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Abstract

In this work, we present the mathematical framework of the Kronecker product
(KP) algebra and the optimal control theory. Using the advantage of such
mathematical properties we present the optimal control of polynomial systems. We
start by the algorithm of calculus of the optimal control law and we illustrate its
efficiency through the application to some nonlinear plants. Also, we develop a
new method called Lyapunov-function-based optimal control using KP presenting
the advantage of guaranteeing the stability of the closed loop system by solving a
linear matrix inequality (LMI) feasibility problem. We present the algorithm of
calculus of such stabilizing control law and we illustrate its efficiency through
nonlinear plants. The experimental part of this work was conducted on a two-
degree-of-freedom (2-DOF) helicopter-based model set-up, in which we run many
experiments for different desired trajectories to test the efficiency of the proposed
method.
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Résumé

Dans ce travail, nous présentons la base mathématique de l'algèbre du produit de
Kronecker et la théorie de la commande optimale. En profitant de l'avantage de ses
propriétés mathématiques, nous présentons la commande optimale des systèmes
polynomiaux en utilisant le produit Kronecker. Nous commençons par l'algorithme
de calcul de la loi de commande et nous illustrons son efficacité à travers son
application à des dynamiques non linéaires. De plus, nous développons une
nouvelle méthode, appelée commande optimale basée la fonction de Lyapunov en
utilisant le produit Kronecker, qui présente l'avantage de garantir la stabilité du
système en résolvant un problème de faisabilité d’inégalité matricielle linéaire.
Nous présentons l'algorithme de calcul de la loi de commande optimale stabilisante
et nous illustrons son efficacité à travers son application à deux dynamiques non
linéaires. La partie expérimentale de ce travail est conduite sur un système
simplifié d’hélicoptère a deux degrés de liberté. Nous avons expérimenté et
observé la réponse du système pour différentes trajectoires pour tester l'efficacité
de la méthode proposée.
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1 Introduction

Every dynamic system can be described by a set of outputs which are functions of
a set of inputs. These functions are called the dynamics of the system (having the
general form of  ,x f x u , where f is a nonlinear vector function). These

dynamics are in most cases complex, highly nonlinear and hard to solve. That's
why in the beginning of control engineering field, researchers approximate the
dynamics to a linear form and design linear controllers, among which some popular
techniques are still used until today, for example the Proportional-Integral-
Derivative (PID) one. The linear control strategy has some limitations since it is
not taking into account the best approximation to represent the real dynamics of the
system, it has a reduced domain of attraction and it does not guarantee the stability
of the closed loop system in general. To overcome those issues, mathematicians
and control engineers developed various nonlinear control strategies. As a special
case, they developed the optimal control for a large class of nonlinear systems
(which can be written in the form of    x f x x g x u  , where f and g are

nonlinear functions). The aim of this optimal control strategy is to find the control
law based on the minimization of a certain performance index. Since most of the
nonlinear dynamics cannot be written in the above form, researchers use the
advantage of the KP algebra and the vector power tensor [1-2] to approximate

nonlinear dynamics by polynomials (in the form of
1

n
i

i
i

x f x


 ) using the Taylor

series development. This method is called optimal control of polynomial systems
using KP [3]. As it will be shown, this method has limitations too since it does not
guarantee the stability of the closed loop system. In fact, the choice of the cost
function approximation does not satisfy the conditions of the Lyapunov stability
[4]. This leads to the main contribution of this work which is to present a new
method called optimal control of polynomial systems using KP-based Lyapunov
functions (LF). This method is based in the fact of choosing the cost function to be
minimised in a quadratic form and depending on an extra real scalar to satisfy the
conditions of Lyapunov stability and to guarantee the asymptotic stability of the
closed loop system.

To present the design process and illustrate the efficiency of this new method, a
general theoretical framework and practical application should be presented. This
thesis will be organised as follows: First, after introducing the thesis topic and its
main objectives. We will present in chapter 2 the state of the art of the main topics
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of this work, i.e., optimal control theory, nonlinear control, stability analysis of
polynomial systems, the KP algebra and its applications.  In chapter 3, first we will
present the KP algebra. We will recall its basic definitions, proprieties and the
proof of new results (theorems and lemmas). Then, we will introduce the vector
power series (VPS) motivation to present the best approximation of nonlinear
functions, and we will illustrate through many examples. In chapter 4, we will
present the optimal control theory framework. We will begin by the presentation of
the optimization problem without constraints then with equality constraints, using
the Lagrange multipliers method. The optimal control problem will be transformed
into solving the so-called Hamilton Jacobi equation [5]. Then, we will show how
the resolution of this equation leads to determine the gain matrix of a popular
controller called Linear Quadratic Regulator (LQR). In chapter 5, we will study the
optimal control problem of a special class of nonlinear systems which can be
written in a polynomial form in terms of KP tensor. We will state the problem.
Then, we will present the equation of approximation and the algorithms to
determine the gain matrices of the optimal control law. At the end of this chapter,
we will illustrate the efficiency of this method through its application to different
nonlinear plants (scalar examples, F8 fighter and Maglev set-up models). We will
show the simulation results and performance improvements obtained by the KP
controllers versus the linear controllers. Since the KP-based controllers do not
guarantee the stability of the closed loop system, we have the idea to design a
stabilizing method by choosing the cost function to be minimized in a quadratic
form and depending on a real scalar to satisfy the conditions of a Lyapunov
candidate function. This topic will be detailed in chapter 6. In fact, we will
introduce the statement of the problem then the equation of approximation in
which the initial problem is transformed into a set of decoupled linear equations.
Then, we will present the algorithm of calculus of the gain matrices of the state
feedback stabilizing control. Next, we will discuss the stability of the closed loop
system. We will show how the stability problem will be transformed into solving
an LMI problem. Finally, to illustrate the efficiency of this new method, we present
the simulation results of nonlinear plants: a scalar example and the F8 fighter
model. As the real behaviour may differ from the predicted one through the
simulations, we will present in chapter 7 an application to a real plant: a 2-DOF
helicopter-model-based set-up from Quanser Inc. After the introduction, we will
begin this chapter by presenting a description of the set up, then we present its real
dynamics, the linearized and its high order polynomial approximations. Next based
on those approximations, we will present the control design which will be used to
run simulations and experiments for different desired trajectories. Finally, in
chapter 8, we will conclude this thesis and present its main contributions and
results.

Statement of contribution: Through this work, the main contributions are: the
development of a new method to design a stabilizing controller for the polynomial
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dynamic systems, called Kronecker-product-Lyapunov-function-based technique,
the statement with proofs of some theorems and lemmas related to KP algebra
useful for the design process, and the implementation of the proposed technique to
an actual electro-mechanical set-up. To our best knowledge the KP-based
technique has been rarely tested for real-time control process.
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2 State of the art

2.1 Introduction

The main framework of this thesis is related to three items. First, we deal with the
optimal control theory of nonlinear systems. In particular we treat the case of
polynomial systems since any nonlinear dynamics can be written in multivariable
power series form within a certain degree of approximation error. Then, we carry
out the advantage of the KP algebra to write the dynamics in a compact form and
make some appropriate mathematical manipulations to design a nonlinear
controller. As any research topic, we presented in this chapter the state of the art
related to those topics. In section 2.2, we will present an overview of the optimal
control history. Then, in section 2.3, we will introduce the framework of the
optimal control theory. In section 2.4, we will present the state of the art for the
nonlinear control and stability analysis of polynomial systems. In section 2.5, we
will present the Kronecker product algebra and its applications. Finally, in section
2.6, we will conclude this chapter.

2.2 Optimal control history

Sargent (2000) stated in one of the most exhaustive research papers on optimal
control that: "Optimal control theory is an outcome of the calculus of variations,
with a history stretching back over three hundred and sixty years, but interest in it
really mushroomed only with the advent of computer, launched by the spectacular
successes of optimal trajectory prediction in aerospace applications in the early
1960s" [17].

According to Sargent (2000) in [17], the optimal control birth was in 1638, when
Galileo posted the two shape problems: the catenary and the brachistochrone. The
catenary system is a heavy chain suspended between two points, and the
brachistochrone system is a wire such that a bead sliding along it under gravity.
But despite of his efforts and conjectures, the solutions of those two problems were
incorrect. In 1685, Newton presented a solution to the nose shape of a projectile
providing minimum drag problem and published the results in 1694. In 1696, five
mathematicians (Newton, Bernoulli, Leibnitz, De l'Hopital and Tschirnhaus)
solved the Brachistochrone problem and Bernoulli published the solution in 1697.
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This publication has risen the interest in the mathematics community to solve this
type of problems. This interest has yielded a number of ideas and results for such
problems. In 1744, Euler, a student of Bernoulli collected those ideas in a book.
Based on the observation that "nothing at all takes place in the universe in which
some rules of maximum or minimum does not appear", Euler formulated in 1744,
the problem in general terms as one of finding the curve  x t over the interval

 ,a b with given values  x a ,  x b , which minimizes     , ,
b

a

J L t x t x t dt   for

some given function     , ,L t x t x t . In 1755 and using his "undetermined

multipliers", Lagrange described the first analytical approach based on
perturbations or "variations" of the optimal curve. This led to the "Euler-Lagrange
equation" which represents the first order necessary condition. In 1786, Legendre
studied the second variation and determined the second order necessary condition
of optimality for the scalar case. Clebsch extended later this condition to the vector
case which leads to the Legendre-Clebsch condition requiring the same matrix to
be nonnegative definite along the optimal trajectory. Later, Hamilton introduced
the "Hamiltonian function", transformed the problem to a variational principle, and
he expressed the latter through a pair of partial differential equations. And, in 1838,
Jacobi showed that it could be written in a more compact form known as Hamilton-
Jacobi equation (HJE). Then, Weirestrass introduced the "excess function", in

which he considered the special case where     , ,L t x t x t is positive

homogenous. Later, Caratheodory showed that his excess function is positive if and
only if the second derivative of the Hamiltonian function is positive and by this he
confirmed the sufficiency of the Hamilton-Jacobi solution even under strong
variation. Based on Caratheodory work to establish the existence of optimal
trajectories, Tonelli treated the problem of existence and he showed that this

existence is guaranteed if the function     , ,L t x t x t is convex. Then, by the

restriction of the class of admissible functions  x  satisfying the set of equations

    , , 0g t x t x t  known as general set of differential algebraic equations and the

sufficient condition were imposed to ensure that there exists functions

  ,x f t x t satisfying     , , 0g t x t x t  . The resulting problem was named

problem of Lagrange, in which a solution presented by the introduction of
Lagrange multipliers, and by considering constraints of the form

    , ,x f t x t u t , where the parameters  u t or "controls" can be chosen at

each instant  ,t a b . This yields the "optimal control problem" as follows: Find

 u  on  ,a b to minimize     , ,
b

a

J L t x t x t dt   subject to     , ,x f t x t u t ,
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 ,t a b ,  x a and  x b are given. In 1950, and based on the early work of

Hamilton and Jacobi in which they established the HJE, Bellman et al. developed
the Hamilton-Jacobi-Bellman (HJB) equation in the whole state space. The latter
represents a necessary and sufficient condition for an optimum solution [18]. Later
in 1956, Pontryagin presented through his "maximum principle" a necessary
condition of optimality [19].

From this point and based on the two works of Bellman and Pontryagin introduced
above, many researchers and mathematicians have developed various techniques
and methods to solve and to study the stability of optimal control problems for both
the general and specific classes of nonlinear systems.

2.3 Optimal control theory

The optimal control deals with the problem of finding a control law for a given
system such that a certain optimality criterion is achieved. A control problem
includes a cost functional that is a function of state and control variables. An
optimal control is a set of differential equations describing the paths of the control
variables that minimize the cost functional. The optimal control can be derived
using Pontryagin's maximum principle or by solving the HJB equation [6]. Based
on those two principles, researchers have developed many control methods and
strategies of optimal control theory.

In 1966, Tchamran presented in [7] an algebraic method to solve the optimal
control problem for a specific class of nonlinear systems. Through a set of calculus
of variations he showed how the optimal control problem leads to solving
Bellman's functional equations. Then, through two illustrative examples, he
showed how to solve this equation manually and give "the exact" solution of the
problem. Despite his effort, this method presents a limitation since it does not
guarantee the computation of the "exact" solution as well as the stability of the
closed loop system. Later in 1968, Kyong and Gyftopouls proposed in [8] another
direct algebraic method to solve the optimal control problem for another specific
class of nonlinear systems. They transform the nonlinear equation of the optimal
control problem into a set of algebraic equations through the benefit of the
expansions of the Kernels of the system. Despite its advantage to solve directly the
set of equations, this method does not guarantee always a solution, also the stability
of the closed loop system is not studied. In a more recent work published in 1993,
Goh presented a new approach to solve the nonlinear optimal control problem
using a numerical approximation method based on the neural network algebra [5].
He transformed the problem into finding the optimal set of weights used to
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approximate the control law by using a nonlinear regression procedure. He also
showed that the asymptotical stability of the closed loop system is guaranteed
within a given domain of attraction by the appropriate choice of synaptic weight
parameters and a given weighting matrix. Finally, he illustrated his proposed
design through two nonlinear examples: the flight control system of an F8 fighter
model and a two-state system example. Two years later, in 1995, Dakev et al.
proposed in [9] a general approach to solve optimal control problems using a
constrained optimization technique. This technique is based on the approximation
of the input control using a piece-wise approximation vector function. They
illustrated their proposed techniques through four examples: an academic example
with state constraints, two-link articulated manipulator optimal trajectory problem
and optimal following path problems and lifting re-entry space vehicle. Inspite of
the obvious numerical solution proposed to solve the optimal control problem, the
asymptotic stability of the system is not discussed on this work. Later, in 1996,
Rehbock et al. presented in [10] the design of suboptimal controller for a specific
class of nonlinear systems in the form of    x A x x B x u  , where  A x and

 B x are state dependent. They also showed that the closed loop system is

asymptotically stable under specific conditions. They illustrate their design through
two examples: an academic example with 2-DOF model and the F8 fighter flight
control system. In the second part of this work, the authors studied the optimal
control problem of the same class of nonlinear system, with the input control
subject to bounded noise. They showed that despite of the noise signal, the system
response is still bounded. To illustrate this result they presented the responses of
the same two studied systems, but with a bounded noise signal in the input. One
year later, in 1997, Langson and Alleyne presented in [11] an extended work for
the optimal control problem for a more general class of nonlinear systems in the
form of    x f x g x u  . They showed through appropriate transformations and

conditions on the weighting matrices of the functional cost. They illustrated their
proposed design using a 3-DOF example in which they showed the robustness of
the closed loop system via proper simulations. Then, they showed through an
experimental setup the implementation of their method despite of the numerical
issues due to the extensive calculus of the gain feedback matrix at each point along
the solution trajectory.  In 1999, Primbs et al. presented in [12] two approaches to
solve the optimal control problem. In the first one, called Control Lyapunov
Function (CLF), they showed that starting from the JBE and using Sontag's
formula lead to the design of an optimal controller. They showed through an
illustrative example the poor performance of such design and the fact it does not
guarantee the stability of the system. The second approach, called Receding
Horizon Control (RHC), is based on the decomposition of the time interval into
finite intervals  ,t t T , and the optimal control problem is solved for each of

those time intervals. This resolution is required online (i.e., in real time) which may
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cause computational issues. They showed also the lack of efficiency of this method
through the same illustrative example since it shows poor performance and does
not guarantee the stability of the system. More recently in 2005, Ekman treated in
[13] a suboptimal control approach for bilinear systems. He presented a control law
based on an approximate solution of the HJB equation. This approximation is
based on the development of the partial derivative of Lyapunov equation with
respect to the state vector x in terms of power series of x . He showed also that the
stability of the closed loop system is not guaranteed and depends on the order of
truncation of the Taylor series expansion. As an illustrative example to show the
performance of the developed controller, the author presented the activated sludge
process and he run the simulation for two controllers: the proposed one (Taylor
series approximation) and the classic LQR. The simulation results showed a better
performance for the Taylor-series-based controller in terms of settling time and
overshoot. In 2008, Rafikov et al. presented in [14] a linear optimal control law for
a class of nonlinear systems in the form of    x A t x G x x Bu   . They showed

that this controller guarantee the local asymptotical stability or the global
asymptotical stability for specific conditions. They illustrate their proposed method
through two examples: the Duffing oscillator for which they presented through
simulations the behaviour of the closed loop system and the automotive active
suspension system for which they showed the performance improvement in terms
of sprung and unsparing mass displacement. In 2009, Basin and Alvarez developed
in [15] a sliding mode controller for a class of nonlinear systems in the form of

     ,x f x t B t u t  , where the nonlinear function  ,f x t can be written in a

time-variant-polynomial form in the n variable state vector x . The developed
control law is obtained through the minimization of the quadratic Bolza-Meyer
function. They also showed that the conventional polynomial quadratic regulator
fails to provide a feasible solution, whereas the sliding mode one give an optimal
solution. They illustrate the advantage of their design through the simulation of a
nonlinear plant and observe the behaviour of both controllers (sliding mode and
polynomial quadratic regulator). The sliding mode design shows an advantage in
terms of performance improvement. In 2010, Jajami et al. presented in [16] a new
method to solve the optimal control problem for a class of nonlinear systems in the
form of  x Ax Bu f x   . First, they transformed the optimal control problem

into a nonlinear two-point-boundary-value problem (TPBVP) via Pontryagin's
maximum principle. This problem is then transformed into a sequence of linear
time-invariant (LTI) TPBVP (LTITPBVP) by using the homotopy method. The
resolution of the LTITPBVP recursively leads to the optimal control law. Inspite of
the simplicity of the algorithm and the low computation load of the proposed
method, this technique has limitations in practice since it does not guarantee the
stability of the system.
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2.4 Nonlinear control and stability analysis of polynomial
systems

The study of stability is a significant phase in the analysis and the synthesis of
dynamic systems. This explains the abundance of works and publications devoted
to this question since 1892, date on which Lyapunov made appear the first results
of the theory of motion stability [24]. The polynomial technique of studying the
stability of nonlinear systems is one of the most important developed approaches. It
is based on the modeling of the considered nonlinear analytical system by a
polynomial system. Notice that the class of polynomial systems is large enough to
include the description of nonlinear systems and it can be simplified using the
Kproduct tensor and power of vectors and matrices [25].

In 1996, Braiek presented in [20] a sufficient condition to verify the global
asymptotical stability of nonlinear polynomial systems by checking the
positiveness, definiteness and symmetry of a given matrix depending on
transformation matrices, relating the redundant to the non-redundant power
vectors, and the coefficient matrices, in which the dynamics of the system is
determined as a polynomial form in terms of KP decomposition, then the system is
globally asymptotically stable. Despite the usefulness of the proposed method was
useful to prove the global stability of non-linear polynomial systems and the
synthesis of nonlinear controllers, this technique shows only sufficient conditions.
More recently, based on this framework and using the sufficient condition to check
the global asymptotic stability of nonlinear polynomial systems, Ayadi and Braiek
proposed in 2004 in [21] a stabilizing control law. The existence of a solution
comes from a result presented in [20] transforming the sufficient condition to an
LMI feasibility problem. The resolution of this LMI leads to the calculus of the
gain matrices. The authors illustrated their method with an example showing the
performance of such design in terms of stability. Then, in 2006, Bouzaouache and
Braiek treated in [22] the global exponential stability of a class of singularly
perturbed nonlinear systems composed of two subsystems (slow and fast
components). First, they wrote the nonlinear terms in a polynomial form using the
KP. Using the advantage of the KP algebra to write one "unified"  state which is
composed from slow and fast subsystem states. They made coordinate
transformations to re-write the system dynamics in terms of one global vector.
Then, they showed the GAS property based on an LMI problem statement. The
authors studied in 2007, in [23], the stability of more general nonlinear systems.
First, they assumed that any nonlinear system can be written in a polynomial form
in terms of KP and VPS state vectors. Then, based on this assumption and using
some KP properties, they transform the stability in the sense of Lyapunov problem
to an LMI feasibility problem. They showed that any polynomial system in the
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form of
1

r
i

i
i

x F x


 is stable if it exists a feasible solution to the LMI problem

0TP P  and   0T TPM M P   , where  and M are two appropriate

matrices calculated from the dynamics of the system. In 2007, Bouzaouache et al.
studied in [24] the stability of a class of hybrid nonlinear systems in which the
dynamics is written in terms of two-state vectors: continuous and discrete ones.
First, they proposed to write the hybrid system dynamics in the form of KP-based
finite vector power series in terms of the continuous state vector, then thanks to the
KP algebra they transformed the problem of stability in the sense of Lyapunov to
an LMI feasibility problem. Two years later, in 2009, Mtar studied in [25] the
global stability analysis in the sense of Lyapunov of the polynomial systems which
can be written in terms of KP state vector power series with an odd order of
truncation. First, they made some the KP calculations to transform the stability in
the sense of Lyapunov problem to a bilinear matrix inequality (BMI) feasibility
problem. Then, using the separation Lemma, the generalized SCHUR's
complement and some algebraic manipulations they transform the BMI problem
into an LMI feasibility one. The latter presents an advantage since it has additional
degrees of freedom in terms of decision variables. In the same year, Belhouane et
al. studied in [26] the stability of a specific class of polynomial systems written in

the form
1

r
i

i
i

x F x Gu


  , where G is a constant matrix and r is an odd order of

truncation. This study leads to the design of a nonlinear control law that guarantee
the global asymptotical stability of the system if the correspondent LMI holds.
First, they write the nonlinear control law in a polynomial form in terms of the

state vector, i.e.
1

r
i

i
i

u K x


 , which allows through proper KP algebra

manipulations the transformation of the stability in the sense of Lyapunov problem
to a BMI problem. Then, by using the separation Lemma and the SCHUR's
complement, they transform the BMI to an LMI feasibility problem. The resolution
of the latter leads to the calculus of the gain matrices and hence the stabilizing
polynomial control law. Finally, they illustrate the efficiency of their proposed
design through an illustrative example. In 2009, Jemai et al. proposed in [27] a new
method to determine the feedback nonlinear control law for the infinite horizon of
the class of polynomial systems written in the form

1

i
i

i

x F x Gu


  , with G a

constant matrix. This method is based on the coordinate transformation of the state
and control vectors to re-write the original system in a linear form. Then, by
choosing the poles of the latter, they determine the polynomial control law of the
original system. Despite the advantage of easy implementation of the proposed
method, it is missing the theoretical framework that shows the existence of the
transformation and there is no stability study of the proposed control law. The
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same method of design of the same class of polynomial system was presented in
2010 by Derbali et al. in [28]. This design method was called fault tolerant control
design. To illustrate the effectiveness of their proposed design, they applied this
method to a series DC motor. The simulations showed a good performance of the
controller and the stability of the system.

2.5 KP algebra and its applications

The Kronecker product was named after German mathematician Leopold
Kronecker (1823-1891). It is very important in the areas of linear algebra and
signal processing and it has wide applications in systems theory, matrix calculus,
matrix equations, system identification, and other special fields [29].

In 1978, Brewer presented in [1] an excellent review and new algebraic proprieties
of the Kproduct tensor. First, he reviewed the basic definitions of the KP, the unit
vectors, the elementary matrix, the permutation matrix and the vector operator,
denoted by  vec  , as well as some algebraic proprieties of the permutation

matrices and basic algebraic proprieties in terms of associability, commutability
and transpose of the KP and the Kronecker sum. Then, he presented the basic
algebraic proprieties of the  vec  operator also in terms of associability and

commutability and transpose. In the second part of the paper, he presented the
basic differentiability proprieties of the KP and its relation to the permutation
matrices and  vec  operator. These properties will be very useful on the

differentiation of the Lyapunov candidate function for the stability study of the
polynomial systems. In 2000 Van-Loan treated in [30] some applications of the KP
to solve some mathematical problems. First, he presented some basic proprieties
that were used to solve the Sylvester equation problem and the Lyapunov problem
which is a particular case of the latter. Then, he showed that there is a solution of
the least squares problem by making the appropriate decomposition and using the
advantage of KP to apply the necessary algebraic transformations. Another
application of the KP algebra is to solve the tensor product issues in
approximations and interpolations. Also, he showed that using some KP proprieties
leads to the design of fast transformation algorithms. In 2004, Laub treated in a
chapter of his book [31], the KP algebra and some of its applications in matrix
calculus. First, he presented some definitions, then he presented many useful
proprieties, and as an illustrative application in matrix calculus, he presented how
to use the KP properties to solve the Sylvester and Lyapunov equations which are
widely used to solve control theory problems. In 2007, Liv and Trenkler presented
in [32] a general theoretical overview of several matrix products such as
Hadamard, Kronecker, Khatri-Rao, Tracy-Singh, the Khatri-Rao sum, the Tracy-
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Singh sum and the vector cross, some of their proprieties and some relations
between two or more matrix products as well as some of their applications. First,
they presented the definition of the above cited matrix products and sums. Then,
they presented the relations between the different products; in particular, between
the Hadamard and Kronecker products, the Kathri-Rao and Tracy-Singh products,
the Tracy-Singh and Kronecker products and the Kronecker and vector cross
products. They presented some equality properties involving three or more
matrices and one or more types of product. Then, they presented some inequality
proprieties of the Hadamard product, KP, Khatri-Rao product, Tracy-Singh
product, vector cross product and Khatri-Rao sum involving one or more matrices.
Finally, they presented the application of the Khatri-Rao product to study variances
in statistics and econometrics, the multi-way models and algorithms in multivariate
statistics, psychometrics, engineering, food, and chemical sciences, and to design
more reliable transmission antenna in signal processing. Then, they showed the use
of Kronecker and Hadamard products to solve linear matrix equations and
particularly the generalized Lyapunov equation which is very useful in control
theory. Kaam and Nagy proposed in [33] a method called singular value
decomposition (SVD) as a less expensive calculation method in image restoration.
They use some KP proprieties to transform the main problem which is expensive in
matrix calculus to another problem less laborious. They illustrate the advantage of
their proposed method via an example of image restoration of satellite images.

2.6 Conclusion

The main objective of this chapter was to present the state of the art for the three
main topics treated in this thesis, the optimal control theory, the nonlinear control
of polynomial systems and the KP algebra. In section 2.1, we introduced this
chapter. Then, in section 2.2, we presented the optimal control history and its roots.
In section 2.3, we presented the optimal control framework state of the art. In
section 2.4, we presented a literature review of the nonlinear control and stability
analysis of polynomial systems. The KP algebra history and its applications was
presented in section 2.5. Finally in section 2.6, we conclude this chapter.

The present chapter provides a historical background of the state of the art of the
optimal control theory and the application of the KP algebra to nonlinear control
techniques. Nonetheless, the application of this tensor to optimal control was very
limited and rarely implemented with actual devices. Also the study of the stability
of the closed loop optimal control system within such methodology was missing. In
fact the main contribution of the modified KP-based framework that will be
discussed in this thesis will be the possible investigation of stability. Note the latter
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won’t be discussed in details in this thesis, but the presented framework will make
it possible. More details about this subject are presented in [57].
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3 Kronecker product algebra

3.1 Introduction

When we multiply two matrices together, we generally use the conventional
multiplication method. This type of matrix multiplication is commonly used in
algebra and represents the composition of two linear transformations that are
represented by the two matrices [34]. There is a size restriction when performing
this type of matrix multiplication. The number of columns of the first matrix must
be the same as the number of rows in the second matrix from the left. Also, this
multiplication is not commutative in general. While this common type of matrix
multiplication remains very useful, it is not unique.

The Hadamard product, denoted by the symbol  , is another type of matrix
multiplication [34]. In this case, the two matrices are multiplied in the same way as
with the conventional matrix addition. For this multiplication, the two matrices are
required to be of the same size. The resulting matrix product is formed by
multiplying the corresponding entries of the two matrices together. One useful fact
about this type of matrix multiplication is that it is commutative. This product is
useful in several areas of study, such us the association schemes in combinatorial
theory and weak minimum principle in partial differential equations.

The KP, denoted by the symbol  , also known as the direct product or the tensor
product has an interesting advantage over the previously discussed matrix products.
The dimensions of the two matrices being multiplied together do not need to have
any relation to each other [34]. Many important proprieties of this product will be
presented in this chapter and used in the next chapters. This kind of product is used
in several areas of study such us signal and image processing, semi definite
programming and quantum computing [34].

This chapter deals with the KP framework, we start by presenting its definition in
section 3.2. In section 3.3, we list some proprieties of the KP as depicted from the
literature [1-35]. In addition, some new proprieties will be proposed with their
proofs [35]. Finally, section 3.4 is devoted to the motivation of the work that we
are doing which is essentially based on the function approximation, in order to
assess the reader with the point of view of this work.
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3.2 Definitions

In this section, we introduce the KP with some further related notations.

Definition 3.1: Given two matrices A and B of dimensions  p q and  m n
respectively, the Kronecker Product of A and B denoted by A B is a

 pm qn -matrix defined by [1]:

11 12 1

21

1 2

q

p p pq

a B a B a B

a B
A B

a B a B a B

 
 
  
 
 
  


 

  


(3.1)

where ika is the i k element of A .

Definition 3.2: The elementary matrix  p q
ikE  of dimensions  p q , which is ''1''

in the thik -element, and is zero elsewhere that is [1]:

     p q p q TT
ik i k i kE e e e e   (3.2)

where  p
ie is the p -dimensional column vector which is ''1'' in the k element and

zero elsewhere and is called the unit vector.

Definition 3.3: The permutation matrix is a square  pq pq -matrix which has

precisely a single ''1'' in each row and each column, defined by [1]:

   

1 1

p q
p q q p

p q ik ki
i k

U E E 


 

  (3.3)

Definition 3.4: The  .vec operator corresponds to the vector valued is the

operator which converts a  p q -matrix .1 .2 .qA A A A    into a vector of

dimensions  1pq , defined by [1]:
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.1

.2

.q

A

A
vec A

A

 
 
   
 
  


(3.4)

where kA is the thk column of the matrix A .

Definition 3.5: Given a vector V of dimension .p n m and a matrix M of

dimensions  n m verifying  V vec M , the  .mat operator is the function

transforming the vector V into the matrix M and denoted by:

 n mM mat V (3.5)

This notation is proposed to simplify the representation of some block matrices that
will be deduced from the new optimal control design discussed in chapter 6.

Definition 3.6: Rotella and Tunguy [3] introduce the so called the non-redundant

j -power jx of  a vector 1 ...
T

qx x x    of 1q defined by

1 1x x x  (3.6)

2j  ,
1 1 2 2 2 2 2 2 3 3

1 1 2 1 1 2 1 2 3 1 2 1 1 2... ... ...
Tj j j j j j j j j j

q q q qx x x x x x x x x x x x x x x x x x x          (3.7)

The relation between the non-redundant j -power of the vector jx and j -power

of the vector jx is defined by

j j
jx T x  (3.8)

where jT is a transformation matrix. Hence, we can write

j j
jx T x (3.9)

where jT  is the Moore-Penrose Pseudo-Inverse of jT defined by [3]
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  1T T
j j j jT T T T

  (3.10)

Definition 3.7: Rotella and Tunguy (1988) define the binomial coefficients p as

1
, ! ,

j
jn

j j

n j
j T

n
    

      
 

  [3].

3.3 Properties

In this section, we present the main properties that will be used in the next
chapters. Some of these proprieties are presented in [1-2] (refer to Theorems 3.1 to
3.16), while the proofs for Theorems 3.17 and 3.18 and Lemmas 3.1, 3.2 and 3.3
will be shown. Consider the following matrices of appropriate dimensions: A

 p q , B  s t , C  r l , D  q s , F  q u , G  t u , H  p q , M

 m m , N  n n , R  s t . .I is the identity matrix, . .U  is the permutation

matrix and x and y are given vectors of dimensions p and q , respectively. We
recall the following theorems mainly discussed in [1-3]:

Theorem 3.1: We have [1]

   A B C A B C     (3.11)

Theorem 3.2: We have [1]

 T T TA B A B   (3.12)

Theorem 3.3: We have [1]

      A B D G AD BG    (3.13)

Theorem 3.4: We have [1]

 s p q tB A U A B U    (3.14)
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Theorem 3.5: We have [1]

   T
p qvec A U vec A (3.15)

Theorem 3.6: We have [1]

     vec A H vec A vec H   (3.16)

Theorem 3.7: We have [1]

             T T
s p qvec AD I A vec D D I vec A D A vec I      (3.17)

Theorem 3.8: We have [1]

     Tvec ADB B A vec D  (3.18)

Theorem 3.9: We have [1]

T T

T

A A

B B

      
(3.19)

Theorem 3.10: We have [1]

     t s

AF A F
I F I A

B B B

  
   

  
(3.20)

Theorem 3.11: We have [1]

     s p r t l q

A C A C
C I U A I U

B B B 

             
(3.21)

Theorem 3.12: We have [1]

       T T T Tx Ay vec A x y vec A y x         (3.22)
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Theorem 3.13: We have [1]

T

q

y
I

y





(3.23)

Theorem 3.14: We have [1]

1T
p q p q q pU U U
    (3.24)

Theorem 3.15: We have [1]

1 1
T
p p pU U I   (3.25)

Theorem 3.16: We have [1]

st n s tn t ns t ns s tnU U U U U        (3.26)

Theorem 3.17: We have [1]

i j i jx x x   (3.27)

Theorem 3.18: For any integer 1n  and for any nonzero integer p , we have

p p

p

n n n n
U U

 
 (3.28)

Proof of Theorem 3.18: See Appendix A – section A-1

Theorem 3.19: For all integers 1n  ,  1p pn n n
I U 
 is regular for p even and

singular for p odd. Note that for 1n  ,  1p pn n n
I U 
 is a nonzero integer.

Proof of Theorem 3.19: Theorem 3.19 is stated in [3] without proof, but this
propriety can be checked numerically. In Appendix A – section A-2, we prove this
result.

Lemma 3.1: j  \ 0 and nx  ,

 1( )
j

jn
j nT

x
D I x

x


  


(3.29)
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where ( )n
jD

jn is given by

1

1
( )

0

i j i

j
n

j n n n
i

D U I  






  (3.30)

Note that

( )
1 p

p

n
D I (3.31)

Proof of Lemma 3.1: See Appendix A – section A-3

Lemma 3.2: For all kx , ly and nk lA   , we have

        T T T
n n n klI x Ay I vec A vec I I x y     (3.32)

Proof of Lemma 3.2: See Appendix A – section A-4

Lemma 3.3: Consider a matrix p nqA   . Let  1 nA A be a partition of

A with p q
iA    . We have

        T T
n n pq pq nI vec A vec I I mat vec A   (3.33)

Proof of Lemma 3.3: See Appendix A – section A-5.

In this section, we have introduced the main notations and proprieties related to the
Kronecker matrix product and vector power tensor. In particular, new results have
been proposed with their proofs attached in Appendix A..

3.4 Vector power series motivation and multivariable
Taylor expansion

Since certain functions are hard to implement in practice, the art of approximation
becomes a mathematical solution to overcome this problem. One of the techniques
is the polynomial approximation based on Taylor series development. These series
allow the representation of a function as an infinite sum of terms that are calculated
from the values of the function and its derivatives about a given point [36].
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In the following, we introduce the Taylor series of any multivariable function.
Then, we investigate the representation of particular mono-variable and two-
variable functions. Their performances motivate the use of these series in terms of
approximation.

Let 1( )T
nx x x  be a vector of dimension n , and  f x a function of the

vector x . The Taylor series development of  f x about the point

1( )T
na a a  is defined by [36]

     
1 20 0 0 1 !

j
j

j

n

k
kn

j j

k
k k k j j j

x a f
f x a

k x   

 



  (3.34)

The Taylor series representation is often used to approximate a function by a finite
number of terms so called Taylor polynomial. In vector calculus, consider f a

function from n to m , i.e., given by m real-valued component functions

; 1, ,jf j m  in  1, ,
T

nx x x  . A particular case of the Taylor development of

the multi-variable vector function  f x , truncated at order 1 about a , represents

simply its linearization about a and is given by

      f x f a Df a x a   (3.35)

where  Df a the Jacobian matrix of f , evaluated at x a , obtained by the

computation of the potential derivatives of all components of f at a , as follows

     
1 n

f f
Df a a a

x x

  
    

 (3.36)

   

   

1 1

1

1

n

m m

n

f f
a a

x x

f f
a a

x x

  
   
 
 
  
   



 



(3.37)

A particular case of any multivariable function  f x  is the Taylor series

expansion of the second order that can be written as
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            21

2
T

f x f a Df a x a x a D f a x a       (3.38)

where  Df a is the gradient of the real valued function f evaluated at x a ,

given by

     
1 d

f f
Df a a a

x x

  
    

 (3.39)

and,  2D f a is the Hessian Matrix of f evaluated at x a , given by
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(3.40)

In order to illustrate this approximation, we consider in Appendix B examples of
scalar, two variable functions and also dynamics. We present for each example the
mathematical approximation about the origin for different orders of truncations.
And then, we compare the plots of the original function with the approximated
ones in order to show the performances in terms of curve fitting and domain of
attraction.

3.5 Conclusion

In this chapter, we presented the KP and VPS algebra. We begin with an
introduction in section 3.1. Then, in section 3.2, we presented some definitions
related to the KP algebra. In section 3.3, we introduced some KP proprieties using
given and new theorems and lemmas. The proofs of these new results are presented
in Appendix A. The VPS formulation is presented in section 3.4 using
multivariable Taylor expansion. Then, we conclude this chapter. The motivation
for such representation of nonlinearities is detailed in Appendix B using examples
of algebraic functions and dynamic systems.
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4 Optimal control theory

4.1 Introduction

Optimization is the act of obtaining the best result under given circumstances. In
design, construction and maintenance of any engineering system, engineers have to
take many technological and managerial decisions at several stages. The ultimate
goal of all such decisions is either to minimize the effort required or to maximize
the desired benefit. Since the effort required or the benefit desired in any practical
situation can be expressed as a function of certain decision variables, the
optimization can be defined as the process of finding the condition giving the
maximum or minimum value of a certain function [38].

The applications of optimization in engineering are various and wide. In the
following, we depict some of these applications [38] that are still recorded:

 Design of aircraft and aerospace structure for minimum weight;
 Finding the optimal trajectories of space vehicles;
 Optimum design of linkages, cams, gears, machine tools and other

mechanical components;
 Optimal production planning, controlling and scheduling;
 Optimum design of control system.

Optimization problems can be classified in several ways based on

 The existence of constraints;
 The nature of the design variables;
 The physical structure of the problem;
 The nature of the equations involved.

