (d.g.f.) such that it becomes 𝑃(𝑧, 𝑣) = ∑ ∑ 𝑃𝑛(𝑘)𝑣
𝑘𝑧𝑛∞

𝑘=1
∞
𝑛=0 . 

This d.g.f. can be found by first taking a g.f. of 𝑘 followed by a p.g.f. of 𝑛, which 

becomes 

𝑃(𝑧, 𝑣) = ∑∑𝑃𝑛(𝑘)𝑣
𝑘𝑧𝑛

∞

𝑘=1

∞

𝑛=0

=
1 − 𝑓(𝑣)

(1 − 𝑣)[1 − 𝑧𝑓(𝑣)]
, (|𝑧| < 1, |𝑣| < 1)         (2) 

The complete derivation for (2) is provided in Appendix B.2.1. 

2.3 Discrete-time bulk-renewal processes 

The discrete-time single-renewal processes can be extended to the discrete-time 

bulk-renewal processes in terms of the size of renewals. In the extended processes, 

renewals occur in groups which results in interesting changes to the existing properties of 

the single-renewal processes. Some of the previous derivations for the discrete-time 
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single-renewal processes can be either reused or extended to the discrete-time bulk-

renewal processes. 

2.3.1 Renewal periods 

The renewal periods between individual renewals are also the renewal periods 

between bulk-renewals. Since a renewal period measures the time elapsed between two 

consecutive renewals (whether those renewals are single or bulk in size), the renewal 

periods of the discrete-time single-renewal processes are the same as that of the discrete-

time bulk-renewal processes. 

2.3.2 Renewal mass function 

The renewal mass function of a single-renewal can also be the renewal mass 

function of a bulk-renewal. This is possible since the renewal mass function provides the 

probability of a renewal at time 𝑘, regardless of the size of that renewal. 

2.3.3 Number of renewals 

Assume that there are bulk-renewals at time 𝑠1, 𝑠2, …, with size 𝑋𝑖 . The 

r.v.’s 𝑋𝑖 are i.i.d.r.v.’s that are distributed as 𝑋 through a p.m.f. 𝑏𝑛 = 𝑃(𝑋 = 𝑛), (𝑛 ≥ 1). 

The p.m.f. 𝑏𝑛 has a p.g.f. 𝑃𝑋(𝑧) = 𝐸[𝑧
𝑋] = ∑ 𝑏𝑛𝑧

𝑛∞
𝑛=1 ,  where 𝜇𝑋 = 𝑃𝑋

′ (1) and 𝑃𝑋
′′(1) =

𝑑2

𝑑𝑧2
𝑃𝑋(𝑧)|𝑧=1. In addition, 𝑁𝑘 in the discrete-time single-renewal processes can be re-

interpreted as the number of bulk-renewals (not the number of renewals) over the time 

interval (0, 𝑘] in the discrete-time bulk-renewal processes. The number of renewals over 

the time interval (0, 𝑘] is 𝑌𝑁𝑘 = ∑ 𝑋𝑖
𝑁𝑘
𝑖=1  with p.m.f. 𝐵𝑛(𝑘) = 𝑃(𝑌𝑁𝑘 = 𝑛), (𝑛 ≥ 0). 

Let 𝑀𝑘
(𝑖) = 𝐸[𝑌𝑁𝑘

𝑖 ], (𝑖 ≥ 1) be the 𝑖-th moment of 𝑌𝑁𝑘. In addition, 𝑌𝑁𝑘  has a 

d.g.f. 𝐵(𝑧, 𝑣), (|𝑧| < 1, |𝑣| < 1) that can be found by taking the p.g.f. of 𝐵𝑛(𝑘) with 

respect to 𝑛, such that 
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∑𝐵𝑛(𝑘)𝑧
𝑛

∞

𝑛=0

= 𝐸[𝑧𝑌𝑁𝑘] = 𝐸 [𝐸 [𝑧∑ 𝑋𝑖
𝑁𝑘
𝑖=1 |𝑁𝑘]] = ∑𝐸 [𝑧∑ 𝑋𝑖

𝑁𝑘
𝑖=1 |𝑁𝑘 = 𝑛] 𝑃𝑛(𝑘)

∞

𝑛=0

 

= ∑[𝑃𝑋(𝑧)]
𝑛

∞

𝑛=0

𝑃𝑛(𝑘),     (|𝑧| < 1, 𝑘 ≥ 1)                                   (3) 

where 𝑃𝑛(𝑘) is the probability of 𝑛 bulk-renewals occurring in (0, 𝑘]. By taking the g.f. of 

(3) with respect to 𝑘, it becomes 

 ∑∑𝐵𝑛(𝑘)𝑧
𝑛

∞

𝑛=0

𝑣𝑘
∞

𝑘=1

=∑{∑[𝑃𝑋(𝑧)]
𝑛𝑃𝑛(𝑘)

∞

𝑛=0

} 𝑣𝑘
∞

𝑘=1

 

= ∑[𝑃𝑋(𝑧)]
𝑛

∞

𝑛=0

∑𝑃𝑛(𝑘)𝑣
𝑘

∞

𝑘=1

                                        

Substituting ∑ 𝑃𝑛(𝑘)𝑣
𝑘∞

𝑘=1 =
𝑓𝑛(𝑣)

1−𝑣
[1 − 𝑓(𝑣)], (|𝑣| < 1) (see Appendix B.1.2 for proof) 

in the above leads to 

= ∑
1 − 𝑓(𝑣)

1 − 𝑣

∞

𝑛=0

[𝑃𝑋(𝑧)𝑓(𝑣)]
𝑛 

Thus the d.g.f. of 𝑌𝑁𝑘  is found as 

𝐵(𝑧, 𝑣) = ∑∑𝐵𝑛(𝑘)𝑧
𝑛

∞

𝑛=0

𝑣𝑘
∞

𝑘=1

=
1 − 𝑓(𝑣)

(1 − 𝑣)[1 − 𝑃𝑋(𝑧)𝑓(𝑣)]
, (|𝑧|, |𝑣| < 1)      (4) 

where if 𝑃𝑋(𝑧) = 𝑧, then 𝐵(𝑧, 𝑣) reduces to 𝑃(𝑧, 𝑣) of the discrete-time single-renewal 

processes. Interestingly, in the discrete-time single-renewal processes, a g.f. then p.g.f. 

are taken to find (2) whereas in the discrete-time bulk-renewal processes, the steps are 

reversed such that a p.g.f. then g.f. are taken to find (4). This reverse in procedure is due 

to the composition of (4), where 𝐵𝑛(𝑘) is partially in terms of 𝑃𝑛(𝑘). 
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2.3.4 Conclusion 

In the discrete-time bulk-renewal processes, the renewal periods, renewal mass 

function, and the d.g.f. of the number of renewals are derived. Given that both the 

renewal periods and the renewal mass function strictly focus on the event that a renewal 

occurs (rather than its size), previous derivations in single-renewal processes can be 

reused. However, the d.g.f. of the number of renewals is an extension of that in single-

renewal processes since it takes the size of each bulk-renewal into consideration. This 

d.g.f. has several advantages over its p.m.f. counterpart when considered as a tool in 

deriving the asymptotic results. It is for this reason that (4) is derived.  

The derivation of the d.g.f. in Section 2.3 is discussed in the manuscript that has 

been accepted for publication in the Journal of Mathematics and System Science (Kim 

and Chaudhry, 2014).  

2.4 Asymptotic results in the discrete-time bulk-renewal processes 

In this section, the asymptotic theory (see Appendix B.3.1) is applied to the 

discrete-time bulk-renewal processes. Such application leads to the asymptotic results in 

the discrete-time bulk-renewal processes that consist of the asymptotic result of renewal 

mass function and the asymptotic moments. Asymptotic results provide a tangible way of 

describing the number of renewals in the long run. For instance, the asymptotic result of 

renewal mass function is the probability of a bulk-renewal at time 𝑘 as 𝑘 → ∞. In 

addition, the asymptotic first and second moments of 𝑌𝑁𝑘  are used to find the mean and 

standard deviation of the number of renewals in the long run, respectively. 
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2.4.1 Asymptotic result of renewal mass function 

Consider the discrete-time bulk-renewal processes {𝑌𝑁𝑘 , 𝑘 ≥ 1} that are recurrent 

with 𝜇 < ∞. The asymptotic result of renewal mass function can be described as 

lim
𝑘→∞

𝑚𝑘 =
1

𝜇
 

where 𝜇 is the mean renewal period. The proof of this result is as follows:  

The renewal mass function 𝑚𝑘, (𝑘 ≥ 1) is a probability for which 0 ≤ 𝑚𝑘 ≤ 1 

holds. Its p.g.f. 𝑚(𝑣) is absolutely convergent in |𝑣| < 1 since 

|𝑚(𝑣)| = |∑𝑚𝑘𝑣
𝑘

∞

𝑘=1

| = ∑|𝑚𝑘||𝑣|
𝑘

∞

𝑘=1

≤∑|𝑣|𝑘
∞

𝑘=1

=
𝑣

1 − 𝑣
 

is true for |𝑣| < 1. Since 𝑚(𝑣) converges in |𝑣| < 1, a procedure similar to the one 

discussed by Cox (1962) in the continuous-time single-renewal processes can be used to 

express 𝑚(𝑣) as  

𝑚(𝑣) =
𝐶

1 − 𝑣
+ 𝑂(1) 

and 

𝑚𝑘 = 𝐶 + 𝑜(1) 

where 𝐶 is a positive constant (0 < 𝐶 < ∞). In addition, 𝑂(1) indicates a function of 

(1 − 𝑣) bounded as 𝑣 → 1− and 𝑜(1) indicates a function of 𝑘 that tends to zero as 

𝑘 → ∞. The first of the above expression can be rearranged to 

(1 − 𝑣)𝑚(𝑣) − (1 − 𝑣)𝑂(1) = 𝐶 

By taking a limit as 𝑣 → 1−, it becomes 

lim
𝑣→1−

{(1 − 𝑣)𝑚(𝑣) − (1 − 𝑣)𝑂(1)} = 𝐶 

Since 𝑂(1) is bounde near 𝑣 = 1, the above expression simplifies to 
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lim
𝑣→1−

(1 − 𝑣)𝑚(𝑣) = 𝐶 

By substituting (1) in the above expression, and then applying L'Hôpital's rule gives 

𝐶 = lim
𝑣→1−

𝑑

𝑑𝑣
[(1 − 𝑣)𝑓(𝑣)]

𝑑

𝑑𝑣
[1 − 𝑓(𝑣)]

 

=
1

𝜇
 

Substituting 𝐶 = 1
𝜇⁄  into 𝑚𝑘 = 𝐶 + 𝑜(1) and as 𝑘 → ∞, the asymptotic renewal density 

becomes 

lim
𝑘→∞

𝑚𝑘 =
1

𝜇
 

There are several other ways of determining lim𝑘→∞𝑚𝑘. For one such method, see 

Kohlas (1982). The same result can also be found using a theorem in Karlin and Taylor 

(1975). 

2.4.2 Asymptotic first moment in discrete-time 

The asymptotic first moment in the discrete-time bulk-renewal 

processes {𝑌𝑁𝑘 , 𝑘 ≥ 1} is 

𝑀𝑘
(1) = 𝐸[𝑌𝑁𝑘] = (

𝜇𝑥
𝜇
) 𝑘 + 𝜇𝑥 (

𝜎2 − 𝜇2 + 𝜇

2𝜇2
) + 𝑜(1)                  (5) 

where 𝑜(1) → 0 as 𝑘 → ∞, and these processes are assumed to be recurrent with 𝜎 <

∞ and 𝜇𝑋 < ∞. The proof of (5) is as follows: 

Let the g.f. of 𝑀𝑘
(1) with respect to 𝑘 be 𝑀(1)(𝑣), (|𝑣| < 1), such that 

𝑀(1)(𝑣) = ∑𝑀𝑘
(1)𝑣𝑘 =

∞

𝑘=1

𝜕

𝜕𝑧
𝐵(𝑧, 𝑣)|𝑧=1 
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=
𝑓(𝑣)

(1 − 𝑣)[1 − 𝑓(𝑣)]
𝜇𝑋 ,   (|𝑣| < 1)                                 (6) 

where 𝐵(𝑧, 𝑣) is provided in (4). Now, following the procedure similar to the one used by 

Cox (1962) in the continuous-time single-renewal processes, 𝑀(1)(𝑣) and 𝑀𝑘
(1) can be 

alternatively expressed as 

𝑀(1)(𝑣) =
𝐶−2

(1 − 𝑣)2
+

𝐶−1
(1 − 𝑣)

+ 𝑂(1)                                             (7) 

and 

𝑀𝑘
(1) = (𝑘 + 1)𝐶−2 + 𝐶−1 + 𝑜(1)                                                  (8) 

with 𝑂(1) indicating a function of 𝑣 bounded as 𝑣 → 1− and 𝑜(1) indicating a function of 

𝑘 that tends to zero as 𝑘 → ∞. The procedure to prove (5) is to first rearrange (7) and then 

leverage (6) to solve for the unknown constant terms (𝐶−1 and 𝐶−2) one at a time. In 

doing so, both sides of (7) are multiplied by (1 − 𝑣)2 and as 𝑣 → 1−, it becomes 

𝐶−2 = lim
𝑣→1−

(1 − 𝑣)2𝑀(1)(𝑣) =  lim
𝑣→1−

(1 − 𝑣)2
𝑓(𝑣)

(1 − 𝑣)(1 − 𝑓(𝑣))
𝑃𝑋
′ (1) 

L'Hôpital's rule can be applied to determine 𝐶−2 such that 

𝐶−2 =  
𝑃𝑋
′ (1)

𝑓′(1)
=  
𝜇𝑋
𝜇

 

𝐶−1 can be found using a similar procedure. In doing so, both sides of (7) can be 

multiplied by (1 − 𝑣) and as 𝑣 → 1− it becomes 

𝐶−1 = lim
𝑣→1−

{(1 − 𝑣)
𝑓(𝑣)𝑃𝑋

′ (1)

(1 − 𝑣)(1 − 𝑓(𝑣))
−

𝑃𝑋
′ (1)

𝜇(1 − 𝑣)
}  

= 𝑃𝑋
′ (1) lim

𝑣→1−

𝜇𝑓(𝑣)(1 − 𝑣) − (1 − 𝑓(𝑣))

𝜇(1 − 𝑣)(1 − 𝑓(𝑣))
 

Applying L'Hôpital's rule, it leads to 
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𝐶−1 = 𝑃𝑋
′ (1) (

𝑓′′(1)

2𝜇2
− 1) =  𝜇𝑋 (

𝜎2 + 𝜇2 − 𝜇

2𝜇2
− 1) 

Substituting 𝐶−1 and 𝐶−2 into (8) gives 

𝑀𝑘
(1) = (

𝜇𝑥
𝜇
)𝑘 + 𝜇𝑥 (

𝜎2 − 𝜇2 + 𝜇

2𝜇2
) + 𝑜(1) 

where 𝑜(1) → 0 as 𝑘 → ∞. When 𝜇𝑋 = 1 in (5), it simplifies to the asymptotic first 

moment in the discrete-time single-renewal processes that corresponds to that of Feller 

(1968), Hunter (1983), and Chaudhry and Fisher (2012). The above finding leads to the 

well-known result in renewal theory, lim𝑘→∞
𝑀𝑘
(1)

𝑘
=

𝜇𝑋

𝜇
, which gives the arrival rate for 

the discrete-time bulk-renewal processes. 

2.4.3 Asymptotic second moment in discrete-time 

The asymptotic second moment of the discrete-time bulk-renewal 

processes {𝑌𝑁𝑘 , 𝑘 ≥ 1} is 

𝑀𝑘
(2)

= 𝐸[𝑌𝑁𝑘
2 ] = 𝑘2 (

𝜇𝑥
𝜇
)
2

+ 𝑘 (
𝜇𝑥
2

𝜇2
+
𝜇𝑥
𝜇
−
2𝜇𝑥

2

𝜇
+
𝑃𝑋
′′(1)

𝜇
+
2𝜇𝑥

2𝜎2

𝜇3
)

+ (2𝜇𝑥
2 − 𝜇𝑥 − 𝑃𝑋

′′(1) +
8𝜇𝑥

2

3𝜇2
−
2𝜇𝑥

2𝜇3
3𝜇3

+
𝜇𝑥
𝜇
−
4𝜇𝑥

2

𝜇
+
𝑃𝑋
′′(1)

𝜇
+
𝑃𝑋
′′(1)𝜎2

2𝜇2
−
2(𝜎𝜇𝑥)

2

𝜇2

+
𝜇𝑥𝜎

2

2𝜇2
+
4(𝜎𝜇𝑥)

2

𝜇3
+
3𝜇𝑥

2𝜎4

𝜇4
)

+ 𝑜(1)                                                                                                                                                (9) 

where 𝑜(1) → 0 as 𝑘 → ∞ and the processes are assumed to be recurrent with  𝜇3 < ∞ 

and 𝑃𝑋
′′(1) < ∞. The proof of this result is as follows: 

Let the g.f. of 𝑀𝑘
(2) with respect to 𝑘 be 𝑀(2)(𝑣), (|𝑣| < 1), such that 
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𝑀(2)(𝑣) = ∑𝑀𝑘
(2)𝑣𝑘

∞

𝑘=1

=
𝜕2

𝜕𝑧2
𝐵(𝑧, 𝑣)|𝑧=1 +

𝜕

𝜕𝑧
𝐵(𝑧, 𝑣)|𝑧=1 

=
𝑓(𝑣)

(1 − 𝑣)(1 − 𝑓(𝑣))
(
2𝑓(𝑣)𝜇𝑋

2 + 𝜇𝑋 − 𝜇𝑋𝑓(𝑣)

1 − 𝑓(𝑣)
+ 𝑃𝑋

′′(1)) , (|𝑣| < 1)           (10) 

where 𝐵(𝑧, 𝑣) is provided in (4). Similar to the first moment, a procedure like the one 

used by Cox (1962) in the continuous-time single-renewal processes can be used to 

express 𝑀(2)(𝑣) and 𝑀𝑘
(2) as 

𝑀(2)(𝑣) =
𝐷−3

(1 − 𝑣)3
+

𝐷−2
(1 − 𝑣)2

+
𝐷−1

(1 − 𝑣)
+ 𝑂(1)                              (11) 

and 

𝑀𝑘
(2) =

(𝑘 + 2)!