In this chapter, we will be limited to the study of the optimization problems based
on the existence or no of the constraint variables. In section 4.2, we consider the
problem of optimization with no constraints. In Section 4.3, we analyze the
optimization problem with equality constraints based on the method of Lagrange
multipliers. And finally, in Section 4.4, we present the optimal control problem in
general, then the case of the infinite horizon and the linear quadratic regulator
(LQR) problems.
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4.2 Free constraint optimization

In this section, we state different mathematical programming problems of
unconstrained optimization.

4.2.1 Multivariable function optimization without constraint

The unconstrained optimization problem can be defined as

Find

1

2

n

x

x
x

x

 
 
   
 
  


(4.1)

which minimizes  f x , where nx  is called the decision vector and  f x is a

real valued function called the objective function. Without loss of generality, this
optimization refers to a minimization since the maximum of a function can be
found by inverting the minimum of the negative of the same function [38]. Such a
minimization problem needs necessary and sufficient conditions to be fulfilled.
These conditions will be discussed in the following section.

4.2.2 Functional minimization without constraint

To solve the problem of unconstrained minimization, we consider the necessary
and sufficient conditions for the minimum or maximum of multi-variable function

 f x given by following theorems [38].

Theorem 4.1 (Necessary Condition): If  f x has a maximum or minimum at

*x x , and if
*i x x

f

x





exist, then

*

0, 1
i x

f
i n

x


  


 (4.2)
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(4.2) is equivalent to

     * * *

1 1

f f
Df x x x

x x

  
    

 (4.3)

where  * T
Df x is the gradient of the real valued function  f x .

Theorem 4.2 (Sufficient Condition): Given *x an extreme point (minimum or

maximum), we denote by  2 *D f x the Hessian of the real valued function  f x .

The Hessian matrix correspond to the second partial derivative of  f x .
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f f f

D f x x x x x x

f f f

x x x x x


   
      
   
 

      
 
 
   
      





   



(4.4)

If  2 *D f x is positive definite, then *x is a relative minimum. And, if  2 *D f x is

negative definite then *x is a relative maximum.

The proofs of these two theorems are commonly reported in the literature (see for
example [38]).

4.2.3 Calculus of variations-problem statement and solution

The calculus of variations is the problem dealing with the determination of extrema
(maxima and minima) of a functional, where the functional can be defined as a
function of several other functions. In particular, the   calculus of variations can be
used to solve trajectory optimization problems [38]. A well-known problem of the
calculus of variations with no constraints is the mathematical programming
optimization of an integral amount given by [38].



Optimal control theory

26

Find a function  u x that minimizes the functional (integral)

   
2

1

, ,
x

x

du
J F x u x x dx

dx
   
  (4.5)

where J and F are considered functionals and x is an independent variable in

the interval  1 2,x x .

In the following, we denote by  ' du
u x

dx
 the first derivative of u with respect to

x . Let  1 1u x u and  2 2u x u be the boundary conditions of the problem

(4.8). The calculus of variations is the mathematical procedure used to select the
correct solution from a number of tentative solutions [52-53]. Any tentative
solution  u x in the neighbourhood of the exact solution  u x may be

represented

     u x u x u x  (4.6)

where variation  u x is an infinitesimal. It's considered as an arbitrary change in

u for a fixed value of the variable x (i.e., for 0x  ). Note that the operation of
variation is commutative with respect to both the integration and the
differentiation, that is,

   Fdx F dx   (4.7)

and

 du d
u

dx dx
    

 
(4.8)

We define the variation of the function  ', ,F x u u introduced in (4.8) as follows

'
'

F F F
F x u u

x u u
   

  
  

  
(4.9)

For a fixed value of the variable x , (4.12) is reduced to
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'
'

F F
F u u

u u
  

 
 

 
(4.10)

Then, using (4.10), the variation of the functional J , given by (4.8) is obtained. If
we consider the condition of the stationariness of J , we write the necessary
condition, 0J  , as the vanishing of first derivative of J (similarly to the
maximization or minimization of simple functions in ordinary calculus).

2 2

1 1

'
'

x x

x x

F F
J Fdx u u dx

u u
   

         (4.11)

By integrating the second and third terms by parts, we obtain

 
22 2 2 2

11 1 1 1

'
' ' ' ' '

xx x x x

xx x x x

F F u F F d F
u dx dx u dx u udx

u u x u x u dx u
    

                            (4.12)

Substitute (4.12) in (4.11)

22

1 1

' '

xx

x x

F d F F
J u dx u

u dx u u
  

                  
 (4.13)

with    ' '
1 20, 0u x u x   . Since u is arbitrary, each term of (4.13) must

vanish individually, i.e.,

2

1

'
0

x

x

F d F
u x

u dx u
 

         
 (4.14)

and

2

1

'
0

x

x

F
u

u


    
(4.15)

According to the fundamental lemma of calculus of variations [53], the part of
integrand in brackets is zero, i.e.,

'
0

F d F

u dx u

      
(4.16)
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Equation (4.16) called Euler-Lagrange equation is the governing differential
equation for the given problem. From (4.15), we obtain the boundary conditions.

2

1

'
0

x

x

F

u

    
(4.17)

and

2

1

' '
0

x

x

F

u

    
(4.18)

(4.17) and (4.18) are called natural boundary condition or free boundary
conditions. If these natural boundary conditions are not satisfied, we should have

       ' '
1 2 1 20 , 0, 0 0u x u x u x and u x       (4.19)

in order to satisfy equations (4.15). (4.19) are called geometric or forced boundary
conditions. The Euler Lagrange equation (4.16) is a necessary, but not sufficient
condition for the minimization problem (4.5).

4.3 Optimization with equality constraints

In this section, we discuss different techniques of constrained optimization
problems. We will be limited to the case of equality constraints.

4.3.1 Multivariable function optimization with constraint

Given multivariable function f and , 1, 2, ,ig j p  , the optimization problem

with equality constraints can be defined as [38]

Find

1

2

n

x

x
X

x

 
 
   
 
  


which minimizes  f X (4.20)
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Subject to

  0 , 1,2, ,jg X j n   (4.21)

In the literature, we find different methods that are developed to solve this
problem. We depict the direct substitution, the constraint variation and the
Lagrange multipliers.

4.3.2 Solving the minimization with equality constraints

The first method to solve the problem of function minimization which is the direct
substitution is very intuitive. It consists in solving simultaneously the n equality
constraints. Then, we express any set of m variables in terms of the remaining
n m variables. These expressions are substituted into the original objective
function which results in a new objective in only n m variables with no
constraints. Then, the optimum can be found by using the techniques of the
unconstrained optimization discussed above. This method is a simple (theoretical)
method but not convenient in practice, because the constraint equations are often
nonlinear and hard to solve [38].

The second method, the constraint variation, consists in setting the total differential
of the objective function equal to zero and then developing the Taylor expression
of the constraint function about the minimum point and deducing the variation in

1, , ndx dx . Then, substituting these variations in the main equation leads to the

necessary condition for the constrained optimization [38].

The third method of Lagrange multipliers will be the subject of the next subsection.

4.3.3 Method of Lagrange multipliers

This method will be the first introduced in a simple case of a two variable
minimization problem subject to one equality constraint (i.e., 2n  and 1m  ).
Then, we present the problem of a functional minimization in the case of one
dependent variable. Finally, we state the general form of a functional minimization
using the Lagrange multiplier formulation. This technique will be the key element
of the optimal control theory that will be discussed latter in the next section.
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4.3.3.1 Case of two variables and one equality constraint

We consider the particular case of an objective function of two variables f with
one equality constraint g . Hence, the problem formulation of this case is to

Minimize  1 2,f x x such that

 1 2, 0g x x  (4.22)

Using Theorem 4.1, introduced in section 4.2, we note the necessary condition for

the existence of the minimum at  * *
1 2,x x is

1 2
1 2

0
f f

df dx dx
x x

 
  

 
(4.23)

From the constraint

 * *
1 2, 0g x x  (4.24)

we write the new constraint

 * *
1 1 2 2, 0g x dx x dx   (4.25)

The variations 1dx and 2dx verifying (4.25) about the point  * *
1 2,x x are called

admissible variations [38]. The constraint (4.25) is now rewritten using Taylor's

series expansion of g about  * *
1 2,x x

     * * * * * *
1 2 1 2 1 1 2 2

1 2

, , , 0g x x x x dx x x dx
x x

 
  

 
(4.26)

Since  * *
1 2, 0g x x  , we obtain at  * *

1 2,x x

1 2
1 2

0
g g

dg dx dx
x x

 
  

 
(4.27)
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By assuming that 0
g

x





, at  * *

1 2,x x , (4.27) can be re-written as

1
2 1

2

g
x

dx dx
g

x




 




(4.28)

We substitute (4.28) in (4.23)

1
1

1 2

2

0

g
xf f

dx
gx x

x

 
  

      

(4.29)

at  * *
1 2,x x , for all admissible variations 1dx chosen arbitrary, that is

2

1 1

2

0

f
xf g

gx x
x


 

 
 



(4.30)

at  * *
1 2,x x . (4.30) represents the necessary condition for the existence of the

minimum at  * *
1 2,x x used in the method of constrained variations [38]. We denote

by 

 * *
1 2

2

2 ,x x

f
x

g
x






 




(4.31)

the Lagrange multiplier [38]. By substituting (4.31) in (4.30) and also rewriting
(4.31), we obtain [38]

 * *
1 2

1 1 ,

0
x x

f g

x x


  
    

(4.32)
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and

 * *
1 2

2 2 ,

0
x x

f g

x x


  
    

(4.33)

Note that (4.28), (4.32) and (4.33) represent the necessary conditions for *x to be
an extreme point of the problem (4.23). These conditions are treated by defining
the Lagrange function L as [38]

     1 2 1 2 1 2, , , ,L x x f x x g x x   (4.34)

In fact, the derivatives of the Lagrange function with respect to the variables 1x ,

2x and  , respectively, at the extreme point  * *
1 2,x x lead to (4.28), (4.32) and

(4.33). The sufficient condition for (4.23) to have a minimum at  * *
1 2,x x is that the

quadratic amount Q , defined by

2 2 2
2 2
1 1 2 22 2

1 1 2 2

2
L L L

Q dx dx dx dx
x x x x

  
  

   
(4.35)

evaluated at  * *
1 2,x x , is positive definite for all values of the admissible variations

1dx and 2dx (see theorem 2.6 of [38]. According to [38], if Q is positive definite

for all 1dx and 2dx , then all the roots of the following equation are positive

11 12 1

21 22 2

1 2

0

0

L z L g

L L z g

g g


  (4.36)

where

     * * * * * *
1 2 1 2 1 2

2 2 2

11 12 21 222 2
1 1 2 2, , ,

, ,
x x x x x x

L L L
L L L L

x x x x

  
   

   
(4.37)

and
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   * * * *
1 2 1 2

1 2
1 2, ,

,
x x x x

g g
g g

x x

 
 

 
(4.38)

Note that (4.36) is affine equation in z .

4.3.3.2 Case of functional minimization – Example of one dependant variable

In the case of minimization of an integral functional, the problem will be
formulated as follows [38]:

Find  u x which minimizes

2

1

, ,
x

x

du
J F x u dx

dx
   
  (4.39)

Subject to the constraint

, , 0
du

G x u
dx

   
 

(4.40)

Where G may be an integral function too.

4.3.3.3 Case of functional minimization – General form

The general problem of minimization of integral functional can be formulated as
follows [38]:

Find the set of n functions      1 2, , , , , , , , ,nu x y z u x y z u x y z in the dependent

variables , ,x y z which make the functional

32 2

1 1 1

1 1 1
1, , , , , , , , , , , , , ,

zx y

n n n
n

x y z

u u uu u u
J F x y z u u dxdydz

x x y y z z

     
        

       (4.41)

stationary, subject to m constraints

1 1 1
1, , , , , , , , , , , , , , 0n n n

j n

u u uu u u
G x y z u u

x x y y z z

     
       

    (4.42)
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for 1, ,j m  . The Lagrange multiplier method consists of minimizing the
functional [38]

 
2 2 2

1 1 1

1 1

x y z

m m

x y z

L F G G dxdydz        (4.43)

where i , 1, ,i m  , are the Lagrange multipliers and functions of ,x y and z .
This general formulation of the minimization of an integral functional using the
Lagrange multipliers represents the key element of the optimal control theory. The
latter will be the subject of the next section.

4.4 Optimal control theory

4.4.1 General problem

Given a vector  1, ,
T n

nx x x   , the optimal control problem can be

formulated as follows [40-41]:

Find the vector  1, ,
T m

mu u u   , which minimizes the functional, called

performance index

 
0

, ,
T

J g x u t dt  (4.44)

subject to the constraint

 , ,x f x u t (4.45)

with the boundary condition   00x x . u designates the input vector, x the state

vector and t the time. The necessary condition for the general problem is

 , , 0i if x u t x  (4.46)
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We introduce a Lagrange multiplier i , also known as the adjoint variable, for the
thi constraint equation. Based on Lagrange multiplier method, the augmented

functional is given by [41]

 
10

T n

i i i
i

L g f x dt


 
   

 
  (4.47)

In the following, we use the Hamiltonian function H , defined from (4.47)

     0
1

, , , , , , ,
n

T
i i

i

H x u t g f f x u t f x u t  


    (4.48)

with  1, ,
T

n    . From (4.48), (4.47) becomes

 
10 0

T Tn
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i i
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L H x dt H x dt 


 
    

 
   (4.49)

The integrant

1

n
T

i i
i

F H x H x 


      (4.50)

depends on ,x u and t [38]. Hence using (4.50), the Euler Lagrange equations
corresponding to the functional L of (4.82) become

1 1 0 ; 1, ,

n n

i i i i
i i

i i i i

H x H x
F d F d

i n
x dt x x dt x

 
 

    
                           

 

  


 
(4.51)

and

1 1 0 ; 1, ,

n n

i i i i
i i

j j j j

H x H x
F d F d

j m
u dt u u dt u

 
 

    
                            

 

  


 
(4.52)
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Or equivalently,

0
F d F

x dt x

      
(4.53)

and

0
F d F

u dt u

      
(4.54)

Since 0i

i

x

x







, 1i

i

x

x








, 0i

j

x

u







and 0i

j

x

u








, we obtain [42]

1, ,i
i

H
i n

x



   


  (4.55)

and

0 1, ,
j

H
j m

u


  


 (4.56)

Or equivalently,

H

x



 


 (4.57)

and

0
H

u





(4.58)

The optimum solution for x , u and  can be obtained by solving (4.45), (4.57)
and (4.58) in the unknown 'in x s , 'in s , 1,...,i n , and 'jnu s , 1,...,j m ,

unknowns. These equations are called the canonical Hamilton equations [42]. The
solution of these equations will contain 2n constants of integration. To determine
these constants we need n equations of the initial conditions

 *
0 0x t x (4.59)
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and also additional n , or 1n  , conditions depending on whether or not T is
specified [41]. The set of all these conditions refers to the boundary conditions.
Different cases arise. First, we depict problems with fixed final time T (i.e., the
final time T is specified) and problems with free final time T (i.e., the final time
T is free).

4.4.1.1 Problems with fixed final time

We depict [41]

 The problem of final state specified (i.e., T and  x T are specified);

 The problem of final state free (i.e., T is specified and  x T is free);

 The problem of final state lying on a surface defined by    0s x T  .

4.4.1.2 Problems with free final time

We depict also different situations [41]

 The problem of final state fixed (i.e., T is free and  x T fixed);

 The problem of final state free (i.e., T and  x T are free);

 The problem of final state moving with  p T (i.e.,    *x T p T );

 The problem of final state lying on the surface defined by    0s x T  ;

 The problem of final state lying on a moving surface defined by

  , 0s x T T  .

The different scenarios listed above are set in the different boundary condition
equations (4.21) and (4.23). In [41], the author has stated the general form of these
boundary conditions, corresponding to the optimization problem (4.44) and (4.45)
for all  0,t T , as follows:

          , , ,
T

T x T H x T u T T T T      (4.60)

In the following, we consider exclusively the case of specified final time T and
free state  x T leading to the investigation of the problem of infinite horizon (i.e.,

T   ) discussed later. Then the substitutions in (4.60) are

0T  and  x T any variation (4.61)
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Thus, we obtain the specific boundary condition relationships [41]

  00x x and   0T  (4.62)

4.4.2 Hamilton-Jacobi equation

In this section, we treat the problem of the optimal control with the finite horizon
case (i.e., T is finite) which leads to the well-known HJE [39].

Consider a nonlinear system defined by the dynamics

 , ,x f x u t (4.63)

with the initial condition

 0 0x t x (4.64)

subject to the functional cost to be minimized

   
0

, ,
T

J u g x u t dt  (4.65)

The problem is to find an admissible control *u that forces the system (4.63) to
follow an admissible trajectory *x that minimizes the performance (4.65). The
initial time 0t and the initial states  0x t are specified [41]. Without loss of

generality, the initial instant is reduced to 0 0t  . We define the optimal cost

 ,V x t with an initial state  x t at t by [5-39]

   , min , ,
T

tu
V x t g x u   (4.66)

. .i e ,

   *, , ,
T

t
V x t g x u   (4.67)

where  *u t is the optimal control. From (4.66), we set if the system starts from

 x t at t , then  , min
u

V x t J .  ,V x t is independent of u because if the initial
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state  x t and its time t are specified, then  the particular control u is “abstractly”
determined and minimizes  ,V x t [39-40]. So, to find the optimal control *u

which minimizes (4.65), and then,   0 ,0V x for various  0x , we can start by

the evaluation of  (4.67) for all t and  x t , and then the associated optimal control
*u as follows [39]:

Given  0,t T and  ,it t T , we have

  
   

 
, . . ,

, min , ,
T

tu s s t s t T
V x t t g x u d 


  (4.68)

       
    , . . , , . . ,

min min , , , ,
i

ii

t T

t tu s s t s t t u s s t s t T
g x u d g x u d   

 

      (4.69)

*u is obtained by the concatenation of  u s with  , is t t and  ,is t T . Note

that the term  , ,
it

t
g x u d  is independent of  u s for  ,is t T and

    , , ,
i

T

i it
g x u d V x t t   (4.70)

Then,

 
   

    
, . . ,

, min , , ,
i

i

t

i itu s s t s t t
V x t g x u d V x t t 



     (4.71)

We set it t t   , where t is small. We apply the Taylor’s theorem to expand
the right hand side of (4.71) at the first order

 
   

    
, . . ,

, min , , ,
t t

tu s s t s t t t
V x t g x u d V x t t t t 



 

         (4.72)

We introduce  , ,G x u t such that  , ,
dG

g x u t
dt

 . Hence, the first order Taylor

expansion of  , ,
t t

t
g x u d 



 is

           , , , , , ,
t t

t
g x u d G x t t u t t t t G x t u t t 


        (4.73)
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Also, we have

         , , , ,
dG

G x t t u t t t t G x t u t t t
dt

         (4.74)

that is,

           , , , , , ,
dG

G x t t u t t t t G x t u t t t g x u t t
dt

           (4.75)

Then, from (4.73) and (4.75) we obtain

   , , , ,
t t

t
g x u d g x u t t 


  (4.76)

Also, we use the first order Taylor expansion of   ,V x t t t t   

        ,
, ,

dV x t t
V x t t t t V x t t t

dt
       (4.77)

Noting,

     , ,
T

dV V x V
x t t x t t

dt x t t

        
(4.78)

and

        , , ,
T

V x V
V x t t t t V x t t x t t t

x t t

                  
(4.79)

we substitute (4.145) into (4.138)

 
   

          
, . . ,

,
, min , , , ,

T

u s s t s t t

V x t tV
V x t g x u t t V x t t x t t x t

x t 

                 
 (4.80)

As  ,V x t is independent of u , then



Optimal control theory

41

    
   

 
, . . ,

, , min , ,
T

u s s t s t t

V V
V x t V x t t g x u t x t

x t 

                 
 (4.81)

Then,

   
 

, . . ,
min , , 0

T

u s s t s t t

V V
g x u t x t

x t 

                
 (4.82)

And, using (4.63), we write from (4.82)

 
   

   
, . . ,

,
min , , , ,

T

u s s t s t t

V x t V
g x u t f x u t

t x 

           
(4.83)

As t approaches zero, we obtain [39]

 
 

   ,
min , , , ,

T

u t

V x t V
g x u t f x u t

t x

           
(4.84)

The equation (4.83) is the HJE. This equation becomes

     * *,
, , , ,

TV x t V
g x u t f x u t

t x

        
(4.85)

where *u is the optimal control expression given by [39]

 
   * arg min , , , ,

T

u t

V
u g x u t f x u t

x

            
(4.86)

4.4.3 Infinite horizon

In this section, we introduce the infinite horizon optimal control problem for any
general time invariant nonlinear system. Then, we discuss the case of Linear Time
Varying systems (LTV). And finally, we investigate the case of LTI systems
known as the LQR problem.
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4.4.3.1 Case of time invariant systems

Consider the time invariant nonlinear dynamics

 ,x f x u (4.87)

subject to the time performance index

   
0

,J u g x u dt


  (4.88)

with   00x x . Then, for the stationary and infinite time, i.e., T   , we have [3]

 , 0
V

x t
t





(4.89)

As V is explicitly independent of t . Then, we obtain the equivalent HJE

   * *, , 0
T

V
g x u f x u

x

    
(4.90)

and

   * arg min , ,
T

u

V
u g x u f x u

x

            
(4.91)

i.e.,

   
*

, , 0
T

u u

V
g x u f x u

u x


          
(4.92)

4.4.3.2 Case of linear time varying systems

Consider the system

       x F t x t G t u t  (4.93)
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with  0 0x t x . We assume that the matrices  F t and  G t are continuous field

functions. Given the weighting matrices  Q t and  R t are continuous,

symmetric, nonnegative, and positive definite, respectively. We define the
performance index

            
0

1

2
T TJ x t Q t x t u t R t u t dt


  (4.94)

The optimal control law  *u t , which minimizes the performance index J ,

satisfies the following Theorem.

Theorem 4.1: Let’s consider the system given by the dynamics (4.93) subject the
performance index (4.94). It follows [39]

i)  ( ) lim ,
T

P t P t T


 exists, where  ,P t T is the solution of the equation

1T TPF PF PGR G P Q P      .

ii)      Tx t P t x t is the optimal performance index.

iii)        * 1 Tu t R G t P t x t   is the optimal control law.

We note that the system (4.93) is completely controllable for every time t . If,
given an arbitrary state  x t at time t , there exists a control depending on  x t at

t and a time 2t depending on t such that application of this control over the

interval  1 2t t takes the state  x t to the zero state at time 2t .

The proof of this theorem is discussed with details in [39].

4.4.4 LQR problem

In the following, we solve the problem of LQR for the LTI system, and we show
how this problem leads to the resolution of the well-known algebraic Ricatti
equation (ARE). Therefore, we discuss the stability of the closed loop optimal
control.
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4.4.4.1 Optimal control design

Let’s consider the linear system

x Ax Bu  (4.95)

with   00x x . The performance index associated with (4.167) is defined as

 
0

1
2

2
T T TJ x Qx u Ru x Nu dt


   (4.96)

where Q and R are symmetric matrices. Q is non-negative definite, whereas R

is positive definite. N a matrix of appropriate dimensions. The task will be to
design a stabilizing linear state-feedback controller of the form u Kx  which
minimizes the performance index J . This optimal control law will be denoted by

*u . The following presentation is based on different approaches discussed in the
literature [42].

The Hamiltonian is written from (4.47)

     1
, , 2

2
T T T TH x u u Ru x Qx x Nu Ax Bu      (4.97)

From (4.57), the co-state vector  t is the solution of the vector differential

equation

  TH
t Qx Nu A

x
 


     


 (4.98)

The minimization of H implies from (4.58)

0T TH
Ru N x B

u



   


(4.99)

The optimal control is then obtained

 * 1 1T Tu t R N x R B     (4.100)
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Notice
2

2
0

H
R

u


 


which leads to the minimum of (4.96). Substituting (4.100)

into (4.95) and (4.98) to obtain

 1 1T Tx A BR N x BR B     (4.101)

and

   1 1T T TQ NR N x NR B A       (4.102)

Or equivalently,

1 1

1 1

T T

T T T

x xA BR N BR B

Q NR N NR B A 

 

 

      
          


 (4.103)

Denote by  ,0t the transition matrix associated with (4.175). A partition of

 ,0t determines a solution of (4.175) as follows

     
   

0 011 12

21 220 0

,0 ,0
,0

,0 ,0

x xt tx
t

t t

 


   
     

        
      

(4.104)

Note from the transversality condition

          , , 0
T

H x T u T T T T x T       (4.105)

The final time, T   , and the final state  x T are both free. Then, T and

 x T are both nonzero. Given 0T  and   0x T  , from (4.123), we have

      , , 0H x T u T T  and   0T  (4.106)

From (4.102), we write at instant T

     21 0 22 0,0 ,0 0T T x T      (4.107)

Note that  ,0t is regular, then  22 ,0 0 0t t    . Thus,
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   1

0 22 21 0,0 ,0T T x    (4.108)

Equivalently, using any instant t as initial time, we obtain from (4.102), 0t 

       1

22 21, ,t t T T t x t    (4.109)

Noting          1

22 21 22 21, , , ,P t t T T t t T T t       , it follows   0P T  as

 , ,t t I t T    . We have

     t P t x t   (4.110)

Now from (4.97), as the matrices , , ,A B N Q and R are constant, we deduce that

the Hamiltonian is explicitly independent of t , i.e., 0
dH

dt
 . Then,

      , ,H u t x t t is constant. Finally, from the first equality of (4.106), we

conclude 0t 

      , , 0H x t u t t  (4.111)

Using (4.100) and (4.110), we rewrite (4.97) nx 

   1 11 1

2 2
T T T T T T Tx NR N x x Qx x NR B P t x x A P t x     

   11
0

2
TT Tx P t BR B P t x  (4.112)

That is, nx 

         1 1 1T TT T T Tx A BR N P t P t A BR N Q NR N        

   1 0
T TP t BR B P t x   (4.113)

which reduces to

         1 1 1T TT T TA BR N P t P t A BR N Q NR N       

   1 0
T TP t BR B P t  (4.114)
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From (4.111), we have

   P t x P t x     (4.115)

Using (4.103) and (4.110), we write

          1 1 1T T T TQ NR N x NR B A P t x P t x P t A BR N x         

   1 TP t BR B P t x (4.116)

that is,

          1 1 1TT TP t A BR N P t P t A BR N Q NR N        

   1 0TP t BR B P t  (4.117)

Since Q and R are symmetric, consider the transpose of both sides of (4.117) as

           1 1 1TT T TT T TP t P t A BR N A BR N P t Q NR N        

   1 0
T TTP t BR B P t  (4.118)

By comparing (4.117) and (4.118), we find that both  P t and  T
P t are solutions

of the same differential equation, with     0
T

P T P T  . From the uniqueness of

solutions of differential equations, we conclude that

    0
T

P t P t t   (4.119)

Then, (4.114) becomes

        1 1 1TT T TA BR N P t P t A BR N Q NR N       

   1 0TP t BR B P t  (4.120)

 P t satisfies (4.119) and (4.120) simultaneously. Thus,   0P t  , and P is

constant and solution of

     1 1 1 1 0
TT T T TA BR N P P A BR N Q NR N PBR B P          (4.121)
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(4.121) is known as the ARE. The optimal control is then completed as

 * 1 T
u R N PB x   (4.122)

4.4.4.2 Stability analysis

Consider the LTI system (4.95) subject to the minimization of the quadratic
performance index (4.96). According to the general equations (4.84) and (4.85), the
related steady state HJB equation is written in form [5]

 1 1
min 0

2 2

T
T T T

u

V
x Qx u Ru x Nu Ax Bu

x

             
(4.123)

where  V x is the value of the cost function with the initial state x at t , given by

(refer to the general form (4.60) [5] (and references cited therein).

  1 1
min

2 2
T T T

u
t

V x x Qx u Ru x Nu d
     
  (4.124)

We note that   0 0V x x   if

0T

Q N

N R

 
 

 
(4.125)

Notice that the HJB equation (4.123) can be assimilated to the Hamiltonian

equation  , , 0H x u   computed from (4.97). Then, the term
V

x




is associated

with the co-state  given by Px  . Thus, we can definite  V x , s.t.,

V
Px

x





(4.126)

with P solution of the ARE (4.121). Then,   TV x x Px is a natural Lyapunov

function to determine the stability of the closed-loop system (4.95) and (4.100)
with  expressed by (4.126). In fact, we have from (4.123)
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T T

V V
V x Ax Bu

x x

             
 

* * *1 1

2 2
T T Tx Qx u Ru x Nu   

 *

*

1

2
T T

T

xQ N
x u

N R u

  
    

  
(4.127)

Using (4.125), we deduce that

0 0V x   (4.128)

Remark 4.1: By substituting (4.125) into (4.124), the positiveness of integrand of
(1.124) is given by:

     1 11 1
2

2 2
T TT Tx Q N PB R N PB NR N PB x x        

1 1 0T TQ PBR B P NR N x      (4.129)

(4.129) holds for all 0x  if

 1 1 0T TQ NR N PBR B P    (4.130)

Note that, using the Schur’s complement [45], we have from (4.125)

0R  and 1 0TQ NR N  (4.131)

Thus, (4.130) holds if   0V x  .

Now we apply the definition of asymptotic stability in sense of Lyapunov (i.e., we
search if it exists a Lyapunov function TV x Px such that for some positive

definite matrix P , we have
dV

dt
is negative definite), to establish the optimality

condition for any stabilizing system. Let’s consider the following theorem.
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Theorem 4.2: For some Lyapunov candidate function TV x Px , if the stabilizing
state feedback controller *u Kx  applied for the LTI system (4.95) is such that

min 2 0T T T

u

dV
x Qx u Ru x Nu

dt
     
 

, then the controller is optimal.

Proof of Theorem 4.2: See Appendix C – section C-6

The design of the optimal control problem can be solved by finding the appropriate
Lyapunov function   TV x x Px . The Lyapunov candidate matrix P can be

obtained by minimizing the functional

2T T TdV
x Qx u Ru x Nu

dt
   (4.132)

We apply the necessary condition of unconstrained minimization, discussed early
in this chapter, to the equation (4.74). We will have

*

2 0T T T

u u

dV
x Qx u Ru x Nu

u dt 

        
(4.133)

Noting   TV x x Px , we have

 

 

2 2 2

2 2 2

T T T T T T T

T T T T T

dV
x Qx u Ru x Nu x Px x Qx u Ru x Nu

u dt u

x PAx x PBu x Qx u Ru x Nu
u

           


    




 2 0T TB Px Ru N x    (4.134)

Hence, from (4.134), we find the optimal control law is given by (4.122), i.e.,

*u Kx  (4.135)

with

 1 T
K R PB N  (4.136)

the static state feedback gain.
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We check now the sufficiency condition of the unconstrained condition

 
2 2

2 2
2 2 2 2T T T T T T T TdV

x Qx u Ru x Nu x PAx x PBu x Qx u Ru x Nu
u dt u

            

 2 T TB Px Ru N x
u


  



(4.137)

since R is symmetric positive definite. Hence the second order sufficiency
condition is satisfied.

Now, we calculate the matrix P . From (4.95), (4.135) and (4.136), the optimal
closed loop system has the form

 1 T Tx A BR B P N x   (4.138)

The optimal controller *u satisfies the condition (4.133). So,

* * * *2 2 2 0T T T T Tx PAx x PBu x Qx u Ru x Nu     (4.139)

We substitute the expression for *u , given by (4.138) into (4.139) to write

       1 12
T TT T T T Tx A P PA x x PBR PB N x x Qx x PB N R PB N x        

 12 0
TTx NR PB N x   (4.140)

which leads to

     12
TT T T Tx A P PA x x PB N R PB N x x Qx     

   1 0
TTx PB N R PB N x   (4.141)

Factoring out x and Tx yields

    1 0
TT Tx A P PA Q PB N R PB N x      (4.142)

The above equation should be true for every x . In other words, we have

2 0R 
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   1 0
TTA P PA Q PB N R PB N      (4.143)

The above equation is exactly the same as (4.111) referring to the general ARE. In
conclusion, the resolution of the optimal control problem, minimizing the
performance index (4.96) subject to the dynamics (4.95), leads simply to the
computation of the ARE (4.143).

4.4.4.3 ARE – Main results

Given , , ,A B N Q and R matrices of dimensions  n n ,  n m ,  n m ,

 n n and  m m respectively. Q and R are symmetric non-negative definite

and symmetric positive definite. Consider the following ARE

   1 0T T TA P PA Q PB N R B P N      (4.144)

which is equivalent to the equation

   1 1 1 1 0
TT T T TA BR N P P A BR N Q NR N PBR B P          (4.145)

in the matrix P of dimensions  n n .

Definition 4.1: An unforced dynamical LTI system x Ax is said to be stable if all

eigenvalues of A are in the open left half plane, that is,  Re 0A    . A matrix

A with such a property is said to be asymptotically stable or Hurwitz [4-47].

Definition 4.2: The LTI system x Ax Bu  is stabilizable if all unstable modes
are controllable (i.e., all uncontrollable modes are stable) [47-48].

Theorem 4.3: The dynamical system x Ax Bu  , or  ,A B is said to be

stabilizable if there exists a state feedback u Kx , such that the system is stable
(i.e., A BK is stable) [47-48].

Definition 4.3: The LTI system

x Ax Bu  (4.146)

y Cx Du  (4.147)
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is detectable if all unstable modes are observable, i.e., all unobservable modes are
stable [47-48].

Theorem 4.4: The dynamical system (4.146) and (4.147) or the pair  ,A C is said

to be detectable if there exists a matrix L such that A LC is Hurwitz, i.e.,
asymptotically stable [47-48].

Definition 4.4: The observability map of the pair  ,A C is given by the function

[47-49]:   0 2 1: 0, ,n pL t   s.t.  0 0 10,Atx C e x t t     .

Theorem 4.5: The following statements are equivalent [47-49].

1. The pair  ,A C is observable on  10,t .

2.    0 0Ker   .

Corollary 4.1: The Sylvester operator  X AX XB   is singular if A and B

share common eigenvalues.

Lemma 4.1: Consider the Sylvester equation AX XB C  , where n nA  ,
m mB  and n mC  are given matrices. There exists a unique solution
n mX  if, and only if,     0 , 1,2, ,i jA B i n      and 1,2, ,j m 

[47].

Theorem 4.6: Assume the matrix 1 TQ NR N is symmetric, non-negative definite,

i.e., 1 0TQ NR N  . If  ,A B is stabilizable and  1 1,T TA BR N Q NR N   is

detectable, then P solution of (4.144) is unique and symmetric and

 1 T TA BR B P N  is Hurwitz [46-47].

Proof of Theorem 4.6: See Appendix C – section C-7

Now let we prove that 1 1T TA A BR N BR B P    is asymptotically stable.

Proposition 4.1: cA is Hurwitz if one of the following is true

1. 1 0TQ Q NR N  

2. 0Q  and  ,A Q is observable.
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In fact, consider the ARE (4.143). Suppose x an eigenvector of the matrix cA , i.e.,

cA x x for  the associated eigenvalue. Pre-multiply and post-multiply (4.143)

by Tx and x respectively and use 1R RR  , i.e.,

0T T T T T T T T
c cx P A x x A Px x Qx x PBR RB Px    (4.148)

which leads to

2
2 T T Tx Px x Qx RB Px    (4.149)

1st case: Suppose 0Q  , then
2

0T Tx Qx RB Px   . Thus, 2 0Tx Px  and

0P  . We conclude  Re 0  , that is, cA is Hurwitz.

2nd case: Suppose 0Q  and  ,A Q is observable. Assume  Re 0  or jw  .

We have from (4.252)

  2
2Re 0T T Tx Px x Qx RB Px     (4.150)

Then, 0Tx Qx  and 0TRB Px  , i.e., 0Qx  and 0TB Px  . We deduce

1 T
cA x Ax BR B Px Ax x jwx     (4.151)

Noting
0 !

i i
At

i

A t
e

i

  , we write

 
0 0! !

i i
iAt i

i i

A t
e x t x jw x

i i 

  

 
0 !

i

jwt

i

tjw
x e x

i

  (4.152)

Thus,

0At jwt jwtQe x Qe x e Qx   (4.153)
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which is a contradiction to  ,A Q observable.

Now, we prove that P is solution of the ARE (4.143). In fact, suppose that there
exists two solutions 1P and 2P such that

1

1
1

T
cA A BR B P  and

2

1
2

T
cA A BR B P  are stable. From (4.235), we write

1 1

1
1 1 1 1 0T T T T

c cP A A P Q P BR B P    (4.154)

and

2 2

1
2 2 2 2 0T T T T

c cP A A P Q P BR B P    (4.155)

Subtract
12

T
cP A from the ARE (4.154)

 
1 1 1

1
1 2 1 2 1 1 0T T T T T T

c c cP P A A P Q P A P BR B P       (4.156)

Subtract
2 1

T
cA P from the ARE (4.155)

 
2 2 2

1
2 2 1 1 2 2
T T T T T

c c cP A A P P Q A P P BR B P      (4.157)

Subtracting (4.156) and (4.157) leads to

       
1 2 2 1 2 1

1
1 2 2 1 1 2 2 2
T T T T T T T T

c c c c c cP P A A P P A A P P A A P BR B P        
1

1 1
T TP BR B P (4.158)

Note
1

1
1

T
cA A BR B P  and

2

1
2

T
cA A BR B P  . (4.158) is written

(4.159)

i.e.,

     

 

1 2

1 1
1 2 2 1 2 1 1

1 1
2 2 1 1

1 1
2 2

1 1 1
2 1 1 1 2 2

TT T T T T
c c

T T T T

T T T

T T T T T T

P P A A P P A BR B P A BR B P P

P BR B P P BR B P

P A BR B P A BR B P

P BR B P P BR B P P BR B P

 

 

 

  

      

 

   

   

1 1
2 2 1 1
T T T TP BR B P P BR B P  
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1 21 2 1 2 0

T T
c cP P A A P P    (4.160)

Since
1cA and

2cA are both asymptotically stable, then   1
, Re 0i ci A  and

  2
Re 0i cA  . Thus, the unique solution for (4.160) is

1 2 0P P  , i.e., 1 2P P (4.161)

Finally, note that the solution of the ARE is symmetric. In fact, P is a solution of
(4.143) will lead to TP solution of (4.143). As P is unique, then TP P ,i.e., P
symmetric.

4.4.4.4 Illustration example of an LQR problem

In this section, we illustrate the LQR problem of 2-DOF inverted penduli coupled
with a spring plant as shown in Figure 4.1 [51].

The variables are: angular displacement of pendulum , torque

input generated by the actuator for pendulum , spring force,

spring length, slope of the spring to the earth, length of pendulum ,

mass of pendulum , distance between the two penduli , and

spring constant.

The equations of motion of the two inverted pendulum system are [51]

   
2

1 1
1 1 1 1 1 1 1sin cos

2 2

l l
m m g l F        (4.162)

and

   
2
2 2

2 2 2 2 2 2 2sin cos
2 2

l l
m m g l F        (4.163)

where g is the constant of gravity,

 
1/222

2 1F k l L l l        
 (4.164)

i  1,2i i 
i

 1,2i i  F l

 il  1,2i i 

im  1,2i i  L k
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1/22 2

2 2 1 1 2 2 1 1sin sin cos cosl L l l l l         
 (4.165)

and

1 1 1 2 2

2 2 1 1

cos sin
tan

sin sin

l l

L l l

 


 
  

    
(4.166)

with the initial conditions

0F  when 1 2 0   (4.167)

Figure 4.1 Two inverted pendulum coupled by a spring system [51]
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This implies

 1 1 2 2, , , 0
T

      (4.168)

is an equilibrium state of the system if 1 2  . The system (4.162) and (4.163) is

written in a matrix form as [51]

1 1

2
1 1 1 1 1 1

2 2 2

2 2
2

2 2 2

0 1 0 0 0 0

2
0 0 0 0

0 0 0 1 0 0

2
0 0 0 0

g

l m ld

dt

g

l m l

 

  
  

 

   
      
      
                         
            
   

 

 

   

   

1 1 1
1 1 1

2 2 2
2 2 2

0

2
sin cos

0

2
sin cos

g F

l m l

g F

l m l

   

   

 
 
   
 

  
 
 

   
 

(4.169)

We note

1

1

2

2

x








 
 
   
 
  





(4.170)

the state vector,

1

2

u



 
  

 
(4.171)

the control vector,
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1

2

0 1 0 0

0 0 0

0 0 0 1

0 0 0

g

l
A

g

l

 
 
 
 

  
 
 
 
 

(4.172)

a constant matrix,

2
1 1

2
2 2

0 0

2
0

0 0

2
0

m l
B

m l

 
 
 
 

  
 
 
 
 

(4.173)

a constant matrix, and

   

   

1 1 1
1 1 1

2 2 2
2 2 2

0

2
sin cos

0

2
sin cos

c

g F

l m l
f

g F

l m l

   

   

 
 
   
 

  
 
 

   
 

(4.174)

the perturbation vector which is nonlinear in x . Hence, the dynamics (4.219) can
be written

 cx Ax Bu f x   (4.175)

To linarize the system (4.225), we assume that the nonlinear term 0cf  , then we

obtain the dynamics

x Ax Bu  (4.176)
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The performance index associated with this dynamics is defined by

 
0

1

2
T TJ x Qx u Ru dt


  (4.177)

where Q and R are the weighting matrices given by

1

1

2

2

0 0 0

0 0 0

0 0 10 0

0 0 0 10

m g

m
Q

m g

m

 
 
 
 
 
 

(4.178)

1 0

0 1
R

 
  

 
(4.179)

Then, the optimal control law is given by

* 1 T Tu R B P x  (4.180)

where P is solution of the ARE

1 0T TA P PA Q PBR B P    (4.181)

For the numerical application, consider the constant values

1

2

1

2

2

1

0.8

1

0.8

9.8 /

0.02 /

l m

l m

m kg

m kg

g m s

k N m


 
 
 
 




(4.182)

Using MATLAB, we obtain the solution of ARE (4.181) as follows
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19.93 5.36 0 0

5.36 1.71 0 0

0 0 35.69 3.21

0 0 3.21 0.97

P

 
 
 
 
 
 

(4.183)

Hence, using (4.284), we obtain the optimal control law *u Kx  , where

10.72 3.42 0 0

0 0 12.54 3.80
K

 
  

 
(4.184)

Using SIMULINK, we simulate the linearized system (4.280) using the optimal
control law (4.284) for different initial conditions. The time evolution of the
angular positions 1 2,  and the actuator torques 1 2,  for an initial condition of

1 5


  and 2 6


  are shown in Figures 4.2 to 4.5.

Figure 4.2 1 evolution vs. time of the two inverted pendulum system
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Figure 4.3 2 evolution vs. time of the two inverted pendulum system

Figure 4.4 1 evolution vs. time of the two inverted pendulum system
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Figure 4.5 2 evolution vs. time of the two inverted pendulum system

The simulation results for the angular positions 1 and 2 , show that the LQR
stabilize the system at the equilibrium position. The input signals (i.e., motor
torques 1 and 2 ) show that both motors present a normal behaviour and there is
no important overshoot that will cause saturation issues.

4.5 Conclusion

In this chapter, we introduced the problem of optimization and some applications
in engineering as well as its classifications based on several criteria. We presented
the problem of optimization and some applications in engineering as well as its
classification based on several aspects. Then, in section 4.2, we presented the
problem of optimization with no constraints in which we treated first the problem
of multivariable function optimization with no constraints, then the problem of
functional minimization with no constraints and finally we presented the calculus
of variation problem statement and their solutions. In section 4.3, we treated the
optimization problem with equality constraints. We began with the general
problem of multivariable function optimization with constraints, then we solved the
particular problem of minimization with equality constraints, and finally, we
treated the method of Lagrange multipliers under three different cases. In section
4.4, we presented the optimal control theory. We began with the formulation of
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general problem, then we treated the HJE, then we presented the infinite horizon
problem and the LQR controller. We presented the design method and then we
studied the stability of such controller and how this leads to the main results of
ARE. And finally, we illustrated the LQR problem through an example. In section
4.5, we conclude this chapter.
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5 Optimal control of polynomial
systems using Kronecker
product

5.1 Introduction

The objective of this chapter is to compute an optimal control law for polynomial
systems using the KP formulation. In section 5.2, we will state the problem and we
show how the problem of finding the optimal solution is reduced in solving what
we call the State Dependent Ricatti equation (SDR). In section 5.3, the problem of
solving the SDR is transformed into solving uncoupled linear equations in the gain
matrices using the KP algebra. The calculation of these gain matrices is presented
in section 5.4. It's done by the cancellation of the coefficients of VPS terms and the
resolution of linear equations.  In section 5.5, we apply the proposed method to
three scalar examples.

5.2 Problem statement

Consider the nonlinear dynamics given by

             
1

m

k k
k

x t F x G x u t F x G x u t


      (5.1)

where t is the continuous time,   nx t  the state vector and

     1 ....
T m

mu t u t u t      the input vector.    . , .kF G for 1,...,k m are

analytic vector fields from n into n given by the following polynomials
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1

l
j

j
j

F x F x


  (5.2)

 
0

g
j

k kj
j

G x G x


  for 1,...,k m (5.3)

 
0

( )
g

j
j m

j

G x G I x


  (5.4)

with 1

jn mn
j j mjG G G         . In the following, we treat the generalized

cost function of the form

            
0

1
2

2
T T TJ s t Qs t u t Ru t s t Nu t dt



   (5.5)

where  s t is the output vector of q

 
1

k
j

j
j

s x H x


 (5.6)

R is a positive definite matrix of m m , Q a non-negative matrix of q q and N

a matrix of p m .In addition, we assume that the matrix 1 TQ NR N is non-
negative definite. This work is an extension of the optimal control problem based
on the KP algebra introduced by Rotella and Tunguy [54.]

Following Boudarel et al. [54] and using (4.133), introduced in chapter 4, we

denote by   V x t the optimal cost with an initial condition x at t

                 * * *1
2

2
T T T

t

V x s x Qs x u Ru s x Nu d      


   (5.7)

where  * arg minu J is the optimal control. Then, we write the HJE [3-53]

             1
min 2

2

T
T T T

u

V V
x s x Qs x u Ru s x Nu F x G x u

t x

             
(5.8)

That is, referring to (4.151) and (4.152)
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             * * *1
2

2

T
T T TV V

x s x Qs x u Ru s x Nu F x G x u
t x

             
(5.9)

Considering the stationary infinite time and non-constraint input case [3], we have

0
V

t





. Thus, from (5.8), we obtain [3-43]

   * 1 T T V
u R N s x G x

x
      

(5.10)

substituting (5.10) in (5.9) leads to

               1 1
T T

T T T T TV V V V
s x Qs x s x NR N s x G x R G x F x F x

x x x x
    

   
   

       1 1 0
T

T T TV V
G x R N s x s x NR G x

x x
  

  
 

(5.11)

or equivalently,

(5.12)

The equations (5.10) and (5.12) determine the optimal control law *u . The term
V

x




is calculated first through the equation (5.12), and after that, through the

equation (5.10), we can calculate *u .

           1 1
T

TT TV V
F x G x R N s x F x G x R N s x

x x
                    

       1 1 0
T

T T TV V
G x R G x s x Q NR N s x

x x
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5.3 Equation of approximation

Merriam [55] and Lukes [56] have proposed the determination of an analytic

expression for
V

x




, and then for *u . They assume that
V

x




can be written in a

polynomial form as

1

p
j

j
j

V
P x

x 




  (5.13)

where jP , 1j  , are constant matrices of
jn n . Using the KP proprieties, vec

and mat notations, introduced in chapter 3, we transform (5.12) by substituting
(5.2), (5.4), (5.14) and (5.6), to obtain

 

 

   

1

1 0 1 1

1

1 1 0 1

1

1 0

T
f g ph

i i i iT
i i m i i

i i i i

Tp f g h
i i i iT

i i i m i
i i i i

Tp g
i i i

i i m i m
i i i

F x G I x R N H x P x

P x F x G I x R N H x

P x G I x R G I x



   



   



  

       
        

       

        
          

       

   
     
   

   

   

 
0 1

Tg p
i

i
i

P x


   
   
   
 

 1

1 1

0
Th h

i iT
i i

i i

H x Q NR N H x

 

   
     
   
  (5.14)

This is equivalent to

 

   

1

1 1 1 1 1 1

1 1

1 0 1 1 0 1

f p p f h h
i T i i T j i T jT T T T

i j i j i j
i j i j i j

g p p gh h
i T j T k i T j kT T T T

i m j k i j m k
i j k i j k

x F P x x P F x x H Q NR N H x

x H NR I x G P x x P G I x R N H x



     

 

     

  

   

  

 

   1

1 0 1 0

0
p g g p

i T j c T dT T
i j m m c d

i j c d

x P G I x R I x G P x

   

    (5.15)

By using Theorems 3.14, 3.17, Lemmas 3.2 and 3.3, introduced in chapter 3, (5.15)
can be transformed into
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1

1 1 1 1 1 1

1 1

1 0 1 1 0 1

j k

f p p f h h
i j i j i jT T T T T T T

i j i j i j
i j i j i j

g p p gh h
i T i j k T j T iT T T T T

i i j k m j in m
i j k i j k

vec F P x vec P F x vec H Q NR N H x

x H NR mat vec P F x x H NR I x G Px

  

     

 


     

  

    

  

 

   1

1 0 1 0

0c d

p g g p T
j T i c dT T T

m j i d cn m
i j c d

I x G Px R mat vec P G x



   

        (5.16)

This is equivalent to

      

 

1

1 1 1 1 1 1

1 1

1 0 1 1 0 1

j j

f p f p h h
i j i j i jT T T T T T T

i j i j i j
i j i j i j

g p p gh h
i T i j k T i jT T T T T

i kj k i jn m
i j k i j k

vec F P x vec P F x vec H Q NR N H x

x H NR V x x H NR mat vec P G x

  

     

  


     

  

    

  

 

  1

1 0 1 0

0i j

Tp g g p
i j c dT T T

i j dcn m
i j c d

mat vec P G x R V x
 


   

      (5.17)

with      1j k

T T T
kj k j k j k mjn m

V mat vec P G vec P G vec P G 
          , notice that

   1
T T

kj k j k mjV vec P G vec P G      as noted in [3]. Hence, we write

    

 

1

1 1 1 1 1 1

1 1

1 0 1 1 0 1

f p p f h h
i j i j i jT T T T T T

i j i j i j
i j i j i j

g p p gh h
i j k i j kT T T T

i kj k ij
i j k i j k

vec F P x P F x vec H Q NR N H x

vec H NR V x H NR V x

  

     

    

     

  

 

  

 

1

1 0 1 0

0
p g g p

i j c dT
ij dc

i j c d

x V R V x 

   

  (5.18)

By applying again Theorem 3.14, we obtain
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1

1 1 1 1 1 1

1 1

1 0 1 1 0 1

f p p f h h
i j i j i jT T T T T T T

i j i j i j
i j i j i j

g p p gh h
i j k i j kT T T T T

i kj ij k
i j k i j k

vec F P x vec P F x vec H Q NR N H x

vec H NR V x vec V R N H x

  

     

    

     

  

 

  

 

 1

1 0 1 0

0
p g g p

i j c dT T
ij dc

i j c d

vec V R V x   

   

  (5.19)

In order to compute the optimal control *u , we have to find
V

x




, given in the

polynomial form (5.13). So, we have to calculate the different terms iP , *i .

These terms are obtained by cancelling the coefficients of 1ix  in (5.19), which are
the subject of the next section.

5.4 Determination of iP

5.4.1 First order

The calculation of 1P from (5.19) is given by the cancellation of the coefficients of
2x . We obtain

      1
1 1 1 1 1 1

T T T T T T Tvec P F vec F P vec H Q NR N H  

     1 1 1
1 10 10 1 10 01 0T T T T T Tvec H NR V vec V R N H vec V R V      (5.20)

Since the operator  .vec is linear on the matrices of the same dimensions, and

10 1 0
TV P G , then the equation (5.20) will be

(5.21)

 1 1 1
1 1 1 1 1 1 1 0 1 1 0 1
T T T T T T T TP F F P H Q NR N H H NR G P P G R N H      

1
1 0 0 1 0T TP G R G P 
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1P is the gain matrix solution of the optimal control problem of the linearized

system corresponding to (5.1). The equation (5.21) is the classical ARE introduced
in chapter 4.

5.4.2 Second order

The calculation of 2P from (5.19) is given by the cancellation of the coefficients of
3x . We obtain

       1 1 1 1
11 10 10 11 20 10 10 20 0T T T T T T T Tvec V R V vec V R V vec V R V vec V R V        (5.22)

We have 20 2 0
TV P G and using Theorem 3.9, given in chapter 3, (5.20) will be

transformed into

       3 2 3 2

1 1
10 2 10 11 0T T T T

n n n n n n
I U vec V R N H I U vec V R V 

 
     (5.23)

Since  3 2 0
n n n

I U


  (refer to Theorem 3..18 in chapter 3) and by the linearity

of the  .vec operator (for the matrices inside has the same dimensions), the

equation (5.23) becomes

       
     

     
     

1 2 2 1 1 2 2 1

1 1
1 2 2 1

1 1 1
2 10 1 11 1 20

1 1 1
10 2 11 1 20 1

T T T T T T T T

T T T T T T

T T T T T T T T T

T T T T T T

vec F P vec F P vec P F vec P F

vec H Q NR N H vec H Q NR N H

vec H NR V vec H NR V vec H NR V

vec V R N H vec V R N H vec V R N H

 

  

  

  

   

  

  

       
    
   
       

3 2 3 2

3 2

3 2

3 2 3 2

1 2 1 2

1
1 2

1
1 11

1 1
1 0 2 10 0 2

T T T T

n n n n n n

T T T

n n n

T T T

n n n

T T T T T

n n n n n n

I U vec F P I U vec P F

I U vec H Q NR N H

I U vec H NR V

I U vec H NR G P I U vec V R G P
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 1 1 1 1
1 2 1 2 1 2 1 11 10 2 10 11
T T T T T T T TP F F P H Q NR N H H NR V V R N H V R V        

1 1
1 0 2 10 0 2 0T T TH NR G P V R G P    (5.24)

If we put the terms involving 2P in one side and the other known terms in the other

side, this will lead to

   1 1 1 1
1 0 10 0 1 2 1 2 1 2 10 2
T T T T T T T TH NR G V R G F P H Q NR N H P F V R N H        

1 1
1 11 10 11
T T TH NR V V R V   (5.25)

If we note

1 1
2 1 0 10 0 1

T T T TH NR G V R G F   F (5.26)

 1 1 1 1
2 1 2 1 2 10 2 1 11 10 11

T T T T T T TH Q NR N H P F V R N H H NR V V R V        H (5.27)

Then, the equation (5.25) will be

2 2 2P F H (5.28)

Hence, 2P can be calculated as

1
2 2 2P F H (5.29)

In fact, note that 1P is solution of the ARE (5.21). Using Theorem 4.3 in chapter 4

and noting  1
1 1
T TH Q NR N H is symmetric non-negative definite, assume

 1 0,F G is stabilizable and   1 1
1 0 1 1 1,T T TF G R N H H Q NR N H   is detectable,

then  1
1 0 0 1 1

T TF G R G P N H  is Hurwitz. Thus,  1
1 0 0 1 1

T TF G R G P N H  is a

regular matrix and its inverse exists.
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5.4.3 General order

In the general case, to calculate pP , *p , we need to isolate the coefficients of
1px  in (5.19). By the cancellation of the coefficients of 1px  in (5.19), we obtain

      1

1 1 1 1 1 1

1 1 1

p p p p p p
T T T T

i j i j a b
i j i j i j

i j p i j p i j p

vec P F vec F P vec H Q NR N H

     

        

    
  

(5.30)

that is,

      1
1 1 1

1 1 1

p p p
T T T T

i p i i p i i p i
i i i

vec P F vec F P vec H Q NR N H
     

  

    

(5.31)

By isolating all the terms in pP from (5.31) and noting that 0 0
T

p pV P G , we have

   
1 1

1 1

1 0 1 1 0 1

1 1

p p p p p p
T T T

ij k k ij
i j k i j k

i j k p i j k p

vec V R N H vec H NR V
 

 

     

       

  
 

 
1 1

1

1 1 0 1

1

0
p p p p

T
ij dc

i d j c

i j d c p

vec V R V
 



   

    

 


   
1 1

1 1
1 1

1 0 1 0

1 1

p p p p
T T T

ij p i j p i j ij
i j i j

i j p i j p

vec V R N H vec H NR V
 

 
     

   

     

  
 

 
1

1

, 1 , 0

1

0
p p

T
ij dc

i d j c

i j d c p

vec V R V
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(5.32)

If we group all the terms that of pP in one side, and all the other terms in ( 1pP 

and below) in the other side, we obtain

   
1 1 1 1

1 1
1

1 1 , 1 , 0

1 1

p p p p
T T T
p i j ij ij dc

i j i d j c

i j p i j c d p

vec H NR V vec V R V
   

 
  

   

       

   
 

(5.33)

       

      

 

1

1 1 1 1
1 2

1 1
1 1 1

1 0 1 1
1 1 0

1

1 1
1 1

1 0 1
1 0

1

p p
T T T T
p i p i p i p i

i i

p p p
T T T T T
i p i p ij p i j

i i j

i j p

p p
T T T

p p i j i
i j

i j p

vec P F vec P F vec F P vec F P

vec H Q NR N H vec P G R N H vec V R N H

vec H NR G P vec H NR V



   
 

 
  

    
  

  

 
 

  
 

  

  

   

 

 

 






  1 1

0 10 10 0( ) ( )T T T T
j p pvec P G R V vec V R G P  

 
1 1

1

, 1 , 0

1

0
p p

T
ij dc

i d j c

i j p

vec V R V
 



 

  

  


       

   

    

1 1
1 1 0 1 1 0

1
1 1

0 10 10 0 1 1
1 2

1 1
1 1

1 1
1 1 0

1

( ) ( )

T T T T T T
p p p p

p p
T T T T T
p p i p i i p i

i i

p p p
T T T
i p i ij p i j

i i j

i j p

vec P F vec F P vec P G R N H vec H NR G P

vec P G R V vec V R G P vec P F vec F P

vec H Q NR N H vec V R N H
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We note

      
1

1
1 1 1

1 1 2

p p p
T T T T

p i p i i p i i p i
i i i

vec H Q NR N H vec P F vec F P



     

  

      H

(5.34)

Using Theorem 3.9, given in chapter 3, we can write

   1 1p

T T
p pn n

vec P F U vec F P


 (5.35)

 1 1
0 1 1 0( )p

T T T T
p pn n

vec P G R N H U vec H NR G P 


 (5.36)

 1 1
0 10 10 0( ) p

T T T
p pn n

vec P G R V U vec V R G P 


 (5.37)

By replacing (5.34), (5.35), (5.36) and (5.37) in (5.33), we write

    1

1 1
1 1 0 10 0( ) ( )p p

T T T T
p p p pn n n

I U vec F P vec H NR G P vec V R G P
 


   H (5.38)

Using Theorem 3.10, given in chapter 3, we have

     1 1p

T T
p pn

vec F P I F vec P  (5.39)

     1 1
1 0 1 0p

T T T T
p pn

vec H NR G P I H NR G vec P   (5.40)

     1 1
10 0 10 0p

T T
p pn

vec V R G P I V R G vec P   (5.41)

Replacing (5.39), (5.40) and (5.41) in (5.38) will lead to

   
1 1 1 1

1 1
1 1

1 0 1 0

1 1

p p p p
T T T

ij p i j p i j ij
i j i j

i j p i j p

vec V R N H vec H NR V
   

 
     

   

     

  
 

 
1 1

1

, 1 , 0

1

p p
T

ij dc
i d j c

i j c d p

vec V R V
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          1

1 1
1 1 0 10 0p p p p p

T T T T
p pn n n n n n

I U I F I H NR G I V R G vec P
 


      H (5.42)

Using the distributivity property of the KP, we write

      1

1 1
1 1 0 1 0 0p p p

T T T T T
p pn n n n

I U I F H NR G P G R G vec P
 


    H (5.43)

If we note

    1

1 1
1 1 0 1 0 0p p p

T T T T T
p n n n n

I U I F H NR G P G R G
 


    F (5.44)

Then, the equation (5.43) will be

( )p p pvec P F H (5.45)

Note from Theorem 4.3, in chapter 4, 1 1
1 1 0 1 0 0
T T T T TF H NR G P G R G   is regular.

The matrix  1p pn n n
I U 
 is regular for p even and singular for p odd (refer to

chapter 3). So, to calculate pP , two cases of calculus arise.

5.4.3.1 p even

Noting from Theorem 3.18 in chapter 3, that the matrix  1p pn n n
I U 
 is regular

for p even, then pF is regular. Hence, 1
p
F exist. From the equation (5.45), we

can write

1( )p p pvec P F H (5.46)

Since all terms of pH and 1
p
F are known, it’s easy to calculate ( )pvec P and

then deduce pP .

5.4.3.2 p odd

To overcome the problem of singularity, Rotella and Tanguy [3] introduce the so-

called non-redundant j -power jx of a vector x as defined in Definition 3.6 in

chapter 3. Noting that j j
jx T x  and j j

jx T x where jT is a transformation
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matrix and jT  its pseudo inverse given in chapter 3, the equation (5.24) can be

written in terms of jx . Then, the coefficients of 1px  are given in (5.38) but

multiplied by 1
T
pT  on the left side, i.e.,

(5.47)

By the linearity of the  .vec operator and using 10 1 0
TV P G , we have

    1

1 1
1 1 1 0 1 0 0 1p p

T T T T T T T
p p p pn n n

T I U vec F H NR G P G R G P T
 

 
    H (5.48)

Also, we write

p p pP P T   (5.49)

Injecting the equation (5.49) in (5.48) leads to

(5.50)

By using Theorem 3.10 given in chapter 3, (5.54) will be

(5.51)

By applying again Theorem 3.10, given in chapter 3, (5.51) will be

(5.52)

If we note

  11 p p

T T
p p p nn n n

T I U T I


 
  F (5.53)

    1

1 1
1 1 1 0 10 0 1( ) ( )p p

T T T T T T
p p p p p pn n n

T I U vec F P vec H NR G P vec V R G P T
 

 
    H

    1

1 1
1 1 1 0 1 0 0p p

T T T T T T
p p pn n n

T I U vec F H NR G P G R G P T
  

 
   

1
T
p pT  H

     1

1 1
1 1 1 0 1 0 0p p

T T T T T T T
p p n pn n n

T I U T I vec F H NR G P G R G P
  

 
    

1
T
p pT  H

     1

1 1
1 1 1 0 1 0 0p p

p

T T T T T T T
p p nn n n

T I U T I I F H NR G P G R G
  

 
    

  1
T

p p pvec P T  H
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  1 1
1 1 0 1 0 0p

T T T T T
p p I F H NR G P G R G

    F F (5.54)

1
T

p p pT H H (5.55)

Then, (5.52) will be written

 p p pvec P   F H (5.56)

The matrix pF is a rectangular matrix, of 1p  rows and . pn columns, which

has the property of being of full rank. Note that p is the binomial coefficient as

defined in chapter 3. If we note p
F the Moore-Penrose Pseudo-Inverse of pF ,

i.e.,

 T T
p p p p
 F F F F (5.57)

Hence, (5.56) becomes

    1 1
1 1 0 1 0 0p

T T T T T
p p pI F H NR G P G R G vec P

      F H (5.58)

Since the matrix   1 1
1 1 0 1 0 0p

T T T T TI F H NR G P G R G
    is regular, it can be

inverted and hence  pvec P can be calculated. Once we have pP , we can easily

calculate pP through (5.49).

5.5 Calculus of the feedback control

By substituting (5.7), (5.9) and (5.10) into (5.5), we write

 * 1

1 0 1

g ph
i j T kT T

i n j k
i j k

u R N H x I x G P x

  

   
      

    
   (5.59)

that is,
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(5.60)

Applying Lemmas 3.2 and 3.3, introduced in chapter 3, we obtain

  * 1 1

1 1 0

i j

p gh
i i jT T T

i i jn m
i i j

u R N H x R mat vec P G x
 


  

    (5.61)

Hence, we can write

*

1

k
k

k

u u x


 (5.62)

where

  
1

1

1 0

t

k k
T T T

k k i jn m
i j

i j k

u R N H mat vec P G





 

 

 
 

   
 
  




(5.63)

or equivalently,

1
1

1 0

k k
T T

k k ij
i j

i j k

u R N H V




 

 

 
 

   
 
  




(5.64)

For the design of the suboptimal control based on the KP introduced above, as
given by Rotella and Tanguy [3], the stability of the closed loop system is not
ensured and not treated. Khayati and Benabdelkader [57] extend this work to a new
approach based on the Lyapunov Function to design a suboptimal control which
ensures the stability within an interval of attraction. This new approach will be
presented and discussed in chapter 6.

 * 1 1

1 1 0

p gh
i j T iT T

i n j i
i i j

u R N H x R I x G Px 
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5.6 Application to nonlinear scalar models

Example 5.1: Consider the tutorial example discussed in [3] defined by

 21.4 0.5 0.5 2.5x x x x u      (5.65)

where x and u are the state and the control input, respectively. The cost
functional to be optimized is defined by

 2 2

0

1
2.4 2.5

2
J x u dt



  (5.66)

Referring to [3] the “exact” optimal control is

 
2 2

* 7 2.5 156.25 25 55

12.5 0.2

x x x x x
u

x

   



(5.67)

This complex control function is hardly practical and unbounded for 0.2x  . The
design of the sub-optimal control till the 2nd order leads to the computation of the

iP and the iu as follows

  20.8324 0.047P x x x  (5.68)

20.1664 0.8418u x x   (5.69)

The design and simulation of the exact and sub-optimal control law of the 2nd order

leads to the exact cost *J and the suboptimal cost J . The results are presented in

Table 5.1 for different initial conditions,  0x , in terms of relative cost errors

 

*

*J n

J J

J



 in %, and different truncation orders 1n  (i.e., linear control), and

2n  .

The results show that the cost errors relative to the exact design are much higher
with the linear design than the second and third order designs. In fact, the linear
approximation of the state feedback does not take into account the nonlinearities.
Also, Figures 5.1 and 5.2 show the evolution of the state variable x and the control
variable u vs. time for an initial condition  0 6x  .
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Table 5.1 Exact cost and Sub-optimal costs errors vs. Initial condition for the scalar example (5.65)

 0x *J  1J  2J

1.0 0.3163 26.84 1.45

2.0 0.9112 70.01 13.28

3.0 1.5857 112.52 32.55

4.0 2.2954 152.68 55.07

5.0 3.0250 190.40 79.14

6.0 3.7673 225.85 104.06

7.0 4.5184 259.23 129.48

8.0 5.2759 290.74 155.21

9.0 6.0385 320.53 181.14

10.0 6.8049 348.77 207.22

Figure 5.1 State evolution for scalar example (5.65)
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The simulations of the state evolution for both controllers show that the exact and
the sub-optimal controllers present almost the same behaviour.

Figure 5.2 Input signal evolution for scalar example (5.65)

The simulations of the control inputs show again that the exact and the sub-optimal
controllers present the same behaviour.

Moreover, note that the simulation of the sub-optimal controls for the initial
condition  0 0.2x  , show the following costs  1 0.01652nJ   ,  2 0.01629nJ  

whereas the exact optimal control fails to stabilize the system for this particular
initial condition.

Example 5.2: Consider the tutorial example discussed in [58] defined by

3x x x u   (5.70)

where x and u are the state and the control input, respectively. The cost
function to be optimized is defined by
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 2 2

0

1

2
J x u dt



  (5.71)

From (5.10), we obtain

 *u P x  (5.72)

where  P x is solution of the state dependent equation

     2 3 22 0P x x x P x x    (5.73)

An exact solution of (5.73) is computed using MAPLE software as

     22 4 2 2 21 2 2 1 1 1P x x x x x x x x           
 

(5.74)

Hence, using (5.72), the “exact” optimal control is

 * 2 3 21 2 2u x x x x     (5.75)

The design of the sub-optimal control till the 3rd order leads to the following
expression

  31 2
1 2

2
u x x

 
      

 
(5.76)

The design and simulation of the discussed (exact and sub-optimal) techniques lead
to the exact cost *J and the suboptimal cost J of 1st and 3rd order of truncation.

The results are presented in Table 5.2 for different initial conditions,  0x , in

terms of relative cost errors,  

*

*J n

J J

J



 in %.

The results of the different simulations show that below an initial condition of 1.2,
the cost errors w.r.t. the exact design are higher with the linear (1st order) controller
than those of 3rd order controller. The 3rd order design represents a good estimation
of the exact controller since the errors are less than 5%. Figures 5.3 and 5.4  shown
below are respectively the evolution in time of the state variable x and the input
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control u for the three different controllers (exact, linear and 3rd order) with an
initial condition of 1.

Table 5.2 Exact cost and sub-optimal cost error vs. Initial condition for the scalar example (5.70)

 0x *J & 2ndLin


3 & 4rd th

0.4 0.18 0.38 0

0.6 0.38 1.65 0

0.8 0.61 4.87 0.05

1.0 0.82 10.81 0.56

1.2 1.00 19.66 5.89

1.4 1.14 30.29 115.98

Figure 5.3 State evolution for the scalar example (5.70)
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Figure 5.4 Input signal evolution for the scalar example (5.70)

We note from Figures 5.3 and 5.4 that the 3rd order design shows a better curve
fitting w.r.t. the exact design than the linear one in terms of both the state variable
and input control. This improvement comes from the fact that we have a better
function estimation by the introduction of the nonlinearities in the estimation
process.

Example 5.3: Consider the scalar example defined by

2x x x u   (5.77)

where x and u are the state and the control input, respectively. The cost
function to be optimized is defined by

 2 2

0

1

2
J x u dt



  (5.78)

Note that the autonomous part of the dynamics (i.e., unforced system) is unstable.
from (5.10), the optimal control is

 *u P x  (5.79)
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where  P x is solution of the equation

     2 2 22 0P x x x P x x    (5.80)

The resolution of the equation (5.90) leads to

   22 2 2P x x x x x x     (5.81)

Hence, the “exact” optimal control is

 2* 2 2 2u x x x x x       
 

(5.82)

The design of the sub-optimal control of the 3rd order leads to

2 321 3
2

8 2
u x x x

     
 

(5.83)

The design and simulation of the proposed (exact and sub-optimal) techniques lead
to the exact cost *J and the suboptimal cost J . The results are presented in Table
5.3 for different initial conditions,  0x , in terms of the relative cost errors,

 

*

*J n

J J

J



 , in % with the selected truncation orders one, two and three.

The simulation results show that below an initial condition of 1.0 , the linear
controller works but with errors much higher than the nonlinear ones (of 2nd and 3rd

orders). For an initial condition higher than 1.0 , the linear controller cannot
stabilize the system, in contrast the nonlinear ones are stabilizing ones, with the
advantage for the 3rd order controller having smaller relative errors. Figures 5.5 and
5.6 are respectively the evolution of the state variable x and the input control u
for the different controllers (exact, linear, 2nd order and 3rd order ones) for an initial
condition of 0.8.
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Table 5.3 Exact Cost and Sub-optimal costs errors vs. Initial condition for the scalar example (5.77)

 0x *J Lin
2nd

3rd

0.1 0.01 28.79 25.55 25.39

0.2 0.05 34.95 27.01 26.54

0.3 0.12 43.28 28.88 27.75

0.4 0.23 54.40 30.97 28.89

0.5 0.37 69.64 33.39 29.95

0.6 0.56 91.28 36.13 30.97

0.7 0.79 123.32 39.15 31.85

0.8 1.07 176.50 42.43 32.77

0.9 1.41 286.12 46.07 33.54

1.0 1.80 Unst. 49.91 34.14

1.1 2.26 Unst. 54.11 34.74

1.2 2.78 Unst. 58.62 35.29

1.3 3.37 Unst. 63.50 35.87

1.4 4.03 Unst. 68.70 36.33

1.5 4.77 Unst. 74.21 36.80

1.6 5.59 Unst. 80.11 37.27

1.7 6.49 Unst. 86.45 37.73

1.8 7.48 Unst. 93.10 38.22

1.9 8.57 Unst. 100.14 38.67

2.0 9.75 Unst. 107.64 39.18
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Figure 5.5 State evolution for the scalar example (5.77)

Figure 5.6 Input signal evolution for the scalar example (5.77)
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The simulations of the exact, linear and ( 2nd and 3rd order) nonlinear controllers,
with an initial condition of 0.8, show that for both the state and input control
responses, the best approximation of the exact controller behaviour is given by the
nonlinear ones ( 2nd and 3rd order controllers) with a slightly better advantage for
the 3rd order one.

5.7 Conclusion

In this chapter, we presented the optimal control of polynomial systems using the
KP method. In section 5.2, we stated the problem which leads to the equation to be
solved. In section 5.3, we made an approximation of the unknown terms into a
polynomial form in terms of the KP, which leads to the resolution of uncoupled
linear equations. The resolution of these equations is presented in section 5.4
leading to the calculus of the feedback optimal control law. In section 5.5, we
showed the application of this method to three scalar examples. Despite the fact
that this method enlarges the interval of attraction with higher order of truncation
in the equation of approximation, it does not guarantee automatically the stability
of the system. This stability will be guaranteed by the new method so-called KP-
Lyapunov-function-based control that will be presented in the next chapter.
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6 Optimal control using
Kronecker product Lyapunov
function based technique

6.1 Introduction

In chapter 5, we presented the optimal control method using the KP-based
polynomial expansion, which has the advantage of a larger domain of attraction
compared with the linear techniques. But, despite this advantage, this method has a
limitation. In fact, it does not guarantee the stability of the closed loop system since
the computation of the cost function  V x does not satisfy the conditions of the

stability. Alternatively, we will propose a new method by choosing  V x in a

quadratic form to satisfy the conditions of a Lyapunov candidate function and then
guaranteeing the global asymptotical stability (GAS) in the sense of Lyapunov,
eventually [57].

This new method will be the aim of chapter 6. After introducing this chapter, we
will state, in section 6.2, the optimal control problem. In section 6.3, we will
transform the problem into a system of uncoupled linear equations and we will
choose the cost function  V x in appropriate form to ensure the GAS. The

resolution of these linear equations for a given order of truncation will be showed
in section 6.4. For each order, we will present the algorithm to calculate the
different gain matrices. Based on the calculation of these gains, we will present in
section 6.5 the state feedback design which leads to the sub-optimal control law
using the KP-Lyapunov-Function (LF) technique. In section 6.6, we will check the
stability of the closed loop system. In section 6.7, we will illustrate the
improvement in terms of control performance through two nonlinear plants: a
scalar example and the F8 fighter model. For both systems, we will run the
simulations and compare the results using three techniques Linear, KP, KP-LF
based ones. Finally in the conclusion, we will summarize the sections of this
chapter and the main contributions in terms of stability framework.
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6.2 Statement of the problem

Let’s consider the nonlinear dynamics

             
1

m

k k
k

x t F x G x u t F x G x u t


      (6.1)

where t is the time,   nx t  the state vector,

     1 ....
T m

mu t u t u t      is the input vector.    . , .kF G , for

1, ...,k m , are analytic vector fields from n into n . Note that

     1 .... n m
mG x G x G x      . We write

 
1

j
j

j

F x F x


  (6.2)

 
0

j
k kj

j

G x G x


  1,...,k m  (6.3)

 
0

( ) j
j m

j

G x G I x


  (6.4)

with
jn n

jF  , 1,...,
jn n

kjG k m   and 1 ....
jn mn

j j mjG G G      . Let

    qz t H x  be a vector function of the states given by

 
1

j
j

j

H x H x


  (6.5)

The problem of optimal control is to design a state feedback which minimizes the
continuous time cost functional

       
0

1

2
T T

J z t Qz t u t Ru t dt


    (6.6)

where Q is a non-negative definite matrix of q q and R is a positive definite

matrix of m m . We denote by  V x the optimal cost with an initial condition x
at t [42].

         1

2
T T

t

V x z Qz u Ru d    


     (6.7)
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where  arg minuu J  is the optimal control. As widely discussed in chapter 4,

the optimality conditions are given as follows [42]

     * 1 T

xu x R G x V x  (6.8)

                   1 0
T T T T T

x x x xH x QH x V x F x F x V x V x G x R G x V x    (6.9)

where  x

V
V x

x





denotes the derivative of  V x . . .w r t the state vector x .

6.3 Equation of approximation

Based on the optimality condition (6.8) and (6.9), the design of the optimal state
feedback that will be discussed later is proposed in polynomial form using the KP
tensor, the vec and mat notations [3-57]. This design is based on the determination
of the cost function  V x presented in a quadratic form. According to [5],  V x

would be expected to satisfy the conditions of any Lyapunov candidate function.
Let's consider the  V x in form

 
2

2

1

2
j T nT T

jj
jj n n

j

x
P I

V x x x P
P xI I






 
           

 

 
(6.10)

with  , 0TP P  in n n and jP ; 2j  ; constant matrices of
jn n .