2! 𝑘!
𝐷−3 + (𝑘 + 1)𝐷−2 + 𝐷−1 + 𝑜(1)                            (12) 

with 𝑂(1) indicating a function of 𝑣 bounded as 𝑣 → 1− and 𝑜(1) indicating a function of 

𝑘 that tends to zero as 𝑘 → ∞. (9) can be proven by first rearranging (11), substituting 

(10) in that rearranged expression, and then solving for the unknown constant terms 

(𝐷−1, 𝐷−2, and 𝐷−3) one at a time. This procedure is demonstrated as follows: Both sides 

of (11) are multiplied by (1 − 𝑣)3 and as 𝑣 → 1− it leads to 

𝐷−3 = lim
𝑣→1−

(1 − 𝑣)3𝑀(2)(𝑣) =
𝑃𝑋
′ (1)

𝜇
lim
𝑣→1−

2(1 − 𝑣)𝑓(𝑣)𝑃𝑋
′ (1) + (1 − 𝑣)(1 − 𝑓(𝑣))

1 − 𝑓(𝑣)
 

By applying L'Hôpital's rule, it leads to 

 𝐷−3 =
𝑃𝑋
′ (1)

𝜇
(
2𝑃𝑋

′ (1)

𝑓′(1)
) = 2 (

𝜇𝑥
𝜇
)
2

 

Similarly, multiplying both sides of (11) by (1 − 𝑣)2 and as 𝑣 → 1−, it becomes 

𝐷−2 = lim
𝑣→1−

{(1 − 𝑣)2𝑀(2)(𝑣) −
𝐷−3

(1 − 𝑣)
} 
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= lim
𝑣→1−

{(1 − 𝑣)2𝑀(2)(𝑣) −
2(𝑃𝑋

′ (1))
2

𝜇2(1 − 𝑣)
}  

= lim
𝑣→1−

{
(1 − 𝑣)𝑓(𝑣)(𝑃𝑋

′ (1) − 𝑃𝑋
′ (1)𝑓(𝑣) + 2𝑓(𝑣)(𝑃𝑋

′ (1))
2
)

(1 − 𝑓(𝑣))2
+
(1 − 𝑣)2𝑓(𝑣)𝑃𝑋

′′(1)

(1 − 𝑣)(1 − 𝑓(𝑣))

−
2(𝑃𝑋

′ (1))
2

𝜇2(1 − 𝑣)
} 

= lim
𝑣→1−

1

(1 − 𝑓(𝑣))2(1 − 𝑣)(1 − 𝑓(𝑣))𝜇2(1 − 𝑣)
{(1 − 𝑣)𝑓(𝑣)(𝑃𝑋

′ (1) − 𝑃𝑋
′ (1)𝑓(𝑣)

+ 2𝑓(𝑣){𝑃𝑋
′ (1)}2)(1 − 𝑣)(1 − 𝑓(𝑣))𝜇2(1 − 𝑣)+(1 − 𝑣)2𝑓(𝑣)𝑃𝑋

′′(1)(1

− 𝑓(𝑣))2𝜇2(1 − 𝑣) − 2{𝑃𝑋
′ (1)}2(1 − 𝑓(𝑣))2(1 − 𝑣)(1 − 𝑓(𝑣))} 

Applying L'Hôpital's rule, it leads to 

𝐷−2 =
𝜇2𝜇𝑥 − 4𝜇𝑥

2𝜇2 + 2𝜇𝑥
2𝑎2 + 𝜇

2𝑃𝑋
′′(1)

𝜇3
 

Lastly, multiplying both sides of (11) by (1 − 𝑣) and as 𝑣 → 1− it becomes 

𝐷−1 = lim
𝑣→1−

{(1 − 𝑣)𝑀(2)(𝑣) −
𝐷−3

(1 − 𝑣)2
−

𝐷−2
(1 − 𝑣)

} 

 = lim
𝑣→1−

{
𝑓(𝑣)(𝑃𝑋

′ (1) − 𝑃𝑋
′ (1)𝑓(𝑣) + 2𝑓(𝑣){𝑃𝑋

′ (1)}2)(1 − 𝑣)

(1 − 𝑣)(1 − 𝑓(𝑣))2
+
𝑃𝑋
′′(1)𝑓(𝑣)(1 − 𝑓(𝑣))2

(1 − 𝑓(𝑣))3

−
2({𝑃𝑋

′ (1)}2 − 𝑓(𝑣){𝑃𝑋
′ (1)}2)(1 − 𝑓(𝑣))

𝜇2(1 − 𝑣)2(1 − 𝑓(𝑣))2

−
𝜇2𝑃𝑋

′ (1) − 4{𝑃𝑋
′ (1)}2𝜇2 + 2{𝑃𝑋

′ (1)}2𝑎2 + 𝜇
2𝑃𝑋

′′(1)

𝜇3(1 − 𝑣)
} 
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= lim
𝑣→1−

1

(1 − 𝑣)(1 − 𝑓(𝑣))2(1 − 𝑓(𝑣))3𝜇2(1 − 𝑣)2(1 − 𝑓(𝑣))2𝜇3(1 − 𝑣)
[𝑓(𝑣)(𝑃𝑋

′ (1)

− 𝑃𝑋
′ (1)𝑓(𝑣) + 2𝑓(𝑣){𝑃𝑋

′ (1)}2)(1 − 𝑣)4(1 − 𝑓(𝑣))5𝜇5 + 𝑃𝑋
′′(1)𝑓(𝑣)(1

− 𝑓(𝑣))6𝜇2(1 − 𝑣)4𝜇3−2({𝑃𝑋
′ (1)}2 − 𝑓(𝑣){𝑃𝑋

′ (1)}2)(1 − 𝑣)2(1

− 𝑓(𝑣))3𝜇3] 

Again applying L'Hôpital's rule, above expression becomes 

𝐷−1 =
3𝜇𝑥

2

2
−
𝜇𝑥
2
−
𝑃𝑋
′′(1)

2
+
𝜇𝑥
2

6𝜇2
−
2𝜇𝑥

2(𝑎3 + 3𝑎2 + 𝜇)

3𝜇3
+
𝜇𝑥
2𝜇
−
𝜇𝑥
2

𝜇
+
𝑃𝑋
′′(1)

2𝜇

+
𝑃𝑋
′′(1)(𝑎2 + 𝜇 − 𝜇

2) + 2𝜇𝑥
2(𝑎2 + 𝜇 − 𝜇

2) + 𝜇𝑥(𝑎2 + 𝜇 − 𝜇
2)

2𝜇2

+
𝜇𝑥
2(𝑎2 + 𝜇 − 𝜇

2)

𝜇3
+
3𝜇𝑥

2(𝑎2
2 + 2𝑎2𝜇 − 2𝑎2𝜇

2 + 𝜇2 − 2𝜇3 + 𝜇4)

2𝜇4
 

Now substituting 𝐷−1, 𝐷−2 and 𝐷−3 into (12) with 𝑎3 ≡ 𝐸[(𝑇 − 2)(𝑇 − 1)𝑇] = 𝐸[𝑇
3] −

3𝐸[𝑇2] + 2𝐸[𝑇] = 𝜇3 − 3𝜇2 + 2𝜇 and 𝑎2 = 𝐸[(𝑇 − 1)𝑇] = 𝐸[𝑇2] − 𝐸[𝑇] = 𝜎2 + 𝜇2 −

𝜇 leads to 

𝑀𝑘
(2) = 𝐸[𝑌𝑁𝑘

(2)] = 𝑘2 (
𝜇𝑥
𝜇
)
2

+ 𝑘 (
𝜇𝑥
2

𝜇2
+
𝜇𝑥
𝜇
−
2𝜇𝑥

2

𝜇
+
𝑃𝑋
′′(1)

𝜇
+
2𝜇𝑥

2𝜎2

𝜇3
)

+ (2𝜇𝑥
2 − 𝜇𝑥 − 𝑃𝑋

′′(1) +
8𝜇𝑥

2

3𝜇2
−
2𝜇𝑥

2𝜇3
3𝜇3

+
𝜇𝑥
𝜇
−
4𝜇𝑥

2

𝜇
+
𝑃𝑋
′′(1)

𝜇
+
𝑃𝑋
′′(1)𝜎2

2𝜇2

−
2(𝜎𝜇𝑥)

2

𝜇2
+
𝜇𝑥𝜎

2

2𝜇2
+
4(𝜎𝜇𝑥)

2

𝜇3
+
3𝜇𝑥

2𝜎4

𝜇4
) + 𝑜(1) 

where 𝑜(1) → 0 as 𝑘 → ∞. The first two terms of the above expression correspond to 

Feller (1968) and Hunter (1983) when 𝑃𝑋(𝑧) = 𝑧. However, in addition to the first two 

terms, (9) provides extra constant which are unavailable in previous literature. In 

addition, (9) matches exactly with its equivalent result in the discrete-time single-renewal 
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processes by Chaudhry and Fisher (2012) when 𝑃𝑋(𝑧) = 𝑧. Higher asymptotic moments 

can be found in a similar manner. 

2.4.4 Conclusion 

The asymptotic results in the discrete-time bulk-renewal processes are the 

asymptotic result of renewal mass function and asymptotic moments of the number of 

renewals. All asymptotic results (including the extra constant terms of the asymptotic 

second moment) are found using the g.f. method, hence it addresses the statement made 

by van der Weide et al. (2007): “It is not clear from Feller (1949) as to how to obtain 

those terms using g.f.’s.”  

The asymptotic results in the discrete-time bulk-renewal processes presented in 

Section 2.4 are part of the manuscript that has been accepted for publication in the Journal 

of Mathematics and System Science (Kim and Chaudhry, 2014). 

2.5 Asymptotic results in the continuous-time bulk-renewal processes 

The asymptotic results in the discrete-time bulk-renewal processes can be used to 

derive their equivalent results in the continuous-time bulk-renewal processes. The two 

processes are fundamentally different since one has a discrete-time parameter 𝑘, (𝑘 is a 

nonnegative integer) while the other has a continuous-time parameter 𝑡, (𝑡 is a 

nonnegative real number). The two time parameters can be related using the relation 

𝑡 = ∆𝑘                                                                     (13) 

where ∆ in (13) is a small, positive, and real number. Through this 

relation, 𝑡 encompasses all characteristics of a continuous-time parameter. Based on this 

notion, there exists continuous-time ‘equivalents’ of 𝑓𝑘 , 𝑚𝑘, and 𝑀𝑘
(𝑖) in the discrete-time 

bulk-renewal processes. Let {𝑌𝑁(𝑡), 𝑡 > 0} be the recurrent continuous-time bulk-renewal 
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processes, then the equivalencies across two different time domains can be summarized 

as follows 

Table 1: Summary of equivalencies between the discrete and the continuous-time 

bulk-renewal processes 

Time domain Discrete-time Continuous-time 

Time parameter 𝑘 𝑡 

Bulk-renewal processes {𝑌𝑁𝑘 , 𝑘 ≥ 1} {𝑌𝑁(𝑡), 𝑡 > 0} 

D.f. of time parameter 𝑓𝑘 𝑓(𝑡) 

D.f. of a renewal at time 𝑚𝑘 𝑚(𝑡) 

Asymptotic 𝑖-th moment 𝑀𝑘
(𝑖)

 𝑀(𝑖)(𝑡) 
 

 

All asymptotic results in {𝑌𝑁(𝑡), 𝑡 > 0} are available in Fisher and Chaudhry (2014). The 

purpose of Section 2.5 is to obtain the same results using a different and independent 

approach by leveraging the asymptotic results in {𝑌𝑁𝑘 , 𝑘 ≥ 1}. The renewal density in 

continuous-time, denoted by 𝑚(𝑡), is equivalent to 𝑚𝑘 in discrete-time. As stated in the 

Master’s thesis by Fisher (2014), lim𝑘→∞𝑚𝑘 and lim𝑡→∞𝑚(𝑡) lead to the same result, 

however that is not the case for the asymptotic moments. It is for this reason that the 

derivation to manipulate 𝑀𝑘
(𝑖) into 𝑀(𝑖)(𝑡) is provided. 

2.5.1 Asymptotic first moment in continuous-time 

The asymptotic first moment in continuous-time 𝑀(1)(𝑡) can be derived by letting 

𝜇 =
�̂�

∆
, 𝜎2 = (

�̂�

∆
)
2

and 𝑘 =
𝑡

∆
 in (5), where �̂�, �̂�, and 𝑡 are the parameters of {𝑌𝑁(𝑡), 𝑡 > 0}. 

Then as ∆→ 0, the asymptotic first moment in the continuous-time bulk-renewal 

processes becomes 

𝑀(1)(𝑡) = lim
 ∆→0

[(

𝑡

∆
�̂�

∆

)𝜇𝑥 + 𝜇𝑥 (
(
�̂�

∆
)
2

− (
�̂�

∆
)
2

+ (
�̂�

∆
)

2 (
�̂�

∆
)
2 )] + 𝑜(1) 
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which can be simplified to 

𝑀(1)(𝑡) = (
𝜇𝑥
�̂�
) 𝑡 + 𝜇𝑥 (

�̂�2 − �̂�2

2�̂�2
) + 𝑜(1) 

where 𝑜(1) → 0 as 𝑡 → ∞ and 𝑡 > 0. This result coincides with that of Fisher and 

Chaudhry (2014), and Fisher (2014). 

2.5.2 Asymptotic second moment in continuous-time 

Similar to 𝑀(1)(𝑡), 𝑀(2)(𝑡) can be derived by letting 𝜇 =
�̂�

∆
, 𝜎2 = (

�̂�

∆
)
2

, 𝜇3 =

�̂�3

∆3
 and 𝑘 =

𝑡

∆
 in (9). Then as ∆→ 0, the asymptotic second moment in the continuous-time 

bulk-renewal processes becomes 

𝑀(2)(𝑡) = lim
 ∆→0

[
𝜇𝑥𝑡

(
�̂�

∆
)∆
]

2

+ lim
 ∆→0

𝑡

∆
(
𝜇𝑥
2

(
�̂�

∆
)
2 +

𝜇𝑥

(
�̂�

∆
)
−
2𝜇𝑥

2

(
�̂�

∆
)
+
𝑃𝑋
′′(1)

(
�̂�

∆
)
+
2𝜇𝑥

2 (
�̂�

∆
)
2

(
�̂�

∆
)
3 )

+ lim
 ∆→0

(2𝜇𝑥
2 − 𝜇𝑥 − 𝑃𝑋

′′(1) +
8𝜇𝑥

2

3 (
�̂�

∆
)
2 −

2𝜇𝑥
2 (

�̂�3

∆3
)

3 (
�̂�

∆
)
3 +

𝜇𝑥

(
�̂�

∆
)
−
4𝜇𝑥

2

(
�̂�

∆
)
+
𝑃𝑋
′′(1)

(
�̂�

∆
)

+
𝑃𝑋
′′(1) (

�̂�

∆
)
2

2 (
�̂�

∆
)
2 −

2 [(
�̂�

∆
) 𝜇𝑥]

2

(
�̂�

∆
)
2 +

𝜇𝑥 (
�̂�

∆
)
2

2 (
�̂�

∆
)
2 +

4 [(
�̂�

∆
) 𝜇𝑥]

2

(
�̂�

∆
)
3 +

3𝜇𝑥
2 (

�̂�

∆
)
4

(
�̂�

∆
)
4 ) + 𝑜(1) 

which can be simplified to 

𝑀(2)(𝑡) = 𝑡2 (
𝜇𝑥
�̂�
)
2

+ 𝑡 (
𝑃𝑋
′′(1) − 2𝜇𝑥

2 + 𝜇𝑥
�̂�

+
2�̂�2𝜇𝑥

2

�̂�3
)

+ (
�̂�2𝑃𝑋

′′(1)

2�̂�2
+
�̂�2𝜇𝑥
2�̂�2

−
𝜇𝑥
2
−
2�̂�3𝜇𝑥

2

3�̂�3
+
3�̂�4𝜇𝑥

2

2�̂�4
+
�̂�2𝜇𝑥

2

�̂�2
+
3𝜇𝑥

2

2
−
𝑃𝑋
′′(1)

2
)

+ 𝑜(1) 
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where 𝑜(1) → 0 as 𝑡 → ∞ and 𝑡 > 0. This result coincides with that of Fisher and 

Chaudhry (2014), and Fisher (2014). Higher asymptotic moments in the continuous-time 

bulk-renewal processes can be found in a similar manner. 

2.5.3 Conclusion 

Using the asymptotic results in the discrete-time bulk-renewal processes, the 

equivalent results in the continuous-time bulk-renewal processes are derived. The 

continuous-time parameter is built by multiplying the discrete-time parameter by a delta 

(very small, real, and positive number) to make it possess the characteristics of a 

continuous-time parameter. By doing so, the asymptotic first and second moments in the 

continuous-time bulk-renewal processes are completely determined.  

All derivations in Section 2.5 are part of the manuscript that has been accepted for 

publication in the Journal of Mathematics and System Science (Kim and Chaudhry, 

2014). 
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3 NUMERICAL EXAMPLES IN RENEWAL THEORY 

In this chapter, various numerical examples in discrete-time renewal theory are 

presented. They are organized in the following manner: The discrete-time single-renewal 

processes in Section 3.1 and the discrete-time bulk-renewal processes in Section 3.2. All 

computations were done using MAPLE software that was configured to compute up to 

the ninth decimal place. Final results were rounded to four decimal places in the tables 

below. 

3.1 Discrete-time single-renewal processes 

In computing 𝑃𝑛(𝑘) in {𝑁𝑘, 𝑘 ≥ 1}, the p.m.f. of renewal periods (𝑓𝑘)  was 

considered as a geometric, negative binomial, and Poisson distribution (see Appendix 

A.3). The numerical computations of 𝑃𝑛(𝑘) at various values of (𝑛, 𝑘) were done by first 

performing a Taylor’s series expansion (see Appendix A.3.6) of (2) with respect to 𝑧. 

This resulted in a power series of 𝑧, and for the coefficient of each term, second Taylor’s 

series expansion but with respect to 𝑣 was performed. The final product is a power series 

of 𝑣, where the coefficient of each term are the probabilities 𝑃𝑛(𝑘). 

3.1.1 Geometric renewal periods 

The p.m.f. of the renewal period is a geometric distribution such that 𝑓𝑘 =

𝑝𝑞𝑘−1, (𝑘 ≥ 1) with p.g.f. 𝑓(𝑣) =
𝑝𝑣

(1−𝑞𝑣)
, |𝑣| < 1 and 𝑝 = 0.3, 𝑞 = 0.7. 𝑃𝑛(𝑘) was 

computed at 𝑘 = 1, 5, 10, 15, 20 and 𝑛 = 0, 1, 2, 3, 4, 5, 6. 

Table 2: {𝑵𝒌, 𝒌 ≥ 𝟏} with geometric renewal periods 

𝑘 𝑃0(𝑘) 𝑃1(𝑘) 𝑃2(𝑘) 𝑃3(𝑘) 𝑃4(𝑘) 𝑃5(𝑘) 𝑃6(𝑘) … 𝐸[𝑁𝑘] 𝐸[𝑁𝑘
2] 
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1 0.7000 0.3000 0.0000 0.0000 0.0000 0.0000 0.0000 … 0.3000 0.3000 

5 0.1681 0.3602 0.3087 0.1323 0.0284 0.0024 0.0000 … 1.5000 3.3000 

10 0.0283 0.1211 0.2335 0.2668 0.2001 0.1029 0.0368 … 3.0000 11.1000 

15 0.0048 0.0305 0.0916 0.1700 0.2186 0.2061 0.1472 … 4.5000 23.4000 

20 0.0008 0.0068 0.0279 0.0716 0.1304 0.1789 0.1916 … 6.0000 40.2000 

 
 
3.1.2 Negative binomial renewal periods 

The p.m.f. of renewal periods is a negative binomial distribution such that 𝑓𝑘 =

(
𝑘 + 𝑟 − 2
𝑘 − 1

)𝑝𝑟𝑞𝑘−1, (𝑘 ≥ 1)  with p.g.f. 𝑓(𝑣) = 𝑣 (
𝑝

1−𝑞𝑣
)
𝑟

, |𝑣| < 1 and 𝑝 = 0.75, 𝑞 =

0.25 and 𝑟 = 13. 𝑃𝑛(𝑘) was computed at 𝑘 = 1, 10, 20, 30 and 𝑛 = 0, 1, 2, 3, 4, 5. 

Table 3: {𝑵𝒌, 𝒌 ≥ 𝟏} with negative binomial renewal periods 

𝑘 𝑃0(𝑘) 𝑃1(𝑘) 𝑃2(𝑘) 𝑃3(𝑘) 𝑃4(𝑘) 𝑃5(𝑘) … 𝐸[𝑁𝑘] 𝐸[𝑁𝑘
2] 

1 0.9762 0.0238 0.0000 0.0000 0.0000 0.0000 … 0.0238 0.0238 

10 0.0295 0.4571 0.4317 0.0772 0.0045 0.0001 … 1.5703 2.9526 

20 7.9845x10−6 0.0064 0.1343 0.4058 0.3328 0.1041 … 3.4453 12.7406 

30 7.4214x10−11 6.0263x10−6 0.0015 0.0354 0.1929 0.3535 … 5.3203 29.5570 

 

 

3.1.3 Poisson renewal periods 

The p.m.f. of renewal periods is a Poisson distribution such that 𝑓𝑘 =

𝛼𝑘−1

(𝑘−1)!
𝑒−𝛼, (𝑘 ≥ 1) with p.g.f. 𝑓(𝑣) = 𝑣𝑒−𝛼(1−𝑣), |𝑣| < 1, where 𝛼 = 2. 𝑃𝑛(𝑘) was 

computed at 𝑘 = 1, 5, 10, 15  and 𝑛 = 0, 1, 2, 3, 4. 

Table 4: {𝑵𝒌, 𝒌 ≥ 𝟏} with Poisson renewal periods 

𝑘 𝑃0(𝑘) 𝑃1(𝑘) 𝑃2(𝑘) 𝑃3(𝑘) 𝑃4(𝑘) … 𝐸[𝑁𝑘] 𝐸[𝑁𝑘
2] 

1 0.8647 0.1353 0.0000 0.0000 0.0000 … 0.1353 0.1353 

5 0.0527 0.5139 0.3715 0.0590 0.0030 … 1.4459 2.5791 

10 4.6498x10−5 0.0213 0.2347 0.4306 0.2463 … 3.1111 10.5432 
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15 4.2000x10−9 7.6325x10−5 0.0088 0.1031 0.3050 … 4.7778 24.0617 

 

 

3.2 Discrete-time bulk-renewal processes with binomial bulk-size 

In computing 𝐵𝑛(𝑘) in {𝑌𝑁𝑘 , 𝑘 ≥ 1}, a similar procedure from Section 3.1 was 

used where the Taylor’s series expansion was performed twice, once with respect to 𝑧 and 

another with respect to 𝑣 on (4). The same p.m.f. of renewal periods from Section 3.1 

were used while incorporating a binomial bulk-size distribution. The p.m.f. of the bulk-

size (𝑏𝑛) follows a binomial distribution such that 𝑏𝑛 = (
𝑟

𝑛 − 1
) 𝑝𝑛𝑞𝑟−𝑛+1, (1 ≤ 𝑛 ≤

4) with p.g.f. 𝑃𝑋(𝑧) = 𝑧(𝑞 + 𝑝𝑧)
𝑟 where 𝑝 = 0.45, 𝑞 = 0.55 and 𝑟 = 3. The numerical 

results of asymptotic first and second moments in discrete-time bulk-renewal processes 

are also presented in this section. 𝑀𝑘
(1)

 and 𝑀𝑘
(2)

 were computed by substituting different 

values of 𝑘 in (5) and (9). 

3.2.1 Geometric renewal periods and binomial bulk-size 

Table 5: {𝒀𝑵𝒌 , 𝒌 ≥ 𝟏} with geometric renewal periods and binomial bulk-size 

𝑘 𝐵0(𝑘) 𝐵1(𝑘) 𝐵2(𝑘) 𝐵3(𝑘) 𝐵4(𝑘) 𝐵5(𝑘) 𝐵6(𝑘) … 

1 0.7000 0.0499 0.1225 0.1002 0.0273 0.0000 0.0000 … 

5 0.1681 0.0599 0.1556 0.1629 0.1231 0.1085 0.0864 … 

10 0.0283 0.0201 0.0559 0.0734 0.0851 0.1019 0.1069 … 

15 0.0048 0.0051 0.0150 0.0234 0.0342 0.0483 0.0608 … 

20 0.0008 0.0011 0.0036 0.0064 0.0109 0.0174 0.0251 … 

 

𝑘 𝑀𝑘
(1)

 𝑀𝑘
(2)

 

1 0.7050 1.8795 

5 3.5250 19.3380 

10 7.0500 63.5273 

15 10.5750 132.5678 
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20 14.1000 226.4595 

 

 

3.2.2 Negative binomial renewal periods and binomial bulk-size 

Table 6: {𝒀𝑵𝒌 , 𝒌 ≥ 𝟏} with negative binomial renewal periods and binomial bulk-size 

𝑘 𝐵0(𝑘) 𝐵1(𝑘) 𝐵2(𝑘) 𝐵3(𝑘) 𝐵4(𝑘) 𝐵5(𝑘) 𝐵6(𝑘) … 

1 0.9762 0.0040 0.0097 0.0079 0.0022 0.0000 0.0000 … 

2 0.8990 0.0167 0.0410 0.0336 0.0093 0.0002 0.0001 … 

3 0.7639 0.0386 0.0948 0.0780 0.0223 0.0013 0.0008 … 

4 0.5950 0.0646 0.1591 0.1320 0.0400 0.0050 0.0031 … 

5 0.4261 0.0879 0.2170 0.1826 0.0606 0.0136 0.0085 … 

 

𝑘 𝑀𝑘
(1)

 𝑀𝑘
(2)

 

1 N/A 0.7995 

2 0.1652 1.1005 

3 0.6059 1.7898 

4 1.0465 2.8674 

5 1.4871 4.3333 

 

 

As a remark, not applicable (N/A) applies to the cases where 𝑀𝑘
(1)
< 0. 

3.2.3 Poisson renewal periods and binomial bulk-size 

Table 7: {𝒀𝑵𝒌 , 𝒌 ≥ 𝟏} with Poisson renewal periods and binomial bulk-size 

𝑘 𝐵0(𝑘) 𝐵1(𝑘) 𝐵2(𝑘) 𝐵3(𝑘) 𝐵4(𝑘) 𝐵5(𝑘) 𝐵6(𝑘) … 

1 0.8647 0.0225 0.0553 0.0452 0.0123 0.0000 0.0000 … 

5 0.0527 0.0855 0.2201 0.2225 0.1521 0.1192 0.0817 … 

10 4.6498x10−5 0.0036 0.0152 0.0410 0.0820 0.1208 0.1433 … 

15 4.1957x10−9 1.2699x10−5 0.0003 0.0017 0.0062 0.0164 0.0343 … 

 

𝑘 𝑀𝑘
(1)

 𝑀𝑘
(2)

 

1 0.2611 1.2415 

5 3.3945 15.3219 

10 7.3111 60.5349 
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15 11.2278 136.4284 

 

 

3.3 Discrete-time bulk-renewal processes with 1-3-6-9 bulk-size 

In computing 𝐵𝑛(𝑘) in {𝑌𝑁𝑘 , 𝑘 ≥ 1}, the same procedure from Section 3.2 was 

used. The same p.m.f. of renewal periods from Section 3.1 were used while incorporating 

a 1-3-6-9 bulk-size distribution. The p.m.f. of the bulk-size (𝑏𝑛) follows a 1-3-6-9 

distribution where 𝑏1 = 0.1, 𝑏3 = 0.25, 𝑏6 = 0.45, 𝑏9 = 0.2 with p.g.f. 𝑃𝑋(𝑧) = 0.1𝑧 +

0.25𝑧3 + 0.45𝑧6 + 0.2𝑧9. The numerical results of asymptotic first and second moments 

in discrete-time bulk-renewal processes are also presented in this section. 𝑀𝑘
(1)

 and 𝑀𝑘
(2)

 

were computed by substituting different values of 𝑘 in (5) and (9). 

3.3.1 Geometric renewal periods and 1-3-6-9 bulk-size 

Table 8: {𝒀𝑵𝒌 , 𝒌 ≥ 𝟏} with geometric renewal periods and 1-3-6-9 bulk-size 

𝑘 𝐵0(𝑘) 𝐵1(𝑘) 𝐵2(𝑘) 𝐵3(𝑘) 𝐵4(𝑘) 𝐵5(𝑘) 𝐵6(𝑘) … 

1 0.7000 0.0300 0.0000 0.0750 0.0000 0.0000 0.1350 … 

5 0.1681 0.0360 0.0031 0.0902 0.0154 0.0010 0.1814 … 

10 0.0282 0.0121 0.0023 0.0305 0.0117 0.0020 0.0693 … 

15 0.0048 0.0031 0.0009 0.0078 0.0046 0.0013 0.0197 … 

20 0.0008 0.0007 0.0003 0.0018 0.0014 0.0005 0.0050 … 

 

𝑘 𝑀𝑘
(1)

 𝑀𝑘
(2)

 

1 1.6050 10.4250 

5 8.0250 103.6455 

10 16.0500 336.0923 

15 24.0750 697.3403 

20 32.1000 1187.3895 
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3.3.2 Negative binomial renewal periods and 1-3-6-9 bulk-size 

Table 9: {𝒀𝑵𝒌 , 𝒌 ≥ 𝟏} with negative binomial renewal periods and 1-3-6-9 bulk-size 

𝑘 𝐵0(𝑘) 𝐵1(𝑘) 𝐵2(𝑘) 𝐵3(𝑘) 𝐵4(𝑘) 𝐵5(𝑘) 𝐵6(𝑘) … 

1 0.9762 0.0024 0.0000 0.0059 0.0000 0.0000 0.0107 … 

2 0.8990 0.0100 5.6441x10−6 0.0251 2.8220x10−5 0.0000 0.0452 … 

3 0.7639 0.0232 4.2197x10−2 0.0580 0.0002 1.0057x10−7 0.1046 … 

4 0.5950 0.0388 0.0002 0.0971 0.0008 1.0787x10−6 0.1758 … 

5 0.4261 0.0528 0.0005 0.1321 0.0022 5.9502x10−6 0.2406 … 

 

𝑘 𝑀𝑘
(1)

 𝑀𝑘
(2)

 

1 N/A 3.8765 

2 0.3762 5.8639 

3 1.3793 9.8639 

4 2.3824 15.8764 

5 3.3856 23.9014 

 

 

As a remark, not applicable (N/A) applies to the cases where 𝑀𝑘
(1)
< 0. 

3.3.3 Poisson renewal periods and 1-3-6-9 bulk-size 

Table 10: {𝒀𝑵𝒌 , 𝒌 ≥ 𝟏} with Poisson renewal periods and 1-3-6-9 bulk-size 

𝑘 𝐵0(𝑘) 𝐵1(𝑘) 𝐵2(𝑘) 𝐵3(𝑘) 𝐵4(𝑘) 𝐵5(𝑘) 𝐵6(𝑘) … 

1 0.8647 0.0134 0.0000 0.0338 0.0000 0.0000 0.0609 … 

5 0.0527 0.0514 0.0037 0.1285 0.0186 0.0004 0.2545 … 

10 0.0005 0.0021 0.0024 0.0058 0.0118 0.0032 0.0245 … 

15 4.1957x10−9 7.6325x10−6 8.7512x10−5 0.0001 0.0005 0.0008 0.0009 … 

 

𝑘 𝑀𝑘
(1)

 𝑀𝑘
(2)

 

1 0.5944 6.6880 

5 7.7278 82.7040 

10 16.6444 320.8364 

15 25.5611 717.9827 
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3.4 Conclusion 

Most practical applications of renewal theory are done in terms of numerical 

computations. After discussing the analytical aspect of renewal theory in Chapter 2, the 

numerical examples in discrete-time renewal theory are presented in Chapter 3.  

Section 3.1 covered the discrete-time single-renewal processes by presenting the 

probabilities of the number of renewals over a time interval. In considering geometric, 

negative binomial, and Poisson renewal periods, there exists an intuitive pattern that is 

reflected in the probabilities of table 2, 3, and 4: If the time interval is long then more 

renewals are likely to occur, whereas if the time interval is short then less renewals are 

likely to occur. 

Section 3.2 and 3.3 covered the discrete-time bulk-renewal processes by 

considering the same p.m.f.’s of renewal periods as Section 3.1 with additional 

consideration of binomial and 1-3-6-9 bulk-sizes, respectively. The same pattern from 

Section 3.1 can be observed in the probabilities of each table in Section 3.2 and 3.3. The 

asymptotic first and second moments, which were computed using the final results of 

Subsection 2.4.2 and 2.4.3, are also presented. 

All numerical results presented in Section 3.2 and 3.3 are part of the manuscript 

that has been accepted for publication in the Journal of Mathematics and System Science 

(Kim and Chaudhry, 2014). 
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4 QUEUEING THEORY 

Readers may refer to Appendix A.1 for a summary on probability theory, 

stochastic processes, and Markov processes, which are all important topics that lead to 

queueing theory. The definitions and properties of a continuous r.v. and its moments, 

Laplace transform (L.T.) and Laplace-Stieltjes transform (L-S.T.) are provided in 

Appendix A.2. In addition, the basic concepts of queueing systems, as well as all 

supplementary proof, derivation, and theorems that are used in discussing queueing 

theory are provided in Appendix C. 

4.1 Literature review 

As discussed in Chaudhry and Templeton (1983), queueing theory has its origin in 

the early 20
th

 century and begins with the works of A.A. Markov and A.K. Erlang on 

stochastic systems. Markov chains and processes remain among the principle analytical 

tools in the theory of queues, while the telephone systems studied by Erlang constitute 

one of the principle areas of application of queueing models.  

Since the early developments by Markov and Erlang, various queueing models 

have been studied in the theory of queues. A standard system to describe and classify 

queueing models known as Kendall’s notation (see Appendix C.1) was developed by 

Kendall (1953), and many peer-reviewed scientific journals began publishing various 

applications of queueing theory. Applications went beyond telephones to include 

automotive traffic, computers, military operations of various kinds, medical appointment 

scheduling, machine repairs, inventory studies, and many more. In 1986, a research 

journal entirely dedicated to queueing theory named ‘Queueing Systems’ had emerged, 
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signifying the efforts to share collective advancements in queueing theory among 

practitioners, engineers, mathematicians and queueing theorists. 

Out of many different classifications of queueing models, single-server queues 

with a server that offers service which is divided into several service stages (multi-staged 

queues) are particularly useful in modeling areas where service is provided to customers 

in a phased progression. In application, multi-staged queues are widely used when 

analyzing manufacturing lines, annual medical check-ups, and scheduled inspections of 

any sort. Due to their practical importance, multi-staged queues with server that has a 

fixed number of service stages have been extensively analyzed by several researchers in 

the past: 

Wishart (1956) and Wu Fang (1960) solve the system 𝐺𝐼/𝐸𝑘/1  by interpreting 

the service mechanism as a single server with identically distributed service times and a 

scale-modified chi-squared distribution of mean 𝑏 and 2𝑘 degrees of freedom. In 

solving 𝐺𝐼/𝐸𝑘/1, Wu Fang (1960) uses the embedded Markov chain technique by 

considering various scenarios of interactions between the r.v.’s of the number of 

customers in queue, remaining service-stages, and completed service-stages, all between 

two successive customer arrivals. 

As done by Wu Fang (1960), the r.v.’s that represent different aspects of multi-

staged queues can be related through the use of a Markov chain. Bux (1979) builds on 

this concept and introduces a new technique which involves numerical analysis of the 

embedded Markov chains of the 𝐺𝐼/𝐸𝑟,𝑠/1 queue with mixed Erlang service times. 

Neuts (1981) determines the steady state probability distribution of the model  𝐺𝐼/

𝑃𝐻𝑘/1 through the use of bivariate Markov chains. His solution procedure is based on the 
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matrix-geometric method, which Ramaswami and Lucantoni (1985) follow to develop an 

infinite sum expression of the waiting time distribution of a multi-staged queue that 

involves the rate matrix R. When this matrix R has an order r, it becomes the rate matrix 

of the 𝐺𝐼/𝐸𝑟/1 system. In response to the work by Ramaswami and Lucantoni (1985), 

Adan and Zhao (1996) state that when considering large values of r, the determination of 

R may cause memory resource problems and require excessive computation times, the 

latter of which is especially true for higher traffic loads. 

Chaudhry and Templeton (1983) relate 𝐺𝐼𝑟/𝑀/1 with 𝐺𝐼/𝐸𝑟/1 by regarding the 

group of customers as being present in the system until all of that group’s members have 

completed their services. Such interpretation allows various d.f.’s in one model to also be 

true in the other. As an example, the d.f. of the number of customers in 𝐺𝐼𝑟/𝑀/1 is the 

same as the d.f. of the number of uncompleted service stages in 𝐺𝐼/𝐸𝑟/1. In addition, 

they also state that the results when considering instances just before a customer arrival 

for the system 𝐺𝐼/𝐸𝑟/1 can be derived from those for the system 𝐸𝑟/𝐺/1. 

Chaudhry and Templeton (1983) also discuss basic renewal theory in the context 

of queueing theory. By interpreting renewals as customer arrivals (similarly, bulk-

renewals as bulk-arrivals), several properties and theorems in renewal theory can be 

applied to solve problems in queueing theory. Examples of such application include 

distributional Little’s law and length-biased sampling phenomenon. 

Adan and Zhao (1996) solve 𝐺𝐼/𝐸𝑟/1 through the use of Vandermonde matrix 

where they express the solution as a geometric sum whose terms are the roots of the 

underlying characteristic equation. Grassmann (2010) gives an alternative solution 
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procedure to 𝐸𝑛/𝐸𝑚/1 by deriving and solving a set of equations that stem from the roots 

of the underlying characteristic equation. 

In the case of finite buffer queues, Ohsone (1981) derives the distributions of the 

number of customers in 𝐺𝐼/𝐸𝑘/1/𝑁 at random and post-departure epochs. In addition, 

Nobel (1989) uses the embedded Markov Chain technique to determine the solutions of 

total and partial rejections in 𝐺𝐼𝑋/𝐸𝑘/1/𝑁. 

Despite several published works on multi-staged queues with server that has fixed 

number of service stages (𝐺𝐼/𝐸𝑘/1 or 𝐺𝐼/𝐸𝑟/1), no significant work has been done on 

multi-staged queues with a server that has random number of service stages (𝐺𝐼/𝐸𝑋/1) 

(to the best of the author’s knowledge). In the review of literature, Yao et al. (1984) state 

that “there is no simple way to analyze the queue 𝑮𝑰/𝑬𝑿/𝟏”. 

4.2 The queueing model 𝑮𝑰/𝑬𝒌/𝟏 

Consider a queueing model with one server that runs a service that is divided 

into 𝑘 fixed number of exponential service stages (𝐸𝑘). The customer arrival pattern is 

generic (𝐺𝐼) and the system capacity is infinite (𝑁 → ∞). When all these conditions are 

put together in Kendall’s notation, it becomes the 𝐺𝐼/𝐸𝑘/1 queueing model. Although 

this model has been extensively studied by several researchers in the past using various 

techniques (see Section 4.1), a mathematical description of 𝐺𝐼/𝐸𝑘/1 is deemed necessary 

prior to discussing its extended version 𝐺𝐼/𝐸𝑋/1. 

4.2.1 Model description 

The queueing model 𝐺𝐼/𝐸𝑘/1 has inter-arrival times (time periods measured 

between each pair of consecutive customer arrivals) 𝑇𝑖, (𝑖 ≥ 1) that are i.i.d.r.v.’s such 

that 𝑇𝑖~𝑇. It has a cumulative distribution function (c.d.f.) 𝐴(𝑡) = 𝑃(𝑇 ≤ 𝑡), (𝑡 > 0), L-
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S.T. �̅�(𝜔) = ∫ 𝑒−𝜔𝑡𝑑𝐴(𝑡)
∞

0
, and mean 1 𝜆⁄ . In Figure 2, the (𝑛 + 1)-th customer 

arrives 𝑇 time units after the 𝑛-th customer’s arrival. The server in 𝐺𝐼/𝐸𝑘/1 consists 

of 𝑘 exponential service stages with 𝑘 being a positive constant. 

 

 
Figure 2: Visual illustration of 𝑮𝑰/𝑬𝒌/𝟏. 

 

 

The dynamics (everything that happens inside the model) of 𝐺𝐼/𝐸𝑘/1 can be described in 

terms of the number of uncompleted service stages in the system. For instance, the customer inside 

the server in Figure 2 has 𝑘 − 3 uncompleted service stages remaining until his/her departure. 

Another example of this concept would be an arrival of a customer resulting in an increase of the 

number of uncompleted service stages in the system by 𝑘. The waiting-time-in-queue of the 𝑛-th 

customer would be equivalent to the number of uncompleted service stages in the system 

immediately prior to the 𝑛-th customer’s arrival. In addition, the number of customers in the 

queue, as well as in the system can be found in terms of the number of uncompleted service stages 

in the system. 

The observation of the number of uncompleted service stages in the system can be made at 

three different time epochs. Let 𝑁𝑛
−, 𝑁𝑛, and 𝑁𝑛

+ be the r.v.’s that count the number of uncompleted 

service stages in the system at the following specific time instances: 

𝑁𝑛
−: Just before an arrival of the 𝑛-th customer (the 𝑛-th pre-arrival epoch) 
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𝑁𝑛: Any time instance between the moment just before the arrival of the 𝑛-th customer to 

the moment just before the arrival of the (𝑛 + 1)-th customer (the 𝑛-th random 

epoch)  

𝑁𝑛
+: Just after a departure of the 𝑛-th customer (the 𝑛-th post-departure epoch) 

The r.v.’s 𝑁𝑛
−, 𝑁𝑛, and 𝑁𝑛

+ become steady-state r.v.’s (see Appendix B.3.1 for 

explanation) 𝑁−, 𝑁, and 𝑁+ as 𝑛 → ∞. Each of these steady-state r.v.’s counts the number of 

uncompleted service stages at following generic time instances: 

𝑁−: Just before an arrival of a customer (a pre-arrival epoch) 

𝑁:   Any time instance between the moment just before the arrival of a customer to the 

moment just before the arrival of the next customer (a random epoch) 

𝑁+: Just after a departure of a customer (a post-departure epoch) 

The steady-state r.v.’s have respective p.m.f.’s 𝑝𝑗
− = lim𝑛→∞ 𝑃(𝑁𝑛

− = 𝑗) , 𝑝𝑗 = lim𝑛→∞ 𝑃(𝑁𝑛 = 𝑗), 

and 𝑝𝑗
+ = lim𝑛→∞ 𝑃(𝑁𝑛

+ = 𝑗) for 𝑗 ≥ 0. The service mechanism of 𝐺𝐼/𝐸𝑘/1 is such that the server 

serves each customer independently of previous customers and of the queue-length. Furthermore, 

since the duration of each service stage follows the exponential distribution (see Appendix A.2.1), 

service that consists of k service stages (or service time of the server) follows the Erlang-k 

distribution (see Appendix A.2.3). Let 𝐵(𝑡) be the c.d.f. of the Erlang-k distribution where 

𝑑𝐵(𝑡) =
𝜇(𝜇𝑡)𝑘−1

(𝑘 − 1)!
𝑒−𝜇𝑡𝑑𝑡,    (0 < 𝑡 <  ∞) 

holds and has a L-S.T. �̅�(𝜔) = ∫ 𝑒−𝜔𝑡𝑑𝐵(𝑡)
∞

0
= (

𝜇

𝜇+𝜔
)
𝑘

. The mean of 𝐵(𝑡) is 𝑏 =

∫ 𝑡
∞

0
𝑑𝐵(𝑡) =

𝑘

𝜇
< ∞. The service times of the server are also independent of the inter-

arrival times. 
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Let 𝐷𝑛 be the number of completed service stages between the instances just 

before the 𝑛-th and the (𝑛 + 1)-th customer arrivals. It has the steady-state p.m.f. 