Assuming that P is a symmetric positive definite matrix, and using the Cholesky
decomposition, it exists 1P in n n such that 1 1

TP P P . Then, by substituting

(6.10) in (6.9) and replacing P by 1 1
TP P , the equation (6.10) can be written as

  1 1
2 2 2 2

1 1

2 2 2 2
i T j i T jT T T T T

i j i j
i j i j

V x x P P x x P x x P x x P P x
 

   

      (6.11)
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If we note

 

1 1

1, 2

2, 1
ni j

j

P if i j

P I if i j

P if i j



  

  
  

(6.12)

Then  V x can be written as

(6.13)

Hence,  V x is written in a compact form as

     
1 1

1

2
i T jT

i j j i
i j

V x x P P x
 

  (6.14)

The equation of  V x given by (6.14), where  i jP is introduced in (6.12) will be

advantageous to solve the nonlinear equation (6.9) in xV . By applying the
derivative of the equation (6.13) . . .w r t x , we have

   
1 1

j T
iT

x j i i j
i j

V x
V P P x

x x 

 
 
  (6.15)

Referring to Lemma 3.1 introduced in chapter 3 to write

 1( )
j

jn
j nT

x
D I x

x


  


(6.16)

where ( )n
jD is the square j -differential Kronecker matrix of

j jn n introduced in

chapter 3. Thus, the expression (6.15) will be

     
1 ( )

1 1

j T in T T
x n j j i i j

i j

V I x D P P x
 



 

  (6.17)

             

1 1 1 1

1 1 2 1 1 2

1 1 1

2 2 2
i T j i T j i T jT T T

i j j i i j j i i j j i
i j i j i j

V x x P P x x P P x x P P x
     

    

   
2 2

1

2
i T jT

i j j i
i j

x P P x
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Applying Lemmas 3.2 and 3.3 introduced in chapter 3, to the expression

     
1 ( )j T in T T

n j j i i jI x D P P x leads to

              1

1 1( ) ( )
i j

j T i i jn T T T T n
n j n j nj i i j i j j i n n

I x D P P x I vec P P D vec I I x
     

     1

1( )
i j

i jT T n
ji j j in n

mat vec P P D x 
 


 (6.18)

We note

      1

1
( ) i j

i j

T T n n n
ij ji j j in n

V mat vec P P D
 

 



  (6.19)

Hence, the equation (6.17) will be

1

1 1

i j
x ij

i j

V V x  

 

 (6.20)

Injecting the equations (6.2), (6.4), (6.5) and (6.20) into (6.9) leads to

1 1

, , 1 , , 1 , 1

i j T k k T i j i T kT T T
ij k k ij i j

i j k i j k i j

x V F x x F V x x H QH x   

  

   

   1 11

, 1 0 , 1 0

0i j T k b T b cT T
ij k n n d bc

i j k b c d

x V G I x R I x G V x   

   

   
      

  
  (6.21)

By using Theorem 3.14 and Lemma 3.3, we have

     1 1

, , 1 , , 1 , 1

i j k i j k i jT T T T T T
ij k k ij i j

i j k i j k i j

vec V F x vec F V x vec H QH x      

  

   

     1 1

1 11

, 1 0 , 1 0

0i j k b c d

i j k b c dT T T T
ij k bc dn m n m

i j k b c d

mat vec V G x R x mat vec V G     
     

 
   

   
    

  
  (6.22)

If we note

   1

1

i j k

i j k

T T m n
ijk ij kn m

W mat vec V G
  

  



  (6.23)
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Hence, the equation (6.22) will be

     1 1

, , 1 , , 1 , 1

i j k i j k i jT T T T T T
ij k k ij i j

i j k i j k i j

vec V F x vec F V x vec H QH x      

  

   

  21

, , , 1 , 0

0i j k b c dT
ijk bcd

i j b c k d

vec W R W x      

 

   (6.24)

In order to obtain the optimal control *u , we have to find the polynomial  V x . In

other words, we have to calculate the different terms iP , *i . The terms iP are

obtained by cancelling the coefficients of
1ix  in (6.24). This procedure is the

subject of the following section.

6.4 Determination of iP

6.4.1 First order

The calculation of 1P from (6.24) is given by the cancellation of the coefficients of
2x . Noting that the first differential Kronecker matrix is given by ( )

1
n

nD I and

that 1 1
TP P P , we use (6.13), (6.19), (6.23), (6.24) and the mat notation to obtain

       1
1 1 1 1 0 0 0T T Tvec PF vec F P vec H QH vec PG R G P    (6.25)

Since the operator  .vec is linear w.r.t. the matrices of the same dimensions, the

equation (6.25) will be

1
1 1 1 1 0 0 0T T TPF F P H QH PG R G P    (6.26)

The equation (6.26) is the classical ARE and 1P given from 1 1
TP P P is the gain

matrix of the optimal linear controller for the linearized system.
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6.4.2 Second order

The calculation of 2P from (6.24) is given by the cancellation of the coefficients of
3x . We obtain

           21 1 12 1 11 2 1 21 1 12 2 11
T T T T T Tvec V F vec V F vec V F vec F V vec F V vec F V    

(6.27)

By using (6.13), (6.19) and (6.22), noting that ( )
1

n
nD I , and applying Theorem 3.9

, Theorem 3.10 and the mat notation given in chapter 3, the equation (6.27) will
be

(6.28)

In fact, we have

       
  
  

 
   

2

2

2

2

( )
21 1 1 12 1 1 2

2 1

2 1

2 1

1 2

T T n

n n

T
n nn n

T

n n

T

T T

n

vec V F vec mat vec P P D F

vec mat vec P I I F

vec mat vec P F

vec P F

F I vec P















    
   
   



 

   2 21 2
T

n n n
F I U vec P


  (6.29)

       1 1
1 2 2 1 210 110 120 110
T T T Tvec H QH vec H QH vec W R W vec W R W    

       1 1 1 1
111 110 110 210 110 120 110 111 0T T T Tvec W R W vec W R W vec W R W vec W R W       

          

        

          

      

2 2

2 2 2 2 2

2 2 2

2 2 2

( )
1 2 1 2 2 2

( )
1 2 1 2 2

1
2 2 1 2 1 0 0 2

1 1
0 0 2 0 0

T T n T
n nn n n

T T n T
nn n n n n n n n

T T T T

n n n n n

T T

n n n n n n

F I U vec P F I D I vec P vec PF

U F I U vec P U F I D I vec P

vec F P U vec H QH vec H QH PG R G I U vec P

U PG R G I U vec P PG R G I

 

 







  


 

 
 

    

    

    

       

        
2

2 2

( )
2 2

1 ( ) 1
0 0 2 2 1 0

n T
n

T n T
n nn n n

D I vec P

U PG R G I D I vec P vec PG I R G P



 




    

  2
1

1 0 0nn n
U vec PG I R G P
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2

2

2

2 2

2

( )
12 1 2 11 2 2 1

( )
2 2 1

( )
2 2 1

( )
1 2 2

( )
1 2 2

T T n

n n

n
nn n

n

n n

T n

n n n

T n

n

vec V F vec mat vec P P D F

vec mat vec I P D F

vec mat vec P D F

F I vec mat vec P D

F I vec P D

















    
   
   

    

 

    2
( )

1 2 2
T n T

nn
F I D I vec P   (6.30)

       
     

  

( )
2 11 2 11 1 1 1

2 1 1 1 1

2

T T T T n
n n

T T T
n n n

T T
n n

vec F V vec F mat vec P P D

vec F mat vec P P I

vec F mat vec P







    
    
   

 2
Tvec F P (6.31)

       
 
 
    

2

2

1 1
210 110 21 0 11 0

1
21 0 0 11

1
2 0 0

1
0 0 2

T T T T
n mn m

T T

T T

T T

n

vec W R W vec mat vec V G R mat vec V G

vec V G R G V

vec P G R G P

PG R G I vec P





 








   





 

    2 2
1

0 0 2
T

n n n
PG R G I U vec P 


  (6.32)

       
 
 

2
1 1

120 110 12 0 11 0

1
12 0 0 11

1
12 0 0

T T T T
n mn m

T T

T T

vec W R W vec mat vec V G R mat vec V G

vec V G R G V

vec V G R G P

 






   





     2
1 ( )

0 0 2 2
T n T

nn
PG R G I D I vec P    (6.33)
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and

       
     
   

      
    

     

   

2

2

2

2 2

2

1 1
111 110 11 1 11 0

1
11 1 11 0

1
1 0

1
0 1

1
0 1

1
0 1

1
1 0

T T T T
n mn m

TT T

n m

n m

T

n n m

T

n

T
n n

T
T

n

vec W R W vec mat vec V G R mat vec V G

vec mat vec V G R V G

vec mat vec PG R G P

PG R I vec mat vec PG

PG R I vec PG

PG R I I vec PG

vec PG PG R I

 

















   





 

 

  

 

   1
1 0nvec PG I R G P  (6.34)

The remaining terms of (6.27) are combined with (6.29) to (6.34) using Theorem
3.9 given in chapter 3. Then, we obtain

       

      
           

2 3 2 2

2

2 2 2

2 1 2

( )
1 2 2 2 1

1 1 ( )
0 0 2 0 0 2 2

T T

n n n n n n

T n T T
nn

T T n T
nn n n n

U I vec F P F I U vec P

F I D I vec P vec H QH

PG R G I U vec P PG R G I D I vec P





 

 

 


  

    

   

   1
0 1 0T T

nvec I PG R G P   
(6.35)

Based on Theorem 3.18, introduced in chapter 3, we notice that  2 3n n n
U I


 is

regular for any n . Then we have

          

      
2 2 2

2 2

( )
2 1 2 1 2 2

1
2 1 0 0 2

T T T n T
nn n n n

T T

n n n

vec F P F I U vec P F I D I vec P

vec H QH PG R G I U vec P

 








    

  

         2
1 ( ) 1

0 0 2 2 0 1 0T n T T T
n nn

PG R G I D I vec P vec I PG R G P       (6.36)
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Grouping all the terms containing  2vec P in one side and the rest (known terms)

in the other side leads to

   2
1

0 0 1 2 1 2
T T T

n
vec PG R G I PG H QH F P      (6.37)

Since  2
( ) ( )
2 3

n T n T
nn n

U D I D


     (use the definition of the differential matrix

shown in chapter 3), the equation (6.37) will be

       2
1 ( ) 1

1 0 0 3 2 2 1 0 2 1

TTT n T T
nn

F G R G P I D vec P vec F G I R G P P H QH              
(6.38)

We note

  2
1

2 1 0 0
T

n
F G R G P I    F (6.39)

and

   1
2 2 1 0 2 1

T
T

nvec F G I R G P P H QH       
H (6.40)

Hence, the equation (6.38) will be

 ( )
2 3 2 2

n TD vec P F H (6.41)

Since 0TP P  is solution of the ARE (6.26),  1
1 0 0

TF G R G P is regular. But,
( )
3

nD is singular, for any integer 2n  . We use the non-redundant vector power
notation, introduced in chapter 3, to write

2 2 2P PT (6.42)

where
 2
2

2

n
nT  with  

2
n stands for the binomial coefficient [22]. From (6.42),

we can write

2 2 2P PT   (6.43)

     2 2
1 ( )

1 0 0 2 2

TT n T
nn n n

F G R G P I U D I vec P
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where 2T  is the Moore-Penrose pseudo-inverse of 2T defined by

  1

2 2 2 2
T TT T T T

  (6.44)

thus, (6.41) becomes

 ( ) *
2 3 2 2 2

T n TD vec PT F H (6.45)

Using Theorem 3.7, we obtain

   ( )
2 3 2 2 2

T n T T
nD T I vec P   F H (6.46)

Define

  ( )
2 2 3

n
nT T I D  (6.47)

and 2T  its Moore-Penrose pseudo-inverse given by

  1

2 2 2 2
T TT T T T

  (6.48)

We obtain from (6.46)

  1
2 2 2 2

T Tvec P T   F H (6.49)

then, 2 2 2P PT   can be deduced.

6.4.3 General order

The calculation of pP from (6.24) is given by the cancellation of the coefficients of
1px 

. We obtain
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(6.50)

By replacing V and W by their values according to the definitions (6.19) and
(6.23), using (6.12) and applying Theorem 3.9, Theorem 3.10 and the mat
notation, introduced in chapter 3, the equation (6.50) will be

 
1 1 1 1 1 1

1

1 1 0 1 1 0

3

0
p p p p p p

T
ijk bcd

i j k b c d

i j k b c d p

vec W R W
     



     

      

 


(6.51)

         

       

1 1

1 1 1 1 1 1
1 1 1 1 1

1 2

1 1
1 1

1 1 10 110 1 0 110
1 1 1

2

p p p p p
T T T T T
i j p p ij k p

i j i j k

i j p i j k p

p p p
T T T T

p k ij p p
i j k

i j k p

vec H QH vec V F vec V F vec V F vec F V

vec F V vec F V vec W R W vec W R W

 

    

      

 
 

  

   

   

   

 



 



     
1 1 1 1 1 1

1 1 1
110 10 110 1 0

1 1 0 1 1 0

3

0
p p p p p p

T T T
p p ijk bcd

i j k b c d

i j k b c d p

vec W R W vec W R W vec W R W
     

  

     

      

   


          

     

    

( )
1 1

1 1

1

1 1

1
1 1 1

2

1 1
( )

1
1 1 1

2

p p p

p p p

p p

p p
T T T n T
i j p p n pn n n n

i j

i j p

p p p
T T

ij h pn n n n n
i j k

i j k p

p p p
T n T

p n pn n n
i j k

i j k p

vec H QH F I U vec P F I D I vec P

vec V F U F I U vec P

U F I D I vec P

 






 

  

 

 
  

   

 


  

   

    

  

   












 

   

     

   

     

1
0 0

1 ( )
0 0

1
0 0

1 ( )
0 0

p p

p

p p p

p p

T
k ij

TT
pn n n

TT n T
p n pn

TT
pn n n n n

TT n T
p n pn n n

vec F V

G R G P I U vec P

G R G P I D I vec P

U G R G P I U vec P

U G R G P I D I vec P
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In fact,

       
  
  

 
   

( )
1 1 1 11 1

1

1

1

1 2

p

p

p

p

T T n
p p pn n

T
p n nn n

T
pn n

T
p

T T

n

vec V F vec mat vec P P D F

vec mat vec P I I F

vec mat vec P F

vec P F

F I vec P















    
   
   



 

   1 p p

T
pn n n

F I U vec P


  (6.52)

       
  
  

    
   

( )
1 1 11 1

( )
1

( )
1

( )
1

( )
1

p

p

p

p p

p

T T n
p pp pn n

n
n p pn n

n
p pn n

T n
p pn n n

T n
p pn

vec V F vec mat vec P P D F

vec mat vec I P D F

vec mat vec P D F

F I vec mat vec P D

F I vec P D

















    
   
   

    

 

    ( )
1 p

T n T
p n pn

F I D I vec P   (6.53)

       
 
 

    
    

1 1
10 110 1 0 11 0

1
1 0 0 11

1
0 0

1
0 0

1
0 0

p

p

p p

T T T T
p p n mn m

T T
p

T T
p

T T
pn

T
pn n n

vec W R W vec mat vec V G R mat vec V G

vec V G R G V

vec P G R G P

PG R G I vec P

PG R G I U vec P







 











   





 

 

    1
0 0 p p

TT
pn n n

G R G P I U vec P


  (6.54)
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1 1
1 0 110 1 0 11 0

1
1 0 0 11

1
1 0 0

1 ( )
0 0

p

p

T T T T
p p n mn m

T T
p

T T
p

T n T
p n pn

vec W R W vec mat vec V G R mat vec V G

vec V G R G V

vec V G R G P

PG R G I D I vec P

 








   





  

     1 ( )
0 0 p

TT n T
p n pn

G R G P I D I vec P   (6.55)

Using Theorem 3.9, introduced in chapter 3, we write

   1 1 1 1p

T T
p pn n

vec F V U vec V F




   1p p p

T
pn n n n n

U F I U vec P
 

  (6.56)

   1 1 1 1p

T T
p pn n

vec F V U vec V F




    ( )
1p p

T n T
p n pn n n

U F I D I vec P


   (6.57)

   
    

1 1
110 10 10 110

1
0 0

p

p p p

T T
p pn n

T
pn n n n n

vec W R W U vec W R W

U PG R G I U vec P

 



 



 

(6.58)

   
     

1 1
110 1 0 1 0 110

1 ( )
0 0

p

p p

T T
p pn n

T n T
p n pn n n

vec W R W U vec W R W

U PG R G I D I vec P

 







  

     1 ( )
0 0p p

TT n T
p n pn n n

U G R G P I D I vec P


   (6.59)

Note that, by definition, ( ) ( )
1p

n T n T
p n pn n

D I U D 
   . In fact,

    1
0 0p p p

TT
pn n n n n

U G R G P I U vec P
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1
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( )
1

n T
pD  (6.60)

If we group all the unknown terms in pP in one side and all the known terms (the

remaining terms) in the other side, the equation (6.51) will be

     1
1 ( )

1 0 0 1p p p

TT n T
p pn n n n

I U F G R G P I D vec P



      

   
1 1

1 1 1 1 1

2 1

p p p p p
T T

k ij i j
i j k i j

i j k p i j p

vec F V vec H QH
 

    

      

  
 

(6.61)

We note

 1
1 0 0 p

T
P n

F G R G P I  F (6.62)

   
1 1 1 1 1 1 1 1

1

1 1 0 1 1 0 1 1 1

3 2

p p p p p p p p p
T T

ijk bcd ij k
i j k b c d i j k

i j k b c d p i j k p

vec W R W vec V F
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1 1

1 1 1 1 1

2 1

p p p p p
T T

k ij i j
i j k i j

i j k p i j p

vec F V vec H QH
 

    

      

  
 

(6.63)

Hence, the equation (6.61) will be

   1
( )

1p p

T n T
P p p Pn n n

I U D vec P 
 F H (6.64)

Note that T
PF is regular since  1

1 0 0
TF G R G P is a Hurwitz matrix [3]. ( )

1
n T

pD  is a

singular matrix for all integers 2p  .  1p pn n n
I U 
 is regular for p even and

singular for p odd. Using the non-redundant vector power notation introduced in
Definition 3.6 of chapter 3, we can write

p p pP P T (6.65)

where
 np
pn

pT  , with  n
p stands for the binomial coefficient [22]. From (6.65),

we can write

p p pP P T   (6.66)

where pT  is the Moore-Penrose pseudo-inverse of pT defined by

  1T T
p p p pT T T T

  (6.67)

Two cases arise depending on p even or odd.

6.4.3.1 p even

We combine (6.64) and (6.66)

   1
( )

1p p

T n T
P p p p Pn n n

I U D vec P T



 F H (6.68)

By applying Theorem 3.10, introduced in chapter 3, (6.68) will be

   
1 1 1 1 1 1 1 1

1

1 1 0 1 1 0 1 1 1

3 2

p p p p p p p p p
T T

P ijk bcd ij k
i j k b c d i j k

i j k b c d p i j k p

vec W R W vec V F
       



        

          

  
 

H



Optimal control using Kronecker product Lyapunov function based technique

106

     1
( )

1p p

T n T T
P p p n p Pn n n

I U D T I vec P



  F H (6.69)

Define

  ( )
1

n
p p n pT T I D

  (6.70)

Then, (6.69) will be

   1p p

T T
P p p Pn n n

I U T vec P 
 F H (6.71)

Given pT  the Moore-Penrose pseudo-inverse of pT

  1T T
p p p pT T T T

   (6.72)

Hence, considering the fact that  1p pn n n
I U 
 is regular for any p even (see

Theorem 3.18 in chapter 3), (6.52) will be

   1

11
p p

T T
p p P Pn n n

vec P T I U 

  


  F H (6.73)

If P , 2P , …, 1pP  are known, pP can be calculated from (6.73). Then, p p pP P T  

is deduced.

6.4.3.2 p odd

Note that  1p pn n n
I U 
 is singular for any integer 2n  and any integer p odd.

The equation (6.24) can be written in terms of jx . Then, the cancellation of the

coefficients of
1px 

lead to (6.44), but pre-multiplied by 1
T
pT  .

   1
( )

1 1 1p p

T T n T T
p P p p p Pn n n

T I U D vec P T  
 F H (6.74)

Define

1
T

P p PT H H (6.75)
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Then, (6.74) becomes

   1
( )

1 1p p

T T n T
p P p p Pn n n

T I U D vec P 
  F H (6.76)

Since p p pP P T   , by applying Theorem 3.10, in chapter 3, (6.57) will be

     1
( )

1 1p p

T T n T T
p P p p n p Pn n n

T I U D T I vec P


 
   F H (6.77)

Using   ( )
1

n
p p n pT T I D

  , we obtain

   11 p p

T T T
p P p p Pn n n

T I U T vec P 
  F H (6.78)

Define

 1 1p pP p P pn n n
T I U T 
 F F (6.79)

and P
F its Moore Penrose pseudo-inverse

  1T T
P P P P

    F F F F (6.80)

Hence, we obtain

  1 T
p P Pvec P     F H (6.81)

If P , 2P , …, 1pP  are known, pP can be calculated from (6.81). Then, p p pP P T  

is deduced.

6.5 State feedback design

Consider the nonlinear dynamics (6.1). The optimal control which minimizes the
functional cost (6.6) is obtained by the optimality conditions (6.8) and (6.9). We
propose to use the procedure introduced in sections 6.2 and 6.3 with an optimal

cost  V x in the form of (6.10). To solve the obtained nonlinear SDR equation

(6.9), transformed in the form of (6.23), it was shown that the cancellation of the
terms 2x , 3x , …, 1px  , ... leads to independent equations in P , 2P , …, pP ,...
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respectively. The optimal control can be introduced in an analytical form  *u x by

using (6.8), (6.19) and (6.22).

 *

1

p
p

p

u x K x


  (6.82)

with

1
1

1 1 0

1

p p p

p ijk
i j k

i j k p

K R W




  

   

 


(6.83)

Thus, the KP tensor used here allows a systematic determination of the optimal
state-feedback. In practice, we proceed by the design of an approximated
suboptimal cost  V x in form (6.10) which leads to the computation of finite

number of independent equations in P , 2P , …, pP . The obtained suboptimal

control will be simply truncated at maximum order of 2 1p g  , as follows

 
2 1

1

p g
p

p
p

u x K x
 



  (6.84)

where g is the order of the polynomial term  G x introduced in (6.4). Note that

the proposed nonlinear feedback (6.83) and (6.84) will not necessarily be
implemented with a great number of matrices pP to be so different from the linear

control approximation. It can be concluded that the state-feedback obtained with
only P (i.e., only the first order of the SDR equation) is more efficient than the
solution issued from the linearized system according to [3]. In fact, by computing
only P , we may obtain a polynomial sub-optimal control of order 1g  (where g

is the order of the term  G x in (6.1)), in particular, when g is non-zero. The

stability of the proposed sub-optimal state feedback (6.83) and (6.84) will be
discussed in a further work [57] by considering the approximated cost function

 V x as a Lyapunov candidate function.

6.6 Stability discussion

In this section, we discuss thoroughly the stability of the closed loop system in

large by considering the analytic expression of  V x given by (6.10) as a

Lyapunov candidate function. In one hand, using (6.10) and (6.11), we write
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2

2
2 2 2 2

2

2

... ...
T T

j
T T T

j
jT

T T T j
j j j j

xP P P

P P P P P x

V x x x x

P P P P P x

 




  
  
  
  
  
  
  

  

 
 

    
 

    

(6.85)

2, ,..., ,...jP P P are calculated using (6.26), (6.73),(6.81), and are independent of

 . If

2

2 2 2 2

2

0

j
T T T

j

T T T
j j j j

P P P

P P P P P

P P P P P

 




 
 
 
 
 
 
 
 

 
 

   
 

   

> (6.86)

then,   0, 0V x x > . Note that from (6.10) we obtain   0V x  if
2TP P I  . In the other hand, the time derivative of  V x along the trajectories

of the closed loop system (6.1) with the optimal control , given by (6.82), is

[5]

(6.87)

Noting that and , then [5].

Consequently, if 2P I holds, then the optimal state-feedback control (6.1)-
(6.9) is GAS. The stability analysis of the closed-loop sub-optimal control is
discussed in details in [57] in terms of LMI feasibility problems including the

 *u x

   
TV

V t x t
x


 


 

          1T T
x xV x F x G x R G x V x  

           11 1

2 2
T T T

x xH x QH x V x G x R G x V x  

       * *1 1

2 2
T T

H x QH x u x Ru x  

0TQ Q  0TR R    0, 0V t x  <
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estimation of the domain of attraction of the designed control. Such LMI problems
can be solved numerically by using any interior point optimization method
implemented in MATLAB using the LMI control toolbox (see [57] and references
cited therein).

6.7 Numerical applications

Example 6.1 (Scalar Example): Consider the following dynamic model (same as
Example 5.1 of chapter 5) defined by the dynamics

(6.88)

where and are the state and the control input, respectively. We recall
the "exact" optimal controller and the order KP-based controller

(6.89)

(6.90)

By applying the algorithm proposed in this chapter using (6.12), (6.19), (6.23),
(6.26), (6.73), (6.81), (6.83) and (6.84), we design a new Lyapunov-based KP
controller. The LF based controller of order is given by

(6.91)

Obviously, we can see that the linear controller designed from the linearized
system is

(6.92)

The design and the simulation of the proposed four (Exact, Linear, KP and LF)
techniques lead to the suboptimal costs , , and . The results are

presented in Table 6.1 for different initial conditions, , in terms of the cost

value for the exact design, and the relative cost errors in %,

for the Linear design, for the KP

 21.4 0.5 0.5 2.5x x x x u     

x u
3rd

 
2 27 2.5 156.25 25 55

12.5 0.2exact

x x x x x
u

x

   




2 30.1664 0.8418 0.0719KPu x x x   

3rd

2 30.1664 0.8355 0.1018LFu x x x   

0.1664Linu x 

exactJ LinJ KPJ LFJ

 0x

exactJ

Lin Exact
Lin

Exact

J J

J



  

KP Exact
KP n

Exact

J J

J



 thn
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design and for the LF design. The selected truncation

orders are and respectively.

Table 6.1 Exact cost and Sub-optimal costs Errors vs. Initial condition for the scalar example (6.88)

The results of the different simulations show that the cost errors are much lower
with the LF-KP design than the other methods (Linear and KP), (see and

Columns in Table 6.1). Furthermore, for the performance of the order LF

design is better than those of the second order. The errors decrease and we get a
satisfactory improvement in terms of cost estimation, curve fitting of the state
variable w.r.t. to the “exact” solution and input magnitude. This improvement is
supported also by Figures 6.1 and 6.2 which show the process variable and the

input variable evolutions for an initial condition with the different

techniques of control (“exact” design, Linear design, KP design of
and LF design of ).

 
LF Exact

LF n
Exact

J J

J



 thn

2n  3n 

(2)LF

(3)LF 3rd

x

u  0 6.0x 
2 3n and n 

2 3n and n 

1.0 0.3163 26.84 1.45 0.13 2.37 0.03

2.0 0.9112 70.01 13.28 1.02 20.02 0.02

3.0 1.5857 112.52 32.55 2.19 49.37 0.32

4.0 2.2954 152.68 55.07 3.37 85.40 1.49

5.0 3.0250 190.40 79.14 4.47 126.17 2.10

6.0 3.7673 225.85 104.06 5.49 170.89 1.73

7.0 4.5184 259.23 129.48 6.43 215.19 1.36

8.0 5.2759 290.74 155.21 7.29 270.84 1.32

9.0 6.0385 320.53 181.14 8.09 325.74 1.38

10.0 6.8049 348.77 207.22 8.84 383.83 1.64

 0x exactJ Lin  2KP  2LF  3KP  3LF
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The simulation results for state evolution shows that best fitting w.r.t. the exact
controller is given by the order LF one, which presents the best predicted
behaviour of the exact controller.

In terms of input control, the best fitting is guaranteed by the LF 2nd order
controller, presenting almost the same behaviour as the exact controller.

Fig 6.1 State evolution for different controllers of the scalar example (6.88)

3rd
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Fig 6.2 Input control evolution for different controllers of the scalar example (6.88)

Example 6.2 (F8 Fighter Model): Consider the F8 fighter dynamics model [59]

2 2 2 3
1 1 3 1 3 1 2 1 3 10.88 0.09 0.47 0.02 3.85x x x x x x x x x x       

2 2 3
1 10.21 0.28 0.47 0.63u x u x u u    (6.93)

2 3x x (6.94)

2 3 2
3 1 3 1 1 14.21 0.40 0.47 3.56 20.97 6.26x x x x x u x u      

2 3
146 61.40x u u  (6.95)

with the optimal cost function

(6.96)

where is the state vector, and

. Note that the terms involving nonlinearities in with small effect on the
dynamics are eliminated, as the approaches discussed here cannot account for
nonlinear control terms [59], but are taken into consideration in the simulated

 
0

1

2
T TJ x Qx u Ru dt



 

 1 2 3

T
x x x x  0.25, 0.25, 0.25Q diag

1R  u
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model dynamics. The simulations have been applied with the proposed LF-based
technique as well as the linear control, Lin, where the model is linearized about the
origin, the KP-based design introduced in [3] and an SDR-equation-pointwise-
based technique [59] (referred to as pw in the following). The sub-optimal cost
is evaluated with different initial conditions in terms of angle of attack, that is

in , but with the same initial conditions , for the

different methods. Table 6.2 shows the cost performance errors in

; LF- (with and ), KP- (with and ) and Lin-based
design costs are compared to the pw-technique one. A positive value corresponds
to an improvement (i.e., a lower cost) with the given method compared to the pw
one; meanwhile the negative value means a higher cost. The LF design discussed
in this chapter exhibits the best results in terms of cost performance.

Table 6.2 Cost index and Sub-optimal costs errors vs. initial conditions for the F8 fighter

Unstable Unstable Unstable

Unstable Unstable Unstable

Unstable Unstable Unstable

J 

 1 0x degree    2 30 0 0x x 

pw

pw
J

J J

J



 

% 2p  3p  2p  3p 

pwJ

 1 0x pwJ  
LF

2J p   
LF

3J p   
KP

2J p   
KP

3J p 
Lin
J

6 0.0016 20.2 18.6 0.6 0.8 0.0

12 0.0071 23.8 22.8 1.6 2.6 0.2

17 0.0196 30.9 30.3 3.7 6.8 0.7

23 0.0519 46.3 45.7 13.3 31.7 4.3

29 0.1056 48.3 46.3

34 0.4081 71.4 65.6

40 1.6170 58.5 50.9
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Figure. 6.3 Angle of attack evolution for different controllers of the F8 fighter

Figure. 6.4. Input control evolution for different controllers of the F8 fighter



Optimal control using Kronecker product Lyapunov function based technique

116

Figures 6.3 and 6.4 show the angle of attack and the input control simulation
results, obtained with the initial condition . Simulations of LF-based

design, with order of truncation of and , overlap almost during all the
time. They show very similar results in terms of transient behaviour and stability.
Furthermore, the proposed LF design (with both orders and which
remain relatively small) exhibits a significant added-value in terms of cost
estimation and domain of attraction interval performances compared to the other
methods.

6.8 Conclusion

In this chapter, we presented the method of optimal control using the KP-LF-based
method. After introducing this chapter in section 6.1, we stated in section 6.2 the
problem of optimal control. The main contributions in terms of stability framework
is shown in section 6.3, in which we presented the equations of approximations
which transform the main equation to uncoupled linear equations and by choosing
the cost function in a quadratic form satisfying the Lyapunov candidate function
conditions to guarantee the GAS. The resolution of the algorithms of theses
equations was presented in section 6.4, in which we calculated the different gain
matrices for different orders of truncation using the KP algebra. In section 6.5, we
presented the corresponding state feedback optimal control law. In section 6.6, we
checked roughly the stability of the closed loop system. In chapter 6.7, we
illustrated the improvement in terms of control performance of the new technique
through two nonlinear plants. Finally, in section 6.8, we conclude this chapter.

 1 0 23x  

2p  3p 

2p  3p 
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7 Application to a 2-DOF
helicopter model based setup –
simulations and experiments

7.1 Introduction

The main objective of this chapter is to apply the proposed design method to a 2-
DOF helicopter-model-based setup in order to test its efficiency. In the first
section, we introduce this chapter. In section 7.2, we give a brief description of the
system. In the third section, we present the model dynamics. Then, in section 7.4,
we present the design method of the proposed linear and nonlinear controllers of
different orders of truncations. In section 7.5, we present the simulation results of
the proposed controllers. In section 7.6, we present the experimental results for the
same controllers. Finally, we conclude this chapter in section 7.7. Note that further
simulations and experimental results have been completed in Appendices E and F
respectively for different desired trajectories.

7.2 Description of the system

The 2-DOF helicopter model, as shown in Figure 7.1 and designed by Quanser Inc,
consists of a helicopter model mounted on a fixed base with two propellers that are
driven by DC motors. The front propeller controls the elevation of the helicopter
nose about the pitch axis and the back propeller controls the side to side motions of
the helicopter about the yaw axis. The pitch and yaw angles are measured using
high resolution encoders [61]. The helicopter has two DC motors: the yaw motor,
actuating the back propeller and pitch motor rotating the front propeller.
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Figure 7.1 Quanser 2-DOF helicopter set up

The helicopter-based setup has two encoders measuring the pitch angle and the
yaw angle [61]. The yaw motor has an armature resistance of and a current
torque constant of . The larger pitch motor has an armature resistance

of and a current torque constant of . The pitch motor/propeller

has an identified thrust force constant of and the yaw motor/propeller

has a thrust force constant of . Table 7.1 summarizes the main electrical
and mechanical proprieties of the 2-DOF helicopter system, as depicted from [61].

1.6
0.0109 Nm A

0.83 0.0182 Nm A

1.04 N V

0.43N V
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Table 7.1 Electrical and Mechanical proprieties of the 2-DOF set up [61]

Symbol Description Value Unit

Jeq,p Total moment of inertia about pitch axis 0.0384 Kg.m2

Jeq,y Total moment of inertia about pitch axis 0.0432 Kg.m2

mhel Total moving mass of helicopter 1.3872 Kg

lcm Center of mass length along helicopter body from pitch axis 0.0186 M

Bp Equivalent viscous damping about pitch axis 0.800 N/V

By Equivalent viscous damping about yaw axis 0.318 N/V

Kpp Thrust torque constant acting on pitch axis from pitch /propeller 0.204 N.m/V

Kpy Thrust torque constant acting on pitch axis from yaw /propeller 0.0068 N.m/V

Kyy Thrust torque constant acting on yaw axis from yaw /propeller 0.072 N.m/V

Kyp Thrust torque constant acting on yaw axis from pitch /propeller 0.0219 N.m/V

7.3 Dynamics of the system

7.3.1 Model of the 2-DOF helicopter and state space representation

The 2-DOF helicopter pivots about the pitch axis by angle and about the yaw
axis by angle . As shown in Figure 7.2, the pitch is defined positive when the
nose of the helicopter goes up and the yaw is defined positive for a clockwise
rotation.  Figure 7.2 shows the thrust force acting on the pitch axis that is

normal to the plane of the front propeller and a thrust force acting on the yaw

axis that is normal to the rear propeller. Therefore a pitch torque is being applied at
a distance from the pitch axis and a yaw torque is applied at a distance from

the yaw axis. The gravitational force generates a torque at the helicopter center

of mass that pulls down on the helicopter nose. As shown in Figure 7.2, the center
of mass is at a distance of from the pitch axis along the helicopter body length




pF

yF

pr yr

gF

cml



Application to a 2-DOF helicopter model based setup – simulations and
experiments

120

[61]. The body center of mass is to be described in cartesian coordinates w.r.t.

the pitch and yaw angles.

Figure 7.2 Simplified free body diagram of the 2-DOF helicopter [61]

The equation of motion of this system is given by [61]

(7.1)

For more details about the modelization of this setup refer to appendix A. We
denote by the state vector

(7.2)

We write from (7.2)
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We denote by the input vector

(7.4)

The equations (7.1)-(7.4) lead to the state space representation

(7.5)

The system (7.5) represents the nonlinear dynamics of the 2-DOF helicopter and
can be written in compact form as

(7.6)

where

(7.7)
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(7.8)

and

(7.9)

7.3.2 Equilibrium

We denote by and the state and

the input at the equilibrium. We consider at the equilibrium all the states are equal
to zero, i.e., , , and . Then, from (7.5), we obtain
at the equilibrium

(7.10)
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By solving (7.10) in and , we obtain

(7.11)

7.3.3 Linearized model and high order approximations

Given the equilibrium point defined by

and (7.12)

The linearized form (i.e., order approximation) of the dynamics (7.7) about the
equilibrium is given by

(7.13)

which can be represented in matrix form

(7.14)
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The second order approximation of the dynamics (7.7) can be written using the
Taylor vector expansion (see sub-section 3.4.1 in chapter 3) about . We

obtain

(7.16)

which can be represented in matrix form

(7.17)

where and are given by (7.15) and is built from and

.

The third order approximation of the dynamics (7.7) can be written using the
Taylor vector expansion about . We obtain
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which can be represented in matrix form

(7.19)

where and are given by (7.15) , is built from and

, and is built from ,

and .

The fourth order approximation of the dynamics (7.7) can be written using the
Taylor vector expansion about . We obtain

(7.20)

which can represented in matrix form
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and , and is built from

, and

.