𝑘𝑗 = ∫ lim
𝑛→∞

𝑃(𝐷𝑛 = 𝑗 |𝑇 = 𝑡)𝑑𝐴(𝑡)
∞

0

 

Since the d.f. of 𝐷𝑛 follows a Poisson distribution (see Appendix A.3.4), 𝑘𝑗  can be 

expressed as 

= ∫
𝑒−𝜇𝑡(𝜇𝑡)𝑗

𝑗!
𝑑𝐴(𝑡),    𝑗 ≥ 0

∞

0

 

and has a p.g.f. 

𝐾(𝑧) =∑𝑘𝑗𝑧
𝑗

∞

𝑗=0

= ∫ 𝑒−𝜇(1−𝑧)𝑡𝑑𝐴(𝑡)
∞

0

 

= �̅�(𝜇(1 − 𝑧)),   |𝑧| < 1 

The traffic intensity (see Appendix C.1) of 𝐺𝐼/𝐸𝑘/1 is 𝜌 =
𝜆𝑘

𝜇
< 1. The relations between 

𝑁𝑛
−, 𝑁𝑛+1

− , and 𝐷𝑛 can be expressed as 

𝑁𝑛+1
− = (𝑁𝑛

− + 𝑘 − 𝐷𝑛)
+ = {

𝑁𝑛
− + 𝑘 − 𝐷𝑛, 𝑁𝑛

− + 𝑘 − 𝐷𝑛 > 0
0,                     𝑁𝑛

− + 𝑘 − 𝐷𝑛 ≤ 0
               (14) 

where (𝑎)+ = max(𝑎, 0) with 𝑎 being an integer. 

4.3 The queueing model 𝑮𝑰/𝑬𝑿/𝟏 

Consider an extension of 𝐺𝐼/𝐸𝑘/1 where the server consists of 𝑋 exponential 

service stages with 𝑋 being a random number between 1 and 𝑟, (1 < 𝑟 < ∞). In Kendall’s 
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notation, this extension is represented by the 𝐺𝐼/𝐸𝑋/1 queueing system. In describing the 

model 𝐺𝐼/𝐸𝑋/1, some r.v.’s from 𝐺𝐼/𝐸𝑘/1 can be kept the same given that their 

definitions do not change. 

4.3.1 Model description 

The definition of inter-arrival time (𝑇), the number of completed service 

stages (𝐷𝑛), and the number of uncompleted service stages in the system (𝑁𝑛
−, 𝑁𝑛, or 𝑁𝑛

+) 

in 𝐺𝐼/𝐸𝑘/1 remain unchanged in 𝐺𝐼/𝐸𝑋/1. The service mechanism also remains 

unchanged since in 𝐺𝐼/𝐸𝑋/1, the server serves each customer independently of previous 

customers and of the queue-length. 

The key difference between 𝐺𝐼/𝐸𝑘/1 and 𝐺𝐼/𝐸𝑋/1 is in the service pattern since 

the number of service stages the 𝑛-th customer has to go through is extended 

from 𝑘 to 𝑋𝑛. The r.v. 𝑋𝑛 has a p.m.f. 𝑃(𝑋𝑛 = 𝑗) = 𝑠𝑗 , (1 ≤ 𝑗 ≤ 𝑟) and a p.g.f.  𝑆(𝑧) =

𝐸[𝑧𝑋𝑛] = ∑ 𝑠ℎ𝑧
ℎ𝑟

ℎ=1 , (|𝑧| < 1) where 𝑟 is the maximum number of service stages that 

the 𝑛-th customer has to complete. The mean of 𝑋𝑛 is �̅� = 𝑆′(1) =

𝑆(1)(1) where 𝑆(𝑖)(1) for 𝑖 ≥ 1 is the 𝑖-th derivative of 𝑆(𝑧) evaluated at 𝑧 = 1. 

Since 𝑋𝑛 for 𝑛 ≥ 1 are i.i.d.r.v.’s such that 𝑋𝑛~𝑋, every customer in 𝐺𝐼/𝐸𝑋/1 must go 

through 𝑋 service stages as indicated in Figure 3. 

 

 
Figure 3: Visual illustration of 𝑮𝑰/𝑬𝑿/𝟏. 
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Since the duration of each service stage follows the exponential distribution, the 

duration of service that consists of 𝑋 exponential service stages follows the modified 

Erlang distribution (see Appendix A.2.4). In extending the service pattern of 𝐺𝐼/𝐸𝑘/

1 to 𝐺𝐼/𝐸𝑋/1, 𝐵(𝑡) from Subsection 4.2.1 can be extended such that it becomes the c.d.f. 

of the modified Erlang distribution where 

𝑑𝐵(𝑡) =∑𝑠𝑗

𝑟

𝑗=1

𝜇(𝜇𝑡)𝑗−1

(𝑗 − 1)!
𝑒−𝜇𝑡𝑑𝑡,    (0 < 𝑡 < ∞) 

holds and has a L-S.T. �̅�(𝜔) = ∫ 𝑒−𝜔𝑡𝑑𝐵(𝑡)
∞

0
= ∑ 𝑠𝑗

𝑟
𝑗=1 (

𝜇

𝜇+𝜔
)
𝑗

. The mean of 𝐵(𝑡) is 

𝑏 = ∫ 𝑡
∞

0
𝑑𝐵(𝑡) =

�̅�

𝜇
< ∞. The service times of the server are independent of the inter-

arrival times. The traffic intensity of 𝐺𝐼/𝐸𝑋/1 is 𝜌 =
𝜆�̅�

𝜇
< 1 and the relations 

between 𝑁𝑛
−, 𝑁𝑛+1

− , 𝑋𝑛 and 𝐷𝑛 can be expressed as 

𝑁𝑛+1
− = (𝑁𝑛

− + 𝑋𝑛 − 𝐷𝑛)
+ = {

𝑁𝑛
− + 𝑋𝑛 −𝐷𝑛, 𝑁𝑛

− + 𝑋𝑛 − 𝐷𝑛 > 0
0,                     𝑁𝑛

− + 𝑋𝑛 − 𝐷𝑛 ≤ 0
                 (15) 

which is an extension of (14). As done in 𝐺𝐼/𝐸𝑘/1 (Subsection 4.2.1), the dynamics 

of 𝐺𝐼/𝐸𝑋/1 can also be described in terms of the number of uncompleted service stages 

in the system. For this reason, the solution to the model is three-fold. The three parts of 

the solution are defined in the table below as 

Table 11: Three-fold solution to 𝑮𝑰/𝑬𝑿/𝟏 

Pre-arrival solution 𝑝𝑗
−, (𝑗 ≥ 0) 

Random solution 𝑝𝑘, (𝑘 ≥ 0) 
Post-departure solution 𝑝𝑘

+, (𝑘 ≥ 0) 
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4.3.2 Steady-state p.g.f. and its inversion 

The pre-arrival solution to 𝐺𝐼/𝐸𝑋/1 can be determined using a g.f. where the 

steady-state p.g.f. of 𝑁𝑛
− is constructed and then inverted to find 𝑝𝑗

− for 𝑗 ≥ 0. This is 

done as follows: 

To construct the steady-state p.g.f. of 𝑁𝑛
−, each r.v. in (15) needs to be expressed 

in its steady-state form as 𝑛 → ∞. This results in several notational changes in (15) 

where 𝑁𝑛
−, 𝑁𝑛+1

− → 𝑁−, 𝑋𝑛 → 𝑋 and 𝐷𝑛 → 𝐷. The steady-state p.g.f. of 𝑁𝑛
− is thus 

defined as 

𝑃−(𝑧) = 𝐸[𝑧𝑁
−
] = 𝐸[𝑧(𝑁

−+𝑋−𝐷)+] 

and using (15), the above expression can be expanded as 

= 𝐸[𝑧𝑁
−+𝑋−𝐷|𝑁− + 𝑋 − 𝐷 > 0] 𝑃(𝑁− + 𝑋 − 𝐷 > 0)

+ 𝐸[𝑧𝑁
−+𝑋−𝐷|𝑁− + 𝑋 − 𝐷 ≤ 0]𝑃(𝑁− + 𝑋 − 𝐷 ≤ 0) 

which leads to 

= 𝐸[𝑧𝑁
−+𝑋−𝐷|𝑁− + 𝑋 − 𝐷 > 0] 𝑃(𝑁− + 𝑋 − 𝐷 > 0) + 𝑃(𝑁− + 𝑋 − 𝐷 ≤ 0) 

In the first term of the above expression, 𝐸[𝑧𝑁
−+𝑋−𝐷|𝑁− + 𝑋 − 𝐷 > 0] =

𝐸[𝑧𝑋]𝐸[𝑧𝑁
−−𝐷|𝑁− + 𝑋 − 𝐷 > 0] is true given that 𝑁− + 𝑋 − 𝐷 > 0. Hence 𝑃−(𝑧) 

becomes 

= 𝐸[𝑧𝑋]𝐸[𝑧𝑁
−−𝐷|𝑁− + 𝑋 − 𝐷 > 0] 𝑃(𝑁− + 𝑋 − 𝐷 > 0) + 𝑃(𝑁− + 𝑋 − 𝐷 ≤ 0) 

Let the p.g.f. of 𝑁− − 𝐷 be 
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𝐸[𝑧𝑁
−−𝐷] = 𝐸[𝑧𝑁

−−𝐷  | 𝑁− + 𝑋 − 𝐷 > 0]𝑃(𝑁− + 𝑋 − 𝐷 > 0) 

                        +𝐸[𝑧𝑁
−−𝐷  | 𝑁− + 𝑋 − 𝐷 ≤ 0]𝑃(𝑁− + 𝑋 − 𝐷 ≤ 0) 

By isolating 𝐸[𝑧𝑁
−−𝐷  | 𝑁− + 𝑋 − 𝐷 > 0]𝑃(𝑁− + 𝑋 − 𝐷 > 0) in the above expression 

and then substituting that into the previous expression, it becomes 

𝑃−(𝑧) = 𝑃−(𝑧)𝐸[𝑧𝑋]𝐸[𝑧−𝐷]

− ∑ 𝐸[𝑧−𝑚  | 𝑁− + 𝑋 − 𝐷 = −𝑚] 𝑃(𝑁− + 𝑋 − 𝐷 = −𝑚)

∞

𝑚=0

+ ∑ 𝑃(𝑁− + 𝑋 − 𝐷 = −𝑚)

∞

𝑚=0

 

Let 𝑞𝑚 =  𝑃(𝑁− + 𝑋 − 𝐷 = −𝑚), (𝑚 ≥ 0), then isolating 𝑃−(𝑧)  in above gives 

𝑃−(𝑧) =
∑ 𝑞𝑚(1 − 𝑧

−𝑚)∞
𝑚=0

1 − 𝑆(𝑧)𝐾(𝑧−1)
, (|𝑧| ≤ 1)                                         (16) 

which is analytic (can be differentiated and evaluated) on |𝑧| ≤ 1 . In general, the 

inversion of a p.g.f. through Taylor’s series expansion (see Appendix A.3.6) requires no 

unknown probabilities (that is the constant coefficient of each term) in that p.g.f.. 

Taylor’s series expansion is not a suitable tool to invert (16) since its numerator contains 

undetermined probabilities (𝑞𝑚). This problem can be mitigated by employing a 

technique that is similar to the one given in Chaudhry and Templeton (1983) where they 

express a rational p.g.f. with unknown terms as another form of p.g.f. that is readily 
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invertible through Taylor’s series expansion. The illustration of their technique in finding 

the alternate form of (16) is as follows: 

Let the characteristic equation (see Appendix C.1) of 𝐺𝐼/𝐸𝑋/1 be 

0 = 1 − 𝑆(𝑧−1)𝐾(𝑧) 

where 𝑆(𝑧−1) = ∑ 𝑠ℎ
𝑟
ℎ=1 𝑧−ℎ. This equation has 𝑟 roots on the inside of a unit circle |𝑧| =

1 (see Appendix C.2.1 for proof), which can be easily found using MAPLE. Let these 

inside roots be 𝑧1, 𝑧2, … , 𝑧𝑟. Since 1 = 𝑆(𝑧−1)𝐾(𝑧) is a reciprocal polynomial of 1 =

𝑆(𝑧)𝐾(𝑧−1), it can be said that the denominator of (16) has r roots on the outside of a 

unit circle |𝑧| = 1. Let those outside roots be 𝑧1
−1, 𝑧2

−1, … , 𝑧𝑟
−1. Suppose that there is a 

new complex function 

𝐵(𝑧) = 𝑃−(𝑧)∏(1 − 𝑧ℎ𝑧)

𝑟

ℎ=1

 

which is analytic on |𝑧| ≤ 1 given that it consists of 𝑃−(𝑧). Then by substituting (16) 

into 𝐵(𝑧), it becomes evident that 

𝐵(𝑧) =
∏ (1 − 𝑧ℎ𝑧)
𝑟
ℎ=1 ∑ 𝑞𝑚(1 − 𝑧

−𝑚)∞
𝑚=0

1 − 𝑆(𝑧)𝐾(𝑧−1)
 

is a complex function that is analytic on |𝑧| > 1 since the roots 𝑧1
−1, 𝑧2

−1, … , 𝑧𝑟
−1 of its 

denominator are also the roots of its numerator. With 𝐵(𝑧) being analytic on the 

inside, outside, and contour of a unit circle |𝑧| = 1, by Liouville’s theorem (see Appendix 

C.4.2), it becomes a positive constant 𝐵, such that 

𝐵 = 𝑃−(𝑧)∏(1 − 𝑧ℎ𝑧)

𝑟

ℎ=1

 

Using a property of the p.g.f., 𝑃−(1) = 1, 𝐵 can be determined as 
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𝐵 =∏(1 − 𝑧ℎ)

𝑟

ℎ=1

 

Finally, the alternate form of (16) with no unknowns is found as 

𝑃−(𝑧) =∏(
1 − 𝑧ℎ
1 − 𝑧ℎ𝑧

)

𝑟

ℎ=1

,   |𝑧| ≤ 1                                               (17) 

where 𝑝𝑗
− for 𝑗 ≥ 0 are the set of constant coefficients of each term in the Taylor’s series 

expansion of (17). The technique illustrated in determining (17) is known as the roots 

method. Once this pre-arrival solution (𝑝𝑗
−) is determined, the model 𝐺𝐼/𝐸𝑋/1 can be 

considered as solved. This is true since 𝑝𝑗
− is a key p.m.f. which all other d.f.’s that 

describe different dynamics of 𝐺𝐼/𝐸𝑋/1 are built upon. Two of these d.f.’s are discussed 

in the next subsection. 

4.3.3 Relations between solutions at different time epochs 

The pre-arrival solution from Subsection 4.3.2 can be used to determine random 

and post-departure solutions to 𝐺𝐼/𝐸𝑋/1. This can be done through the standard level 

crossing analysis, which is a technique in queueing theory that is widely used to build 

relations among d.f.’s of a r.v. at different time epochs. Similar applications in different 

models are discussed by Yao et al. (1984) and Cordeau and Chaudhry (2009). The 

standard level crossing analysis in the context of 𝐺𝐼/𝐸𝑋/1 is explained as follows: 

In Subsection 4.2.1, 𝑁 is defined as the steady-state r.v. that counts the number of 

uncompleted service stages in the system at a random epoch. Suppose that throughout 

some time interval (0, 𝑡], the value of N varies due to changes in the number of completed 
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service stages (decrease of 𝑁) and the number of customer arrivals (increase of 𝑁) 

during (0, 𝑡]. An example of 𝑁 varying throughout (0, 𝑡] is depicted in Figure 4. 

 

 

Figure 4: An example illustrating the variation of 𝑵 throughout some time 

interval (𝟎, 𝒕]. 

 

 

Whenever N decreases, it will decrease by 1 since a customer in the server 

completes one service stage at a time. Suppose that N is initially at 𝑘 then decreases 

to 𝑘 − 1. This is depicted in Figure 5. 

 

 

Figure 5: Decrease of 𝑵 from 𝒌 to 𝒌 − 𝟏 due to completion of a service stage. 

 

 

Let 𝐷𝑘(𝑡), (𝑘 ≥ 1) be the mean number of downward transitions from 𝑁 =

𝑘 to 𝑁 = 𝑘 − 1 throughout (0, 𝑡]. On the contrary, whenever N increases due to a 

customer arrival, it will increase by the number of service stages that the arriving 
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customer has to complete, or ℎ, (1 ≤ ℎ ≤ 𝑟). To illustrate this, suppose that N is initially 

at 𝑗, (0 ≤ 𝑗 < 𝑘) and becomes 𝑗 + ℎ after a customer arrival (see Figure 6). 

 

 

Figure 6: Increase of 𝑵 from 𝒋 to 𝒋 + 𝒉 due to a customer arrival. 

 

 

Let 𝑈𝑗(𝑡), (𝑗 ≥ 0) be the mean number of upward transitions from 𝑁 = 𝑗 to 𝑁 =

𝑗 + ℎ where ℎ varies according to its p.m.f. 𝑠ℎ, (1 ≤ ℎ ≤ 𝑟). Since 𝑗 < 𝑘, 

whenever 𝑁 increases from 𝑗, it will either become 𝑘 or greater than 𝑘. Let �̅�𝑘(𝑡) be the 

mean number of upward transitions of 𝑁 from 𝑗 to and over 𝑘. By intuition, �̅�𝑘(𝑡) would 

be in terms of 𝑈𝑗(𝑡) and 𝑠ℎ, (1 ≤ ℎ ≤ 𝑟) since the number of times 𝑁 increases 

from 𝑗 to 𝑘 throughout(0, 𝑡] is same as the number of times 𝑁 increases from 𝑗 to 𝑗 +

ℎ when ℎ = 𝑘 − 𝑗 throughout (0, 𝑡]. Similarly, the number of times 𝑁 increases from 𝑗 to 

any value greater than 𝑘 throughout (0, 𝑡] is same as the number of times 𝑁 increases 

from 𝑗 to 𝑗 + ℎ when ℎ > 𝑘 − 𝑗 throughout (0, 𝑡]. Based on this notion, �̅�𝑘(𝑡) can be 

defined as 

�̅�𝑘(𝑡) = ∑𝑈𝑗(𝑡)

𝑘−1

𝑗=0

∑ 𝑠ℎ

𝑟

ℎ=𝑘−𝑗
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Given that a stable queueing system has an upward transition rate which is the 

same as its downward transition rate (Foster and Perera, 1965), the expression 

lim
𝑡→∞

𝐷𝑘(𝑡)

𝑡
= lim

𝑡→∞

�̅�𝑘(𝑡)

𝑡
                                                         (18) 

must hold. The definition of �̅�𝑘(𝑡) can be substituted into (18) such that 

lim
𝑡→∞

𝐷𝑘(𝑡)

𝑡
= lim

𝑡→∞

∑ 𝑈𝑗(𝑡)
𝑘−1
𝑗=0 ∑ 𝑠ℎ

𝑟
ℎ=𝑘−𝑗

𝑡
                                 (19) 

Multiplying and dividing the left-hand side of (19) by ∑ 𝐷𝑘(𝑡)
∞
𝑘=1  and doing the same on 

the right-hand side by ∑ 𝑈𝑗(𝑡)
∞
𝑗=0  gives 

lim
𝑡→∞

(
∑ 𝐷𝑘(𝑡)
∞
𝑘=1

𝑡
) (

𝐷𝑘(𝑡)

∑ 𝐷𝑘(𝑡)
∞
𝑘=1

) = lim
𝑡→∞

∑(
∑ 𝑈𝑗(𝑡)
∞
𝑗=0

𝑡
) (

𝑈𝑗(𝑡)

∑ 𝑈𝑗(𝑡)
∞
𝑗=0

) ∑ 𝑠ℎ

𝑟

ℎ=𝑘−𝑗

𝑘−1

𝑗=0

 

where lim𝑡→∞

∑ 𝐷𝑘(𝑡)
∞
𝑘=1

𝑡
 is the service rate (𝜇) and lim

𝑡→∞

∑ 𝑈𝑗(𝑡)
∞
𝑗=0

𝑡
 is the arrival rate (𝜆) . In 

addition, as defined by Foster and Perera (1965), 𝑝𝑗
− = lim

𝑡→∞

𝑈𝑗(𝑡)

∑ 𝑈𝑗(𝑡)
∞
𝑗=0

  and 𝑝𝑘 =

lim
𝑡→∞

𝐷𝑘(𝑡)

∑ 𝐷𝑘(𝑡)
∞
𝑘=1

  can be substituted into above expression, which gives 

𝜇𝑝𝑘 =∑𝜆𝑝𝑗
−

𝑘−1

𝑗=0

∑ 𝑠ℎ

𝑟

ℎ=𝑘−𝑗

 

or 

𝑝𝑘 =
𝜆

𝜇
∑𝑝𝑗

−

𝑘−1

𝑗=0

(1 − ∑ 𝑠ℎ

𝑘−𝑗−1

ℎ=1

),                                           (20) 
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where 𝑘 ≥ 1 and 𝑝0 = 1 − ∑ 𝑝𝑘
∞
𝑘=1 = 1 − (

𝜆�̅�

𝜇
) = 1 − 𝜌.  By renewal theory, there exists 

an alternate way of determining 𝑝𝑘 using 𝑝𝑗
− (see Appendix C.3.1).  

With 𝑝𝑘 known from (20), the standard level crossing analysis enables the finding 

of 𝑝𝑘
+ in terms of 𝑝𝑘. This is done as follows: Given the definition of �̅�𝑘(𝑡), both of its 

sides are summed over 𝑘, such that 

∑�̅�𝑘(𝑡)

∞

𝑘=1

=∑∑𝑈𝑗(𝑡)

𝑘−1

𝑗=0

∑ 𝑠ℎ

𝑟

ℎ=𝑘−𝑗

∞

𝑘=1

 

= �̅�∑𝑈𝑗(𝑡)

∞

𝑗=0

 

Similarly, sum of (18) on both of its sides over 𝑘 gives 

∑ lim
𝑡→∞

𝐷𝑘(𝑡)

𝑡

∞

𝑘=1

=∑ lim
𝑡→∞

�̅�𝑘(𝑡)

𝑡

∞

𝑘=1

 

By rearranging ∑ �̅�𝑘(𝑡)
∞
𝑘=1 = �̅�∑ 𝑈𝑗(𝑡)

∞
𝑗=0  and ∑ lim𝑡→∞

𝐷𝑘(𝑡)

𝑡

∞
𝑘=1 = ∑ lim𝑡→∞

�̅�𝑘(𝑡)

𝑡

∞
𝑘=1 , it 

leads to 

lim
𝑡→∞

∑ �̅�𝑘(𝑡)
∞
𝑘=1

∑ 𝐷𝑘(𝑡)
∞
𝑘=1

= lim
𝑡→∞

�̅� ∑ 𝑈𝑗(𝑡)
∞
𝑗=0

∑ 𝐷𝑘(𝑡)
∞
𝑘=1

= 1 

Multiplying both sides of the above by 
𝐷𝑘(𝑡)

𝑡⁄  results in 

lim
𝑡→∞

[
∑ 𝑈𝑗(𝑡)
∞
𝑗=0

𝑡
] [

�̅�𝐷𝑘(𝑡)

∑ 𝐷𝑘(𝑡)
∞
𝑘=1

] = lim
𝑡→∞

𝐷𝑘(𝑡)

𝑡
                                    (21) 
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The right-hand side of (21) is 𝜇𝑝𝑘 as can be seen in deriving (20). The left-hand side of 

(21) indicates that if lim
𝑡→∞

∑ 𝑈𝑗(𝑡)
∞
𝑗=0

𝑡
 is the arrival rate (𝜆) then lim

𝑡→∞

𝐷𝑘(𝑡)

∑ 𝐷𝑘(𝑡)
∞
𝑘=1

 for 𝑘 ≥ 1 is the 

probability of there being 𝑘 − 1 uncompleted service stages in the system just after the 

departure of a customer (𝑝𝑘−1
+ ). Based on this, (21) can be rewritten as 

𝜆�̅�𝑝𝑘−1
+ = 𝜇𝑝𝑘 

or 

𝑝𝑘−1
+ =

1

𝜌
𝑝𝑘,   (𝑘 ≥ 1)                                                 (22) 

Hence the solution to 𝐺𝐼/𝐸𝑋/1 (defined in Table 11) is completely found. 

4.3.4 Conclusion 

In queueing theory, queues with multi-staged services are useful tools of 

application when considering a setting where service is provided in a phased manner. In 

the past, such queues with server that has fixed number of exponential service stages (𝐺𝐼/

𝐸𝑘/1) have been analyzed by various researchers. In extending 𝐺𝐼/𝐸𝑘/1 to 𝐺𝐼/𝐸𝑋/1, 

some r.v.’s and d.f.’s are kept the same both in terms of notation and definition for 

consistency sake. What changed is the number of service stages that every customer has 

to go through, which is extended from a constant to a r.v.. Relations between different 

r.v.’s of 𝐺𝐼/𝐸𝑋/1 are derived, which are used to build the steady-state p.g.f. of the model. 

This p.g.f. is then inverted to determine the pre-arrival solution, which is used to find its 

counterpart solutions at random and post-departure epochs. Importantly, the pre-arrival 

solution can be further leveraged to explore other d.f.’s within 𝐺𝐼/𝐸𝑋/1 which is 

discussed in the next section. 
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All derivations and relations in Section 4.3 are part of the manuscript that has been 

accepted for publication in the American Journal of Operations Research (Chaudhry and 

Kim, 2015). 

4.4 Additional findings in 𝑮𝑰/𝑬𝑿/𝟏 

The pre-arrival solution from Section 4.3 can be leveraged to determine other 

important steady-state d.f.’s that describe different dynamics of 𝐺𝐼/𝐸𝑋/1. In this section, 

the distribution of the waiting-time-in-queue of an incoming customer and the number of 

customers in queue and the system are derived in terms of the pre-arrival solution. This 

derivation is considered rigorous and lengthy, hence an analytical example of a special 

case of 𝐺𝐼/𝐸𝑋/1 is provided for the purpose of demonstration. Lastly, the performance 

measures of 𝐺𝐼/𝐸𝑋/1 are introduced, which were used in Chapter 5 to compute various 

numerical results. 

4.4.1 Waiting-time-in-queue 

Let 𝑤𝑞
− be the r.v. of the amount of time an incoming customer has to spend in 

queue (waiting-time-in-queue) until entering service. The c.d.f. of 𝑤𝑞
− is  𝑊𝑞

−(𝑡) =

𝑃(𝑤𝑞
− ≤ 𝑡), (𝑡 ≥ 0). Intuitively, if an incoming customer enters service immediately 

upon arrival, then there must be no uncompleted service stages in the system prior to his 

or her arrival. In other words, 

 𝑊𝑞
−(0) = 𝑝0

− 

must be true. Alternatively, if an incoming customer has to spend at least some amount of 

time in queue (say 𝑡 > 0) before entering service then there must be 𝑖, (𝑖 > 0)  
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uncompleted service stages in the system prior to his or her arrival (see Figure 7 for visual 

illustration). 

 

 

Figure 7: Visual illustration of the composition of waiting-time-in-queue of an 

incoming customer. 

 

 

Based on this notion, when 𝑡 > 0, the waiting-time-in-queue of an incoming customer is 

the durations of 𝑖, (𝑖 ≥ 1) uncompleted exponential service stages. The probability 

distribution of that duration follows the Erlang-𝑖 distribution with a c.d.f. 

 𝑊𝑞
−(𝑡) = ∫

(𝜇𝑥)𝑖−1

(𝑖 − 1)!
𝑒−𝜇𝑥𝜇𝑑𝑥

𝑡

0

 

which holds for 𝑡 > 0. To complete the expression of 𝑊𝑞
−(𝑡), the c.d.f. above can be 

multiplied with 𝑝𝑖
− and then summed over 𝑖 in order to span all possible values of 𝑖 and 

associated probabilities. Thereby 𝑊𝑞
−(𝑡) becomes 

 𝑊𝑞
−(𝑡) =∑𝑝𝑖

−∫
(𝜇𝑥)𝑖−1

(𝑖 − 1)!
𝑒−𝜇𝑥𝜇𝑑𝑥,     (𝑡 > 0)

𝑡

0

∞

𝑖=1
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Finally, by combining 𝑊𝑞
−(𝑡) when 𝑡 = 0 and 𝑡 > 0, the c.d.f. of waiting-time-in-queue 

of an incoming customer is completely expressed as 

 𝑊𝑞
−(𝑡) = 𝑝0

− + 𝜇∑𝑝𝑖
−∫

(𝜇𝑥)𝑖−1

(𝑖 − 1)!
𝑒−𝜇𝑥𝑑𝑥      (𝑡 ≥ 0)

𝑡

0

∞

𝑖=1

                         (23) 

4.4.2 Number of customers in queue and the system 

It is evident that (23) is in terms of the pre-arrival solution. The steady-state p.m.f. 

of the number of customers in queue can be found in terms of (23), hence by composition, 

it is also in terms of the pre-arrival solution to 𝐺𝐼/𝐸𝑋/1. This confirms the statement in 

Subsection 4.3.2 that 𝑝𝑗
− is a key d.f. which all other d.f.’s in 𝐺𝐼/𝐸𝑋/1 are built upon. 

Distributional Little’s law is a technique in queueing theory that is used to build 

connection between the steady p.m.f. of the number of customers in queue at a random 

epoch and (22). In the following, distributional Little’s law is explained in the context 

of 𝐺𝐼/𝐸𝑋/1. 

Intuitively, if an incoming customer has to wait in queue for a long time, it 

indicates that queue is large. On the contrary, if the waiting-time-in-queue of a customer 

is short, it signifies that queue is small. It is evident that the two r.v.’s (waiting-time-in-

queue and queue-length) are directly proportional and nicely meet the criteria for the 

application of distributional Little’s Law. This can be done by introducing renewal theory 

in queueing theory: Processes that counts the number of renewals over duration of time 

can be manipulated into processes that count the number of customers in queue, where 

that number is proportional to the duration of waiting-time-in-queue. This is done as 

follows: 
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Let there be some continuous-time single-renewal processes {𝑀𝑎(𝑡), 𝑡 > 0} 

where 𝑀𝑎(𝑡) is a r.v. that counts the number of renewals during the time interval (0, 𝑡]. 

Let the p.m.f. of 𝑀𝑎(𝑡) be 𝑄𝑛(𝑡) = 𝑄(𝑛, 𝑡) = 𝑃(𝑀𝑎(𝑡) = 𝑛) with the p.g.f. 𝑄(𝑧, 𝑡) =

∑ 𝑃(𝑀𝑎(𝑡) = 𝑛)∞
𝑛=0 𝑧𝑛, (|z| < 1) and a L.T. 

�̅�(𝑧, 𝜔) = ∫ 𝑒−𝜔𝑡𝑄(𝑧, 𝑡)𝑑𝑡 =
∞

0

1

𝜔
− 𝜆

(1 − �̅�(𝜔))(1 − 𝑧)

𝜔2(1 − 𝑧�̅�(𝜔))
                     (24) 

where �̅�(𝜔) is a L-S.T. of the c.d.f. of renewal periods 𝐴(𝑡) (for a proof of (24) readers 

may see Cox,1962 or Bertsimas and Nakazato,1995). Interestingly, expression (24) is 

what would be equivalent to (2) in the renewal theory portion of this thesis. The 

p.m.f. 𝑄𝑛(𝑡) can be manipulated into the steady-state p.m.f. of the number of customers 

in queue at a random epoch (𝑄𝑛) by conditioning then un-conditioning 𝑀𝑎(𝑡) on 𝑤𝑞
− such 

that 

𝑄𝑛(𝑡) = 𝑃(𝑀𝑎(𝑡) = 𝑛) 

becomes 

𝑄𝑛 = {

1 − 𝜌 + 𝑃(𝑀𝑎( 𝑤𝑞
−) = 0),                              (𝑛 = 0)  

∫ 𝑃(𝑀𝑎( 𝑤𝑞
−) = 𝑛| 𝑤𝑞

− = 𝑡)𝑑𝑊𝑞
−(𝑡),

∞

0

       (𝑛 ≥ 1)  
                (25) 

Although (25) is an explicit expression of the steady-state p.m.f. of the number of 

customers in queue at random epoch, its direct computation is inconvenient and 

potentially time consuming since it requires the simultaneous finding of the inverse L.T. 

as well as z-transform (see Appendix A.3.5) of (24). To mitigate this difficulty, suppose 

that 𝑄𝑛 has a p.g.f. 𝐺𝑁𝑞(𝑧) such that 
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𝐺𝑁𝑞(𝑧) = ∑𝑄𝑛

∞

𝑛=0

𝑧𝑛,   (|𝑧| < 1) 

               = 1 − 𝜌 + ∫ ∑𝑃(𝑀𝑎(𝑡) = 𝑛)

∞

𝑛=0

𝑧𝑛
∞

0

𝑑𝑊𝑞
−(𝑡) 

or 

𝐺𝑁𝑞(𝑧) = 1 − 𝜌 + ∫ 𝑄(𝑧, 𝑡)
∞

0

𝑑𝑊𝑞
−(𝑡)                                   (26)  

where 𝑄(𝑧, 𝑡) in (26) is an inverse-L.T. of (24). Additionally, in (26), the term 1 − 𝜌 is 

added to account for the case where the queue and server of 𝐺𝐼/𝐸𝑋/1 are empty and idle, 

respectively (there exists an alternate case where the queue is empty but the server is 

busy). In the case when �̅�(𝑧, 𝜔) cannot be inverted directly to 𝑄(𝑧, 𝑡), Padé 

approximation (see Appendix 2.6) can be used to accurately estimate �̅�(𝑧, 𝜔) into a 

rational form that is readily invertible. Once 𝑄(𝑧, 𝑡) is found, it can be substituted into 

(26). By doing so, its Taylor’s series expansion becomes: 

𝐺𝑁𝑞(𝑧) = 𝑄0 + 𝑄1𝑧 + 𝑄2𝑧
2 + 𝑄3𝑧

3+. . . , (|𝑧| < 1)                              (27) 

where {𝑄𝑛} for 𝑛 ≥ 0 is a sequence of the coefficients in (27). Also, the steady-state 

p.m.f. of the number of customers in the system at a random epoch, say 𝑅𝑛, (𝑛 ≥ 0), can 

be found directly from 𝑄𝑛 such that    

𝑅𝑛 = {

1 − 𝜌,                 (𝑛 = 0)

𝜌 − 1 + 𝑄0,       (𝑛 = 1)

𝑄𝑛−1,                   (𝑛 ≥ 2)
                                                (28) 
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where 𝑅0 = 𝑝0 = 1 − 𝜌 holds (probability of no customer in the system at a random 

epoch equating to probability of no uncompleted service stages in the system at random 

epoch).  

Let 𝑅𝑛−1
+  for 𝑛 ≥ 1 be the p.m.f. of the number of customers in the system at a 

post-departure epoch. Since the relation (22) is also true between 𝑅𝑛 and 𝑅𝑛−1
+  (see Yao 

et.al, 1984), another relation can be established as 

𝑅𝑛−1
+ =

1

𝜌
𝑅𝑛,    (𝑛 ≥ 1) 

where 𝑅𝑛
+ = 𝑅𝑛

− for 𝑛 ≥ 0. 

4.4.3 Analytical example of 𝑮𝑰/𝑬𝑿/𝟏 

In this subsection, a demonstration is provided on how one would analyze 𝐺𝐼/𝐸𝑋/

1 using various findings in Subsection 4.3.2 (steady-state p.g.f. and its inversion), 4.3.3 

(relations between solutions at different time epochs), 4.4.1 (waiting-time-in-queue), and 

4.4.2 (number of customers in queue and the system).  

Consider the model 𝑀/𝐸𝑋/1 with p.m.f. of 𝑋 as 𝑠ℎ, (1 ≤ ℎ ≤ 𝑟). Customer 

arrivals follow exponential distribution, hence the probability density function (p.d.f.) of 

the inter-arrival time is 

𝑎(𝑡) = 𝜆𝑒−𝜆𝑡, (𝑡 > 0) 

with a L.T. �̅�(𝜔) =
𝜆

𝜆+𝜔
. The p.g.f. of 𝑘𝑗 , (𝑗 ≥ 0) is  

𝐾(𝑧) =∑𝑘𝑗𝑧
𝑗

∞

𝑗=0

= �̅�(𝜇(1 − 𝑧)),   |𝑧| < 1 
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and letting 𝜔 = 𝜇(1 − 𝑧) in the above leads to 

𝐾(𝑧) =
𝜆

𝜆 + 𝜇(1 − 𝑧)
 

The equation 0 = 1 − 𝑆(𝑧−1)𝐾(𝑧) of 𝑀/𝐸𝑋/1 can be solved to obtain the roots to build 

(17). In doing so, the equation 

0 = 1 − (
𝑠1
𝑧
+
𝑠2
𝑧2
+⋯+

𝑠𝑟
𝑧𝑟
) (

𝜆

𝜆 + 𝜇(1 − 𝑧)
) 

can be solved using MAPLE or MATHEMATICA to determine the roots 𝑧1, 𝑧2, 𝑧3, … , 𝑧𝑟. 

These roots are then substituted into (17) which form the steady-state p.g.f. of 𝑀/𝐸𝑋/1: 

𝑃−(𝑧) =∏(
1 − 𝑧ℎ
1 − 𝑧ℎ𝑧

)

𝑟

ℎ=1

,   |𝑧| ≤ 1 

where the coefficients of its Taylor’s series expansion are the pre-arrival solution 𝑝𝑗
−, (𝑗 ≥

0). With 𝑝𝑗
−, (𝑗 ≥ 0), 𝑝𝑘, 𝑝𝑘

+, (𝑘 ≥ 0), and 𝑊𝑞
−(𝑡), (𝑡 ≥ 0) can be determined using (20), 

(22), and (23), respectively. In determining 𝑄𝑛, �̅�(𝜔) =
𝜆

𝜆+𝜔
 can be substituted into (24), 

which results in 

�̅�(𝑧, 𝜔) = ∫ 𝑒−𝜔𝑡𝑄(𝑧, 𝑡)𝑑𝑡 =
∞

0

1

𝜆 + 𝜔 − 𝜆𝑧
 

The above expression has an inverse L.T. 