7.4 Control design

We show in chapter 6 that for a given order of truncation , the suboptimal

control law is given by the equation (6.84). Hence, for the dynamics (7.21), the
control law is in the form

(7.22)

the gain matrices , 1 ≤ ≤ 4, are computed from (6.83). Their numerical
values are:= 14.0 2.1 7.2 1.3−2.1 14.0 −0.2 5.9 , = 2.4 −0.4 0.2 −0.1 0−0.2 0.0 −0.0 0.0 0 ,( ) = 385.1 −187.0 −2.3 −44.56.4 −7.7 −12.1 −2.1 , i.e. the columns 1 to 4 of ,( ) = −77.4 32.1 14.7 9.8−1.2 1.3 1.8 0.4 , i.e. the columns 5 to 8 of , ( ) =−6.2 3.7 −3.7 0.51.1 0.9 0.3 0.4 , i.e. the columns 9 to 12 of , ( ) =−16.3 9.7 4.0 3.2−0.3 0.4 0.3 0.1 , i.e. the columns 13 to 16 of , ( ) =−52.4 24.9 14.9 8.2−4.1 1.3 2.0 0.4 , i.e. the columns 17 to 20 of , ( ) =−11.5 7.1 −11.9 1.70.7 0.5 0.7 0.2 , i.e. the columns 21 to 24 of , ( ) =5.6 −2.4 2.2 −0.4−0.3 −0.3 −0.2 −0.1 , i.e. the columns 25 to 28 of , ( ) =−4.4 1.8 −3.2 0.40.1 0.1 0.2 0.0 , i.e. the columns 29 to 32 of , ( ) =−19.8 6.6 −3.7 1.21.9 0.9 0.2 0.4 , i.e. the columns 33 to 36 of , ( ) =
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8.3 −2.7 2.2 −0.5−0.5 −0.3 −0.2 −0.1 , i.e. the columns 37 to 40 of , ( ) =−2.3 1.2 −0.3 0.2−0.0 0.1 0.0 0.0 , i.e. the columns 41 to 44 of , ( ) =2.4 −0.7 0.6 −0.1−0.0 −0.1 −0.1 −0.0 , i.e. the columns 45 to 48 of , ( ) =−7.5 7.4 4.1 2.7−1.1 0.4 0.3 0.1 , i.e. the columns 49 to 52 of , ( ) =−5.0 1.8 −3.2 0.40.2 0.1 0.2 0.0 , i.e. the columns 53 to 56 of , ( ) =1.8 −0.6 0.6 −0.10.0 −0.1 −0.1 −0.0 , i.e. the columns 57 to 60 of , ( ) =−1.6 0.4 −0.8 0.10.0 0.0 0.1 0.0 , i.e. the columns 61 to 64 of , the elements of the first

raw of the 2 × 256-rectangular matrix are 191.6; -624.3; -130.5; -121.3; -353.1;
269.2; 120.9; 64.6; -11.1; 8.8; -16.5; -0.1; -55.4; 56.8; 26.7; 13.5; -182.6; 223. 0;
120.5; 54.1; 56.8; -58.7; -84.7; -17.4; 21.3; -9.5; 11.5; -1. 0; 8.0; -12.2; -19.6; -3.8;
-64.7; 21.3; -18.1; 3.2; 34.1; -12.6; 12.4; -1.9; -4.8; 2.7; -1.8; 0.4; 8.0; -3.0; 2.9; -
0.5; -25.7; 45.7; 27.1; 10.9; 7.4; -11.2; -20.0; -3.4; 5.1; -2.5; 2.8; -0.3; 0.3; -2.1; -
4.6; -0.7; -216.7; 222.6; 121.5; 54.1; 56.4; -55.5; -84.3; -16.7; 22.2; -9.1; 11.3; -0.9;
8.0; -11.5; -19.6; -3.6; -11.1; -32.9; -85.5; -11.2; 54.6; -13.8; 48.2; -1.3; -15.5; 6.0;
-5.9; 0.9; 14.9; -4.0; 11.7; -0.4; 40.6; -15.0; 12.6; -2.6; -20.1; 7.5; -6.3; 1.4; 2.8; -
1.1; 0.9; -0.2; -5.1; 1.9; -1.6; 0.4; -8.8; -5.4; -20.2; -2.1; 15.6; -4.4; 11.8; -0.5; -4.1;
1.6; -1.5; 0.3; 4.1; -1.2; 2.8; -0.2; -64.5; 28.0; -17.4; 4.7; 40.8; -15.7; 11.8; -2.6; -
4.1; 2.1; -1.8; 0.3; 9.5; -3.8; 2.8; -0.6; 46.3; -18.3; 12.1; -3.3; -23.5; 8.5; -6.1; 1.6;
2.3; -0.9; 0.9; -0.1; -5.9; 2.2; -1.5; 0.4; -12.1; 3.5; -1.9; 0.6; 3.5; -0.9; 0.9; -0.1; -0.8;
0.3; -0.2; 0.1; 0.9; -0.3; 0.2; -0.0; 11.9; -4.6; 2.9; -0.8; -6.0; 2.2; -1.5; 0.4; 0.7; -0.3;
0.2; -0.0; -1.4; 0.5; -0.4; 0.1; -35.9; 45.4; 27.0; 10.8; 7.1; -10.3; -19.8; -3.2; 5.0; -
2.2; 2.7; -0.2; 0.2; -1.9; -4.5; -0.6; -9.1; -5.2; -20.0; -2.0; 15.8; -4.3; 11.7; -0.5; -3.8;
1.5; -1.5; 0.2; 4.2; -1.2; 2.8; -0.2; 10.2; -3.7; 2.9; -0.6; -5.1; 1.9; -1.6; 0.3; 0.7; -0.3;
0.2; -0.0; -1.2; 0.4; -0.4; 0.1; -3.2; -0.6; -4.6; -0.3; 4.3; -1.3; 2.8; -0.2; -0.9; 0.4; -
0.4; 0.1; 1.1; -0.4; 0.7; -0.1 respectively, and the elements of the second raw of the2 × 256-rectangular matrix are -32.5; -42.7; -52.6; -12.2; -0.8; 15.6; 24.3; 4.8;
3.8; 1.3; 2.1; 0.4; 0.7; 3.1; 4.7; 0.9; 9.3; 12.9; 24.3; 4.2; 0.1; -2.5; -5.0; -0.8; -2.7; -
0.8; -1.7; -0.3; -0.1; -0.5; -0.9; -0.1; 6.4; 1.1; 1.8; 0.5; -2.9; -1.3; -1.5; -0.4; 0.0; 0.3;
0.3; 0.1; -0.6; -0.3; -0.3; -0.1; 2.0; 2.5; 4.7; 0.8; -0.1; -0.4; -0.9; -0.1;-0.6; -0.2; -0.4;
-0.1; -0.0; -0.1; -0.1; -0.0; 9.3; 13.7; 25.2; 4.4; 0.9; -2.4; -5.5; -0.7; -1.9; -1.3; -1.6; -
0.4; 0.1; -0.4; -1.0; -0.1; 2.9; -1.8; -5.6; -0.6; -1.9; -1.3; -1.7; -0.5; 1.0; 0.7; 1.0; 0.2;
-0.4; -0.4; -0.5; -0.1; -3.9; -1.1; -1.5; -0.4; 1.3; 0.9; 1.0; 0.3; 0.1; -0.2; -0.1; -0.1;
0.3; 0.2; 0.2; 0.1; 0.8; -0.3; -1.0; -0.1; -0.4; -0.4; -0.5; -0.1; 0.2; 0.2; 0.2; 0.1; -0.1; -
0.1; -0.2; -0.0; 4.6; 1.7; 1.5; 0.6; -2.4; -1.5; -1.4; -0.5; -0.2; 0.4; 0.2; 0.1; -0.5; -0.4;
-0.3; -0.1; -4.3; -1.0; -1.4; -0.4; 1.5; 0.8; 0.9; 0.3; 0.1; -0.2; -0.1; -0.1; 0.3; 0.2; 0.2;
0.1; 0.2; 0.3; 0.2; 0.1; 0.0; -0.2; -0.1; -0.1; -0.0; 0.0; 0.0; 0.0; 0.0; -0.0; -0.0; -0.0; -
0.9; -0.2; -0.3; -0.1; 0.3; 0.2; 0.2; 0.1; 0.0; -0.0; -0.0; -0.0; 0.1; 0.0; 0.1; 0.0; 2.3;
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2.7; 4.9; 0.8; 0.1; -0.4; -1.0; -0.1; -0.4; -0.3; -0.4; -0.1; 0.0; -0.0; -0.1; -0.0; 0.8; -
0.3; -1.0; -0.1; -0.5; -0.4; -0.5; -0.1; 0.2; 0.2; 0.2; 0.1; -0.1; -0.1; -0.2; -0.0; -0.8; -
0.3; -0.3; -0.1; 0.3; 0.2; 0.2; 0.1; 0.0; -0.0; -0.0; -0.0; 0.1; 0.1; 0.1; 0.0; 0.3; -0.0; -
0.2; -0.0; -0.1; -0.1; -0.1; -0.0; 0.0; 0.0; 0.1; 0.0; -0.0; -0.0; -0.0; -0.0 respectively.

The matrices are given by the equation (6.23) and given by (6.19). The

definition of the matrices is given by (6.12). The calculus of the matrix is

given by the resolution of the ARE (6.26). The algorithm for the calculus of the
matrix is given by the equations (6.27) to (6.49) and the algorithm of calculus

of the matrices , is given by (6.50) to (6.81). The details of the algorithms

are shown in Appendix E.

7.5 Simulation results

The results of the simulations are shown for the different orders of truncation
. In order to minimize the steady state errors, the performance index

is minimized with the weighting matrices and , where

R= and Q= (7.23)

and have been used in [61] with the linearized optimal control.

The simulations have been applied for the linear control, Lin, where the dynamics
is linearized about the origin and the proposed nonlinear controllers for the
different orders of truncations ( , and ). Note that the simulations were
done for a desired yaw angle of degree and a desired pitch angle of different
values. For all simulations the initial condition of the pitch angle is degree.
The simulation results are summarized in Table 7.2. As a perspective for this work,
we suggest to investigation of a guideline to select the best order of truncation of
the optimal control. Now, the unique argument that justifies such a choice would
be the computation limits (time and memory size). In fact, a second or third order
control could be enough to improve the performance.
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Table 7.2 Costs and steady state errors for different orders of truncations

Desired pitch angle
in degree

Cost by order Steady state error by order

1 2 3 4 1 2 3 4

Step 0 degree 066.8 068.1 115.2 081.5 00.0 00.0 00.0 00.0

Step -30 degree 275.0 287.5 301.9 298.1 04.5 04.4 03.5 03.7

Sin 0.05Hz -10
degree

115.2 114.9 204.9 139.7 01.1 01.1 01.1 01.1

Sqa 0.05Hz -10
degree

145.0 146.4 194.2 187.6 03.5 03.5 03.4 03.4

Sqa 0.02Hz -20
degree

188.8 190.9 255.3 256.7 12.2 12.0 10.6 10.4

Sin 0.02Hz -20
degree

130.8 131.4 156.9 137.4 03.9 03.8 02.9 03.2

Esc (multi steps) 105.7 105.8 107.4 107.6 04.5 04.4 03.8 03.8

Despite that there is no improvement of the cost using higher order controllers; we
see that there are improvements in the steady state errors for all the desired
trajectories except for the step 0 degree.

In the following we present the simulation results for a desired yaw angle of 0
degree, desired pitch angle of 0 degree and an initial condition of the pitch angle of
-40.5 degrees for four controllers: Linear, , and truncation orders.2nd 3rd 4th
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Figure 7.3 Pitch evolution vs. time for a desired pitch angle of 0 degree

The simulations  show in Figure 7.3 that the four controllers stabilize the system at
the desired pitch angle of 0 degree with an advantage for the and ones in
terms of rise time and settling time when compared to the Linear and
controllers. Those in Figure 7.4 show that the four controllers stabilize the system
at the desired yaw angle of 0 degree with the advantage for the linear and
order ones in terms of settling time.
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Figure 7.4 Yaw evolution vs. time for desired pitch angle of 0 degree

Figure 7.5 Front motor voltage evolution vs. time for desired pitch angle of 0 degree
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Figure 7.6 Rear motor voltage evolution vs. time for desired pitch angle of 0 degree

In terms of input control signals, Figures 7.5 and 7.6 show that the front motor
voltage presents almost the same behaviour for the four controllers, and the rear
motor voltage present the same behaviour with the first and second order
controllers but the third and fourth ones present a higher voltage. In terms of cost,
except for the third order controller which present a higher cost, the linear, second
and fourth order controllers present a lower cost within same range.

More simulations have been tested and presented with different trajectories in
Appendix F.

7.6 Experimental results

7.6.1 Experimental set-up presentation

The 2-DOF helicopter setup of Quanser Inc consists of four major components: the
helicopter body, the power amplifiers, the data acquisition board and the real time
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control software. As mentioned in section 7.1 of this chapter and showed in Figure
7.1, the helicopter plant has six major components: two DC motors called the yaw
and pitch motors which are actuating respectively the back and front propellers in
which they have thrust force constants of and , respectively.
The two encoders are measuring respectively the yaw and pitch angles; the first
one has counts per revolution and it has a position resolution of

and the second one has counts per revolution and a

resolution of [61].  The two power amplifiers are two electronic
modules in which they amplify and control the voltage of the pitch and yaw
motors. These two amplifiers are called respectively UPM-2405 and UPM-1503,
and shown in Figures 7.7 and 7.8.

The wiring system of Quanser 2-DOF set up is composed of six connection cables
(numbered from1 to 6) that connect the plant to the PCB and from one cable
(called J1) that connect the PCB to the computer. The function of each cable is
summarized in Table 7.3 [61].

Figure 7.7 Pitch motor voltage amplifier (UPM-2405) [61]

0.43N V 1.04N V

8192
0.0439deg count 4096

0.791deg count
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Figure 7.8 Yaw motor voltage amplifier (UPM-1503) [61]

The data acquisition board consists of a Printed Circuit Board (PCB) and seven
connection cables as shown in Figures 7.9 and 7.10.

Figure 7.9 Printed Circuit Board of Quanser 2-DOF set up [61]
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Figure 7.10 Wiring connections of Quanser 2-DOF set up [61]

Table 7.3 2-DOF Helicopter system wiring summary [61]

Cable# From To Signal

1
Terminal Board:
DAC#0

Front-UPM ''From
D/A" connector

Controls signal to the front UPM

2
Terminal Board:
DAC#1

Back-UPM ''From
D/A" connector

Controls signal to the back UPM

3
UPM-2405 '' to load
connector''

2-DOF helicopter
"Front motor D/A 0"
connector

Power leads to the 2-DOF helicopter's
front DC motor (propeller)

4
UPM-1503 '' to load
connector''

2-DOF helicopter
"Back motor D/A 1"
connector

Power leads to the 2-DOF helicopter's
back DC motor (propeller)

5
2-DOF Helicopter ''
yaw encoder ENC 0''
connector

Terminal Board:

Encoder channel #0

2-DOF helicopter's yaw angle feedback
signal to the data acquisition card

6
2-DOF Helicopter ''
pitch encoder ENC 1''
connector

Terminal Board:

Encoder channel #1

2-DOF helicopter's pitch angle feedback
signal to the data acquisition card

7
Terminal Board

Computer
Transfer all data from terminal board to
the computer

The real time software is a PC equipped with MATLAB®/SIMULINK® software,
in which we can program the designed (Linear, , and order) controllers,
then realize the experiments.

2nd 3rd 4th
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7.6.2 Experimental conditions

We consider the 2-DOF set-up of nonlinear dynamics given by (7.21) and the
control law given by (7.22). The performance index is minimized using the
weighting matrices given by (7.23). The experimental results are given for the
linear controller, Lin, and for the nonlinear controllers of , and orders
of truncations. Note that the experiments were done for a desired yaw angle of 0
degree and desired pitch angle of different trajectories, with an initial condition of
the pitch angle of -40.5 degree.

7.6.3 Experimental results for desired pitch and yaw angles of 0
degree

In the following, we present the experimental results for a desired yaw angle of 0
degree, desired pitch angle of 0 degree and an initial condition of the pitch angle of
-40.5 degrees for four controllers: Linear, , and truncation orders.

Figure 7.11 Pitch evolution vs. time for desired pitch angle of 0 degree
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The experimental results show that the four controllers stabilize the 2-DOF
helicopter set-up around the desired pitch angle of 0 degree despite of an important
overshoot for the order one. In comparison with the simulation results, the
experimental ones present almost the same predicted behaviour for all the
controllers except for the order one which presents an important overshoot
during the experiment.

Figure 7.12  Yaw evolution vs. time for desired pitch angle of 0 degree

The experimental results show that the four controllers stabilize the 2-DOF
helicopter set-up around the desired yaw angle of 0 degree despite the important
overshoot for the order one. In comparison with the simulation results, the
experimental ones present almost the same behaviour for the linear and order
controllers while the order controller presents a lower overshoot and the
order controller a higher overshoot than the simulation ones. We note the important
discrepancy of the model representing the 2-DOF setup. In fact, the unmodeled
dynamics, such as static and kinematic frictions, make the model representation on
which depend our design less accurate. These uncertainties could be of great
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importance during the experiments and affect harmfully the performance of the
proposed control.

Figure 7.13  Front motor voltage vs. time for desired pitch angle of 0 degree

The experimental results for the input control, i.e., front motor voltage show that
from 0 to 2.3s, the four controllers require higher voltage and then energy. The
order one has bigger fluctuations between -20 and 20V. After 2.3s, the four
controllers behave almost the same way and have fluctuations in the range of 7 to
13V. In comparison with the simulation results, the experimental ones present
higher fluctuations around the equilibrium voltage of 10V, this is due to the
mathematical model of the control law which does not take into account the
nonlinear terms higher than the order of truncations and some "noise"
parameters. More experimental results have been tested and presented with
different trajectories in Appendix G.
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7.7 Conclusion

The main objective of this chapter was to test the effectiveness of the proposed
new design through the run of simulations and experiments to a nonlinear
dynamics: the 2-DOF helicopter model set-up of Quanser Inc. It is important to
notice that the performance of the proposed control of higher order compete with
the linear control one. All these controllers have been computed to run essentially
the case where the equilibrium is at the origin for all states. All simulations and
experiments conducted for different pitch targets and trajectories have been tested
to evaluate the limits of the different controllers. In fact, accurate control gains
would be recalculated for the different equilibriums to obtain consistent results.
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8 Conclusion

Most of real plants are nonlinear and linear control strategy does not represent the
best performance, have a limited domain of attraction and does not guarantee the
stability of the closed loop systems. To overcome these issues, control engineers
and researchers write the nonlinear dynamics in polynomial forms in terms of KP
and then design an optimal nonlinear controller showing some interesting results.
Since this controller does not guarantee the stability of the closed loop system, we
had the idea to design a stabilizing one by choosing the cost minimum function to
be computed in a quadratic form to satisfy the conditions of a Lyapunov candidate
function. This new method was the main contribution of this work in addition to
the theoretical framework related to KP algebra, optimal control theory and
optimal control of polynomial systems, as well as an application to a real plant, the
2-DOF helicopter model.

The structure of this thesis was as follows, In chapter 1, we began by the
introduction of this work, in which we presented the general context, its purpose
and how it will be organized. In chapter 2, we presented the state of the art related
to the main topics of this work. We began by a brief history of the optimal control
theory, in which we showed the roots and the evolution of this theory from Newton
1685, when he presented a solution to the nose shape of a projectile providing
minimum drug problem, to Bellman in 1950, who he established the necessary and
sufficient conditions for the optimality through the popular HJB equation. Then,
starting from the optimality condition, we cited more recent works, in which
researchers presented numerous methods and algorithms to solve the optimal
control problem for many classes of nonlinear systems. As any nonlinear function
can be written in a polynomial form, the control design and the stability of
polynomial systems was a subject treated too. We cited many recent works of
design and analysis of the stability of nonlinear controllers. Due to the importance
of the KP algebra in this work, we presented this framework and some of its
applications in the last section of chapter 2. In chapter 3, we presented two major
topics. The first one related to some basic definitions and proprieties of KP,

and operators. What's new in this section is that we stated and proved two

new theorems and three news lemmas useful in the following chapters. The second
topic was related to the vector power series motivation, in which we recalled the
multivariable Taylor expansion and applied this principle to three examples (scalar,
two variables and second order dynamics) and plotted the exact function versus the
different approximations to show the improvement and the best fitting obtained

 vec 

 mat 
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with high order approximations. Chapter 4 was dedicated to the optimal control
theory. First, we showed its roots through the presentation of the optimization
frame work, without and with equality constraints. In the optimization with no
constraint section we presented the necessary and sufficient conditions of
optimality and we illustrated with an example. Then, we stated the general
optimization with no constraint problem, and we presented the necessary condition
(which is the Euler-Lagrange equation in this case) to have a solution, next we
illustrated with two examples. In the optimization with equality constraints section,
after stating the problem, we cited three methods to solve the problem, two of them
which are not detailed are the direct substitution method and the constraint
variation method. The third method given in details is the Lagrange multipliers.
For simplicity, we presented this method first in the case of two variable function
to be minimized and one constraint, and we illustrated with an example. Then, we
stated the problem formulation in case of integral functional and we finished by
stating the problem of minimization of an integral functional subject to many
constraints in its general form. Thereafter, we treated the general problem of
optimal control theory and how the Lagrange multipliers lead to the canonical
Hamilton equations. At this point two cases raised, problems with free final time
(called infinite horizon) and problems with fixed final time (called finite horizon),
the latter was illustrated with an example. The case of optimal control with equality
constraints and for finite horizon was the subject of the following section, in which
we treated the problem in details and we showed how this leads to the HJ equation
problem. For the infinite horizon problems, we stated the case of linear time
varying systems and the case of general time invariant systems in which we stated
the optimal control laws and we illustrated with examples. In particular, we treated
LTI systems in which we showed the design approach of one of the most popular
controllers, the LQR in which the unknown part of its gain matrix is a direct
solution of the ARE. Some useful definitions and proprieties related to the ARE
were presented, the stability of the LQR was investigated and an illustrative
example of the LQR was showed. In chapter 5, we treated the optimal control of a
specific class of nonlinear systems written in a polynomial form in terms of KP.
We stated the problem and we showed how it was transformed to solve a nonlinear
equation. Since the latter is hard to solve analytically, some authors proposed an
approximating method to write the unknown vector in a polynomial form using the
KP tensor and by using its proprieties, the problem was transformed to calculate
algebraic matrix equations. The next section was dedicated to the calculus of the
unknown matrices, by cancelling the coefficients of the power series of the same
exponent. We began with the first order which led to the calculus of the gain
matrix of the linear controller by solving a classical ARE. Then, we presented the
resolution process of the second order equation using some KP proprieties leading
to the calculation algorithm of the second matrix gain in terms of the previous one
and all other known matrices. Next, we presented the resolution process of the
general order equation, which leads to solving an equation where two cases raised
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depending on the truncation order even or odd. To illustrate the efficiency of this
method, we applied the proposed design to three polynomial scalar examples, the
F8 fighter model presented with a polynomial dynamics and to the Maglev set-up
dynamics we approximated by a polynomial form of a third order using the Taylor
series development. The application and the simulation of the KP-based controller
to the three scalar examples showed an improvement of the proposed high order
controllers (second and third order) versus the linear one, in terms of cost and
interval of attraction. The application and simulation of the F8 fighter system
showed an improvement in terms of interval of attraction. The third order KP
controller stabilizes the system for an initial condition of 0.6 while the linear and
the second order fail. The application and the simulation of the Maglev system
showed an improvement in terms of domain of attraction too. The second order KP
controller stabilizes the system for an initial condition equal to 0.050m, 0.075m
and 0.100m while the linear and the third order KP controllers fail. Those
simulations of the KP design to real plants (i.e., F8 fighter and Maglev set-up)
showed that the stability is not guaranteed with higher initial conditions. In fact,
there is no theoretical framework that can show the stability of the discussed design
approach. For this reason, we had the idea to design a stabilizing controller, by
extending the previous work of KP design and choosing the cost function to be
minimized in a quadratic form to satisfy the conditions of a Lyapunov function and
to guarantee the asymptotic stability. This method, called KP-Lyapunov-Function-
based design or simply KP-LF one, was the subject of the chapter 6. After the
introduction of this chapter, we stated the optimal control problem and we showed
how this problem was transformed into solving a nonlinear differential equation.
Different from the KP method in this one, we approximated the cost function by a
quadratic form and we re-wrote the differential equation to be solved. Then,
through the application of appropriate algebraic operators and using new KP
proprieties introduced in chapter 3, we wrote the same equation in a more compact
form in unknown matrices and a real scalar. The resolution of this equation to find
these matrices by cancelling the coefficients of the power state vector was
introduced. The procedure resembles the previous one to compute these unknown
terms leading to an ARE and first order algebraic equation problems. We used also
some KP proprieties and introduced the non-redundant vector power to overcome
singularity issues. Thereafter, we discussed the stability of the closed loop system
controlled by the LF design, and we showed that the closed loop system could be
ideally globally asymptotically stable. To illustrate the efficiency of the LF method
we presented the application of two examples. For the scalar example, the
simulation results showed the cost improvement obtained with LF design (for both
second and third order) versus the KP and linear controllers. The simulation of the
F8 fighter showed an improvement obtained by the LF controllers versus KP and
linear controllers. This improvement was obtained in terms of cost reduction as
well as a larger domain of attraction (for different initial conditions, the LF
controller stabilizes the system, while the KP and linear controllers fail). As the

p
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real world may be slightly different from the simulation and theoretical world, we
treated in chapter 7 the application of the proposed LF method to an experimental
set-up of a 2-DOF helicopter model of Quanser Inc. After the introduction, we
presented a brief description of the system and cited its mechanical and electrical
proprieties. Then, we introduced the dynamics of the system. The free body
diagram of the set-up which allowed writing its equation of motion by expressing
the kinetic and potential energies, and the application of the Lagrangian were
presented in Appendix A. Then, we wrote the state space dynamics of the system,
calculated the equilibrium and presented its linearized and approximated
polynomials (of second, third and fourth orders) using the Taylor vector power
expansion. Thereafter, we presented the control design and referred to Appendix B
for more details regarding the algorithm of calculus of the gain matrices.  The
simulations of the proposed controllers, for different orders of truncation (linear,
second, third and fourth) and for different desired trajectories, were presented. The
simulation results showed some interesting results for some nonlinear controllers.
The realization of the experiments for the same desired trajectories showed almost
the same predicted behaviour obtained through the simulations with the exception
for some controllers which they presented a slightly different behaviour (higher
overshoot), which is due (in our point of view) to the errors occurred by the
approximation of the equation of motion and some uncontrollable noises.

The experimental results remain biased due to discrepancies of the nonlinear model
representing the setup. We believe that the modelling errors affect the control
performances in particular with the higher orders. More accurate model estimation
would be developed to match the model with the setup dynamics. Finally we would
note that despite the theoretical framework of stability discussed in [57], there is no
study to estimate the domain of attraction obtained by the LF method. This topic
can be a subject to future research.
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A Proofs of theorems and lemmas

A.1 Proof of Theorem 3.18

We have

 1p pn n n n n
U U   

 (A1.1)

1 2p pn n n n
U U  
  (A1.2)

Multiplying the equation (A1.1) by pn n
U


and using Theorem 3.1, we obtain

 1 2 2 2

2
p p pn n n n n n n

U U U    
  (A1.3)

2 3p pn n n n
U U  
  (A1.4)

Multiplying the equation (A1.3) by pn n
U


and using Theorem 3.1, we obtain

2 3
3

p pn n n n
U U  

 (A1.5)

By repeating the same procedure, we obtain

2 1 1
1

p p p

p

n n n n n n n
U U U 


   
  (A1.6)

p pn n n n
U U
 

  (A1.7)

Thus

p p

p

n n n n
U U

 
 (A1.8)

By applying Theorem 3.16 to the equation (A1.8), we can write, for 2p q

   2 1 1 1 1 1

2 2

p q q q q q q q q q q qn n n n n n n n n n n n n n n n
U U U U U U U           

      (A1.9)
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     2 1 1 2 2 2 2 2 2

2 2 22

.q q q q q q q q qn n n n n n n n n n n n n n
U U U U U U           

      (A1.10)

     2 2 2 3 2 2 3 2 3 3

2 2 22 4 4
q q q q q q q q q qn n n n n n n n n n n n n n n

U U U U U U U            
       (A1.11)

     2 2 3 2 3 3 2 2 3 4

2 2 24 4 4
q q q q q q q q q qn n n n n n n n n n n n n n n

U U U U U U U            
       (A1.12)

   
    

2 3 4 2 2 2 21 2

22 2 1 2 16 2 2
q q q q q q qq q q

q q q

n n n n n n n n n n n nn n
U U U U U U U   

 

     
        (A1.13)

Thus, we obtain

p p

p

n n n n
U U

 
 (A1.14)

A.2 Proof of Theorem 3.19

Two cases arise.

 case p even:

Assume  1 is an eigenvalue of pn n
U


. Then it exists 0v  such that

pn n
U v v


   (A2.1)

Using Theorem 3.1, by pre-multiplying (A2.1) by pn n
U


, that is,

p p pn n n n n n
U U v U v
  
     (A2.2)

That is,

pn n
U v v

   (A2.3)
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Using Theorem 3.17, we have

1 1
p p p p p

p p p

n n n n n n n n n n
U v U v U U v U v 

    
         (A2.4)

 22 21p p p

p p

n n n n n n
U U v U v 
  

        (A2.5)

     1 2
1 1 1p

p p q

n n
U v v v




           (A2.6)

That is,

pn n
U v v


  (A2.7)

From (A2.1) and (A2.3), we have

v v  (A2.8)

That means 0v  , which is impossible as v is selected nonzero. So  1 is not an

eigenvalue of pn n
U


, that is,

1 0p pn n n
U I 

  (A2.9)

Thus,  1p pn n n
U I 

 is regular.

 case p odd:

Let  be an eigenvalue of pn n
U


and 0v  the corresponding eigenvector, that is,

pn n
U v v


   (A2.10)

Using Theorem 3.17, we write

p

p

n n
U v v

   (A2.11)

Multiplying the equation (A2.12) by p

p

n n
U


, we obtain

p

p

n n
U v v


   (A2.12)
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Using (A2.10), we have

1p pv v v        (A2.13)

As 0v  , (A2.13) leads to

1 1p   (A2.14)

p is odd, then  1, 1  .

Identically, we obtain  1, 1  is an eigenvalue of pn n
U


. Note from Theorem

3.17

p p

p

n n n n
U U

 
 (A2.15)

Thus,

1
1
p p

p

n n n
U I 



 (A2.16)

Consider 0v  an eigenvalue of pn n
U


associated with  1, 1  . For 

eigenvalue of pn n
U


, we have

1 1 0p p p p

p p

n n n n n n n n
U v v U v U v U v v    

   
              (A2.17)

Using (A2.14), we obtain

 1 1 1 0p p

p p p p p

n n n n
U v v U v v v v v        

 
                 (A2.18)

Note that  1, 1  and 0v  , then 1 0  . Assuming 1  leads to 1  

eigenvalue of pn n
U


and if 1   , then  1 is eigenvalue of pn n

U


.

A.3 Proof of Lemma 3.1

We have

 For 1j  , using Theorem 3.15, we have
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1
0 0

n nT T

x x
I x I x

x x

 
    

 
(A3.1)

As 0 1x  . Since ( )
1

n
nD I , then

 0( ) ( )
1 1

n n
n nT

x
I D D I x

x


    


(A3.2)

 For 2j  , we write

 
2

T T

x
x x

x x

 
 

 
(A3.3)

Using Theorem 3.13, we can write

     1 1 1n n nT T T

x x
x x x I U x I U

x x x 

             
(A3.4)

    2n n n n n n n nn
I x U I x I I U I x        (A3.5)

  0 0n n n nn n n
U I U I I x

     (A3.6)

 1

1

0

i i nn n n
i

U I I x


 
   
 
 (A3.7)

 2 1( )
2

n
nD I x   (A3.8)

 For 3j  , we write

 
3

2

T T

x
x x

x x

 
 

  (A3.9)
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Using Theorem 3.13, we can write

     2

2
2 2

1 1 1nT T Tn n

x x
x x x I U x I U

x x x 

             
(A3.10)

 2 2

2 2
2 2

1n nT T Tn n n n

x x x
x U x U U I x

x x x 

             
(A3.11)

    2 2

2
n n n nn n n

I U I x x U I x 
        (A3.12)

     2 2

2
n n n n nn n n

I U I I x x U I x 
         (A3.13)

 3 2

2
n n n nn n n

I U I U I x 
       (A3.14)

  0 2 2 0

2
n n n nn n n n n n

U I U I U I I x 
       (A3.15)

   3 1

3
3 1 3 1( )

3
0

i i

n
n nn n n

i

U I I x D I x 
 




 
      
 
 (A3.16)

 Thus, for any nonzero integer j , we write

 1
j

j

T T

x
x x

x x
 

 
 

(A3.17)

 1

1
1

1 j

j
j

nT Tn n

x x
x I U x I

x x







         
(A3.18)

 1

1
1

1j

j
j

n nT n n

x
x U I x U

x








   


(A3.19)

1
1 0

j
j

nT

x
x x I x

x




    


(A3.20)

2
2 0 1 0

j
j j

n nT

x
x x I x x x I x

x


  

           
(A3.21)
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2
2 2 1 1 0

j
j j

n nT

x
x x I x x I x

x


 

       


(A3.22)

3
3 0 2 2 1 1 0

j
j j j

n n nT

x
x x I x x x I x x I x

x


   

              
(A3.23)

3
3 3 2 2 1 1 0

j
j j j

n n nT

x
x x I x x I x x I x

x


  

          


(A3.24)

0 1 1 2 2 3 1 0...j j j j
n n n nx I x x I x x I x x I x                (A3.25)

1
1

0

j
i j i

n
i

x I x


 



   (A3.26)
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1

0

i

j
i j i

n nn n
i

U I x I x


 




     (A3.27)

   1

1
1

0

i j i

j
i j i

nn n n
i

U I x I x 


 




     (A3.28)

Using Theorem 3.5, we obtain

  1

1
1

0

i j i

j j
i j i

nT n n n
i

x
U I I x x

x
 


 




        (A3.29)

 1

1
1

0

i j i

j
j

nn n n
i

U I I x 







 
   
 
 (A3.30)

 1( ) jn
j nD I x   (A3.31)
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A.4 Proof of Lemma 3.2

Let

1

n

A

A

A

 
 
 
 
 
 
 
 





be partition of n blocks with k l
iA    . We write

 

1

1

1

0 0 0 0
i

i k k k k k i

i

n

A

A

A I A

A

A





 
 
 
 
 

  
 
 
 
 
 



 



(A4.1)

where 0k is the null square matrix of order k . kI is the identity of order matrix in

the thi block. We note

 

0

0

0

0

k

k
n

k i k

k

k

I e I

 
 
 
 
 

  
 
 
 
 
 





(A4.2)

where  k
ie is the n -dimensional unit column vector which is "1" in the thi element

and zero elsewhere, introduced in Definition 3.2. We write 1, ,i n  

    nT T
i i kvec A vec A e I    (A4.3)

Using the second equality of Theorem 3.10, we obtain
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0

1

0

n T n TT T T
i i k l i klvec A e I I vec A e I vec A

 
 
 

          
 
 
 




(A4.4)

Now, we write

 
10

0

T

T
n

T
n

x A

I x Ay y

x A

  
      

    

  (A4.5)

 

 

11 1

T TT T

T T T T
n n n

vec y A xx A y y A x

x A y y A x vec y A x

         
      
           

   (A4.6)

Using Theorem 3.7, the equation (A4.6) can be given by

 
  

  

 

 
 

1 1
T T T T

T
n

T T T T
n n

vec A x y vec A

I x Ay x y

vec A x y vec A

   
   
      
   
      

  (A4.7)

We substitute (A4.7) into (A4.5) to obtain

 
    

    
 

 

 

 
1

1

nT T n
kl

T T T
n n kl

nnT T
nn kl

vec A e I e

I x Ay I vec A I x y

evec A e I

                            

  (A4.8)

Noting that

 

 

 
1

n

n

n
n

e

vec I

e

 
 

 
 
 

 (A4.9)
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we write

        T T
n n n klI x Ay I vec A vec I I x y     (A4.10)

A.5 Proof of Lemma 3.3

We have

           1
T T

n n pq n n n pqI vec A vec I I I vec A A vec I I     (A5.1)

       1
T T

n n n pqI vec A vec A vec I I     (A5.2)

   

   

1

1

0

0

pq
T T

n

T T
n

pq

I
vec A vec A

vec A vec A
I

 
       
  
  

       
 

 



(A5.3)

 

 
   

1

1

T

T

n
T

n

vec A

vec A vec A

vec A

 
 
      
 
 

  (A5.4)

 1, , ii n vec A   is a column-vector of dimension pq , then

   
 

 
   

1

1 1n pq n pq n n pq n

n

vec A

vec A vec A mat mat vec A A mat vec A

vec A
  

 
               
 
 

   (A5.5)

Thus,

        T T
n n pq pq nI vec A vec I I mat vec A   (A5.6)
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B Illustrative examples of VPS and
Taylor expansion

B.1 Example 3.1

We consider the scalar function   xf x e . We denote by , 1,3,5if i  and 7 , the

Taylor development functions of the order i . Using (A5.1), the calculations of the
different approximation functions are

1 1f x  (B1.1)

2
2

1
1

2
f x x   (B1.2)

2 3
3

1 1
1

2 6
f x x x    (B1.3)

2 3 4
4

1 1 1
1

2 6 24
f x x x x     (B1.4)

2 3 4 5
5

1 1 1 1
1

2 6 24 120
f x x x x x      (B1.5)

2 3 4 5 6
6

1 1 1 1 1
1

2 6 24 120 720
f x x x x x x       (B1.6)

2 3 4 5 6 7
7

1 1 1 1 1 1
1

2 6 24 120 720 5040
f x x x x x x x        (B1.7)

The graphic representations of the function f and the polynomial approximation

1 3 5, ,f f f and 7f in the interval  2,2 are shown in Figure B.1.
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Figure B.1: Exact vs. Taylor approximations of
xe

We note in Figure B.1 that as much as the order of truncation goes up, the fitting of
the exact function curve and the approximation function curve is better, and the
interval of attraction is larger. With the different approximations (B1.1) to (B1.7),
the magnitude of the interval of a best fitting increases with the order of truncation.
In fact, for a best approximation with accuracy of less than 2% of the exact value
of  f x , we simulate numerically the different ranges shown in Table B.1.
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Table B.1 Order of truncation vs. interval of best fitting of
xe within 2% of accuracy

Order of
Truncation

Range of fitting curves about 0x 

minx maxx

1 -0.19 0.21

2 -0.44 0.51

3 -0.72 1.02

4 -1.01 1.53

5 -1.29 2.09

6 -1.58 2.68

7 -1.87 3.31

B.2 Example 3.2

Consider the two-variable real valued function

   2 2 2
1 2 1 2 1, tan cos

6
f x x a x x x

     
 

(B2.1)

Using (A5.1), the calculus of the different approximation functions of order 2, 4
and 6 are

   2 2
2 1 2 1 2

3
,

2
f x x x x  (B2.2)

     2 2 4 2 2
4 1 2 1 2 1 1 2

3 1 1
,

2 2 2
f x x x x x x x     (B2.3)

     2 2 4 2 2 6 2 4 6
6 1 2 1 2 1 1 2 1 1 2 2

3 1 5 3 3 1
,

2 2 44 3 2 3
f x x x x x x x x x x x        (B2.4)
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The graphic representation of the function f and its polynomial approximation

2 4 6,f f and f in the domain    0.5, 0.5 0.5, 0.5   are shown in Figure B.2.