𝑄(𝑧, 𝑡) = 𝑒−𝜆(1−𝑧)𝑡,   (|𝑧| ≤ 1, 𝑡 ≥ 0) 

The Taylor’s series expansion of 𝑄(𝑧, 𝑡) is 
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𝑒−𝜆(1−𝑧)𝑡 = 𝑒−𝜆𝑡 {1 + (𝜆𝑡)𝑧 +
1

2
(𝜆𝑡)2𝑧2 +

1

6
(𝜆𝑡)3𝑧3 +

1

24
(𝜆𝑡)4𝑧4 +⋯} 

Hence, by substituting the above series into (26), it becomes (27) such that 

           𝐺𝑁𝑞(𝑧) = 1 − 𝜌 + ∫ 𝑄(𝑧, 𝑡)
∞

0

𝑑𝑊𝑞
−(𝑡) 

= [1 − 𝜌 + ∫ 𝑒−𝜆𝑡𝑑𝑊𝑞
−(𝑡)

∞

0

] + [𝜆∫ 𝑡𝑒−𝜆𝑡𝑑𝑊𝑞
−(𝑡)

∞

0

] 𝑧

+ [
𝜆2

2
∫ 𝑡2𝑒−𝜆𝑡𝑑𝑊𝑞

−(𝑡)
∞

0

] 𝑧2 + [
𝜆3

6
∫ 𝑡3𝑒−𝜆𝑡𝑑𝑊𝑞

−(𝑡)
∞

0

] 𝑧3 +⋯ 

The coefficients of 𝐺𝑁𝑞(𝑧) form the steady-state p.m.f. of the number of customers in 

queue at a random epoch 

𝑄𝑛 =

{
 
 

 
 1 − 𝜌 +∫ 𝑒−𝜆𝑡𝑑𝑊𝑞

−(𝑡)
∞

0

, (𝑛 = 0)

𝜆𝑛

𝑛!
∫ 𝑡𝑛𝑒−𝜆𝑡𝑑𝑊𝑞

−(𝑡)
∞

0

,       (𝑛 ≥ 1)

 

Using (28), the steady-state p.m.f. of the number of customers in the system at a random 

epoch can be found as 

𝑅𝑛 =

{
 
 

 
 1 − 𝜌,                                                    (𝑛 = 0)

𝜌 − 1 + 𝑄0,                                         (𝑛 = 1)

𝜆𝑛−1

(𝑛 − 1)!
∫ 𝑡𝑛−1𝑒−𝜆𝑡𝑑𝑊𝑞

−(𝑡)
∞

0

,      (𝑛 ≥ 2)

 

The steady-state p.m.f. of the number of customers in the system at pre-arrival and post-

departure epochs can be determined using (22): 
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𝑅𝑛−1
+ = 𝑅𝑛−1

− =

{
 
 

 
 
𝑄0 − 1

𝜌
+ 1,                                             (𝑛 = 1)

𝜆𝑛−1

𝜌(𝑛 − 1)!
∫ 𝑡𝑛−1𝑒−𝜆𝑡𝑑𝑊𝑞

−(𝑡),        (𝑛 ≥ 2)
∞

0

 

4.4.4 Performance measures 

In queueing theory, performance measures are important since they provide the 

best way of interpreting the different dynamics of the system. For example, to observe the 

congestion level of the server, the average number of customers in queue would be a far 

better indicator than the probability of each likely number of customers in queue. In 

addition, there exist interesting relations among performance measures such as Little’s 

law. The relations are often used as cross-checking tools to confirm that their respective 

d.f.’s are correct. 

In exploring the performance measures of 𝐺𝐼/𝐸𝑋/1, let 𝑀𝑝ℎ𝑎𝑠𝑒 , 𝐿𝑞 ,

𝐿𝑠,  and 𝐸𝑊𝑞−  be the mean number of uncompleted service stages in the system at a 

random epoch, mean number of customers in queue at a random epoch, mean number of 

customers in the system at a random epoch and mean waiting-time-in-queue of an 

incoming customer, respectively. First, the mean number of uncompleted service stages in 

the system at a random epoch is 

𝑀𝑝ℎ𝑎𝑠𝑒 =∑𝑖

∞

𝑖=1

𝑝𝑖                                                                (29)  

and similarly, 𝑀𝑝ℎ𝑎𝑠𝑒
− = ∑ 𝑖∞

𝑖=1 𝑝𝑖
− and 𝑀𝑝ℎ𝑎𝑠𝑒

+ = ∑ 𝑖∞
𝑖=1 𝑝𝑖

+. The mean number of 

customers in queue at a random epoch is  
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𝐿𝑞 =∑𝑛

∞

𝑛=1

𝑄𝑛                                                                (30) 

and the mean number of customers in the system at a random epoch is 

𝐿𝑠 = ∑𝑛

∞

𝑛=1

𝑅𝑛                                                                (31) 

The mean number of customers in the system at pre-arrival and post-departure epochs are 

identical such that 𝐿𝑠
+ = 𝐿𝑠

− = ∑ 𝑛∞
𝑛=1 𝑅𝑛

+. The relation between (30) and (31) can be 

established by expressing 𝐿𝑞 in terms of 𝑅𝑛, such that 

𝐿𝑞 =∑(𝑛 − 1)

∞

𝑛=2

𝑅𝑛 

= ∑𝑛

∞

𝑛=2

𝑅𝑛 −∑𝑅𝑛

∞

𝑛=2

 

= 𝐿𝑠 − 1 + 𝑅0 

and using the relation 𝑅0 = 1 − 𝜌 gives  

𝐿𝑞 = 𝐿𝑠 − 𝜌                                                                (32) 

which is one of the well-known properties of single-server queues in queueing literature. 

The mean waiting-time-in-queue of an incoming customer can be defined as 

𝐸𝑊𝑞− = ∫ 𝑡𝑑 𝑊𝑞
−(𝑡)

∞

0

                                                   (33) 

and the mean waiting-time-in-system of an incoming customer is 
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𝐸𝑊− = 𝐸𝑊𝑞− +
𝑠

𝜇

̅
                                                           (34) 

In addition, Little’s law in the context of 𝐺𝐼/𝐸𝑋/1 can be defined as 

𝐿𝑞 = 𝜆𝐸𝑊𝑞−                                                                 (35) 

and 

𝐿𝑠 = 𝜆𝐸𝑊−                                                                 (36) 

where both (35) and (36) can be used as crosschecking tools when doing 

numerical computations since (𝐿𝑞 , 𝐿𝑠) and (𝐸𝑊𝑞− , 𝐸𝑊−) can be separately found. 

4.4.5 Conclusion 

Using the pre-arrival solution, other d.f.’s within 𝐺𝐼/𝐸𝑋/1 are found. These 

distributions describe different aspects of 𝐺𝐼/𝐸𝑋/1, including the c.d.f. of the waiting-

time-in-queue of an incoming customer, and the p.m.f. of the number of customers in 

queue and in the system. In determining the p.m.f. of the number of customers in queue at 

a random epoch, renewal theory is introduced in queueing theory where a p.m.f. of a r.v. 

in the continuous-time single-renewal processes is manipulated into a p.m.f. of the 

number of customers in queue. This technique is known as distributional Little’s law. By 

combining Subsection 4.3.2 and 4.3.3 with Subsection 4.4.1 and 4.4.2, a complete 

analysis to 𝐺𝐼/𝐸𝑋/1 is presented, where various distributions are all expressed 

fundamentally in terms of the pre-arrival solution. A demonstration of how one would 

solve 𝐺𝐼/𝐸𝑋/1 is provided using 𝑀/𝐸𝑋/1. Lastly, performance measures of 𝐺𝐼/𝐸𝑋/1 are 

found using various d.f.’s.  
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All additional findings in 𝐺𝐼/𝐸𝑋/1 are part of the manuscript that has been 

accepted for publication in the American Journal of Operations Research (Chaudhry and 

Kim, 2015). 
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5 NUMERICAL EXAMPLES IN QUEUEING THEORY 

In this chapter, various numerical examples of 𝐺𝐼/𝐸𝑋/1 are presented. They are 

organized in the following manner: 𝑀/𝐸𝑋/1 in Section 5.1, 𝐸𝑚/𝐸𝑋/1 in Section 5.2, 

and 𝐷/𝐸𝑋/1 in Section 5.3. A numerical comparison against existing results is provided 

in Section 5.4. All computations were performed on MAPLE, calibrated to compute up to 

the ninth decimal place. All results were rounded to four decimal places in the following 

tables. 

5.1 Computing 𝑴/𝑬𝑿/𝟏 

Inter-arrival pattern is exponential (𝑀) with a p.d.f. 𝑓(𝑡) = 𝜆𝑒−𝜆𝑡, 𝑡 >

0. Parameters taken were 𝑏1 = 0.4, 𝑏2 = 0.2, 𝑏3 = 0.2, 𝑏4 = 0.2, 𝜇 = 12 and 𝜌 =

0.5 (with 𝜆 ≅ 2.7272). 

Table 12: Computing 𝑴/𝑬𝑿/𝟏 with 𝒃𝟏 = 𝟎. 𝟒, 𝒃𝟐 = 𝟎. 𝟐, 𝒃𝟑 = 𝟎. 𝟐, 𝒃𝟒 = 𝟎. 𝟐, 𝝁 =

𝟏𝟐 and 𝝆 = 𝟎. 𝟓 (𝐰𝐢𝐭𝐡 𝝀 ≅ 𝟐. 𝟕𝟐𝟕𝟐) 

𝑗 𝑝𝑗
− 𝑝𝑗 𝑝𝑗

+ 𝑄𝑗 𝑅𝑗 𝑅𝑗
+  𝑡 𝑊𝑞

−(𝑡) 

0 0.5000 0.5000 0.2272 0.7632 0.5000 0.5264  0.0000 0.5000 

1 0.1136 0.1136 0.1880 0.1282 0.2632 0.2564  0.0114 0.5154 

2 0.0940 0.0940 0.1646 0.0596 0.1282 0.1192  0.1544 0.6807 

3 0.0823 0.0823 0.1291 0.0271 0.0596 0.0542  0.4566 0.8815 

4 0.0645 0.0645 0.0792 0.0122 0.0271 0.0244  0.6940 0.9470 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮  ⋮ ⋮ 

Sum 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999  2.6666 0.9999 

𝑀𝑝ℎ𝑎𝑠𝑒
− = 1.9091 𝐿𝑠 = 0.9339   𝐸𝑊−   = 0.3424 

𝑀𝑝ℎ𝑎𝑠𝑒 = 1.9091 𝐿𝑞 = 0.4339   𝐸𝑊𝑞−   = 0.1591 

𝑀𝑝ℎ𝑎𝑠𝑒
+ = 2.8182 𝐿𝑠

+ = 0.8678   𝜆𝐸𝑊− = 0.9339 

     𝜆𝐸𝑊𝑞− = 0.4339 
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5.2 Computing 𝑬𝒎/𝑬𝑿/𝟏 

Inter-arrival pattern is Erlang-𝑚 (𝐸𝑚) with a p.d.f. 𝑓(𝑡) =
𝜆𝑚𝑡𝑚−1𝑒−𝜆𝑡

(𝑚−1)!
, 𝑡 > 0. 

Parameters taken were 𝑏1 = 0.25, 𝑏2 = 0.25, 𝑏3 = 0.4, 𝑏4 = 0.1, 𝜇 = 4,𝑚 = 3, and 𝜌 =

0.75 (with 𝜆 ≅ 1.2766). 

Table 13: Computing 𝑬𝒎/𝑬𝑿/𝟏 with 𝒃𝟏 = 𝟎. 𝟐𝟓, 𝒃𝟐 = 𝟎. 𝟐𝟓, 𝒃𝟑 = 𝟎. 𝟒, 𝒃𝟒 = 𝟎. 𝟏,

𝝁 = 𝟒,𝒎 = 𝟑, and 𝝆 = 𝟎. 𝟕𝟓 (𝐰𝐢𝐭𝐡 𝝀 ≅ 𝟏. 𝟐𝟕𝟔𝟔) 

𝑗 𝑝𝑗
− 𝑝𝑗 𝑝𝑗

+ 𝑄𝑗 𝑅𝑗 𝑅𝑗
+   𝑡 𝑊𝑞

−(𝑡) 

0 0.9234 0.2500 0.3929 0.9589 0.2500 0.9452   0.0000 0.9233 

1 0.0390 0.2947 0.3113 0.0395 0.7089 0.0527   0.0114 0.9251 

2 0.0233 0.2335 0.2188 0.0015 0.0395 0.0020   0.1544 0.9446 

3 0.0107 0.1641 0.0596 5.1763x10−5 0.0015 6.9018x10−5   0.4566 0.9720 

4 0.0028 0.0447 0.0112 1.6313x10−6 5.1763x10−5 2.1751x10−6   0.6940 0.9842 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮   ⋮ ⋮ 

Sum 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999   2.9999 0.9999 

𝑀𝑝ℎ𝑎𝑠𝑒
− = 0.1339 𝐿𝑠 = 0.7927   𝐸𝑊−   = 0.6210 

𝑀𝑝ℎ𝑎𝑠𝑒 = 1.5047 𝐿𝑞 = 0.0427   𝐸𝑊𝑞−   = 0.0334 

𝑀𝑝ℎ𝑎𝑠𝑒
+ = 1.0006 𝐿𝑠

+ = 0.0567   𝜆𝐸𝑊− = 0.7927 

     𝜆𝐸𝑊𝑞− = 0.0427 

 

 

5.3 Computing 𝑫/𝑬𝑿/𝟏 

Inter-arrival pattern is deterministic (𝐷) with the inter-arrival time fixed 

at 1. Parameters taken were 𝑏1 = 0.65, 𝑏2 = 0.10, 𝑏3 = 0.20, 𝑏4 = 0.05, 𝜇 = 7 and 𝜌 =

0.4 (with 𝜆 ≅ 1.6970). 

Table 14: Computing 𝑫/𝑬𝑿/𝟏 with 𝒃𝟏 = 𝟎. 𝟔𝟓, 𝒃𝟐 = 𝟎. 𝟏𝟎, 𝒃𝟑 = 𝟎. 𝟐𝟎, 𝒃𝟒 = 𝟎. 𝟎𝟓,

𝝁 = 𝟕, 𝑻 = 𝟏, and 𝝆 = 𝟎. 𝟒 (𝐰𝐢𝐭𝐡 𝝀 ≅ 𝟏. 𝟔𝟗𝟕𝟎) 

𝑗 𝑝𝑗
− 𝑝𝑗 𝑝𝑗

+ 𝑄𝑗 𝑅𝑗 𝑅𝑗
+  𝑡 𝑊𝑞

−(𝑡) 

0 0.9882 0.6000 0.5989 0.9961 0.6000 0.9903  0.0000 0.9882 

1 0.0086 0.2396 0.2148 0.0038 0.3961 0.0095  0.0114 0.9889 
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2 0.0026 0.0859 0.1531 1.4x10−5 0.0038 3.5000x10−5  0.1544 0.9947 

3 0.0006 0.0613 0.0321 3.6915x10−8 1.4x10−5 9.2288x10−8  0.4566 0.9990 

4 6.1979x10−5 0.0129 0.0008 8.1220x10−11 3.6915x10−8 2.0305x10−10  0.6940 0.9992 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮  ⋮ ⋮ 

Sum 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999  0.8888 0.9999 

𝑀𝑝ℎ𝑎𝑠𝑒
−

= 0.0157 
𝐿𝑠 = 0.4038  𝐸𝑊−   = 0.2380 

𝑀𝑝ℎ𝑎𝑠𝑒

= 0.6487 
𝐿𝑞 = 0.0038  𝐸𝑊𝑞−   = 0.0022 

𝑀𝑝ℎ𝑎𝑠𝑒
+

= 0.6218 
𝐿𝑠
+ = 0.0096  𝜆𝐸𝑊− = 0.4038 

    𝜆𝐸𝑊𝑞− = 0.0038 

 

 

5.4 Computing 𝑬𝒏/𝑬𝒎/𝟏 

The numerical results of a simpler model 𝐸𝑛/𝐸𝑚/1 by Grassmann (2010) were 

compared with the results obtained by using the method introduced in this paper. 

Parameters taken were 𝜇 = 1 and the remaining (𝜌, 𝑛 and 𝑚) were computed at various 

parameters. 

Table 15: Comparison against Grassmann’s numerical results in 𝑬𝒏/𝑬𝒎/𝟏 

 

 

All results matched with those of Grassmann (2010) up to 9 decimal places. 

𝜌 𝑛 𝑚 Grassmann 𝐿𝑞 𝐿𝑠 
0.5 2 3 0.1585 0.1585 0.6585 

0.5 2 6 0.1228 0.1228 0.6228 

0.5 4 3 0.0800 0.0800 0.5800 

0.5 4 6 0.0505 0.0505 0.5505 

0.9 2 3 3.2570 3.2570 4.1570 

0.9 2 6 2.5930 2.5930 3.4930 

0.9 4 3 2.1948 2.1948 3.0948 

0.9 4 6 1.5417 1.5417 2.4417 
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5.5 Conclusion 

Numerical computations in queueing theory serve as an important proof of 

concept for theoretical derivations. Specifically, numerical examples confirm that the 

found solution to the model is correct. Thus, it is common in literature to publish 

analytical results followed by numerical examples. In this thesis, Chapter 4 contains the 

theoretical aspect of new and extended results in 𝐺𝐼/𝐸𝑋/1. Chapter 5 serves as a proof of 

concept of Chapter 4 by computing numerical results at different parameter values. 

Section 5.1, 5.2, and 5.3 cover numerical examples of 𝐺𝐼/𝐸𝑋/1 with exponential, 

Erlang-𝑚, and deterministic inter-arrival time patterns, respectively. Various probabilities 

and performance measures are presented along with confirmation of results using Little’s 

law (for both in queue and in the system). 

Section 5.4 covers the comparison of results with that of Grassmann (2010) in 

solving the model 𝐸𝑛/𝐸𝑚/1. Although 𝐸𝑛/𝐸𝑚/1 is considered a special case of 𝐺𝐼/𝐸𝑘/1, 

a numerical comparison against it is made anyway since there are no numerical examples 

of 𝐺𝐼/𝐸𝑋/1 available in literature.   

All numerical examples in Chapter 5 are part of the manuscript that has been 

accepted for publication in the American Journal of Operations Research (Chaudhry and 

Kim, 2015). 
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6. CONCLUSION 

6.1 Thesis contribution 

6.1.1 Contribution to renewal theory 

 Extension of the d.g.f. of the number of renewals from the discrete-

time single-renewal processes to the discrete-time bulk-renewal processes. 

 New derivation for the asymptotic results in the discrete-time bulk-

renewal processes, including the extra constant term in the asymptotic secon

d moment. 

 New derivation for the connection between asymptotic results of the disc

rete and continuous-time bulk-renewal processes. 

 New numerical examples of the discrete-time bulk-renewal processes. 

6.1.2 Contribution to queueing theory 

 Extension of the steady-state p.g.f. of the number of uncompleted service

 stages at a pre-arrival epoch from 𝐺𝐼/𝐸𝑘/1 to 𝐺𝐼/𝐸𝑋/1. 

 New derivation for the solution to 𝐺𝐼/𝐸𝑋/1 at different epochs and relations 

among them. 

 New derivation for the c.d.f. of the waiting-time-in-queue and the steady-

state p.m.f. of the number of customers in 𝐺𝐼/𝐸𝑋/1. 

 New numerical examples of 𝐺𝐼/𝐸𝑋/1. 

6.2 Summary 

In this thesis, new and extended results in renewal and queueing theories are 

presented. In Chapter 2, the discrete-time single-renewal processes are discussed where 
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the concept of renewal periods, renewal mass function, and the number of renewal 

functions are introduced. These concepts are reintroduced in the discrete-time bulk-

renewal processes, and confirmation is made for the fact that renewal periods are the 

fundamental building blocks of both processes. The asymptotic results in the discrete-

time bulk-renewal processes are found and their connections to the asymptotic results in 

the continuous-time bulk-renewal processes are also derived.  

In Chapter 3, numerical examples in discrete-time renewal theory are presented. 

Different d.f.’s of renewal periods and bulk-sizes are considered in computing the p.m.f. 

of the number of renewals. The asymptotic first and second moments of the number of 

renewals are also presented.  

In Chapter 4, queueing theory and different types of queues are introduced. Out of 

different classes of queues, multi-staged queues with server that has fixed number of 

service stages (𝐺𝐼/𝐸𝑘/1)  is discussed in detail. Although this model has been solved by 

several researchers, its discussion is deemed essential prior to introducing the class of 

multi-staged queues with server that has random number of service stages (𝐺𝐼/𝐸𝑋/1). A 

complete analysis of 𝐺𝐼/𝐸𝑋/1 is provided using a wide range of techniques including the 

imbedded Markov chain technique, g.f. method, roots method, standard level crossing 

analysis, renewal theory, and distributional Little’s Law. Thus, Chapter 4 of this thesis 

addresses the statement by Yao et al. (1984): “There is no simple way to analyze the 

queue 𝑮𝑰/𝑬𝑿/𝟏.”  

In Chapter 5, the numerical examples of 𝐺𝐼/𝐸𝑋/1 are presented. Different d.f.’s of 

inter-arrival times and the number of service stages within the server are considered in 
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computing the solution, p.m.f. of the number in queue and the system, and various 

performance measures. 