Figure B.2: Graphic representation of f and its polynomial approximations 2f , 4f and 6f

The Figure B.2 shows that as long as the order of truncation is higher, the plot of
the polynomial approximation function if is closer to the plot of the function f .
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Table B.2:  Radius of best fitting approximation of f vs. the order of truncation

Order of
truncation

Radius of best fitting
approximation (w. 2% )

1 0

2 0.18

3 0.18

4 0.32

5 0.32

6 0.47

The Table B.2 shows the radius of best fitting approximation is higher as long as
the order of truncation is higher.

B.3 Example 3.3

Consider the two variable artificial muscle dynamics [37]

1 2x x (B3.1)

2 2 3 3
2 1 2 1 2 1 227.1 12.6 10.9 1.3 1.6 0.04x x x x x x x u        (B3.2)

where 1x represents the position of the muscle and 2x its velocity. In the

following, we consider the unforced system (i.e. 0u  ). Note that the dynamics of
the second state variable 2x is a polynomial of order 3, in the intermediate

variables 1x and 2x . We denote by  1 2,f x x the function defining this dynamics

  2 2 3 3
1 2 1 2 1 2 1 2, 27.1 12.6 10.9 1.3 1.6 0.04f x x x x x x x x       (B3.3)

We denote also by 1f and 2f , the linear and second order approximations of f
given by
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 1 1 2 1 2, 27.1 12.6f x x x x   (B3.4)

  2 2
2 1 2 1 2 1 2, 27.1 12.6 10.9 1.3f x x x x x x     (B3.5)

In order to visualize and compare the approximation functions to the original one,
we show the phase portrait  2 1x f x of the unforced dynamics associated with

f , 1f and 2f , for different initial conditions        10 20, 1,0 , 1,0 , 0,3x x   and

 0, 3 . Obviously, the truncated approximation of order 2 is closer than the

linerized approximation (see Figure B.3).

Figure B.3: Phase portrait of full nonlinear dynamics and its approximations of 1st and 2nd order
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We can obviously note that the second order approximation has a better fitting
curve than the linear approximation to the exact function in terms of domain
attraction.

Table B.3 Initial condition vs. worst error of approximation of 2x dynamics in 2/m s

cI Estimate Error

10x 20x Trunc.1 Trunc.2

1 0 0.57 0.08

-1 0 0.9 0.07

0 3 0.24 0.02

0 -3 0.21 0.01

The Table B.3 shows that for different initial conditions, we calculate the error
between the nonlinear system and the polynomial approximation of orders of
truncation 1 and 2. We can conclude that the approximation of 2nd order has a
lower margin of error than the 1st order, and then we can note that the 2nd order
polynomial is a better approximation than the 1st order one. Hence, the second
order approximation has a better fitting approximation and a larger domain of
approximation than the linear one.
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C Illustrative examples and proofs
of the optimal control theory

C.1 Example 4.1

Consider the functional

 
1

2 2

0

2J x tx x dt    (C1.1)

with  0 0x  and  1 1x  . x (resp. x ) denotes the first (resp. second)

derivative of x with respect to t . From (4.17), we obtain

0x x t   (C1.2)

A solution of (4.25) can be written

  1 1
t tx t c e c e t   (C1.3)

where 1c and 2c are constant. Using the boundary conditions  0 0x  and

 1 1x  , we deduce

 
sinh sinh

t te e
u t t

t t



   (C1.4)
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C.2 Example 4.2

Consider the minimization problem of the functional J of a single mass-spring
( , )m k from classical mechanics. Given m and k the mass and stiffness

coefficient. For the position y and its velocity
dy

y
dt
 at  1 2,t t t , we propose

 
2

1

t

t

J T U dt  (C2.1)

where 21

2
T my  is the kinetic energy and 21

2
U ky mgy  the potential energy

with g is the gravitational acceleration. From the functional minimization problem

2

1

21 1

2 2

t

t

J my ky mgy dt
    
   (C2.2)

by using (4.16), we obtain the Euler-Lagrange equation

my ky mg  (C2.3)

The trajectory minimizing (C2.2) is

  1 2sin cos
mg k k

y t c t c t
k m m

   
        

   
(C2.4)

where 1c and 2c are constant. Using the boundary conditions   00y y and

 0 0y  , we obtain

  0 cos
mg mg k

y t y t
k k m

            
(C2.5)
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C.3 Example 4.3

For a volume of a funnel, in the form of right circular cone, estimated at
3

0 2000V m , the technician wants to construct it from a sheet metal minimizing

the lateral surface area. The dimensions of funnel are the radius of the base, r , and
the height of the cone, h , respectively. Note that the surface of a right circular

cone is    2 2,S r h r r h  and its volume   2,
3

V r h r h

 . The problem is

   2min , ,f r h S r h (C3.1)

subject to

   0, ,g r h V V r h  (C3.2)

The Lagrange function is

     

 2 2 2 2 2
0

, , , ,

3

L r h f r h g r h

r r h r h V

 


  

 

   
(C3.3)

The necessary conditions for the solution of the problem are

2 3 2 2 2
4 2 0

3

L
r rh rh

r


  


   


(C3.4)

2 2 22 0
3

L
r h r

h


 


  


(C3.5)

and

2
0 0

3

L
r h V




   


(C3.6)

(C3.5)-(C3.7) lead to

2
3 03

0
2

Vh
h


   (C3.7)
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2 2

2

h
r h  (C3.8)

6 h  (C3.9)

The equation (4.58) has one real solution *
1 12.57h  and two real imaginary

solutions *
2 6.03 10.74h i   and *

2 6.03 10.74h i   . Since *h must be real,

we have

* 12.57h  (C3.10)

Then,

* 12.31r  (C3.11)

and

* 236.81  (C3.12)

The application of the sufficient condition of (4.36) to (4.38) yields

 * * *

2
2 * 2 *2 * *

11 2

, ,

2
12 2 1596.07

3
r h

L
L r h h

r



  


     


(C3.13)

 * * *

2
2 * * * *

12 21

, ,

2
4 61.06

3
r h

L
L L r h r

r h



 


    

 
(C3.14)

 * * *

2
2 *2

22 2

, ,

2 2991.79
r h

L
L r

h




  


(C3.15)

 * * *

* * *
1

, ,

2
75988.22

3r h

g
g r h

r 





    


(C3.16)

 * * *

* *2
2

, ,

11856.94
3r h

g
g r

h 





    


(C3.17)
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Then,

11 12 1

21 22 2

1 2

1596.07 61.06 75988.22

61.06 2991.79 11856.94 0

0 75988.22 11856.94 0

L z L g z

L L z g z

g g

   
    

 
(C3.18)

that is,

13 91.69 10 5.91 10 0z     (C3.19)

The root of (C3.19) is

2859.56 0z   (C3.20)

Thus, the dimensions * 12.31r  and * 12.57h  correspond to a minimum lateral

surface area of the funnel of * 680S  .

C.4 Example 4.4

Consider the simple mechanical system composed of a mass-spring-damper given
by the dynamic model

mx bx kx u    (C4.1)

where x is the position in m , v x  the velocity in /m s , x the acceleration and u
the force in N . The mass is 1m Kg , the damping coefficient 0.5 . /b N s m and

the stiffness 2k N m . The objective to be minimized is

  2

0

T

J u u dt  (C4.2)

which corresponds to the energy consumption.

We determine the optimal control law minimizing the cost functional (C4.2) over
the time  0,T , with the final time T specified. This control moves the mass from

rest, i.e.,  0 0 /v m s to the desired speed rv at T , i.e.,   rv T v .
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We express (C4.1) in terms of the measured speed as follows

mv bv k vdt u   (C4.3)

which leads to

mv bv kv u     (C4.4)

The state-space representation, of the velocity dynamics (C4.4), can be written
using the modal representation

1 12 2x a x u  (C4.5)

2 21 1 22 2x a x a x u   (C4.6)

and

1 1 2 2v c x c x  (C4.7)

with the numerical values 12 1.686a   , 21 1.186a  , 22 0.5a   , 1 0.25c  ,

2 0.25c  . That is,

x Ax Bu

v Cx

 
 


(C4.8)

with

112

21 22 2

0 1
, ,

1

ca
A B C

a a c

    
       

    
(C4.9)

The details of this modelization are shown as follows. Set the following state space
from

1 12 2x a x u  (C4.10)

2 21 1 22 2x a x a x u   (C4.11)
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and

1 1 2 2v c x c x  (C4.12)

We have

1 1 2 2v c x c x   

   1 22 2 2 21 1 22 2c a x u c a x a x u    

   2 21 1 1 12 2 22 2 1 2c a x c a c a x c c u     (C4.13)

and

   2 21 1 1 12 2 22 2 1 2v c a x c a c a x c c u       

      2 21 12 2 1 12 2 22 21 1 22 2 1 2c a a x u c a c a a x a x u c c u        

       2
1 12 2 22 11 1 2 21 12 2 12 22 2 22 2 2 21 1 12 2 22 1 2ca c a a x c a a c a a c a x c a ca c a u c c u           (C4.14)

Substitute (C4.10), (C4.11) and (C4.12) into (C4.14)

     
     

2
1 12 2 22 21 1 2 21 12 2 12 22 2 22 2 2 21 1 12 2 22

1 2 2 21 1 1 12 2 22 2 1 2 1 1 2 2

c a c a a mx c a a c a a c a mx c a c a c a mu

c c mu bc a x c a c a bx c c bu kc x kc x u

      

          
(C4.15)

which is equivalent to

   
       

2
1 12 2 22 21 2 21 1 1 2 21 12 2 12 22 2 22

1 12 2 22 2 2 2 21 1 12 2 22 1 2 1 2 1 0

ca c a a m bc a kc x c a a c a a c a m

ca c a b kc x c a ca c a m c c b u c c m u

         
                   

(C4.16)

(C4.16) holds for all 1 2, ,x x u and u . By cancelling the terms of these variables, we
obtain

 1 12 2 22 21 2 21 1 0c a c a a m bc a kc    (C4.17)

   2
2 21 12 2 12 22 2 22 1 12 2 22 2 0c a a c a a c a m c a c a b kc      (C4.18)
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   2 21 1 12 2 22 1 2 0c a c a c a m c c b     (C4.19)

and

 1 2 1 0c c m   (C4.20)

Two possible solutions can be obtained

12 21 22 1 2

1
, ,

2

b b
a x a x a and c c

m m m
        with

2 4

2

b b mk
x

m

  
 .

The Hamiltonian function H is written

   2, , TH x u u Ax Bu   

   2
1 12 2 2 21 1 22 2u a x u a x a x u       (C4.21)

We obtain

1 21 2
1

H
a

x
 


   


 (C4.22)

2 12 1 22 2
2

H
a a

x
  


    


 (C4.23)

and

 1 22 0
H

u
u

 

   


(C4.24)

(C4.22) and (C4.23) are re written as

   21

12 22

0 Ta
t A t

a a
  

 
     

 (C4.25)

Then, we obtain

  0

TA tt e c  (C4.26)
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with 2
0c  a constant vector. From (C4.24), we have

   1 2

1

2
u t    

   1
1 1

2
t 

  0

1
1 1

2

TA te c  (C4.27)

The transversality conditions at T specified are written from (4.93)

           1 1 2 2 0
T

T x T T x T T x T           (C4.28)

As 0T  (T is specified). Noting           1 1 2 2 1 1 2v T c x T c x T c x T x T   

is known as 1 2c c , then    1 2 0x T x T   . So, for  1 0x T  ,

    1 2 1( ) 0T T x T     (C4.29)

We obtain    1 2 TT T    .

From (4.121), we have   0

1

1

TA T
TT e c   

   
 

, i.e., 0

1

1

TA
Tc e 

 
  

 
. Thus,

   
11

1 1
12

T TA t A t
Tu t e e   

   
 

( )1

2

TT A T t
TB e B  (C4.30)

       0.25( ) 0.25( )cos 1.392 0.180 sin 1.392T t T t
T Tu t e T t e T t        (C4.31)

Integrating (C4.31) between 0 and T , and using (C4.29) and    1 20 0 0x x  ,

we obtain
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02

T
T

A T t A T tTTx T e BB e B dt
     (C4.32)

and,     rv T C x t v   . Given 2T  and 1 /cv m s , we obtain

1.707T  and 1.707rv  (C4.33)

The optimal cost is * 54.36J  . The results are shown in Figures C1. and C2. The
obtained optimal control allows to reach the speed 1 /rv m s within 2T s .

Figure C1. Velocity evolutions vs. time of the mass spring damper system
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Figure C2. Force evolutions vs. time of the mass spring damper system

C.5 Example 4.5

Consider the system [44]

xx e u (C5.1)

with the performance objective

 2 2

0

1

2
J x u dt



  (C5.2)

The HJE problem is stated as

 
2

2 21
0

2
xV

x u e u
x


  


(C5.3)
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The optimal control is given by

* xV
u e

x


 


(C5.4)

Substituting (C5.4) into (C5.3) leads to

xV
xe

x





(C5.5)

Then,

*u x  (C5.6)

The optimal cost is estimated at * 0.264T  , the state evolution is shown in Figure
C3.

Figure C3. State evolutions vs. time of the scalar example (4.159)
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C.6 Proof of Theorem 4.2

The optimality condition

min 2 0T T T

u

dV
x Qx u Ru x Nu

dt
     
 

(C6.1)

can be rewritten

*

* * 2 0T T T

u u

dV
x Qx u Ru x Nu

dt 

    (C6.2)

that is,

*

* * *2T T T

u u

dV
x Qx u Ru x Nu

dt 

    (C6.3)

Integrating both sides of the resulting equation with respect to time from 0 to  ,
we obtain

       * *

0
0 2T T TV x V x x Qx u Ru x Nu dt


      (C6.4)

Since we assume that the closed loop system is asymptotically stable, we have

  0x   and    0V x   . Then, we obtain

    * * *
0 0 0

0 2T T T TV x x Px x Qx u Ru x Nu dt


    (C6.5)

Thus, the value of the performance index for such a stabilizing controller is

 *
0 0
TJ u x Px (C6.6)

To show that such a controller is optimal, we use a proof by contradiction. We
assume that (C6.1) holds and that *u is not optimal. Suppose that a control u
yields a smaller value of J , that is,

   *J u J u (C6.7)
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It follows from (C6.1) that

2 0T T T

u u

dV
x Qx u Ru x Nu

dt 

   


   (C6.8)

that is

2T T T

u u

dV
x Qx u Ru x Nu

dt 

   


   (C6.9)

Integrating (C6.9) with respect to time from 0 to  , we obtain

    
0

0 2T T TV x x Qx u Ru x Nu dt


      (C6.10)

which implies that

   *
0 0
TJ u x Px J u   (C6.11)

(C6.11) is in contradiction with (C6.7). Hence *u is optimal.

C.7 Proof of Theorem 4.6

Consider the following equation

     1 1 1 1 0
TT T T T T TA BR N P P A BR N Q NR N P BR B P          (C7.1)

Denote by 1 TA A BR N  and 1 TQ Q NR N  , the ARE (4.177) is written

1 0T T T TA P P A Q P BR B P    (C7.2)

Let we prove that if 1 0TQ Q NR N   , then 0P  . First, let we prove that

   Ker P Ker Q .

Assume  x Ker P , i.e., 0P x  . From (4.178), we have
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1 0T T T T T T T Tx A Px x P A x Qx x P BR B Px    (C7.3)

which implies 0Tx Qx  , then 0Qx  . Then, if 0Q  that is 0xQx  , then 0x  .

Thus,    0Ker Q  . So,    0Ker P  . Then,    0Ker P  0P  .

Now, we prove if 1 0TQ Q NR N   , then 0P  . Recall 1 TA A BR N  and

define 1 T
cA A BR B P  . Then, (C7.3) can be written as

   1 1 1 0
TT T T T TP A BR B P A BR B P P Q P BR B P        (C7.4)

that is,

1 0T T T T
c cP A A P Q P BR B P    (C7.5)

Pre-multiply and post-multiply (C7.5) by
T
cA tTz e and cA te z , respectively

1 0

T T T
c c c c c c

T
c c

A t A t A t A t A t A tT T T T T
c c

A t A tT T T

z e P A e z z e A P e z z e Q e z

z e P B R B P e z

 

 
(C7.6)

Let we calculate the following time derivative

   

   

 

2

2

2

T
c c c c

c c

c c

T
c c

TA t A t A t A tT T T

TA t A tT

TA t A tT
c

A t A tT T
c

d d
z e P e z e z P e z

dt dt
d

e z P e z
dt

e z P A e z

z e P A e z

        







T T T
c c c cA t A t A t A tT T T T

c cz e P A e z z e A Pe z  (C7.7)

Considering 0R  , i.e., 1 0R  . Then, using the Cholesky decomposition [50],
0R  such that 1 TR R R  . We write
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1T T
c c c c

c c

A t A t A t A tT T T T T T T

TA t A tT T

z e P BR B Pe z z e P BR RB Pe z

RB Pe z RB Pe z

 



2
cA tTRB Pe z (C7.8)

Then, combining (C7.6), (C7.7) and (C7.8), we obtain

2T T T
c c c c cA t A t A t A t A tT T T Td

z e P e z z e Qe z RB Pe z
dt
      (C7.9)

Integrating (C7.9) from 0 to t , we have

 2

0 0

T T
c c c c c

t t
A A A A AT T T Td

z e P e z d z e Qe z RB Pe z d
d

     

       (C7.10)

that is,

(C7.11)

or equivalently,

 2

0

T T
c c c c c

t
A t A t A A AT T T T T Tz e P e z z P z z e Qe z RB Pe z d       (C7.12)

Since the integrant term, the left side of the equality (C7.12), is non-negative.
Then,

0
T
c cA t A tT T T T Tz e P e z z P z z Pz   (C7.13)

Note that if 0z  such that 0Pz  , then

0cA tPe z  (C7.14)

   2

0
0

T T
c c c c c

tT
A A A A AT T T Tz e P e z z e Qe z RB Pe z d       
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Hence, we have  z Ker P  , i.e., 0Pz  . So, for any given  z Ker P , we

have

 1 1T T
cA z A BR B P z Az BR B Pz Az      (C7.15)

Then, 0t 

cA t Ate z e z (C7.16)

In fact, note that for any matrix M , we define the exponential matrix of M ,

denoted by Me , as
0

1

!
M i

i

e M
i

 . From (4.246), we have 1i  and  z Ker P  ,

  0
i

iA A z  (C7.17)

Then,  z Ker P  and 0t 

   

   
0

1

1

!

!

i

i
iA A t

c
i

i
i

c c
i

t
e z A A z

i

t
z A A A A z

i









 

   





z (C7.18)

We write

   
  
  
 

c c

c

c

A t A tAt At At

A A tAt

A A tAt

At

e e z e e e I z

e e I z

e e z z

e z z







  

 

 

 

0 (C7.19)

Thus, from (C7.18), we obtain (C7.19). Now, pre-multiply (C7.16) by P
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cA t AtPe z Pe z (C7.20)

From (C7.14), we obtain 0AtPe z  , i.e.,  AtPe z Ker P . Thus,  Ker P is

invariant under Ate . Also, by pre-multiplying and post-multiplying (C7.5) by Tz

and z respectively, we obtain  z Ker P  , 0Qz  . Then,    Ker P Ker Q .

Assuming 0cA tPe z  , we obtain, from (4.236), 0cA tQe z  with  z Ker P . Then,

0cA t AtQe z Qe  (C7.21)

(C7.21) represents a contradiction to  ,A Q observable, according to Theorem 4.6.

In fact, as 0z  , then    0AtKer Qe  and equivalently  ,A Q is unobservable;

which is a contradiction.
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D 2-DOF helicopter set-up kinetic
and dynamic models

D.1 Coordinates transformations

Fig D.1 General Transformation of a vector [62]

Very often we know the description of a vector with respect to some frame, ,

and we would like to know its description with respect t another frame, . In the

general case of mapping the origin of the frame is not coincident with that of

frame but has a general vector offset. The vector that locates 's origin is

called . Also is rotated with respect to as described by . Given

, we wish to compute as in Fig.A.1. We can first change to its
description relative to an intermediate frame which has some orientation as ,

but whose origin is coincident with the origin of . This is done by multiplying

 B

 A
 B

 A  B
A

BorgP  B  A A
B R

BP AP BP
 A

 B
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by , then we account for the translation between origins by simple vector
addition yielding [62]

(D1.1)

Equation (D1.1) describes a general transformation mapping of a vector from its
description in one frame to its description in a second frame. It can be written in a
compact form as

(D1.2)

Where is called the homogenous transformation matrix. It can be written in a
(4x4) matrix as follows

(D1.3)

where is a (3x3) matrix which represents the rotational component of the

transformation matrix and is a (3x1) matrix which represents the translational

component.

D.2 Kinematic model of the 2-DOF helicopter

As illustrated in Fig D.2, we define the following coordinates systems:

is the frame located at the center of mass of the helicopter. It is related to

the frame by a translation of a distance in the direction of the axis .

is the frame located at the center of the front propeller. It is related to the

frame by a rotation of an angle around the axis .

is the frame located at the center of the back propeller. It is related to the

frame by a rotation of an angle around the axis .

A
B R

A A B A
B BorgP R P P 

A A B
BP T P

A
BT

0 0 0 1

A A
B Borg

A
B

R P

T

 
 
 
 
 
 
  





    


A
B R

A
BorgP

3 3 3 3O x y z

2 2 2Ox y z cml 2x

2 2 2Ox y z

1 1 1Ox y z  1y

1 1 1Ox y z

0 0 0Ox y z  0z
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is the frame located at the pivot point of the helicopter which is defined as
the point where the pitch axis and yaw axis intersect, or the midpoint of the pitch
axis

Fig D.2 Kinematic model of the 2-DOF helicopter [61]

Let the coordinates of the center of mass in the frame ,
according to (A.2) it can be written as

(D2.1)

Let the coordinates of the center of mass in the frame ,
according to (D1.2) it can be written as

0 0 0Ox y z

2 2 2[ ]Tx y z 3O 2 2 2Ox y z

2 2 2 3 3 3 3

2

2

2

1 0 0 0

0 1 0 0 0

0 0 1 0 0

1 0 0 0 1 1

cm

Ox y z O x y z

x l

y

z

     
     
      
     
     
     

1 1 1[ ]Tx y z 3O 1 1 1Ox y z
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(D2.2)

Let the coordinates of the center of mass in the frame ,
according to (D1.2) it can be written as

(D2.3)

By replacing (D2.1) into (D2.2) and (D2.2) into (D2.3), the latter will be

(D2.4)

In a compact form, the equation (D2.4) will be

(D2.5)

Hence

(D2.6)

1 1 1 2 2 2

1 2

1 2

1 2

cos sin 0 0

sin cos 0 0

0 0 1 0

1 0 0 0 1 1
Ox y z Ox y z

x x

y y

z z

 
 

     
           
     
     
     

0 0 0[ ]Tx y z 3O 1 1 1Ox y z

0 0 0 1 1 1

0 1

0 1

0 1

cos sin 0 0

sin cos 0 0

0 0 1 0

1 0 0 0 1 1
Ox y z Ox y z

x x

y y

z z

 
 

     
           
     
     
     

0 0 0 3 3 3 3

0

0

0

cos sin 0 0 cos sin 0 0 1 0 0 0

sin cos 0 0 sin cos 0 0 0 1 0 0 0

0 0 1 0 0 0 1 0 0 0 1 0 0

1 0 0 0 1 0 0 0 1 0 0 0 1 1

cm

Ox y z O x y z

x l

y

z

   
   

      
             
      
      
      

0 0 0 3 3 3 3

0

0

0

cos cos sin cos sin cos cos 0

sin cos cos sin sin sin cos 0

sin 0 cos sin 0

1 0 0 0 1 1

cm

cm

cm

Ox y z O x y z

x l

y l

z l

      
      

  

     
           
     
     
     

0 0 0 3 3 3 3

0

0

0

cos cos

sin cos

sin

1 1

cm

cm

cm

Ox y z O x y z

x l

y l

z l
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If we note , and , the equation (D2.6) leads to the
cartesian position of the helicopter center of mass is

(D2.7)

D.3 Kinetic and potential energy

The potential energy due to the gravity is

(D3.1)

The total Kinetic energy is

(D3.2)

The total kinetic energy is the sum of the rotational kinetic energies acting from
the pitch, and from the yaw along with the translational kinetic energy

generated by the moving center of mass .

The pitch rotational kinetic energy is

(D3.3)

The yaw rotational kinetic energy is

(D3.4)

Where and are the equivalent moment of inertias of the pitch and yaw,

respectively.

0cmx x 0cmy y 0cmz z

cos cos

sin cos

sin

cm cm

cm cm

cm cm

x l

y l

z l

 

 




  
 

hel cmV m g z  

sinhel cmm g l    

, ,r p r y tT T T T  

T

,r pT ,r yT

tT

2
, ,

1

2r p eq pT J  

2
, ,

1

2r y eq yT J  

,eq pJ ,eq yJ
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The translational kinetic energy is

(D3.5)

By deriving the equation (D2.7), the three dimensional velocity of the center of
mass is

(D3.6)

In terms of the pitch and yaw angles the translational kinetic energy is

(D3.7)

Hence the total kinetic energy of the system is:

(D3.8)

D.4 Equation of motion

The Lagrangian is the difference between the kinetic and potential energy of the
system:

(D4.1)

2 2 21

2t hel cm cm cmT m x y z    

 
 

sin cos cos sin

cos cos sin sin

cos

cm cm

cm cm

cm cm

x l

y l

z l

     

     

 

   
   










   2 2 2 2 21
sin cos cos sin cos cos sin sin cos

2t hel cm cm cm cm cmT m l l l l l                      

 
 

22 2
, ,

2 2 2 2

1 1 1
sin cos cos sin

2 2 2

cos cos sin sin cos

eq p eq y hel cm cm

cm cm cm

T J J m l l

l l l

       

       

    

   

  

 

L
L T V 

 
 

22 2
, ,

2 2 2 2

1 1 1
sin cos cos sin

2 2 2

cos cos sin sin cos sin

eq p eq y hel cm cm

cm cm cm hel cm

L J J m l l

l l l m g l
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The generalized coordinates are

(D4.2)

The generalized forces are

(D4.3)

The input controls are is the input pitch motor voltage and is the input

yaw motor voltage. and are the viscous rotary friction acting about the pitch

and yaw axis. are the thrust force constants acting on pitch/yaw

axis from pitch/yaw motor propeller.

The Euler-Lagrange equations are given by

(D4.4)

By applying the equations (D4.1) and (D4.3) into the equations (D4.4), leads to the
nonlinear equation of motions

(D4.5)
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E MATLAB code of calculation of
control gain matrices for 2-DOF
helicopter-model set-up

% Initialization and Matrix Gain Calculus file
% Optimal control using Lyapunov-based Kronecker product tensor

%%
clear all
clc

%% ~~~~~~~~~~~~~~~~~~~~~~~~~~~ 2-DOF HELI CONFIGURATION: Model
Parameters %%
% Set the model parameters of the 2-DOF HELI.
% Copyright (C) 2006 Quanser Consulting Inc.

% Parameters for Expeiments
% Cable Gain used for yaw and pitch axes.
K_CABLE_P = 5;
K_CABLE_Y = 3;
% Amplifier/Voltage and Position Settings
% Amplifier Gain: set to 3 when using VoltPAQ-X2.
% NOTE: If using VoltPAQ-X1, make sure both Gain switches are set to 3.
K_AMP = 3;
% Maximum Output Voltage (V): YAW limited to 15 V. PITCH limited to 24 V.
VMAX_AMP_P = 24;
VMAX_AMP_Y = 15;
% Digital-to-Analog Maximum Voltage (V): set to 10 for Q4/Q8 cards
VMAX_DAC = 10;
% Pitch and Yaw Axis Encoder Resolution (rad/count)
K_EC_P = - 2 * pi / ( 4 * 1024 );
K_EC_Y = 2 * pi / ( 8 * 1024 );
% Specifications of a second-order low-pass filter
wcf = 2 * pi * 20; % filter cutting frequency
zetaf = 0.85; % filter damping ratio

% Gravitational Constant (m/s^2)
g = 9.81;
% Pitch and Yaw Motor Armature Resistance (Ohm)
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R_m_p = 0.83;
R_m_y = 1.60;
% Pitch and Yaw Motor Current-Torque Constant (N.m/A)
K_t_p = 0.0182;
K_t_y = 0.0109;
% Pitch and Yaw Propeller Torque-Thrust Constant (N.m/V)
K_pp = 0.2041;
K_yy = 0.0270;
% Pitch and Yaw Motor Voltage-Torque Constant (N.m/V)
K_yp = 0.0219;
K_py = 0.0068;
% Pitch and Yaw Viscous Damping Constant (N.m.s/rad)
B_p = 0.8; % Tuned while running simulation and experiment in parallel
B_y = 0.318; % Identified as described in manual
% Mass of the Helicopter (kg)
m_heli = 1.3872;
% Helicopter Center of Mass from Pivot along Pitch Axis (m)
l_cm = 0.1476;
% Equivalent Moment of Inertia about Pitch and Yaw Axis (kg.m^2)
J_eq_p = 0.0384;
J_eq_y = 0.0432;
%
% UPM Maximum Output Voltage (V): YAW has UPM-15-03 and PITCH has UPM-24-
05
VMAX_UPM_P = 24;
VMAX_UPM_Y = 15;

%% ~~~~~~~~~~~~~~~~~~~~~~~~~ Paramter Inialization for Controller Design %%
% Set the control parameter design.

% Feed-forward gain adjustment (V/V)
K_ff = 1;

% State Vector: X = [ theta; psi; theta_dot; psi_dot]
n  = 4; % Number of States
% Input Vector: U = [ u_Pitch; u_Yaw]
m = 2; % Number of Inputs

% Operational point
theta_o = 0;

x1o = theta_o;    x2o = 0;    x3o = 0;    x4o = 0;
Xo = [x1o;

x2o;
x3o;
x4o];
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u1o =  m_heli*g*l_cm*K_yy/(K_pp*K_yy-K_py*K_yp);
u2o = -m_heli*g*l_cm*K_yp/(K_pp*K_yy-K_py*K_yp);
Uo = [u1o;

u2o];

% Cost functional coefficients
R = eye(m);
Q = diag([200, 200, 100, 100]);

% Truncation Order
nf = 4;% Truncation Order of F(x)
ng = 4;% Truncation Order of G(x)
nh = 4;% Truncation Order of H(x)

% Matrix F1 of F(x)
F1 = [ 0, 0, 1                         ,                         0;

0, 0,                          0,                         1;
0, 0,-B_p/(J_eq_p+m_heli*l_cm^2),                         0;
0, 0,                          0,-B_y/(J_eq_y+m_heli*l_cm^2)];

% Matrix F2 of F(x)
F2 = zeros(n,n^2);
F2(3, 1) = 1/2*m_heli*g*l_cm^2/(J_eq_p+m_heli*l_cm^2);

% Matrix F3 of F(x)
F3 = zeros(n,n^3);
F3(3, 16) = -m_heli*l_cm^2/(J_eq_p+m_heli*l_cm^2);
F3(4, 12) = 2*m_heli*l_cm^2/(J_eq_y+m_heli*l_cm^2);

% Matrix F4 of F(x)
F4 = zeros(n,n^4);
F4(3, 4^3) = -1/24*m_heli*g*l_cm/(J_eq_p+m_heli*l_cm^2);
F4(4, 4^3) = 1/2*(K_yp*u1o*m_heli*l_cm^2/(J_eq_y+m_heli*l_cm^2)^2 + ...

K_yy*u2o*m_heli*l_cm^2/(J_eq_y+m_heli*l_cm^2)^2);

% Matrix G0 of G(x)
G0 = [                           0,                           0;

0,                           0;
K_pp/(J_eq_p+m_heli*l_cm^2), K_py/(J_eq_p+m_heli*l_cm^2);
K_yp/(J_eq_y+m_heli*l_cm^2), K_yy/(J_eq_y+m_heli*l_cm^2)];

% Matrix G1 of G(x)
G1 = zeros(n,m*n^1);
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% Matrix G2 of G(x)
G2 = zeros(n,m*n^2);

% Matrix G3 of G(x)
G3 = zeros(n,m*n^3);

% Matrix G4 of G(x)
G4 = zeros(n,m*n^4);

% Matrix H1 of H(x)
H1 = eye(n);

% Matrix H2 of H(x)
H2 = zeros(n, n^2);

% Matrix H3 of H(x)
H3 = zeros(n, n^3);

% Matrix H4 of H(x)
H4 = zeros(n, n^4);

%% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Simulation/Experiment Parameters
%%
theta_0deg = -40.5; % Initial Pitch Angle (deg)
theta_0 = theta_0deg*pi/180;

% Initial conditions
x10 = theta_0;    x20 = 0;    x30 = 0;    x40 = 0;
x0 = [x10;

x20;
x30;
x40];

u10  = 0;    u20  = 0;
u0 = [u10;

u20];

Tf = 220; % Stop Time
Te = 1e-2; % Sampling Period

%% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Computing
Pi's %%
Max_p = 4; % Maximum order of truncation generating Pp's
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% Order of truncation 1: Term P1
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
p = 1;

[P, L, G] = care(F1, G0, H1'*Q*H1, R);
P1 = chol(P);

% Scalar alpha %%%%%%%%%%%%%%%%%%%%%%%%%
alpha = 0.1;

% Order of truncation 2: Term P2
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
p = 2;

IFp2 = kron((F1-G0/R*G0'*P)', eye(n^2));
% Term of Hp21 (i.e. 1st term of Hp2)
% i = 1 or j = 1
D1 = jDiffMatrix(n, 1);

% (i,j) = (1,1)
P11 = PijMatrix(P, P1, alpha, 1, 1);
V11 = Vec2Mat(vec(P11'*P11*D1), n, n)';
% (i,j,b,c) = (1,1,1,1) and (k,d) = (0,1)
W110 = Vec2Mat(vec(V11'*G0), n, m)';
% (i,j,b,c) = (1,1,1,1) and (k,d) = (1,0)
W111 = Vec2Mat(vec(V11'*G1), n^2, m)';
Hp21 = vec(W110'/R*W111) + vec(W111'/R*W110);

% Term of Hp22 (i.e. 2nd term of Hp2)
% (i,j) = (1,1) and k = 2
Hp22 = vec(V11'*F2) + vec(F2'*V11);

% Term of Hp23 (i.e. 3rd term of Hp2)
% (i,j) = (1,2) and (i,j) = (2,1)
Hp23 = vec(H1'*Q*H2) + vec(H2'*Q*H1);

% Total Term H2
Hp2 = Hp21 - Hp22 - Hp23;

% D_{p+1}^(n)
D3 = jDiffMatrix(n, 3);

T2 = NonRed2RedMat_of4thOrder(2); % At order p=2
T2p  = (T2'*T2)\T2';
TT2p = kron(T2p, eye(n))*D3;
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vP2t = 1/(2*alpha)*((TT2p*TT2p')\TT2p)/IFp2*Hp2;

alpha_2 = size(T2);
P2t = Vec2Mat(vP2t, n, alpha_2(2));
P2 = P2t*T2p;

% Order of truncation 3: Term P3
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
p = 3;

IFp3 = kron((F1-G0/R*G0'*P)', eye(n^3));

Hp31 = zeros(n^(p+1),1);
Hp32 = zeros(n^(p+1),1);
Hp33 = zeros(n^(p+1),1);

% Term of Hp31 (i.e. 1st term of Hp3)
for i=1:p-1,%p-1=2

for j=1:p-1,%p-1=2
switch i

case 1,
Pi = P1;

case 2,
Pi = P2;

otherwise
disp('index out of range!');

end
switch j

case 1,
Pj = P1;

case 2,
Pj = P2;

otherwise
disp('index out of range!');

end
Pij = PijMatrix(P, Pi, alpha, i, j);
Pji = PijMatrix(P, Pj, alpha, j, i);
Dj  = jDiffMatrix(n, j);
Vij = Vec2Mat(vec(Pij'*Pji*Dj), n^(i+j-1), n)';
for k=0:p-1,%p-1=2

switch k
case 0,

Gk = G0;
case 1,

Gk = G1;
case 2,
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Gk = G2;
otherwise

disp('index out of range!');
end
Wijk = Vec2Mat(vec(Vij'*Gk), n^(i+j+k-1), m)';
for b=1:p-1,%p-1=2

for c=1:p-1,%p-1=2
switch b

case 1,
Pb = P1;

case 2,
Pb = P2;

otherwise
disp('index out of range!');

end
switch c

case 1,
Pc = P1;

case 2,
Pc = P2;

otherwise
disp('index out of range!');

end
Pbc = PijMatrix(P, Pb, alpha, b, c);
Pcb = PijMatrix(P, Pc, alpha, c, b);
Dc = jDiffMatrix(n, c);
Vbc = Vec2Mat(vec(Pbc'*Pcb*Dc), n^(b+c-1), n)';
for d=0:p-1,%p-1=2

switch d
case 0,

Gd = G0;
case 1,

Gd = G1;
case 2,

Gd = G2;
otherwise

disp('index out of range!');
end
Wbcd = Vec2Mat(vec(Vbc'*Gd), n^(b+c+d-1), m)';
if (i+j+k+b+c+d==p+3),

Hp31 = Hp31 + vec(Wijk'/R*Wbcd);
end

end
end

end
end

end
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end

% Term of Hp32 (i.e. 2nd term of Hp3)
for i=1:p-1,%p-1=2

for j=1:p-1,%p-1=2
switch i

case 1,
Pi = P1;

case 2,
Pi = P2;

otherwise
disp('index out of range!');

end
switch j

case 1,
Pj = P1;

case 2,
Pj = P2;

otherwise
disp('index out of range!');

end
Pij = PijMatrix(P, Pi, alpha, i, j);
Pji = PijMatrix(P, Pj, alpha, j, i);
Dj  = jDiffMatrix(n, j);
Vij = Vec2Mat(vec(Pij'*Pji*Dj), n^(i+j-1), n)';
for k=1:p,%p=3

switch k
case 1,

Fk = F1;
case 2,

Fk = F2;
case 3,

Fk = F3;
otherwise

disp('index out of range!');
end
if (i+j+k==p+2),

Hp32 = Hp32 + vec(Vij'*Fk) + vec(Fk'*Vij);
end

end
end

end

% Term of Hp33 (i.e. 3rd term of Hp3)
for i=1:p,

switch i
case 1,
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Hi = H1;
case 2,

Hi = H2;
case 3,

Hi = H3;
otherwise

disp('index out of range!');
end
for j=1:p,

switch j
case 1,

Hj = H1;
case 2,

Hj = H2;
case 3,

Hj = H3;
otherwise

disp('index out of range!');
end
if (i+j==p+1),

Hp33 = Hp33 + vec(Hi'*Q*Hj);
end

end
end

% Total Term H3
Hp3 = Hp31 - Hp32 - Hp33;

% D_{p+1}^(n)
D4 = jDiffMatrix(n, p+1);

T3 = NonRed2RedMat_of4thOrder(3); % At order p=3
T3p  = (T3'*T3)\T3';
TT3p = kron(T3p, eye(n))*D4;
vP3t = 1/(2*alpha)*((TT3p*TT3p')\TT3p)/IFp3*Hp3;

alpha_3 = size(T3);
P3t = Vec2Mat(vP3t, n, alpha_3(2));
P3 = P3t*T3p;

% Order of truncation 4: Term P4
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
p = 4;

IFp4 = kron((F1-G0/R*G0'*P)', eye(n^4));
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Hp41 = zeros(n^(p+1),1);
Hp42 = zeros(n^(p+1),1);
Hp43 = zeros(n^(p+1),1);

% Term of Hp41 (i.e. 1st term of Hp4)
for i=1:p-1,%p-1=3

for j=1:p-1,%p-1=3
switch i

case 1,
Pi = P1;

case 2,
Pi = P2;

case 3,
Pi = P3;

otherwise
disp('index out of range!');

end
switch j

case 1,
Pj = P1;

case 2,
Pj = P2;

case 3,
Pj = P3;

otherwise
disp('index out of range!');

end
Pij = PijMatrix(P, Pi, alpha, i, j);
Pji = PijMatrix(P, Pj, alpha, j, i);
Dj  = jDiffMatrix(n, j);
Vij = Vec2Mat(vec(Pij'*Pji*Dj), n^(i+j-1), n)';
for k=0:p-1,%p-1=3

switch k
case 0,

Gk = G0;
case 1,

Gk = G1;
case 2,

Gk = G2;
case 3,

Gk = G3;
otherwise

disp('index out of range!');
end
Wijk = Vec2Mat(vec(Vij'*Gk), n^(i+j+k-1), m)';
for b=1:p-1,%p-1=3

for c=1:p-1,%p-1=3
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switch b
case 1,

Pb = P1;
case 2,

Pb = P2;
case 3,

Pb = P3;
otherwise

disp('index out of range!');
end
switch c

case 1,
Pc = P1;

case 2,
Pc = P2;

case 3,
Pc = P3;

otherwise
disp('index out of range!');

end
Pbc = PijMatrix(P, Pb, alpha, b, c);
Pcb = PijMatrix(P, Pc, alpha, c, b);
Dc = jDiffMatrix(n, c);
Vbc = Vec2Mat(vec(Pbc'*Pcb*Dc), n^(b+c-1), n)';
for d=0:p-1,%p-1=3

switch d
case 0,

Gd = G0;
case 1,

Gd = G1;
case 2,

Gd = G2;
case 3,

Gd = G3;
otherwise

disp('index out of range!');
end
Wbcd = Vec2Mat(vec(Vbc'*Gd), n^(b+c+d-1), m)';
if (i+j+k+b+c+d==p+3),

Hp41 = Hp41 + vec(Wijk'/R*Wbcd);
end

end
end

end
end

end
end
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% Term of Hp42 (i.e. 2nd term of Hp4)
for i=1:p-1,%p-1=3

for j=1:p-1,%p-1=3
switch i

case 1,
Pi = P1;

case 2,
Pi = P2;

case 3,
Pi = P3;

otherwise
disp('index out of range!');

end
switch j

case 1,
Pj = P1;

case 2,
Pj = P2;

case 3,
Pj = P3;

otherwise
disp('index out of range!');

end
Pij = PijMatrix(P, Pi, alpha, i, j);
Pji = PijMatrix(P, Pj, alpha, j, i);
Dj  = jDiffMatrix(n, j);
Vij = Vec2Mat(vec(Pij'*Pji*Dj), n^(i+j-1), n)';
for k=1:p,%p=4

switch k
case 1,

Fk = F1;
case 2,

Fk = F2;
case 3,

Fk = F3;
case 4,

Fk = F4;
otherwise

disp('index out of range!');
end
if (i+j+k==p+2),

Hp42 = Hp42 + vec(Vij'*Fk) + vec(Fk'*Vij);
end

end
end

end
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% Term of Hp43 (i.e. 3rd term of Hp4)
for i=1:p,

switch i
case 1,

Hi = H1;
case 2,

Hi = H2;
case 3,

Hi = H3;
case 4,

Hi = H4;
otherwise

disp('index out of range!');
end
for j=1:p,

switch j
case 1,

Hj = H1;
case 2,

Hj = H2;
case 3,

Hj = H3;
case 4,

Hj = H4;
otherwise

disp('index out of range!');
end
if (i+j==p+1),

Hp43 = Hp43 + vec(Hi'*Q*Hj);
end

end
end

% Total Term H4
Hp4 = Hp41 - Hp42 - Hp43;

% D_{p+1}^(n)
D5 = jDiffMatrix(n, p+1);

T4 = NonRed2RedMat_of4thOrder(4); % At order p=4
T4p  = (T4'*T4)\T4';
TT4p = kron(T4p, eye(n))*D5;
vP4t = 1/(2*alpha)*((TT4p*TT4p')\TT4p)/IFp4*Hp4;

alpha_4 = size(T4);
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P4t = Vec2Mat(vP4t, n, alpha_4(2));
P4 = P4t*T4p;

%% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Control
Gains %%

% Term Kp's with p^bar = 1
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%
pbar = 1;% Using only P (Order of truncation 1 for Pp)
% p from 1 to pbar = 1

p = 1;
% Then i = j = 1 and k = 0
Kp1_pbar1 = R\W110;

% Term Kp's with p^bar = 2
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%
pbar = 2;% Using P to order of truncation 2 for Pp)
% p from 1 to pbar = 2

p = 1;
% Case of i = j = 1 and k = 0
Kp1_pbar2 = R\W110;

p = 2;
% Case of i = 2, j = 1 and k = 0
P21 = PijMatrix(P, P2, alpha, 2, 1);
P12 = PijMatrix(P, P1, alpha, 1, 2);
D2 = jDiffMatrix(n, 2);
V21 = Vec2Mat(vec(P21'*P12*D1), n^2, n)';
W210 = Vec2Mat(vec(V21'*G0), n^2, m)';
% Case of i = 1, j = 2 and k = 0
V12 = Vec2Mat(vec(P12'*P21*D2), n^2, n)';
W120 = Vec2Mat(vec(V12'*G0), n^2, m)';

W2 = W210 + W120;
Kp2_pbar2 = R\W2;

% Term Kp's with p^bar = 3
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%
pbar = 3;% Using P to order of truncation 3 for Pp)
% p from 1 to pbar = 3
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p = 1;
% Case of i = j = 1 and k = 0
Kp1_pbar3 = R\W110;

p = 2;
% Case of i = 2, j = 1 and k = 0 and case of i = 1, j = 2 and k = 0

Kp2_pbar3 = R\W2;

p = 3;
% Case of i = 3, j = 1 and k = 0
P31 = PijMatrix(P, P3, alpha, 3, 1);
P13 = PijMatrix(P, P1, alpha, 1, 3);
V31 = Vec2Mat(vec(P31'*P13*D1), n^3, n)';
W310 = Vec2Mat(vec(V31'*G0), n^3, m)';
% Case of i = 2, j = 2 and k = 0
P22 = PijMatrix(P, P2, alpha, 2, 2);
V22 = Vec2Mat(vec(P22'*P22*D2), n^3, n)';
W220 = Vec2Mat(vec(V22'*G0), n^3, m)';
% Case of i = 1, j = 1 and k = 0
V13 = Vec2Mat(vec(P13'*P31*D3), n^3, n)';
W130 = Vec2Mat(vec(V13'*G0), n^3, m)';

W3 = W310 + W220 + W130;
Kp3_pbar3 = R\W3;

% Term Kp's with p^bar = 4
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%
pbar = 4;% Using P to order of truncation 4 for Pp)
% p from 1 to pbar = 4

p = 1;
% Case of i = j = 1 and k = 0
Kp1_pbar4 = R\W110;

p = 2;
% Case of i = 2, j = 1 and k = 0 and case of i = 1, j = 2 and k = 0
Kp2_pbar4 = R\W2;

p = 3;
% Case of i = 3, j = 1 and k = 0, case of i = 2, j = 2 and k = 0, and
% case of i = 1, j = 1 and k = 0
Kp3_pbar4 = R\W3;
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p = 4;
% Case of i = 4, j = 1 and k = 0,
P41 = PijMatrix(P, P4, alpha, 4, 1);
P14 = PijMatrix(P, P1, alpha, 1, 4);
V41 = Vec2Mat(vec(P41'*P14*D1), n^4, n)';
W410 = Vec2Mat(vec(V41'*G0), n^4, m)';
% Case of i = 3, j = 2 and k = 0,
P32 = PijMatrix(P, P3, alpha, 3, 2);
P23 = PijMatrix(P, P2, alpha, 2, 3);
V32 = Vec2Mat(vec(P32'*P23*D2), n^4, n)';
W320 = Vec2Mat(vec(V32'*G0), n^4, m)';
% Case of i = 2, j = 3 and k = 0, and
V23 = Vec2Mat(vec(P23'*P32*D3), n^4, n)';
W230 = Vec2Mat(vec(V23'*G0), n^4, m)';
% Case of i = 1, j = 4 and k = 0
V14 = Vec2Mat(vec(P14'*P41*D4), n^4, n)';
W140 = Vec2Mat(vec(V14'*G0), n^4, m)';

W4 = W410 + W320 + W230 + W140;
Kp4_pbar4 = R\W4;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Choose Order of truncation p = 1, 2, 3 or 4.~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
p = 4;%Kepp it equal to 4

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
switch p

case 1,
% Apply the following
% Term Kp's with p =

1.%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%

% We obtain, with only p = 1:
p = 1;% Using only P (Order of truncation 1 for Pp)
Kp_1 = Kp1_pbar1;
Kp_2 = zeros(m, n^2);
Kp_3 = zeros(m, n^3);
Kp_4 = zeros(m, n^4);
Kp_5 = zeros(m, n^5);
Kp_6 = zeros(m, n^6);
Kp_7 = zeros(m, n^7);
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

case 2,
% Apply the following
% Term Kp's with p =

2.%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%

% We obtain, with only p = 2:
p = 2;% Using only P (Order of truncation 2 for Pp)
Kp_1 = Kp1_pbar2;
Kp_2 = Kp2_pbar2;
Kp_3 = zeros(m, n^3);
Kp_4 = zeros(m, n^4);
Kp_5 = zeros(m, n^5);
Kp_6 = zeros(m, n^6);
Kp_7 = zeros(m, n^7);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

case 3,
% Apply the following
% Term Kp's with p = 3.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% We obtain, with only p = 3:
p = 3;% Using only P (Order of truncation 3 for Pp)

Kp_1 = Kp1_pbar3;
Kp_2 = Kp2_pbar3;
Kp_3 = Kp3_pbar3;
Kp_4 = zeros(m, n^4);
Kp_5 = zeros(m, n^5);
Kp_6 = zeros(m, n^6);
Kp_7 = zeros(m, n^7);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

case 4,
% Apply the following
% Term Kp's with p = 4.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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% We obtain, with only p = 4:
p = 4;% Using only P (Order of truncation 4 for Pp)

Kp_1 = Kp1_pbar4;
Kp_2 = Kp2_pbar4;
Kp_3 = Kp3_pbar4;
Kp_4 = Kp4_pbar4;
Kp_5 = zeros(m, n^5);
Kp_6 = zeros(m, n^6);
Kp_7 = zeros(m, n^7);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

otherwise
disp('index out of range!');

end

%% Run for Order of K with p's (from 1 to p).~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
for Order_of_K = 1:p,

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%

sim('Heli2dofNLOCSimulation')
disp('Simulation done..')

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%

load States.mat states;
load Cmd.mat cmd;
load Jopt.mat Jopt;

switch Order_of_K
case 1,

X_lin = states;
U_lin = cmd;
J_lin = Jopt;

save X_lin.mat X_lin;
save U_lin.mat U_lin;
save J_lin.mat J_lin

case 2,
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X_KP2 = states;
U_KP2 = cmd;
J_KP2 = Jopt;

save X_KP2.mat X_KP2;
save U_KP2.mat U_KP2;
save J_KP2.mat J_KP2;

case 3,
X_KP3 = states;
U_KP3 = cmd;
J_KP3 = Jopt;

save X_KP3.mat X_KP3;
save U_KP3.mat U_KP3;
save J_KP3.mat J_KP3;

case 4,
X_KP4 = states;
U_KP4 = cmd;
J_KP4 = Jopt;

save X_KP4.mat X_KP4;
save U_KP4.mat U_KP4;
save J_KP4.mat J_KP4;

otherwise
disp('index out of range!');

end
end

save Pd.mat Pd
save Pdp.mat Pdp
save Yd.mat Yd

%% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
End .. %%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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F Simulation results for other
desired trajectories of 2-DOF
helicopter-model set-up

F.1 Constant desired pitch angle of -30 degree

In the following we present the simulation results for a desired yaw angle of 0
degree, desired pitch angle of -30 degree and an initial condition of the pitch angle
of -40.5 degrees for four controllers (Linear, , and orders).

Figure F1. Pitch evolution vs. time for desired pitch angle of -30 degree
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The simulations show in Figure 7.7 that the four controllers stabilize the system
around the pitch angle of -26 degree. The same simulations show also that the four
controllers have the same behaviour.

Figure.F2. Yaw evolution vs. time for desired pitch angle of -30 degree

Figure 7.8 shows that the four controllers stabilize the system around a yaw angle
of -3 degree and they are similar.
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Figure F3. Front motor voltage evolution vs. time for desired pitch angle of -30 degree
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Figure.F4. Rear motor voltage evolution vs. time for desired pitch angle of -30 degree

Figures F3 and F4 show the input voltages of the front and rear motors. They
present almost the same behaviour for the four controllers.

F.2 Square signal desired pitch angle of 0.05 Hz frequency
and 10 degree amplitude

In the following, we present the simulation results for a desired yaw angle of 0
degree, desired pitch angle of a square signal of frequency 0.05 Hz and amplitude
of 10 degree, with an initial condition of the pitch angle of -40.5 degrees for four
controllers: Linear, , and truncation orders.
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Figure F5. Pitch evolution vs. time for desired pitch angle of square signal of frequency 0.05 Hz and
amplitude of 10 degree

The simulation results for the pitch angle show that the four controllers stabilize
the helicopter around the desired signal with an advantage for and order
ones presenting a closer behaviour to the reference and better settling time.
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Figure F6. Yaw evolution vs. time for desired pitch angle of square signal of frequency 0.05 Hz and
amplitude of 10 degree

The simulation results of the yaw angle show that the four controllers stabilize the
helicopter around the desired yaw angle of zero degree, while the and order

ones present un important overshoot to reach the equilibrium, the linear and
order controllers present a less steady state error.
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Figure F7. Front motor voltage evolution vs. time for desired pitch angle of square signal of
frequency 0.05 Hz and amplitude of 10 degree

Figure F8. Rear Motor Voltage evolution vs. time for desired pitch angle of square signal of
frequency 0.05 Hz and amplitude of 10 degree
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The simulation results of the front and rear motor voltages show that the and
order controllers require a higher voltage, then more energy to stabilize the

helicopter around the desired pitch and yaw angles.

F.3 Square signal desired pitch angle of 0.02 Hz frequency
and 20 degree amplitude

In the following, we present the simulation results for a desired yaw angle of 0
degree, desired pitch angle of a square signal of frequency 0.02 Hz and amplitude
of 20 degree and for an initial condition of the pitch angle of -40.5 degrees for four
controllers: Linear, , and truncation order.

Figure F9. Pitch evolution vs. time for desired pitch angle of square signal of frequency 0.02 Hz and
amplitude of 20 degree

The simulation results of the pitch angle show that the four controllers stabilize the
helicopter around the desired signal with the advantage for the and ones
presenting a closer behaviour to the reference and better performance in terms of
settling time.
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Figure F10. Yaw evolution vs. time for desired pitch angle of square signal of frequency 0.02 Hz and
amplitude of 20 degree

The simulation results of the yaw angle show that the four controllers stabilize the
helicopter around the desired yaw angle of zero degree. The first and second order
controllers present a closer behaviour to the reference, while and ones
present a higher overshoot.
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Figure F11. Front motor voltage evolution vs. time for desired pitch angle of square signal of
frequency 0.02 Hz and amplitude of 20 degree

Figure F12. Rear motor voltage evolution vs. time for desired pitch angle of square signal of
frequency 0.02 Hz and amplitude of 20 degree

0 10 20 30 40 50 60 70

-20

-10

0

10

20

Lin. (simulation)
2nd KP (simulation)
3rd KP (simulation)
4th KP (simulation)

0 10 20 30 40 50 60 70
-15

-10

-5

0

5

10

15
Lin. (simulation)
2nd KP (simulation)
3rd KP (simulation)
4th KP (simulation)



Simulation results for other desired trajectories of 2-DOF helicopter-model set-up

221

The simulation results for the input controls, the front and rear motor voltages
show that and order controllers require a higher voltage, then more energy
to stabilize the helicopter around the desired pitch and yaw angles.

F.4 Sine signal desired pitch angle of 0.05 Hz frequency and
10 degree amplitude

In the following, we present the simulation results for a desired yaw angle of 0
degree, desired pitch angle of a sine signal of frequency 0.05 Hz and amplitude of
10 degree with an initial condition of the pitch angle of -40.5 degrees for the four
controllers: linear, , and truncation order.

Figure F13. Pitch evolution vs. time for desired pitch angle of sine signal of frequency 0.05 Hz and
amplitude of 10 degree
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The simulation results of the pitch angle show that the four controllers stabilize the
helicopter around the desired signal with the advantage for and order ones
presenting a better performance in terms of rise time.

Figure F14 Yaw evolution vs. time for desired pitch angle of sine signal of frequency 0.05 Hz and
amplitude of 10 degree

The simulation results of the yaw angle show that the four controllers stabilize the
helicopter around the desired angle of zero degree with the advantage for the
linear, and order ones, presenting a better performance in terms of
overshoot.
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Figure F15 Front motor voltage evolution vs. time for desired pitch angle of sine signal of frequency
0.05 Hz and amplitude of 10 degree

Figure F16 Rear motor voltage vs. time for desired pitch angle of sine signal of frequency 0.05 Hz
and amplitude of 10 degree
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The simulation results for the input controls, i.e., the front and rear motor voltages
show that and order controllers require a higher voltage, then more energy
to stabilize the helicopter around the desired pitch and yaw angles.

F.5 Sine signal desired pitch angle of 0.02 Hz frequency and
20 degree amplitude

In the following, we present the simulation results for a desired yaw angle of 0
degree, desired pitch angle of a sine signal of frequency 0.02 Hz and amplitude of
20 degree, with an initial condition of the pitch angle of -40.5 degrees for the four
controllers: Linear, , and truncation order.

Figure F17 Pitch evolution vs. time for desired pitch angle of sine signal of frequency 0.02 Hz and
amplitude of 20 degree
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The simulation results of the pitch angle show that the four controllers stabilize the
helicopter around the desired signal with the advantage for the and the ones
presenting a better performance in terms of rise time.

Figure F18 Yaw evolution vs. time for desired pitch angle of sine signal of frequency 0.02 Hz and
amplitude of 20 degree

The simulation results of the yaw angle show that the four controllers stabilize the
helicopter around the desired angle of zero degree with the advantage for the
linear, and order ones, presenting a better performance in terms of
overshoot. We note that the proposed control design does not consider the transient
dynamic behaviour (e.g., overshoot). The optimal control gain calculus minimizes
a combination of the energy of error and control effort.
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Figure F19 Front motor voltage evolution vs. time for desired pitch angle of sine signal of frequency
0.02 Hz and amplitude of 20 degree

Figure F20 Rear motor voltage evolution vs. time for desired pitch angle of sine signal of frequency
0.02 Hz and amplitude of 20 degree
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The simulation results for the input controls, i.e., the front and rear motor voltages
show that and order controllers require a higher voltage, then more energy
to stabilize the helicopter around the desired pitch and yaw angles.

F.6 Multi-step desired pitch angle

In the following, we present the simulation results for a desired yaw angle of 0
degree, desired pitch angle of a multi-step signal with an initial condition of the
pitch angle of -40.5 degrees for the four controllers Linear, , and
truncation orders.

Figure F21 Yaw evolution vs. time for desired pitch angle of multi-steps signal

The simulation results of the yaw angle show that the four controllers behave
similarly (i.e., there is no major differences).
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Figure F22 Front motor voltage evolution vs. time for desired pitch angle of multi-steps signal

Figure F23 Rear motor voltage evolution vs. time for desired pitch angle of multi-steps signal
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The simulation for the input controls, i.e., the front and rear motor voltages show
that for the four controllers, the input control signals have the same behaviour, and
then, the same amount of energy is needed in order to stabilize the system around
the desired trajectory.

In conclusion, the simulation of the behaviour of the designed four controllers for
different trajectories show that as high as we go in the order of truncation, we need
higher energy to stabilize the system but we see an improvement in the steady state
error.
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G Experimental results for other
desired trajectories of the 2-DOF
helicopter-model set-up

G.1 Constant desired pitch angle of -30 degree

In the following, we present the simulation results for a desired yaw angle of 0
degree, desired pitch angle of -30 degree with an initial condition of the pitch angle
of -40.5 degrees for four controllers: Linear, , and truncation orders.

Figure G1 Pitch evolution vs. time for desired pitch angle of -30 degree
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The experimental results show that the four controllers stabilize the 2-DOF
helicopter set-up around a pitch angle of -25 degree. The depicted error due to the
mathematical model approximation of the control law is reduced with truncation
order. In comparison with simulation results, the experimental results present the
same behaviour with closely the same error magnitudes. These results demonstrate
the effectiveness of the high order KP-LF-based method.

Figure G2 Yaw evolution vs. time for desired pitch angle of -30 degree

The experimental results show how the four controllers stabilize the 2-DOF
helicopter set-up around a yaw angle within the range of -3 to -7 degrees. These
errors are due to the mathematical model approximation of the control law. In
comparison with simulation results, the experimental results present almost the
same behaviour and closely same level of errors, with slight improvement with the
3rd order.
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Figure G3 Front motor voltage evolution vs. time for desired pitch angle of -30 degree

Figure G4 Rear motor voltage evolution vs. time for desired pitch angle of -30 degree
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The experimental results show that for the input controls, i.e., the front motor and
rear motor voltages that the four controllers behave the same way: for the front
motor the voltage fluctuate within the range of 7 to 12V and for the rear motor the
voltage fluctuate within the range of -8 to -6V. We assume that these fluctuations
are due to nonlinearities in the mathematical model of the system and some noise
levels which are not controllable. In comparison with the simulation results, the
experimental ones present the same general tendency with more fluctuations
around the equilibrium input controls instead of a constant value.

G.2 Square signal desired pitch angle of 0.05 Hz frequency
and 10 degree amplitude

In the following, we present the experimental results for a desired yaw angle of 0
degree, desired pitch angle of a square signal of frequency 0.05 Hz and amplitude
of 10 degree with an initial condition of the pitch angle of -40.5 degrees for four
controllers: Linear, , and truncation orders.

Figure G5 Pitch evolution vs. time for desired pitch angle of square signal of frequency 0.05 Hz and
amplitude of 10 degree
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The experimental results show that the four controllers behave the same way and
stabilize the 2-DOF set-up around the desired square pitch angle signal with some
overshoot when the signal is changing amplitude from 10 degrees to -10 degrees.
The 2nd order controller represents the best performance in terms of accuracy.

Figure G6 Yaw evolution vs. time for desired pitch angle of square signal of frequency 0.05 Hz and
amplitude of 10 degree

The same experiments show that the four controllers stabilize the 2-DOF set-up
around the desired yaw angle of 0 degree with an improvement of the second order
one, presenting lower errors than the other controllers.
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Figure G7 Front motor voltage evolution vs. time for desired pitch angle of square signal of frequency
0.05 Hz and amplitude of 10 degree

Figure G8 Rear motor voltage evolution vs. time for desired pitch angle of square signal of frequency
0.05 Hz and amplitude of 10 degree
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In terms of input controls, the experiments show for the front motor voltage that
the four controllers behave in the same way. But, the fourth order one presents a
higher voltage variation when the signal is changing direction from 10 degrees to -
10 degrees. For the rear motor voltage there is no major difference between the
four controllers.

G.3 Square signal desired pitch angle of 0.02 Hz frequency
and 20 degree amplitude

In the following, we present the experimental results for a desired yaw angle of 0
degree, desired pitch angle of a square signal of frequency 0.02 Hz and amplitude
of 20 degree, with for an initial condition of the pitch angle of -40.5 degrees for
four controllers: Linear, , and truncation orders.

Figure G9 Pitch evolution vs. time for desired pitch angle of square signal of frequency 0.02 Hz and
amplitude of 20 degree
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the second order one, presenting a lower overshoot when the signal amplitude is
changing from 20 degrees to -20 degrees.

Figure G10 Yaw evolution vs. time for desired pitch angle of square signal of frequency 0.02 Hz and
amplitude of 20 degree

The experimental results for the yaw angle show that the four controllers stabilize
the system around the desired yaw angle of zero degree with errors of -5 to 0
degrees, with some overshoot for the third and fourth order controllers when
changing the signal amplitude from 20 degrees to -20 degrees.
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Figure G11 Front motor voltage evolution vs. time for desired pitch angle of square signal of
frequency 0.02 Hz and amplitude of 20 degree

Figure G12 Rear motor voltage evolution vs. time for desired pitch angle of square signal of
frequency 0.02 Hz and amplitude of 20 degree
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The experimental results for the input controls, i.e., front and rear motor voltages
show that the four controllers behave almost in the same way and then consume
almost the same amount of energy with the exception for the fourth order one
which presents higher voltage for both motors when changing the desired pitch
angle amplitude from 20 degrees to -20 degrees.

G.4 Sine signal desired pitch angle of 0.05 Hz frequency and
10 degree amplitude

In the following, we present the experimental results for a desired yaw angle of 0
degree, desired pitch angle of a sine signal of frequency 0.05 Hz and amplitude of
10 degree, with an initial condition of the pitch angle of -40.5 degrees for the four
controllers: Linear, , and truncation orders.

Figure G13 Pitch evolution vs. time for desired pitch angle of sine signal of frequency 0.05 Hz and
amplitude of 10 degree

The experimental results for the pitch angle show that the four controllers stabilize
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the second order one which presents a better performance than the other controllers
in terms of overshoot, rise time and errors.

Figure G14 Yaw evolution vs. time for desired pitch angle of sine signal of frequency 0.05 Hz and
amplitude of 10 degree

For the yaw angle, the simulation results show that the four controllers stabilize the
2-DOF set-up around the desired yaw angle of zero degree with a slight advantage
for third and fourth order controllers in terms of errors despite an important
overshoot.
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Figure G15 Front motor voltage evolution vs. time for desired pitch angle of sine signal of frequency
0.05 Hz and amplitude of 10 degree

Figure G16 Rear motor voltage evolution vs. time for desired pitch angle of sine signal of frequency
0.05 Hz and amplitude of 10 degree
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For the input controls, the experiments show that the four controllers behave in the
same way except for the fourth order one which presents a higher voltage and
hence energy for the front and rear motors during the start-up phase.

G.5 Sine signal desired pitch angle of 0.02 Hz frequency and
20 degree amplitude

In the following, we present the experimental results for a desired yaw angle of 0
degree, desired pitch angle of a sine signal of frequency 0.02 Hz and amplitude of
20 degree, with an initial condition of the pitch angle of -40.5 degrees for the four
controllers: Linear, , and truncation orders.

Figure G17 Pitch evolution vs. time for desired pitch angle of sine signal of frequency 0.02 Hz and
amplitude of 20 degree

The experimental results for the pitch angle show that the four controllers stabilize
the 2-DOF set-up around the desired sine pitch angle with an improvement for the
second and third order controllers.
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Figure G18 Yaw evolution vs. time for desired pitch angle of sine signal of frequency 0.02 Hz and
amplitude of 20 degree

For the yaw angle, the experimental results show that the four controllers stabilize
the 2-DOF set-up, with some errors about zero. We depict a high overshoot for the
fourth order one.
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Figure G19 Front motor voltage evolution vs. time for desired pitch angle of sine signal of frequency
0.02 Hz and amplitude of 20 degree

Figure G20 Rear motor voltage evolution vs. time for desired pitch angle of sine signal of frequency
0.02 Hz and amplitude of 20 degree
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In terms of input controls, the four controllers behave almost in the same way and
they present small vibrations around the equilibrium voltages of 10V for the front
motor and -8V for the rear motor.

G.6 Multi-step desired pitch angle

In the following, we present the experimental results for a desired yaw angle of 0
degree, desired pitch angle of a multi-step signal, with an initial condition of the
pitch angle of -40.5 degrees for the four controllers: Linear, , and
truncation orders.

Figure G21 Pitch evolutions vs. time for desired pitch angle of multi-steps.

The pitch angle evolutions show better results with the 3rd and 4th order controllers.
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Figure G22 Yaw evolutions vs. time for desired pitch angle of multi-steps

The experimental results of the yaw angles for a desired pitch angle of multi-steps
and a yaw angle of zero degree show that the four controllers stabilize the 2-DOF
within a range of -6 to 2 degrees. The yaw performance is affected by the pitch
behaviour.
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Figure G23 Front motor voltage evolution vs. time for desired pitch angle of multi steps

Figure G24 Rear motor voltage evolution vs. time for desired pitch angle of multi steps
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In terms of input controls, the four controllers present almost the same behaviour
and vary within a range of 5 to 20V for the front motor voltage and -10 to -6V for
the rear motor voltage.
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1. Introduction 

Numerous physical systems are very well known to be 
nonlinear by nature, but methods for analysing and 
synthesizing controllers for nonlinear systems are still not as 
well developed as their counterparts for linear models 
(Ekman, 2005). The investigation of new techniques for 
nonlinear problems such as the stability, the estimation and 
the control design remains a challenge until today (see e.g. 
(Zhu & Khayati, 2012; Zhu & Khayati, 2011; Won & Biswas, 
2007; Khayati et al., 2006, Ekman, 2005)). In particular, to 
deal with the nonlinear optimal control problem, it has been 
stated in (Khayati, 2013) and references cited therein that a 
great variety of works shown in the literature used simple 
techniques, based on the local linearization, and more 

complex ones, such as (but not limited to) the state-
dependent-Riccati (SDR) equation, the nonlinear-matrix-
inequality- and frozen-Riccati-equation-based methods (Won 
& Biswas, 2007; Huang & Lu, 1996; Banks & Mhana, 1992). 
These methods could work well in some applications but 
rigorous theoretical proofs were lacking (Won & Biswas, 
2007). The related grey area nevertheless covers the stability 
analysis of these closed loop controllers and also their 
implementation (complexity of the algorithms) within a large 
set of plants. These concerns have been discussed in separate 
works with a lot of compromises to achieve their goals (Won 
& Biswas, 2007; Ekman, 2005; Banks & Mhana, 1992). 

Recently, the KP algebra has shown an important role in 
research activities dealing with control analysis and design 
(Mtar et al., 2009; Bouzaouche & Braik, 2006; Rotella & 
Tanguy, 1988). In these works, polynomial modelling 
structures represent the nonlinearities using the matrix KP 
and the vector power algebra (Steeb, 1997; Brewer, 1978).  
This modelling resembles the classical linearization, but with 
a difference. In fact, the order of truncation of the 
decomposition is high enough to represent closely and fairly 
the actual dynamics of the system. 

In this paper, the optimal control for affine input 
nonlinear systems (i.e. linear w.r.t. the input but nonlinear in 
terms of the states (Rotella & Tanguy, 1988)) is considered. 
Such a large class contains well-known examples in control 
theory and many physical systems (e.g. mass-spring systems 
with softening/hardening springs, artificial pneumatic 
muscles, flight engine setups, etc.) (Chesi, 2009; Ekman, 2005; 
Banks & Mhana, 1992). The controller is developed using the 
well-known optimality conditions (Goh 1993; Borne et al., 
1990; Rotella & Tanguy, 1988) by converting the nonlinear 
SDR equation into a set of algebraic equations using the KP 
algebra (Steeb, 1997; Rotella & Tanguy, 1988). The proposed 
method is using the same technique developed in (Rotella & 
Tanguy, 1988), but with a main difference of considering a 
given quadratic form for the cost index functional allowing 
the analysis of the stability of the optimal state-feedback 
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(Goh, 1993). In fact, this analysis will show cases where the 
overall system will be globally asymptotically stable (GAS), or 
will estimate alternatively its DA and how much this domain 
can be large when the system is locally asymptotically stable 
(LAS) eventually. The stability and DA estimate features will 
be cast as convex problems that will be solved using LMI 
frameworks (Chesi, 2009; Chesi, 2005). Indeed, we will 
propose a technique that ensures the computation of the 
largest estimation of the domain of attraction (LEDA) using 
both the well-known complete square matrix representation 
(SMR) (Chesi, 2009; Chesi, 2003) and a new formalism of a 
complete rectangular matrix representation (RMR). 

We will proceed as follows. In Section 2, we introduce a 
set of useful notations, definitions and properties regarding 
the matrix KP algebra, the vector power series and the 
SMR/RMR formulations. Section 3 is devoted to the problem 
statement of the nonlinear dynamics, the nonlinear quadratic 
cost functional to be optimized and the related optimality 
conditions. In Section 4, we introduce an LF-based optimal 
cost index that will be used in the transformation of the 
polynomial SDR equation. Then, Section 5 deals with the 
computation of a ‘closely’ acceptable solution to this 
nonlinear equation in the unknown constant matrices, while 
in Section 6, an analytic and practical form of the state-
feedback sub-optimal control is developed. Section 7 
introduces the stability issue of the designed sub-optimal 
closed-loop. Moreover, in Section 8, we discuss the 
computation of the LEDA of this closed loop system. Finally, 
to illustrate the proposed technique, numerical and 
comparative results are presented in Section 9, while Section 
10 concludes this work. 
 

2. Useful Notations, Definitions and Proprieties 
Notations and properties of matrices, vectors, dot 

product and KP tensors used in this paper are exhaustively 
discussed in the literature; e.g. (Schott, 2001; Steeb, 1997; 
Brewer, 1978). The proofs of the new lemmas introduced in 
this Section are based on theorems introduced in these 
references. Due to lack of space, all these theorems as well as 
the proofs of the lemmas shown below are omitted. 
 
2. 1. Definitions 

Definition 1: For any vector  nx  and any integer j , 


jj nx  is the j -power of a vector x  and 




( )n
jj

x  is the 

non-redundant j -power of the vector x  with  n

j  standing 

for the binomial coefficient. We have  j , 


 
( )

!
nj

jn

jT  s.t. 

j j

jx T x  (Mtar et al., 2009; Brewer, 1978). 

Definition 2: Let  w x  be any homogenous form of 

degree 2 j , then the SMR of  w x  in any  nx  is given by 

  j T j
w x x Wx  (Chesi, 2005; Chesi, 2003). j

x  is considered 

a base vector of the homogenous function of degree j  in x . 

W  is a suitable but non-unique symmetric matrix SMR, also 

known as Gram matrix. All matrices W  can be linearly 

parameterized as    W W L   , where   ( , )n j  is a 

free vector with    ( ) ( ) ( )
2

1
, 1

2
n n n

j j jn j       .  
 





( ) ( )n n
j jL  

is a linear parameterization of the set 

    | 0,
j T jT nL L x Lx x . We refer to  W   as the 

complete SMR of  w x . 

Definition 3: Let  w x  any form of degree 2 1j   in 

 nx  given by   2 1 2 1j j TTw x v x x v
 

  , where 



2 1jnv . 

Using theorem T2.13 of (Brewer, 1978),  w x  can be written 

using a new formulation given by RMR as 

  1 1j T j j T i
w x x M x x N x

 
      , with  1j j

T

n n
M mat v
  and 

 1j j

T

n n
N mat v 
 . Then, similarly to the homogenous forms of 

even order shown above, we propose a complete RMR of 

 w x  as      1 11 1

2 2

Tj T j j j T
x M L x x M L x 

 
   , where 

  is a vector of free parameters.  
 

 


( ) ( )
1

n n
j jL  is a linear 

parameterization of the set  
  

1
0,

j T j nx Lx x . We refer 

to    M M L    as the complete RMR of  w x . The 

following two examples illustrate this new formulation. 
Example 1: Consider the form of degree 3  in two 

variables   3 2 3
1 1 2 2w x x x x x   . Noting  1

1 2

T
x x x  and 

 2 2 2
1 1 2 2

T

x x x x x , we obtain, for      2
1 2

T
, 

 M L    1 2

1 2

1 1

1

 

 

 
 
 

. 

Example 2: Consider the form of degree 3  in three 

variables   3 3 2
1 1 2 3 2 2 3w x x x x x x x x    . Noting 1

1 2x x x  

3x  and  2 2 2 2
1 1 2 1 3 2 2 3 3x x x x x x x x x x , we obtain, for 

          7
1 2 3 4 5 6 7

T
,   M L

     

    

    

 
 
   
     

1 2 3 4 5

1 3 4 6 7

2 4 5 6 7

1

1 2 1

1 0

.  

 
2. 2. Notations 

Notation 1: If V  is a vector of dimension p n m  , then 

 n mM mat V


  is the  n m -matrix verifying  V vec M . 

Therefore it is called the mat  notation. 

Notation 2: M  stands for the Moore-Penrose pseudo-
inverse of any full rank matrix M . 
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Notation 3: Given  nx , for any integer 1p  , we 

denote by pX 
 

 1 2
T

T T pT
x x x  and 

 1 2T T pT

pX x x x . We have p p pX XT  where 


 p pN

pT  is the direct sum of  1T , 2T , …, pT , denoted by 

1

p

p p
i

T


T , with 2 p
pN n n n     and      ( ) ( )

1 2
n n

p  

 ( )n
p  (Halmos, 1974). 

Notation 4: For any vector  nx  and integers p  and  , 

we denote by   
 
     

121( ) 11
pp p

T
pTpT n n n

p x x . 