The new and extended results in renewal and queueing theories discussed in the 

four chapters of this thesis were drafted into two different manuscripts which were 

accepted for publication. The two papers are pending at the accepted status as the author 

of this thesis intends on including some of the future extensions discussed in the next 

section. 

6.3 Future extensions 

The main contribution of this thesis in renewal and queueing theories can be 

further extended in several ways. Some possible areas for further research are noted as 

follows: 

By considering the renewal periods of the discrete-time bulk-renewal processes 

and the inter-arrival times of 𝐺𝐼/𝐸𝑋/1 to follow heavy-tailed distributions such as Pareto, 

inverse-Gaussian, and Weibull, numerical results become more challenging to determine. 

Such distributions possess attractive properties that are deemed suitable in areas such as 

insurance, broad-band communications networks, and packet routing optimization.  

The discrete-time bulk-renewal processes discussed in this thesis can be 

generalized by assuming that the event of a first renewal has a different d.f. than the rest 

of the renewals. This is defined by Chaudhry and Templeton (1983) as the modified (also 

known as delayed or general) renewal processes. Such modification results in a more 

general renewal equation, thus it leads to asymptotic results of the generalized discrete-

time bulk-renewal processes. 
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In 𝐺𝐼/𝐸𝑋/1, instead of using distributional Little’s law, there may be another way 

of finding the steady-state p.m.f. of the number of customers in queue in terms of the 

p.m.f. of the number of uncompleted service stages at a pre-arrival epoch. Such an 

alternate way has already been found in 𝐺𝐼/𝐸𝑘/1, thus it could possibly be extended 

to 𝐺𝐼/𝐸𝑋/1. 

The model 𝐺𝐼/𝐸𝑋/1 can be extended to 𝐺𝐼𝑋/𝐸𝑌/1 such that customers may arrive 

in groups, hence a batch arrival results in ‘𝑋𝑌’ additional uncompleted service stages in 

the system. In addition, 𝐺𝐼/𝐸𝑋/1 can also be extended to 𝐺𝐼/𝐸𝑋/1/𝑁 such that it has a 

finite capacity. Doing so results in an interesting outcome where a customer can be 

rejected due to system’s finite capacity (known as blocking probabilities). Both 𝐺𝐼𝑋/𝐸𝑌/

1 and 𝐺𝐼/𝐸𝑋/1/𝑁 remain unsolved in literature. 

The model 𝐺𝐼/𝐸𝑋/1 has a discrete-time counterpart, 𝐺𝐼/𝑁𝐵𝑋/1 where 𝑁𝐵 is a 

modified negative binomial distribution. The solution and analysis of 𝐺𝐼/𝑁𝐵𝑋/1 are 

unavailable in literature. 
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APPENDIX A 

This appendix provides all preliminary knowledge that is required to understand 

this thesis. This appendix begins with a brief summary of probability theory, stochastic 

processes, and Markov processes in a progressive manner. The summary is then 

supplemented by the following: 

Under continuous probability theory, the definition of a probability density 

function (p.d.f.) and several different examples of p.d.f.’s are presented. The Laplace 

transform (L.T), Laplace-Stieltjes Transform (L-S.T.), and Padé approximation are also 

discussed.  

Under discrete probability theory, the definition of a probability mass function 

(p.m.f.) and several different examples of p.m.f.’s are presented. The generating function 

(g.f.), probability generating function (p.g.f.), and Taylor’s series expansion are also 

discussed. 

A.1 Brief summary on probability theory, stochastic processes, and 

Markov processes 

Probability theory can be explained with the example of a coin toss. When a coin 

is tossed, it could lead to two possible outcomes (heads or tails), and each outcome has a 

probability of 0.5. A random variable (r.v.) represents a group of outcomes (in this case, 

heads or tails) and the distribution function (d.f.) allocates probability to each outcome (in 

this case, 0.5 chance of getting heads and the same for getting tails).  

In general, the outcomes of a r.v. can be nonnegative real numbers or nonnegative 

integers. In the case of the former, the d.f. of a r.v. becomes a probability density function 

(p.d.f.) and in the case of the latter, the d.f. of a r.v. becomes a probability mass function 
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(p.m.f.). The cumulative distribution function (c.d.f.) is a sum of either p.d.f.’s or p.m.f.’s 

from the smallest valued outcome up to a particular outcome of interest. In a holistic 

sense, random variables can be added, subtracted, multiplied, divided, or collected to 

describe a system. 

A random variable could also be time sensitive such that its probability of an 

outcome changes over time. Building on the previous example of a coin toss, the 

probability of getting tails on the first coin toss (0.5) would be different from the 

probability of getting five tails in a row (0.55 = 0.03125). As explained, it is evident that 

the probability of an outcome in the future depends on the probabilities of all previous 

outcomes. In view of this, a collection of time dependent random variables form the 

stochastic processes, which Parzen (1962) describes as the “dynamic part of probability 

theory.” The concept of stochastic processes is familiar and extensively applied across 

various fields including statistical physics (Brownian motion, fluctuations and thermal 

noise), communication and control (automatic tracking of moving objects, reproduction 

of sound and images), and inventory control (minimizing time-of-delivery lag and 

deciding when to place an order for replenishment of stock). 

There exists a special class of stochastic processes called the Markovian stochastic 

processes (Markov processes). Markov processes inherit the basic property of the 

stochastic processes but has an additional consideration known as the Markov property: 

The probability of an outcome in the future only depends on the probability of the present 

outcome and not that of the past. As an example, Markov property states that given a car 

engine that has a mileage of 120,000 kilometers, the probability of this engine lasting for 

another 50,000 kilometers is the same as the probability of the same engine lasting for 

50,000 kilometers from the time it was first built. When comparing the two probabilities, 
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the previous mileage on the engine (past) is simply forgotten when considering additional 

mileage from the present to the future. The two well known d.f.’s that follow Markov 

property are exponential and geometric distributions (see Appendix A.2.1 and A.3.1, 

respectively). Markov property is also referred to as “the forgetfulness property” due to 

its tendency to ignore the past. Interestingly, Markov processes are a powerful tool when 

deducing predictions from a limited amount of information. It enables a great degree of 

simplification of problems as readers will observe in the discussion on queueing theory. A 

Markov processes are further divided into four sub-categories: 

Table 16: Classification of Markov processes 

 
Discrete-state Continuous-state 

Discrete-time 
Discrete parameter Markov 

chains 

Discrete parameter Markov 

processes 

Continuous-

time 

Continuous parameter Markov 

chains 

Continuous parameter Markov 

processes 

 

 

In addition, Markov chains are Markov processes whose state space is discrete. 

A.2 Continuous probability theory 

Assume that there is a continuous r.v., say 𝑇, such that it has a p.d.f. 𝑓(𝑡) =

𝑃(𝑇 = 𝑡) where 0 ≤ 𝑡 < ∞. The 𝑛-th moment of 𝑇 is defined as 𝐸[𝑇𝑛] = ∫ 𝑡𝑛𝑓(𝑡)𝑑𝑡
∞

0
. 

Some examples of p.d.f.’s in continuous probability theory are provided below. 

A.2.1 Exponential distribution 

When 𝑇 is an exponential r.v., its p.d.f. becomes 

𝑓(𝑡) = 𝜆𝑒−𝜆𝑡, 𝑡 ≥ 0 

where 𝜆 > 0. The exponential distribution is a fundamental distribution of continuous 

probability theory that is characterized by the forgetfulness property. 
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A.2.3 Erlang-𝒌 distribution 

When 𝑇 is an Erlangian r.v., its p.d.f. becomes 

𝑓(𝑡) =
𝜆𝑘𝑡𝑘−1𝑒−𝜆𝑡

(𝑘 − 1)!
, 𝑡 ≥ 0 

where 𝜆, 𝑘 > 0. The shape parameter 𝑘 takes positive integers and if 𝑘 is not a positive 

integer, then 𝑓(𝑡) becomes a Gamma distribution. An Erlangian r.v. with shape 

parameter 𝑘 is the sum of 𝑘 exponential r.v.’s, hence when 𝑘 = 1, the Erlang-

𝑘  distribution simplifies to the exponential distribution. 

A.2.4 Modified Erlang distribution 

When 𝑇 is a modified Erlangian r.v., its p.d.f. becomes 

𝑓(𝑡) = ∑𝑏ℎ
𝜆ℎ𝑡ℎ−1𝑒−𝜆𝑡

(ℎ − 1)!

∞

ℎ=0

, 𝑡 ≥ 0 

where 𝜆 > 0 and 𝑏ℎ are the probabilities indicating the likelihood of each value of ℎ, (ℎ ≥

0). In addition, when 𝑏𝑘 = 1, modified Erlang distribution simplifies to the Erlang-

𝑘 distribution. 

A.2.5 Laplace transform and Laplace-Stieltjes transform 

As indicated in Chaudhry and Templeton (1983), applying Laplace transform 

(L.T.) in continuous probability theory transforms a p.d.f. into a L.T. In defining L.T., 

assume that there is a continuous r.v. 𝑇 with p.d.f. 𝑓(𝑡), (𝑡 ≥ 0). Its L.T. is defined as 

𝑓(̅𝜔) = 𝐸[𝑒−𝜔𝑇] = ∫ 𝑒−𝜔𝑡𝑓(𝑡)𝑑𝑡
∞

0

 

where 𝑓(̅0) = 1 and 𝑓(̅𝜔) is an analytic function in the half-place Re(𝜔) > 𝜔0, (𝜔0 ≤

0) since 0 ≤ 𝑓(̅𝜔) ≤ 1 for 𝜔 ≥ 0. L.T. is a useful tool in both renewal and queueing 
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theories due to its ability to express useful information in a fairly simple form. 

When 𝑓(̅𝜔) is inverted to 𝑓(𝑡), the procedure is known as the inverse L.T. and defined as 

𝑓(𝑡) =
1

2𝜋𝑖
∫ 𝑒𝜔𝑡𝑓(̅𝜔)𝑑𝜔
𝑎+𝑖∞

𝑎−𝑖∞

 

where the contour is any vertical line 𝜔 = 𝑎 so that 𝑓(̅𝜔) has no singularities on, or to the 

right of it (Abate and Whitt, 1995). 

The Laplace-Stieltjes transform (L-S.T) is considered to be more general than the 

L.T. as it encompasses a wider class of r.v.’s than the simple L.T. The definition of the L-

S.T. is as follows: Let 𝑇 be a non-negative r.v. with a d.f. 𝐹(𝑡) = 𝑓(𝑡 ≤ 𝑇), then the L-

S.T. of 𝐹(𝑡) is defined as 

𝑓�̅�(𝜔) = ∫ 𝑒−𝜔𝑡𝑑𝐹(𝑡)
∞

0

 

with Re(𝜔) ≥ 0. The integral on the right-hand side of the definition of L-S.T. is known 

as the Stieltjes integral. In addition, the L-S.T. of 𝐹(𝑡) becomes the L.T. of 𝑓(𝑡) if 𝑓(𝑡) =

𝑑𝐹(𝑡)
𝑑𝑡
⁄  exists. 

A.2.6 Padé approximation 

A p.d.f. of a continuous r.v. may not have an explicit L.T. due to the nature of the 

r.v.. When this is the case, the L.T. of a p.d.f. can be approximated using the Padé 

approximation. Assume that a continuous r.v. 𝑇 has a p.d.f. 𝑓(𝑡) that does not have an 

explicit L.T.. The Padé approximation of the L.T. of 𝑓(𝑡) is 

𝑓(̅𝜔) ≅ 𝑓̅∗(𝜔) =
𝑁(𝜔)

𝐷(𝜔)
=
∑ 𝑛𝑙𝜔

𝑙𝐴
𝑙=0

∑ 𝑑𝑙
𝐵
𝑙=0 𝜔𝑙

 

where 𝑁(𝜔) and 𝐷(𝜔) are polynomials of degrees 𝐴 and 𝐵, respectively with unknown 

constant coefficients 𝑛𝑙  and 𝑑𝑙  such that the first 𝐴 + 𝐵 moments of 𝑓(̅𝜔) are equal to 
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some rational function, say 𝑓̅∗(𝜔). For additional details, readers may refer to Harris and 

Marchal (1998) or Baker Jr and Graves-Morris (1996). 

A.3 Discrete probability theory 

Assume that there is a discrete r.v., say 𝑀, such that it has a p.m.f. 𝑓𝑚 =

𝑃(𝑀 = 𝑚) where 0 ≤ 𝑚 < ∞. The 𝑛-th moment of 𝑀 is defined as 𝐸[𝑀𝑛] =

∑ 𝑚𝑛𝑓𝑚
∞
𝑚=0 . Some examples of p.m.f.’s in discrete probability theory are provided 

below. 

A.3.1 Geometric distribution 

When 𝑀 is a geometric r.v., its p.m.f. becomes 

𝑓𝑚 = 𝑝(1 − 𝑝)𝑚−1, 𝑚 ≥ 1 

where 𝑝 > 0. The geometric distribution is a fundamental distribution of discrete 

probability theory that is characterized by the forgetfulness property. This distribution 

provides the probability of the number of trials (𝑚) until an event occurs with a 

probability 𝑝(1 − 𝑝)𝑚−1 for 𝑚 ≥ 1. 

A.3.2 Binomial distribution 

When 𝑀 is a binomial r.v., its p.m.f. becomes 

𝑓𝑚 = (
𝑛
𝑚
)𝑝𝑚(1 − 𝑝)𝑛−𝑚, 𝑚 ≥ 0 

where 𝑝 > 0 and 𝑛 is a positive integer. The binomial distribution is characterized by 

providing the probability of 𝑚 events that occur in 𝑛 trials where each event follows a 

geometric distribution. As an example, when 𝑛 = 1 and 𝑚 = 1, it indicates that an event 

occurs after the first trial with probability 𝑝. When 𝑛 = 1 and 𝑚 = 0, it indicates that no 

event occurs after the first trial with probability 1 − 𝑝. 
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A.3.3 Negative binomial distribution 

When 𝑀 is a negative binomial r.v., its p.m.f. becomes 

𝑓𝑚 = (
𝑚 + 𝑛 − 2
𝑚 − 1

) 𝑝𝑛(1 − 𝑝)𝑚−1, 𝑚 ≥ 1 

where 𝑝 > 0 and 𝑛 is a positive integer. Negative binomial distribution is characterized by 

providing the probability of the number trials (𝑚) until the 𝑛-th event occurs. When 𝑛 =

1, the negative binomial distribution becomes a geometric distribution. 

A.3.4 Poisson distribution 

When 𝑀 is a Poisson r.v., its p.m.f. becomes 

𝑓𝑚 =
𝑒−𝜆𝜆𝑚−1

(𝑚 − 1)!
,𝑚 ≥ 1 

where 𝜆 > 0. The Poisson distribution is characterized by providing the probability 

of 𝑚 events that occur over some duration of time where events occur on average 𝜆 per 

time unit. Each of these events follows the exponential distribution in A.2.1. 

A.3.5 Generating function and probability generating function 

Let {𝑢𝑛} be a sequence of real numbers. If 𝑈(𝑧) = ∑ 𝑢𝑛𝑧
𝑛∞

𝑛=0  converges in some 

interval |𝑧| < 𝑧0, (0 ≤ 𝑧0 ≤ ∞), then 𝑈(𝑧) is called the generating function (g.f.) of the 

sequence {𝑢𝑛} (see Hunter (1983) for details). Here, 𝑧0 is a unique number called the 

radius of convergence such that 

- ∑ 𝑢𝑛𝑧
𝑛∞

𝑛=0  converges (absolutely) for |𝑧| < 𝑧0 

- ∑ 𝑢𝑛𝑧
𝑛∞

𝑛=0  diverges for |𝑧| > 𝑧0 

- ∑ 𝑢𝑛𝑧
𝑛∞

𝑛=0  converges uniformly for |𝑧| ≤ 𝜃, where 𝜃 < 𝑧0 

Similarly, let {𝑢𝑛,𝑚} be a double sequence of real numbers, then ∑ ∑ 𝑢𝑛,𝑚𝑧
𝑛∞

𝑚=0
∞
𝑛=0 𝑥𝑚 is 

known as the double generating function (d.g.f.) if |𝑧| < 𝑧0, (0 ≤ 𝑧0 ≤ ∞) and |𝑥| <
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𝑥0, (0 ≤ 𝑥0 ≤ ∞). Since a g.f. transforms a sequence into a power series (procedure also 

known as the 𝑧-transform) an inverse g.f. returns a power series back into a sequence. 

In introducing g.f. in discrete probability theory, let there be a discrete 

r.v. 𝑉. 𝑈(𝑧) becomes a probability generating function (p.g.f.) of 𝑉 if and only 

if 𝑢𝑛 matches the following characteristics of the p.m.f. of 𝑉: 

- 𝑢𝑛 = 𝑃(𝑉 = 𝑛), (𝑛 ≥ 0) 

- 0 ≤ 𝑢𝑛 ≤ 1, (𝑛 ≥ 0) 

- ∑ 𝑢𝑛
∞
𝑛=0 = 1 

When above three conditions are met, 𝑈(𝑧) becomes the p.g.f. of  𝑉, such that 

𝑈(𝑧) = 𝐸[𝑧𝑉], (|𝑧| < 1) 

In this regard, a p.g.f. is always a g.f. but a g.f. is not always a p.g.f. In addition, a 

p.g.f is a power series that has advantages over its p.m.f. counterpart when obtaining 

moments of a r.v.. For instance, the moments of a discrete r.v. are easy to derive from a 

p.g.f. as illustrated by the following property: 

𝑈(𝑟)(1) = lim
𝑧→1−

𝑑𝑟𝑈(𝑧)

𝑑𝑧𝑟
=
𝑑𝑟

𝑑𝑧𝑟
𝐸[𝑧𝑉]|𝑧=1, (𝑟 ≥ 1) 

where 𝑈(𝑟)(1) is the 𝑟-th derivative of the p.g.f. of 𝑉 evaluated at 𝑧 = 1. This can be used 

to find various parameters such as the mean, variance and moments of 𝑉. 

A.3.6 Taylor’s series expansion 

In simple cases, inversion of a g.f. can be done analytically, however, in complex 

cases, they need to be inverted numerically (readers may refer to Kim et al. (2011) for 

additional details on inversion of g.f.’s). Out of several ways to invert a g.f., the method 

of inversion used throughout this thesis is Taylor’s series expansion at 𝑧 = 0 (also known 
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as the Maclaurin series) which can be easily done with today’s mathematical software 

such as MAPLE or MATLAB. In the context of this thesis, a p.g.f. of 𝑉 can be expressed 

in a form of a Maclaurin series such that 

𝑈(𝑧) = 𝐸[𝑧𝑉] =  
𝑈(𝑛)(0)

𝑛!
𝑧𝑛, (𝑛 ≥ 0) 

where the probabilities {𝑢𝑛} can be extracted directly from the coefficients of each term 

in the Maclaurin series such that 

𝑢𝑛 =
𝑈(𝑛)(0)

𝑛!
, (𝑛 ≥ 0) 
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APPENDIX B 

In this appendix, all supplementary proofs, derivation, and theorem that are used 

in discussing renewal theory are provided. 

B.1 Supplementary proofs 

B.1.1 Proof of the relation between renewal function and renewal mass 

function 

In proving the relation between 𝑀𝑘 and 𝑚𝑖, let 𝑍𝑘, 𝑘 ≥ 1 be the r.v.’s which take 

the values 1 if a renewal occurs at time 𝑘 and 0 otherwise. The number of renewals 

counted over the time period (0,𝑘] is 𝑁𝑘 = ∑ 𝑍𝑖
𝑘
𝑖=1 . The renewal function is then written 

as 

𝑀𝑘 = 𝐸[𝑁𝑘] = 𝐸 [∑𝑍𝑖

𝑘

𝑖=1

] =∑𝐸[𝑍𝑖]

𝑘

𝑖=1

 

=∑[0 ∙ (1 − 𝑚𝑖) + 1 ∙ 𝑚𝑖]

𝑘

𝑖=1

 

Therefore it becomes 

𝑀𝑘 =∑𝑚𝑖

𝑘

𝑖=1

 

where 𝑘 ≥ 1. 

B.1.2 Proof of the relation between the probability of bulk renewals and p.g.f. 

of renewal periods 

As a first step of the proof, the g.f. of 𝑁𝑘 with respect to 𝑘 is found in terms of the 

p.g.f. of renewal periods. This is done as follows: 
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∑𝑃𝑛(𝑘)𝑣
𝑘

∞

𝑘=1

=∑[𝑃(𝑊𝑛 ≤ 𝑘) − 𝑃(𝑊𝑛+1 ≤ 𝑘)]𝑣
𝑘

∞

𝑘=1

 

=∑𝑃(𝑊𝑛 ≤ 𝑘)𝑣𝑘 −

∞

𝑘=1

∑𝑃(𝑊𝑛+1 ≤ 𝑘)𝑣
𝑘

∞

𝑘=1

 

= [𝑃(𝑊𝑛 ≤ 0)𝑣0 + 𝑃(𝑊𝑛 ≤ 1)𝑣
1+. . . ] − [𝑃(𝑊𝑛+1 ≤ 0)𝑣0 + 𝑃(𝑊𝑛+1 ≤ 1)𝑣

1+. . . ] 

= {𝑃(𝑊𝑛 = 0) + [𝑃(𝑊𝑛 = 0) + 𝑃(𝑊𝑛 = 1)]𝑣

+ [𝑃(𝑊𝑛 = 0) + 𝑃(𝑊𝑛 = 1) + 𝑃(𝑊𝑛 = 2)]𝑣
2+. . . }

− {𝑃(𝑊𝑛+1 = 0) − [𝑃(𝑊𝑛+1 = 0) + 𝑃(𝑊𝑛+1 = 1)]𝑣

− [𝑃(𝑊𝑛+1 = 0) + 𝑃(𝑊𝑛+1 = 1) + 𝑃(𝑊𝑛+1 = 2)]𝑣
2+. . . } 

= [𝑃(𝑊𝑛 = 0) + 𝑃(𝑊𝑛 = 0)𝑣+. . . ] + [𝑃(𝑊𝑛 = 1)𝑣 + 𝑃(𝑊𝑛 = 1)𝑣2+. . . ]

+ [𝑃(𝑊𝑛 = 2)𝑣
2 + 𝑃(𝑊𝑛 = 2)𝑣

3+. . . ]

− [𝑃(𝑊𝑛+1 = 0) + 𝑃(𝑊𝑛+1 = 0)𝑣+. . . ]

− [𝑃(𝑊𝑛+1 = 1)𝑣 + 𝑃(𝑊𝑛+1 = 1)𝑣2+. . . ]

− [𝑃(𝑊𝑛+1 = 2)𝑣2 + 𝑃(𝑊𝑛+1 = 2)𝑣3+. . . ] 

= 𝑃(𝑊𝑛 = 0)(1 + 𝑣 + 𝑣2+. . . ) + 𝑃(𝑊𝑛 = 1)(𝑣 + 𝑣
2 + 𝑣3+. . . )

+ 𝑃(𝑊𝑛 = 2)(𝑣
2 + 𝑣3 + 𝑣4+. . . ) − 𝑃(𝑊𝑛+1 = 0)(1 + 𝑣 + 𝑣2+. . . )

− 𝑃(𝑊𝑛+1 = 1)(𝑣 + 𝑣2 + 𝑣3+. . . ) − 𝑃(𝑊𝑛+1 = 2)(𝑣
2 + 𝑣3 + 𝑣4+. . . ) 

= [
𝑃(𝑊𝑛 = 0)

1 − 𝑣
+
𝑣𝑃(𝑊𝑛 = 1)

1 − 𝑣
+
𝑣2𝑃(𝑊𝑛 = 2)

1 − 𝑣
+. . . ]

− [
𝑃(𝑊𝑛+1 = 0)

1 − 𝑣
+
𝑣𝑃(𝑊𝑛+1 = 1)

1 − 𝑣
+
𝑣2𝑃(𝑊𝑛+1 = 2)

1 − 𝑣
+. . . ] 

=
1

1 − 𝑣
{[𝑃(𝑊𝑛 = 0) + 𝑣𝑃(𝑊𝑛 = 1) + 𝑣

2𝑃(𝑊𝑛 = 2)+. . . ]

− [𝑃(𝑊𝑛+1 = 0) + 𝑣𝑃(𝑊𝑛+1 = 1) + 𝑣2𝑃(𝑊𝑛+1 = 2)+. . . ]} 
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=
1

1 − 𝑣
[∑𝑃(𝑊𝑛 = 𝑘)𝑣

𝑘 +∑𝑃(𝑊𝑛+1 = 𝑘)𝑣
𝑘

∞

𝑘=0

∞

𝑘=0

] 

since 𝑃(𝑊𝑛 = 0) = 0 ∀𝑛 ≥ 0, and using ∑ 𝑃(𝑊𝑛 = 𝑘)𝑣𝑘∞
𝑘=0 = 𝑓𝑛(𝑣), the above 

simplifies to 

∑𝑃𝑛(𝑘)𝑣
𝑘

∞

𝑘=1

=
𝑓𝑛(𝑣)

1 − 𝑣
[1 − 𝑓(𝑣)], (|𝑣| < 1) 

This proof is also provided in Feller (1968). 

B.2 Supplementary derivation 

B.2.1 Derivation for d.g.f. in the discrete-time single-renewal processes 

Using the relation that is proved in Appendix B.1.2, the p.g.f. 

of ∑ 𝑃𝑛(𝑘)𝑣
𝑘∞

𝑘=1  with respect to 𝑛 is  

𝑃(𝑧, 𝑣) = ∑∑𝑃𝑛(𝑘)𝑣
𝑘𝑧𝑛

∞

𝑘=1

∞

𝑛=0

=
1

1 − 𝑣
∑[𝑓𝑛(𝑣) − 𝑓𝑛+1(𝑣)]𝑧𝑛
∞

𝑛=0

, (|𝑧| < 1) 

=
1

1 − 𝑣
[∑𝑓𝑛(𝑣)𝑧𝑛
∞

𝑛=0

−∑𝑓𝑛+1(𝑣)𝑧𝑛
∞

𝑛=0

] 

=
1

1 − 𝑣
{∑[𝑧𝑓(𝑣)]𝑛
∞

𝑛=0

− 𝑓(𝑣)∑[𝑧𝑓(𝑣)]𝑛
∞

𝑛=0

} 

=
1 − 𝑓(𝑣)

1 − 𝑣
∑{𝑧𝑓(𝑣)}𝑛
∞

𝑛=0

 

Since|𝑧| < 1, the d.g.f. is derived as 

𝑃(𝑧, 𝑣) = ∑∑𝑃𝑛(𝑘)𝑣
𝑘𝑧𝑛

∞

𝑘=1

∞

𝑛=0

=
1 − 𝑓(𝑣)

(1 − 𝑣)[1 − 𝑧𝑓(𝑣)]
, (|𝑧| < 1, |𝑣| < 1) 
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B.3 Supplementary theorem 

B.3.1 Asymptotic theory 

In simple terms, asymptotic theory is the study of the behaviour of a time-

dependent function as 𝑡 → ∞. In renewal theory, asymptotic theory can be applied to the 

renewal mass function and the moments of the number of renewals. When their time 

parameter assumes a very large value, the functions converge to what is known as the 

asymptotic results. In queueing theory, asymptotic theory can be applied to time-

dependent r.v.’s such that they become steady state r.v.’s as their common time parameter 

assumes a very large value. 
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APPENDIX C 

In this appendix, the basic concepts and all supplementary proof, derivation, and 

theorems that are used in discussing queueing theory are provided. 

C.1 Basics of queueing theory and Kendall’s notation 

Queueing theory analyzes the properties that surround a queueing model. In this 

thesis, a ‘queueing system’ and a ‘queueing model’ are synonymous terms that refer to 

the mathematical construct that composes of the server, the customer in the server (at any 

stage of service), and the customers in queue (if any). Queueing models can be described 

as mathematical models that describe the process of customers arriving for service, 

waiting for service (if service is not immediately available), and receiving of service, 

followed by leaving once service is complete. In the context of this thesis, a ‘system’ 

refers to the space that includes the queue of customers, and the server with a customer 

under service. A queue refers to only the space which includes the queue of customers. 

As well, a customer is a generic term that refers to any element (person, product, packet, 

etc) that participates in a queueing system. ‘Queueing model’ is a broader term that is 

described using Kendall’s notation. In Chaudhry and Templeton (1983), Kendall’s 

notation is defined as 

𝐴𝑛
𝑋𝑛(𝑡)/𝐵𝑛

𝑎,𝑏/𝑐/𝑀 

where 

𝐴𝑛(𝑡): Inter-arrival time distribution with arrival rate depending 

on 𝑡, 𝑛 (if 𝑡, 𝑛 in 𝐴𝑛(𝑡) are missing, it means arrival rate is constant). 
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𝑋𝑛:  Arrival group size distribution with group size probability depending 

on 𝑛 (if 𝑛 in 𝑋𝑛 is missing, it means the group size probability is independent 

of 𝑛). 

𝐵𝑛:     Service time distribution with service rate depending on 𝑛 (if 𝑛 in 𝐵𝑛 is missing, it 

means service rate is constant). 

𝑎:       Quorum for service group. 

𝑏:       Capacity for service group. 

𝑐:        Number of servers. 

𝑀:       Storage capacity (if last descriptor is missing, it is assumed to be infinite). 

In addition, although not indicated in the Kendall’s notation, the arrival rate (𝜆) of a 

queueing system indicates the rate at which customers arrive, whereas the service 

rate (𝜇) of the system indicates the rate at which customers are departing the system. The 

traffic intensity (𝜌) is a parameter that is uniquely defined for each queueing model. 

In 𝐺𝐼/𝐸𝑘/1 , the traffic intensity is defined as 𝜌 = 𝜆𝑘
𝜇⁄ . Given 0 < 𝜌 < 1, low traffic 

intensity is indicated when 𝜌 is closer to 0, whereas high traffic intensity is indicated 

when 𝜌 is closer to 1. In single-server queueing models, the magnitude of 𝜌 indicates the 

degree of server utilization. The characteristic equation of a queuing model is a unique 

equation that is specific to that model.  

C.2 Supplementary proof 

C.2.1 Proof that the characteristic equation of 𝑮𝑰/𝑬𝑿/𝟏 has 𝒓 roots inside the 

unit circle 

The proof that the characteristic equation of 𝐺𝐼/𝐸𝑋/1 

0 = 1 − 𝑆(𝑧−1)𝐾(𝑧) 



89 

 

 

has r roots inside the unit circle |z| = 1 is as follows: Rearrange and multiply 𝑧𝑟 on both 

of its sides such that 

𝑧𝑟 = 𝑧𝑟 (∑𝑠ℎ𝑧
−ℎ

𝑟

ℎ=1

)𝐾(𝑧) 

or 

0 = 𝑧𝑟 − (∑𝑠ℎ𝑧
𝑟−ℎ

𝑟

ℎ=1

)𝐾(𝑧) 

Now let 𝑓(𝑧) = 𝑧𝑟 and 𝑔(𝑧) = ∑ 𝑠ℎ𝑧
𝑟−ℎ𝑟

ℎ=1 𝐾(𝑧). Consider the absolute values 

of 𝑓(𝑧) and 𝑔(𝑧) on the circle |𝑧| = 1 − ∆, where ∆ is a positive and sufficiently small 

number. This gives 

|𝑓(𝑧)| = |𝑧𝑟| = (1 − ∆)𝑟 = 1 − ∆𝑟 + 𝑜(∆) 

and 

|𝑔(𝑧)| = |∑ 𝑠ℎ𝑧
𝑟−ℎ

𝑟

ℎ=1

𝐾(𝑧)| ≤ ∑𝑠ℎ|𝑧|
𝑟−ℎ

𝑟

ℎ=1

𝐾(|𝑧|) 

which leads to 

= 1 − ∆(𝑟 − �̅�) −
𝜇

𝜆
∆ + 𝑜(∆) 

or 

= 1 − ∆𝑟 −
𝜇

𝜆
(1 − 𝜌)∆ + 𝑜(∆) 

where 𝜌 =
𝜆�̅�

𝜇
. Since 𝜌 < 1 and ∆ is sufficiently small, we have |𝑓(𝑧)| > |𝑔(𝑧)| on |𝑧| =

1 − ∆. It is evident that 𝑓(𝑧) and 𝑔(𝑧) satisfy Rouché’s theorem (see Appendix C.4.1) 

thus the equation 0 = 1 − 𝑆(𝑧−1)𝐾(𝑧) has 𝑟 roots on the inside of unit circle |𝑧| = 1. 
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C.3 Supplementary derivation 

C.3.1 Derivation for alternate relation between pre-arrival and random 

solutions to 𝑮𝑰/𝑬𝑿/𝟏 

Instead of using the standard level crossing analysis, there exists another way to 

determine 𝑝𝑘 in terms of 𝑝𝑗
− using the g.f. method. This alternate way is explained in the 

paragraphs that follow. 

In 𝐺𝐼/𝐸𝑋/1, let the inter-arrival times be 𝑇𝑛 = 𝜎𝑛 − 𝜎𝑛−1, (𝑛 ≥ 1) with mean 

𝐸[𝑇], where 𝜎𝑛 for 𝑛 ≥ 1 are the time epochs just before each customer arrival. Let the 

p.d.f. of 𝑇𝑛 be 𝑎(𝑡), (𝑡 > 0), where 𝑎(𝑡) ≡ 𝑑𝐴(𝑡) 𝑑𝑡⁄ . Let there be a random time 

epoch, say 𝑅, between 𝜎𝑛 and 𝜎𝑛+1, which is illustrated in Figure 8 below. 

 

 

Figure 8: Visual illustration of the 𝒏-th pre-arrival epoch to the (𝒏 + 𝟏)-th 

pre-arrival epoch and the 𝒏-th pre-arrival epoch to the (𝒏 + 𝟏)-th random 

epochs. 

 

 

In renewal theory, the length-biased sampling phenomenon (see Chaudhry and 

Templeton, 1983) indicates that the p.d.f. of 𝑈, say 𝑎𝑅(𝑡), can be found in terms 

of 𝑎(𝑡) such that 
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𝑎𝑅(𝑡) =
𝑡

𝐸[𝑇]
𝑎(𝑡),   (𝑡 > 0) 

and 

𝐴𝑅(𝑡) =
1

𝐸[𝑇]
∫ [1 − 𝐴(𝑤)]𝑑𝑤,
𝑡

0

  (𝑤, 𝑡 > 0) 

where 𝐴𝑅(𝑡) and 𝐴(𝑤) are the c.d.f.’s of 𝑈 and 𝑇𝑛, respectively. Let 𝐷∗ be the number of 

completed service stages during the time interval 𝑈 and define 𝑘𝑗
∗ = 𝑃(𝐷∗ = 𝑗) so that the 

p.g.f. of {𝑘𝑗
∗} becomes 

𝐾∗(𝑧) =∑𝑘𝑗
∗𝑧𝑗

∞

𝑗=0

= ∫ 𝑒−𝜇(1−𝑧)𝑢𝑑𝐴𝑅(𝑢)
∞

0

 

= �̅�𝑅(𝜇(1 − 𝑧)),   (|𝑧| ≤ 1) 

Using the definition 𝑎𝑅(𝑡) =
1−𝐴(𝑡)

𝐸[𝑇]
 (see modified renewal process in Chaudhry and 

Templeton, 1983), the above leads to the following relation 

𝐾∗(𝑧) = 𝜌 [
1 − 𝐾(𝑧)

1 − 𝑧
] 

where 𝐾(𝑧) is from Subsection 4.2.1. The steady-state r.v. 𝑁 from Subsection 4.3.3 

represents the number of uncompleted service stages in the system at a random epoch. 

Similar to what is done in (15), the relation 

𝑁 = (𝑁− + 𝑋 − 𝐷∗)+ 
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can be established where (𝑎)+ = max(𝑎, 0). Since 𝑋 and 𝐷∗ are independent from 𝑁−, 

the g.f. of above relation becomes 

𝑃(𝑧) = 𝐸[𝑧𝑁] = 𝐸[𝑧(𝑁
−+𝑋−𝐷∗)+] 

          = 𝐸[𝑧𝑋]𝐸[𝑧𝑁
−−𝐷∗  | 𝑁− + 𝑋 − 𝐷∗ > 0]𝑃(𝑁− + 𝑋 − 𝐷∗ > 0)

+ 𝑃(𝑁− + 𝑋 − 𝐷∗ ≤ 0) 

Now considering the p.g.f. of 𝑁− − 𝐷∗, it leads to 

𝐸[𝑧𝑁
−−𝐷∗] = 𝐸[𝑧𝑁

−−𝐷∗   | 𝑁− + 𝑋 − 𝐷∗ > 0]𝑃(𝑁− + 𝑋 − 𝐷∗ > 0) 

                         +𝐸[𝑧𝑁
−−𝐷∗   | 𝑁− + 𝑋 − 𝐷∗ ≤ 0]𝑃(𝑁− + 𝑋 − 𝐷∗ ≤ 0) 

which can be substituted into the previous expression to get 

𝑃(𝑧) = 𝑃−(𝑧)𝐸[𝑧𝑋]𝐸[𝑧−𝐷
∗
]

−∑𝐸[𝑧−𝑚  | 𝑁− + 𝑋 − 𝐷∗ = −𝑖] 𝑃(𝑁− + 𝑋 − 𝐷∗ = −𝑖)

∞

𝑖=0

+∑𝑃(𝑁− + 𝑋 − 𝐷∗ = −𝑖)

∞

𝑖=0

 

By letting 𝑞𝑖
∗ =  𝑃(𝑁− + 𝑋 − 𝐷∗ = −𝑖) and using the relation between 𝐾∗(𝑧) and 𝐾(𝑧), it 

becomes 

𝑃(𝑧) = 𝑃−(𝑧)𝑆(𝑧)𝜌 [
1 − 𝐾(𝑧−1)

1 − 𝑧−1
] +∑𝑞𝑖

∗(1 − 𝑧−𝑖)

∞

𝑖=0
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From (16), 𝐾(𝑧−1) can be isolated and then substituted into the above expression, which 

leads to 

𝑃(𝑧) = 𝜌
𝑃−(𝑧)𝑆(𝑧)

(1 − 𝑧−1)
− 𝜌

𝑃−(𝑧)𝑆(𝑧)

(1 − 𝑧−1)
{
1

𝑆(𝑧)
(1 −

∑ 𝑞𝑚(1 − 𝑧
−𝑚)∞

𝑚=0

𝑃−(𝑧)
)}

+∑𝑞𝑖
∗(1 − 𝑧−𝑖)

∞

𝑖=0

 

          = 𝜌
𝑃−(𝑧)(𝑆(𝑧) − 1)

(1 − 𝑧−1)
+ {𝜌

∑ 𝑞𝑚(1 − 𝑧
−𝑚)∞

𝑚=0

(1 − 𝑧−1)
+∑𝑞𝑖

∗(1 − 𝑧−𝑖)

∞

𝑖=0

} 

Since 𝑃(𝑧) is a steady-state p.g.f., it must be a power series with nonnegative powers (see 

A.3.5). However, the right-hand side of the above expression must not have any terms 

with negative power. Consequently, the terms inside the bracket {… } must cancel out, 

leaving at the most a nonzero constant, say 𝐶. Thus the above expression simplifies to 

𝑃(𝑧) = 𝐶 + 𝜌
𝑃−(𝑧)(𝑆(𝑧) − 1)

(1 − 𝑧−1)
 

Since 𝑃(1−) = 1, it leads to final result 

𝑃(𝑧) = 1 + 𝜌 [
𝑃−(𝑧)(𝑆(𝑧) − 1)

1 − 𝑧−1
− 1] 

which is the alternate way to determine 𝑝𝑘 in terms of 𝑝𝑗
− using the g.f. method. As a 

remark, this expression matches with that of a simpler model 𝐺𝐼/𝐸𝑟/1 (see Chaudhry and 

Templeton, 1983) by letting 𝑠𝑟 = 1, which implies 𝑆(𝑧) = 𝑧𝑟. 
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C.4 Supplementary theorems 

C.4.1 Rouché’s theorem 

If 𝑓(𝑧) and 𝑔(𝑧) are functions of z, which are analytic inside and on a closed 

countour 𝐶, and if |𝑓(𝑧)| < |𝑔(𝑧)| on 𝐶, then 𝑔(𝑧) and 𝑔(𝑧) + 𝑓(𝑧) have the same 

number of roots inside 𝐶 (Titchmarsh, 1939). 

C.4.2 Liouville’s theorem 

If 𝑓 is entire and 𝑓(𝑧) is bounded for all values of z in the complex plane, then 𝑓 is 

a constant (Churchill, 1960). 
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