 
2. 3. Lemmata 

Lemma 1:    \ 0j  and   nx  (Khayati & 

Benabdelkader, 2012a), 
 

  1( )
j

jn

j nT

x
I x

x


  


D                    (1) 

 

where ( ) j jn n n
jD  is given by 1

1
( )

0

i j i

j
n

j n n n
i

U I  






 D  and 

therefore called the j -differential Kronecker matrix. nI  (resp. 

1j in
I   ) denotes the identity matrix of n n  (resp. 

   1 1j i j in n ), 

in n
U


 the permutation matrix of 

 1 1i in n  (Rotella & Tanguy, 

1988; Brewer, 1978). Equivalently, ( )n
jD  can be derived from 

 

( )
1

n
nID  and 

 
    ( ) ( )

1 , 1j

n n
j j n n n

I U jD D      (2) 

 

Lemma 2: For x  and y  column-vectors of k  and l  

respectively and for any matrix  ( )nk lA , we have (Khayati 
& Benabdelkader, 2012a) 
 

      ( )T T T
n n n klI x Ay I vec A vec I I x y                   (3) 

 

Lemma 3: Consider a matrix  p nqA . Let  1 ... nA A  

be a partition of A , i.e. 1, ,i n  ,  p q
iA . We have 

(Khayati & Benabdelkader, 2012a) 
 

        T T
n n pq pq nI vec A vec I I mat vec A


                   (4) 

 

3. Problem Statement 
Consider the nonlinear system given by 

             
1

m

k k
k

x t F x G x u t F x G x u t


                      (5) 

where t  designates the time,   nx t  the state vector, 

     1

T m
mu t u t u t     the input vector.  F   and 

 kG   for 1, ,k m  are analytic vector fields from n  into 

n  expressed as polynomials in x . Note that    1G x G x   

  
n m

mG x . By using the KP tensor, we write 

 
1

f
j

j
j

F x F x


  , 1, ,k m    
0

g
j

k kj
j

G x G x


   and then, 

 
0

( )
g

j

j m
j

G x G I x


  , with 
jn n

jF  , 
jn n

kjG   1, ,k m   

and 1

jn mn
j j mjG G G     . Let     qz t H x   be a 

vector field in the state vector x  given by  
1

h
j

j
j

H x H x


   

with 
jq n

jH   (Khayati & Benabdelkader, 2012a; Rotella & 

Tanguy, 1988). 

For Q  a symmetric non-negative definite matrix of q q  

and R  a symmetric positive definite (SPD) matrix of m m , 
we propose the design of a state feedback which minimizes 
the continuous-time cost functional 
 

       
0

1

2

T T
J z t Qz t u t Ru t dt



  
                   (6) 

 

We denote by  V x  the optimal cost with an initial 

condition x  at t  (Goh, 1993; Borne et al., 1990) 

 

         
1

2

T T

t

V x z Qz u Ru d    


   
                  (7) 

 

where  arg minuu J   is the optimal control. The optimality 

conditions, corresponding to the problem (5) and (6), are 
given by (Borne et al., 1990) 
 

     * 1 T

xu x R G x V x                     (8) 

               
T T T T

x x xH x QH x V x F x F x V x V x G x     

       1 0
T T

x xV x G x R G x V x 
 
      (9) 

 

where  xV x  denotes the derivative of  V x  w.r.t. the state 

vector x ; i.e.  x

V
V x

x





. 

 

4. Quadratic Cost Function Representation 
Based on the optimality conditions discussed in (Borne 

et al., 1990; Rotella & Tanguy, 1988), we build the following 
procedure to obtain a suboptimal state feedback in a 
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polynomial form using the KP tensor, vec  and mat  notations 

(Khayati & Benabdelkader, 2012a). Such a design is based on 

the determination of the cost function  V x  in a quadratic 

form. In fact, this function would be expected to satisfy the 
conditions of any Lyapunov candidate function (Goh, 1993). 
We propose (Khayati & Benabdelkader, 2012a) 
 

 
2

2

1

2

p
j T nT T p

jj
j jn n

j

x
P I

V x x x P
P xI I







 
   

        
 




              (10) 

 

with  , P  is an SPD constant matrix of n n  and jP  

constant matrices of 
jn n . Note that  V x  can be expressed 

in a compact form 
 

 
1

2
T
p pV x X X P                   (11) 

 
where 
 

2

2 2 2 2

2

p

T T T
p

T T T
p p p p

P P P

P P P P P

P P P P P

 





 
 
 
 
  
 

P                 (12) 

 
And equivalently, by using the Cholesky decomposition, 1P  

exists s.t. 1 1
TP P P , then the cost function  V x  can be 

rewritten in a summation form as 
 

     
, 1

1

2

p
i T jT

i j j i
i j

V x x P P x


                  (13) 

 
with 
 

 

1 for 1

for 1 and 2

for 2 and 1
ni j

i

P i j

P I i j

P i j



 


  
  

                (14) 

 

The expression of  V x  given by (13) and (14) will be 

advantageous to solve the nonlinear SDR (9). Using theorems 
T2.3 and T4.3 in (Brewer, 1978) and applying lemmas 1, 2 
and 3 and the mat  notation, introduced in Section 2, we 

obtain the derivative of (13) w.r.t. x  

  1

( ) ( )
, 1 , 1

j Tp p
i i jT

x j i i j ij
i j i j

x
V x P P x V x

x

 

 


 


                 (15) 

 
with 

 1

( )
( ) ( )i j

T T n
ij i j j i jn n

V mat vec P P  
 
 

D                (16) 

 

where ( )n
jD  is the square j -differential Kronecker matrix of 

j jn n  introduced in lemma 1 (see Section 2). Using the KP 
tensor, the theorem T2.13 of (Brewer, 1978), the lemmas 2 
and 3, and the mat  notation, introduced in Section 2, we 

obtain from the nonlinear SDR equation (9) 
 

   1 1

, 1 1 , 1 1

p f p f
i j k i j kT T T T

ij k k ij
i j k i j k

vec V F x vec F V x
     

   

    

   1

, 1 , , , 1 , 0

p gh
i jT T T T

i j ijk bcd
i j i j b c k d

vec H QH x vec W R W
 

  

   

2
0

i j k b c d
x

     
               (17) 

 
where 
 

 1i j k

T T
ijk ij kn m

W mat vec V G   
 
 

                (18) 

 

5. Determination of  pP  

In this Section, the matrices pP , for 1, ,p p , will be 

computed from (17) by cancelling the coefficients of 
1p

x


. 
The details of such steps, based on the KP notations and 
theorems introduced in (Steeb, 1997; Brewer, 1978) as well 
as the lemmas 1, 2 and 3 shown in Section 2, are omitted due 
to lack of space. 

First, the matrix 1P  is obtained by cancelling the terms of 

2
x , in (17). The operator  vec   is linear on matrices of the 

same dimensions. Noting that the first differential Kronecker 

matrix is given by ( )
1

n
nID  and that 1 1

TP P P  is SPD, we use 

(14), (16), (18) and the mat  notation to obtain the classical 

algebraic Riccati equation (ARE) 
 

1
1 1 1 1 0 0 0T T TPF F P H QH PG R G P                   (19) 

 
And thence, for a given  , the calculation of pP , 

2, ,p p , is obtained from (17) by cancelling the 

coefficients of 
1p

x


. Using vec  and mat  notations, theorems 

T1.5, T1.6, T3.2, T3.4 of (Brewer, 1978) and the iterative form 
of the differential Kronecker matrix (2), we combine (14), 
(16) and (18) to obtain 
 

    
  1

( )
1p p

T n T
p p p pn n n

I U vec PF D H                (20) 
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where  1
1 0 0 p

T
p n

F G R G P I  F  and 
1 1

, , , 1 , 0
3

p p

p
i j b c k d

i j k b c d p

vec
 

 

      

  H  

      
1

1
1

, 1 1 , 1
2 i j p

p p p
T T T T

ijk bcd ij k k ij i
i j k i j

i j k p

W R W vec V F vec F V vec H

  




  

   

   
  

 jQH . Note that  1
1 0 0

TF G R G P  is a Hurwitz matrix, then 

pF  is regular for all p . ( )
1
n

pD  is a singular matrix for all 

nonzero integers p  and  1p pn n n
I U 

  is regular for p  even 

and singular for p  odd (Khayati & Benabdelkader, 2012a; 

Rotella & Tanguy, 1988). Using the non-redundant vector 
power notation (Bouzaouche & Braiek, 2006), and the 

theorem T3.4 of (Brewer, 1978), we write p p pP P T   where 

 


np
pn

pT  is the transformation matrix defined in Section 2 

(Bouzaouche & Braiek, 2006). Two cases arise depending on 
p : 

Case Ι – p  is even: Let   ( )
1
n

p p n pT I


 T D  be a full rank 

rectangular    1n p
pn n    matrix. We obtain 

 

    
  1p p

T T
p p p pn n n

I U vec PF T H                (21) 

 

If P , 2P , …, 1pP


 are known, pP  can be calculated as a solution 

of the linear equation (21). Thus, p p pP P T   is deduced. In 

fact, by using  
1

T T
p p p p


 T T T T  the Moore-Penrose 

pseudo-inverse of pT , we obtain 

 

   





 


 1

11
p p

T T
p p p pn n n

vec P I UT F H                (22) 

 
Case ΙΙ – p  is odd: Eq. (17) is rewritten using the non-

redundant power series. Then, the coefficients of 
1p

x


 are 

given in (20), but multiplied by 1
T

pT


 on the left hand side. 

Thus, this linear equation becomes 
 

 T
p p pvec P F H                  (23) 

 

where    
 1 1p pp p p pn n n

I U TF T F  is a full rank rect-

angular   ( ) ( )
1

n n
p pn  


   matrix and 1

T
p p pT


 H H . If P , 2P , …, 

1pP


 are known, pP  can be calculated as a solution of the 

linear equation system (23). Thus, p p pP P T   is deduced. In 

fact, by using the Moore Penrose pseudo-inverse of pF , 

denoted by  
1

T T
p p p p


 F F F F , we obtain 

 

  T
p p pvec P  F H                  (24) 

 

6. Implementation of the State Feedback 
Consider the nonlinear dynamics (5). The optimal 

control minimizing the functional cost (6) is obtained by the 
optimality conditions (8) and (9). We propose the design of a 
practical sub-optimal control using the matrices P , 2P , …, pP  

computed in Section 5. It is based on an approximated 

optimal cost  V x  given by (10). An analytical form of the 

state feedback can be obtained by using (8), (15), (16) and 
(18) (Khayati & Benabdelkader, 2012a) 
 

 
1

gp
p

p
p

u x K x


                    (25) 

 
with 2 1gp p g    and 

 

1

, 1 0
1

p g

p ijk
i j k

i j k p

K R W

 

   

                    (26) 

 
The KP tensor is used here to design a systematic 

computation of a sub-optimal state-feedback. The proposed 
nonlinear feedback (25) with (26) would not necessarily be 
implemented with a great number of computed matrices pP  

to be so different from the linear control approximation, a 
priori. According to (Rotella & Tanguy, 1988), it can be 
concluded that the state-feedback obtained with only P  (i.e., 
only the first order of the SDR equation) is more efficient than 
the solution issued from the linearized system. In fact, by 
computing only P , we may obtain a polynomial sub-optimal 
control of order 1g  (where g  is the order of the term 

 G x  in (5)), in particular, when g  is non-zero. The stability 

of the proposed closed-loop feedback (5) and (25) will be 
discussed in the following section. 
 

7. Stability of the Sub-Optimal State Feedback 
To investigate the stability of the closed loop system, we 

consider  V x , given by (10), as a Lyapunov candidate 

function.  V x  is a radially unbounded continuous function, 

and its derivative exists and is continuous. From (10), if 
 

0n

n n

P I

I I
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holds, then the Lyapunov candidate function  V x  is positive 

definite; that is   0V x  , 0x  . Note that (27) is equivalent 

to 2
nP I . The time derivative of the LF  V x , along the 

trajectories of the closed loop system (5) and (25), is given by 
 

             
T T T

V x V x x t V x F x u x Ru x                  (28) 

 

Let us define 1B  and 1C  by 1
0 0

TG R G  and 
1 1
TH QH , 

respectively. We assume the triplet  1 1 1, ,F B C  is stabilizable-

detectable. Note that if a solution P  of the ARE (19) exists, 
then it is the unique SPD matrix solution of the optimal 

control for the linearized system and  1 1F B P  is a Hurwitz 

matrix (Rotella & Tunguy, 1988). Thus, the linearized system 
is asymptotically stable. Moreover, the nonlinear closed loop 

system (5) and (25) is LAS and 0x   s.t. 
 

0

Tx Px

t





. 

In the following, we assume     \ 0 | 0nx V  and 

consider the closed ball      |nx xB . Given   s.t. 

2
nP I ; i.e.   0V x   for all nonzero  nx ,  B  is an 

estimate of the DA if        | 0 0nx VB  (Chesi, 

2009; Chesi, 2003). The computation of the maximum   s.t. 

   B , i.e. (5) and (25) is LAS, corresponds to the LEDA of 

the closed-loop dynamics and is given by  B  where (Chesi, 

2009) 
 

  


 


\ 0 . . 0

inf
nx s t V x

x                  (29) 

 

8. LEDA Computation of the Closed Loop System 
In this section, we present the mechanism to evaluate 

the LEDA of the obtained sub-optimal closed-loop system. Let 

      |nx xS  be a given sphere. The problem (29) 

turns out that (Chesi, 2003) 
 

     sup | 0, , 0,V x x           S               (30) 

 
We assume that P , 2P , …, pP  are obtained from (19), 

(21) and (23). The terms    
T

V x F x  and    
T

u x Ru x  are 

polynomials in x  of degrees 2 1p f   and 2 gp , respectively. 

For any 0  , we have  x  S  
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with 
, 1

1

p

k ij
i j

i j k

v V


  

  , where ijV  is given by (16). Using the non-

redundant vector power series 
p

x  and the vector notations 

pX  introduced in Section 2, without loss of generality, we 

assume that  tp , with 0 t gp p  , and 0T
t t    s.t. 
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x K RK x X X w x w x . The terms  ew x  

and  ow x  are polynomials in even and odd vector powers in 

x  of orders 2 ep  and 2 1op  , respectively. ep  and op  are 

integers s.t. 0 e gp p   and 0 o gp p  . Then, we use the SMR 

and RMR notations introduced in Section 2 to set the time 

derivative of the LF,  V x , in a quadratic form. If we denote 
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where   
   

  


n n
i ie

ii iS  is the SMR matrix of the terms of 

order 2i  in  
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p f
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binomial coefficients (Mtar et al., 2009), and   , 1
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(see Section 2). (32) can be rewritten as follows 
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where  max ,s q rp p p  and 
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The decision variables   are set by the concatenation of all 

free variables  e

i  and  o

i , i . Two cases arise depending 

on the size of the values of sp  and tp  in (33). 

 
8. 1. Case of s tp p  

Using the transformation 
t t tp p pX XT  introduced in 

Section 2, we have   0V x   if the LMI 

 

    0
t t

T
p t pS T T                  (35) 

 
holds in the free decision variable  . Thus, for P  solution of 

the ARE (19), given   s.t. 2
nP I  and 2P , …, pP  computed 

from (21) and (23), if the LMI (35) problem is feasible in  , 

then the sub-optimal state-feedback (5) and (25) is GAS. 
 
8. 2. Case of s tp p  

Let   be the least common multiple of sp  and tp , i.e. 

       2, \ 0,0s t  s.t. s s t tp p    . Consider the well-

posed vectors ( )s

sp

  and ( )t

tp

  introduced in Section 2. Noting 
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     . Thus, 

(33) is equivalent to 
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with    
s s

T
p p   S T S T . 

sp
T  is the pseudo-inverse of 


 p ps s

ps

N
T  introduced in Section 2,      

21 s sp p

s n n  

 ( 1)s spn , 2 ( 1)1 t t t tp p p

t n n n  
     . Noting that t  is SPD, 

let    
t t

T T
p t pT T  be the Cholesky decomposition. Then, 

from (36),  x  S ,   0V x   is equivalent to 
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t s t t pt

T
NI I I I      


     S               (37) 

where the factor    2 2
s t  depends on  . If s t s tp p    , 

then 1   and monotically increasing with  . If 

s t s tp p    , then 1   and monotically decreasing 

with . The following results hold. 

Sub-case s tp p :  , 1   s.t. the LMI (37) holds. 

Thus, for P  solution of the ARE (19), given   s.t. 2
nP I  

and 2P , …, 
pP  computed from (21) and (23), the sub-optimal 

state-feedback system (5) and (25) is GAS. 
Sub-case s tp p : Given  , consider the LMI 
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t s t t pt

T
NI I I I      


    S               (38) 

 
in the vector   and the scalar  . If 0   s.t. the LMI (38) 

holds, then the LMI constraint (37) holds 0  , then we 

select 1   and we have   decreasing with   (i.e.    as 

0  ). Thus, for P  solution of the ARE (19), given   s.t. 
2

nP I  and 2P , …, pP  computed from (21) and (23), if the 

LMI (38) is feasible in 0   and  , then the sub-optimal 

state-feedback system (5) and (9) is GAS. 
Sub-case s tp p  and   s.t.   1 0 : A lower bound 

 of  , given by (30), is computed by arg   
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, where   is a solution of the 

following eigen-value problem (EVP): max   subject to 

1 0    and LMI (38). If arg max  of this EVP is negative, 

then the linear inequality constraint 1 0    corresponds 

to 1   as s tp p . 

Remark: The results discussed above can be proven 
using simply the theorem 1 of (Chesi, 2003) and the 
proposition 2 of (Chesi, 2005). 
 

9. Example 
As an example, we consider the design of a nonlinear 

aircraft flight control problem which has been exhaustively 
treated in literature (see e.g. (Banks & Mhana, 1992)) and 
defined by 
 

2 2 2
1 1 3 1 3 1 2 1 30.877 0.088 0.47 0.019x x x x x x x x x       

2
11

2 3
10.215 0.28 0.47 0.63x u x u x u u     

2 3x x  
2 3

3 1 3 1 14.208 0.396 0.47 3.564 20.967x x x x x u      

2 2 3
1 13 6.265 46 61.4x u x u ux    

 
where 1x  is the angle of attack in rad , 2x  the pitch angle in 

rad , 3x  the pitch rate in rad sec  and u  the control input 

provided by the tail deflection angle in rad  (Banks & Mhana, 

1992). Note that terms involving nonlinearities in u  with 

small effect on the dynamics are eliminated, as the 
approaches discussed here cannot account for nonlinear 
control terms, but are taken into consideration in the 

simulations. The performance index uses  H x x , Q  

 30.25 I  and 1R  . The simulations have been applied for the 
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proposed ‘LF’-based technique as well as the linear control 
‘Lin’ where the dynamics is linearized about the origin, the 
‘KP’-based design introduced in (Rotella & Tanguy, 1988) and 
the SDR-equation-pointwise-based (referred to as ‘PW’) 
technique (Banks & Mhana, 1992). The sub-optimal cost J  is 

evaluated with different initial conditions in terms of angle of 

attack,  1 0x , and same    2 30 0 0x x   for the different 

methods. Table 1 shows the cost performance errors 







pw

pw

J

J J

J
 in % . The ‘LF’- (of orders 2  and 3 ), ‘KP’- (of 

orders 2  and 3 ) and ‘Lin’-based design costs are compared 

to the ‘PW’-technique one. A positive value corresponds to an 
improvement (i.e., a lower cost) with the given method 
compared to the ‘PW’ cost, meanwhile a negative value 
corresponds to a higher cost. Figures 1-3 show the control 
variable, the angle of attack and the pitch angle, respectively, 

obtained with the initial condition  1 0 23x  . Due to lack of 

space the pitch rate figure is omitted. Curves of ‘LF’-based 
design, with orders of truncation 2  and 3 , overlap almost 

during all the time showing very similar results in terms of 
transient behaviour and stability. Furthermore, the proposed 
design (with both orders 2  and 3  which are relatively small) 

exhibits a significant added-value in terms of cost estimation 
and domain of attraction interval performances compared to 
the other methods. 
 

Table 1. Cost index PWJ  and cost errors (expressed in %  of PWJ ) 

 
LF

2J p



, 

 
LF

3J p



, 

 
KP

2J p



, 

 
KP

3J p



, Lin

J . 
 

 1 0x  PWJ  
 

LF

2J p



 

 
LF

3J p



 

 
KP

2J p



 

 
KP

3J p



 Lin

J  

6  0.0016 20.2 18.6 -0.6 -0.8 0.0 

12  0.0071 23.8 22.8 -1.6 -2.6 -0.2 

17  0.0196 30.9 30.3 -3.7 -6.8 -0.7 

23  0.0519 46.3 45.7 -13.3 -31.7 -4.3 

29  0.1056 48.3 46.3 Unstab. Unstab. Unstab.  

34  0.4081 71.4 65.6 Unstab. Unstab. Unstab.  

40  1.6170 58.5 50.9 Unstab. Unstab. Unstab.  

 

 
Fig. 1. Input control vs. time. 

 

 
Fig. 2. Angle of Attack vs. time 

 

 
Fig. 3. Pitch Angle vs. time 

 

10. Conclusions 
A new nonlinear optimal control design for polynomial 

systems subject to nonlinear cost objectives is proposed. We 
develop a systematic and practical LF-based sub-optimal 
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control approach using the KP notations. The analysis of the 
stability of the closed loop system is then discussed using LMI 
frameworks. The problem of the LEDA computation is cast as 
a convex EVP design. This method is expected to ensure a 
best compromise between the feasibility of the implemented 
scheme and the stability analysis of the overall system. An 
example showing simulations and comparative results 
successfully demonstrates the effectiveness of this technique. 
Furthermore, a modified version of this nonlinear optimal 
control will be presented to relax the conditions within the 
computation of the Lyapunov function matrices of high order, 
and also, improving the formulation of the stability feature 
(Khayati, 2013). Nevertheless, all those changes will be 
proposed by following the same overall procedure discussed 
in this paper. 
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Abstract -Many real world systems are inherently nonlinear and therefore the linear quadratic regulator theory is 

rarely efficient for these systems. In this paper, we propose the design of an optimal feedback control for nonlinear 

systems expressed as formal vector power series (VPS) in the indeterminate state variables. The problem of an 

infinite horizon with a nonlinear cost function is investigated based on the Lyapunov function (LF) design and using 

the Kronecker product (KP) algebra. The proposed scheme represents a key element for a follow-on work discussing 

the stability of the given nonlinear state feedback. A practical sub-optimal control is evaluated through simulations. 

 

Keywords: Polynomial systems, KP, Nonlinear optimal control. 

 

 

1. Introduction 
Numerous physical systems are very well known to be nonlinear by nature, and various control 

problems need to be treated within nonlinear concepts in order to deal with their complexity maturely and 

efficiently (Zhu and Khayati, 2011; Khayati et al., 2006; Ekman 2005). Thence, it still remains a 

challenge to investigate new analytic rules and alternative numerical techniques for nonlinear problems 

such as stability, control design and optimal control (Won and Biswas, 2007; Ekman, 2005). In particular, 

the nonlinear optimal control design has been a popular subject for a number of researchers, but there are 

still issues to overcome therein. Indeed, a great variety of work exists in the literature using simple 

techniques based on local linearization or more complex ones, such as (but not limited to) the state-

dependent-Ricatti (SDR) equation, nonlinear-matrix-inequality-based and frozen-Riccati-equation-based 

methods (Won and Biswas, 2007; Huang and Lu, 1996; Banks and Mhana, 1992). These methods seem to 

work well in some applications but rigorous theoretical proofs are very weak regarding the stability of the 

closed loop design, which is rarely globally asymptotically stable (GAS), and also the implementation, 

due to the complexity of the algorithm (Won and Biswas, 2007). These concerns are often discussed in 

separate works with less compromise (Won and Biswas, 2007; Ekman, 2005; Banks and Mhana, 1992). 

In this paper, the nonlinear optimal control of a quadratic cost function with higher order terms 

applied to an affine control nonlinear system (that is linear in control action but nonlinear in the states) is 

considered to propose a practical state-feedback. Such a large class contains well-known examples in 

control theory and many physical systems; e.g. mass-spring systems with softening/hardening springs, 

artificial pneumatic muscles, flight engine setups, etc. (Chesi, 2009; Ekman, 2005; Banks and Mhana, 

1992). The optimal controller is calculated using the well-known optimality conditions discussed in (Goh 

1993; Borne et al., 1990; Rotella and Tanguy, 1988) by converting the given nonlinear Hamilton-Jacobi 

equation (HJE) into a system of algebraic equations through the KP algebra introduced in (Steeb, 1997; 

Brewer, 1978). This method is using the same technique developed in (Rotella and Tanguy, 1988), but 

with a difference of considering a given quadratic form for the cost index function leading to the stability 

conditions of the optimal state-feedback as discussed in the (Goh, 1993). In Section 2, some properties 

that are useful for the present work will be introduced. Section 3 is devoted to the problem statement of 

the nonlinear dynamics, the nonlinear quadratic cost function to be optimised and the related optimality 

conditions. In Section 4, the LF-based optimal cost that will be used in the transformation of the nonlinear 

polynomial HJE equation is discussed. Section 5 is devoted to the computation of a solution to this 
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nonlinear equation in the unknown constant matrices based on the proposed KP and VPS decomposition. 

In Section 6, an analytic and practical form of the state-feedback optimal control is discussed. Finally, 

numerical and comparative results are presented in Section 7 to illustrate the proposed technique, while 

Section 8 concludes this work. 

 

2. Useful Proprieties and Notations  
Notations and properties of matrices, vectors, dot product and KP tensors used in this paper are 

exhaustively discussed in the literature (Steeb, 1997; Brewer, 1978). In the following, we limit our 

presentation to new lemma and a given notation. The proofs of these lemmas are based on theorems 

introduced in (Brewer, 1978). Due to lack of space, all notations and theorems useful for this work and 

also the proofs of the following lemmas are omitted (and remain available upon request). 

 

Lemma 1:  \ 0j   and nx  , 
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j

jn

j nT

x
I x

x


  


D          (1) 

 

where 
  j jn n n

j

D  is given by  
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1

0

i j i

j
n

j n n n
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U I  






 D  and therefore called the square j -differential 

Kronecker matrix. 1j in
I    denotes the identity matrix of 

1j in  

, in n
U


 the permutation matrix of 

1 1i in n   

defined in (Rotella and Tanguy, 1988; Brewer, 1978). Equivalently, 
 n

jD  can be derived from 

 
 

   

1

1 , 1j

n

n

n n

j j n n n

I

I U j 

 


    

D

D D
           (2) 

 

Lemma 2: For x  and y  any column-vectors of k  and l  respectively and for any matrix 
nk lA  , we have 

 

        T T T

n n n klI x Ay I vec A vec I I x y             (3) 

 

Lemma 3: Consider a matrix p nqA  . Let  1 ... nA A  be a partition of A , i.e. 1, ,i n   

p q

iA  . We have 

 

        T T

n n pq pq nI vec A vec I I mat vec A            (4) 

 

Notation: If V  is a vector of dimension p n m  , then  n mM mat V  is the  n m -matrix 

verifying  V vec M . Therefore it is called the mat  notation. 

 

3. Problem Statement 
3. 1. Nonlinear Dynamics and Nonlinear Optimal Objective Function 

Consider the polynomial system given by 
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1

m

k k

k

x t F x G x u t F x G x u t


              (5) 

 

where t  designates the time,   nx t   the state vector,      1

T m

mu t u t u t     R  the 

input vector.  F  ,   kG   for 1, ,k m  are analytic vector fields from n
R  into n

R . By using the 

KP tensor and the VPS decomposition, we denote by  
1

f
j

j

j

F x F x


  , 1, ,k m   

 
0
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j
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   and then,        1

0
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j
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G x G x G x G I x


       , with 
jn n

jF R , 

jn n

kjG R  1, ,k m  , and 
1

jn mn

j j mjG G G     R . Let     qz t H x R  be a vector function 

of the states, where  
1

h
j

j

j

H x H x


   with 
jq n

jH R . 

For Q  a symmetric non-negative definite matrix of q q
R  and R  a symmetric positive definite (SPD) 

matrix of m m
R , the optimal control problem is to design a state feedback which minimizes the 

continuous-time cost functional 

 

       
0

1

2

T T
J z t Qz t u t Ru t dt



  
             (6) 

 

3. 2. Optimality Condition 
We denote by  V x  the optimal cost with an initial condition x  at t  

 

         
1

2

T T

t

V x z Qz u Ru d    


   
           (7) 

 

where  arg minuu J   is the optimal control. The optimality conditions are given by (Borne et al., 

1990): 

 

     * 1 T

xu x R G x V x              (8) 

                   1 0
T T T T T

x x x xH x QH x V x F x F x V x V x G x R G x V x        (9) 

 

4. Alternative for the Nonlinear HJE Equation 
To find the cost function  V x  satisfying the conditions of any Lyapunov candidate function as 

discussed in literature (Goh, 1993), we propose the following quadratic form 

 

 
2

2

1

2

p
j T nT T p

jj

j jn n
j

x
P I

V x x x P
P xI I







 
   

        
 




               (10) 
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with R , P  is an SPD constant matrix of n n
R  and jP  constant matrices of 

jn n
R . Note that using 

Cholesky decomposition, 
1P  exists s.t. 

1 1

TP P P . The cost function  V x  can be rewritten in a 

summation form as 

 

     
, 1

1

2

p
i T jT

i j j i
i j

V x x P P x


                     (11) 

 

with 

 

 

1 for 1

for 1and 2

for 2 and 1

ni j

i

P i j

P I i j

P i j



 


  
  

                  (12) 

 

Using theorems T2.3 and T4.3 in (Brewer, 1978) and applying lemmas 1, 2 and 3 and the mat  notation, 

introduced in section 2, we obtain the derivative of (12) w.r.t. x  

 

     
1

1 1 1 1

j Tp p p p
i i jT

x ijj i i j
i j i j

x
V x P P x V x

x

 

   


 


                  (13) 

 

with 

 

   
  1i j

nT T

ij ji j j in n
V mat vec P P  

 
 

D                   (14) 

 

where ( )n

jD  is the square j -differential Kronecker matrix of 
j jn n

R  introduced in lemma 1. Introducing 

the KP tensor into the nonlinear HJE equation (9) and using theorem T2.13 in (Brewer, 1978), lemmas 2 

and 3, and the mat  notation, introduced in section 2, we obtain 

 

     1 1

, 1 1 , 1 1 , 1 , , , 1 , 0

p f p f p gh
i j k i j k i jT T T T T T

ij k k ij i j

i j k i j k i j i j b c k d

vec V F x vec F V x vec H QH x
      

      

        

  21 0
i j k b c dT T

ijk bcdvec W R W x
                (15) 

 

where 

 

 1i j k

T T

ijk ij kn m
W mat vec V G   

 
 

                   (16) 

  

5. Determination of pP  
The matrices pP , for 1, ,p p , will be calculated from (15) by cancelling the coefficients of 

1p
x


. 

The details of such steps, based on KP, vec  and mat  notations and theorems introduced in (Steeb, 1997; 

Brewer, 1978) as well as lemmas 1, 2 and 3 shown in Section 2, are omitted due to lack of space. 
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5.1. First order 
The matrix 

1P  is obtained by cancelling the terms of 
2

x , in (15). The operator  vec   is linear on 

matrices of the same dimensions. Noting that the 1st differential Kronecker matrix ( )

1

n

nID  and that 

1 1

TP P P  is SPD, we use (12), (14), (16) and the mat  notation to obtain the classical algebraic Ricatti 

equation 

 
1

1 1 1 1 0 0 0T T TPF F P H QH PG R G P                     (17) 

 

5.2. Higher order 
For a given  , the calculation of pP , 2, ,p p , is obtained from (15) by cancelling the 

coefficients of 
1p

x


. Using vec  and mat  notations, theorems T1.5, T1.6, T3.2 and T3.4 of (Brewer, 

1978), and the iterative form of the differential Kronecker matrix (3), we combine (12), (14) and (16) to 

obtain 

 

     1 1p p

n TT

p p p pn n n
I U vec P 

  F D H                  (18) 

 

where  1

1 0 0 p

T

p n
F G R G P I  F  and    

1 1 1
1

, , , 1 , 0 , 1 1

3 2

p p p p
T T

p ijk bcd ij k

i j b c k d i j k

i j k b c d p i j k p

vec W R W vec V F
  



   

          

  
  H  

   
1

, 1
i j p

p
T T

k ij i j

i j

vec F V vec H QH

  



 
  . Note that  1

1 0 0

TF G R G P  is a Hurwitz matrix (Rotella, 1988), 
 

1

n

pD  

is a singular matrix for all integers 2, ,p p  and  1p pn n n
I U 

  is regular for p  even and singular for 

p  odd. Using the non-redundant vector power notation 
p

x  introduced in (Bouzaouache and Braiek, 

2006), and the theorem T3.4 in (Brewer, 1978), we write p p pP P T   where 
 np
pn

pT


  with 
 n

p  stands 

for the binomial coefficient, and thus p p pP P T  . Note that for any integer p , 
 np
pn

pT


  exists, s.t. 

p p

px T x  and 
p p

px T x  where  
1

T T

p p p pT T T T


   is the Moore-Penrose pseudo-inverse of pT  

(Bouzaouache and Braiek, 2006). Two cases arise depending on p : 

 

5.2.1. Case Ι – p  is even: Let    
1

n

p p n pT I

 T D  be a rectangular 
   1n p

pn n   -matrix of full 

rank. We obtain 

  

   1p p

T T

p p p pn n n
I U vec P 

  F T H                   (19) 

 

By using  
1

T T

p p p p


 T T T T  the Moore-Penrose pseudo-inverse of pT , we obtain 

 

   1

1

p p

T T

p p p pn n n
vec P I U


 


 T F H                  (20) 

 

If P , 2P , …, 1pP   are known, pP  can be calculated as a solution of the linear equation (20). Thus, 

p p pP P T   is deduced. 
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5.2.2. Case ΙΙ – p  is odd: Eq. (15) can be written in terms of non-redundant vector power j
x . 

Then the coefficients of 
1p

x


 are given in (20), but multiplied by 1

T

pT   on the left hand side. Then by the 

use of the non-redundant form, this linear equation becomes 

 

 T

p p pvec P F H                     (21) 

 

Where  1 1p pp p p pn n n
I U T 

 F T F  and 1

T

p p pT  H H , with pF  is a rectangular   ( ) ( )

1

n n

p pn     -

matrix of full rank. By using  
1

T T

p p p p


 F F F F  the Moore Penrose pseudo-inverse of pF , we obtain 

 

  T

p p pvec P  F H                     (22) 

 

If P , 
2P , …, 1pP   are known, pP  can calculated as a solution of the linear equation system (22). Thus, 

p p pP P T   is deduced. 

 

6. Implementation of the State Feedback 
Consider the nonlinear dynamics (5). The optimal control which minimizes the functional cost (6) is 

obtained by the optimality conditions (8) and (9). We propose to use the procedure introduced in section 4 

and 5 with the approximated optimal cost  V x  of (10). To solve the obtained nonlinear HJE equation 

(9), transformed in the form of (15), it was shown that the cancellation of the p  first terms 
2

x , 
3

x , …, 
1p

x


 leads to independent equations in P , 
2P , …, pP , respectively. We propose to construct a practical 

suboptimal control of the analytical expression  u x  by using (8), (13) and (16). 

 

 
2 1

1

p g
p

p

p

u x K x
 



                       (23) 

 

with 

 
1

1

1 1 1

1

p p p

p ijk

i j k

i j k p

K R W




  

   

                      (24) 

 

Thus, the use of KP algebra allows a systematic determination of a sub-optimal state-feedback. The 

proposed nonlinear feedback (23) with (24) has not to be necessarily implemented with a high order of 

computed matrices pP  to be so different from the linear control approximation, a priori. According to 

(Rotella and Tanguy, 1988), it can be concluded that the stat-feedback obtained with only P  (i.e., only 

the first order of the HJE equation) is more efficient than the solution issued from the linearized system. 

In fact, by computing only P , we may obtain a polynomial sub-optimal control of order 1g   (where g  

is the order of the term  G x  in (5)), in particular, when g  is non-zero. The stability of the proposed 

state feedback (24) will be discussed in a further work (see (Khayati, 2012)) by considering  V x  given 

by (10) as a Lyapunov candidate function. 
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7. Example 
As an example, we consider the design of a nonlinear aircraft flight control problem which 

has been extensively treated in literature (see e.g. (Banks, 1992)) defined by 
2 2 2 3 2 2 3

1 1 3 1 3 1 2 1 3 1 1 10.877 0.088 0.47 0.019 3.846 0.215 0.28 0.47 0.63x x x x x x x x x x u x u x u u            , 2 3x x  and 
2 3 2 2 3

3 1 3 1 1 1 14.208 0.396 0.47 3.564 20.967 6.265 46 61.4x x x x x u x u x u u         , where 
1x  is the angle of attack in 

rad , 
2x  the pitch angle in rad , 

3x  the pitch rate in rad sec , u  the control input provided by the tail 

deflection angle in rad . Note that terms involving nonlinearities in u  with small effect on the dynamics 

are eliminated, as the approaches discussed here cannot account for nonlinear control terms (Banks, 

1992), but are taken into consideration in the simulation. The performance index is minimized using 

 H x x , 30.25Q I   and 1R  . The simulations have been applied for the proposed ‘LF’-based 

technique as well as the linear control ‘Lin’ where the dynamics is linearized about the origin, the ‘KP’-

based design introduced in (Rotella and Tanguy, 1988) and an SDR-equation-pointwise-based technique 

(Banks, 1992) (referred to as ‘pw’ in the following). The sub-optimal cost J  is evaluated with different 

initial conditions in terms of angle of attack,  1 0x  given in degree , but with the same initial conditions 

   2 30 0 0x x  , vs. the different methods. Table 1 shows the cost performance errors 
pw

pw

J

J J

J



  in 

% ; where the ‘LF’- based design (with 2p   and 3p  ), the ‘KP’-based design (of orders 2  and 3) and 

the ‘Lin’-based design costs are compared to the ‘pw’-technique one. A positive value corresponds to an 

improvement (i.e., a lower cost) with the given method compared to the ‘pw’ one; meanwhile the 

negative value means a higher cost. Figure 1 shows the angle of attack and the control variable, 

respectively, obtained with the initial condition  1 0 23x  . Due to lack of space the pitch and pitch rate 

figures are omitted. Curves of ‘LF’-based design with orders of truncation of 2p   and 3p   overlap 

almost during all the time showing very similar results in terms of transient behaviour and stability. 

Furthermore, the proposed design (with both orders 2p   and 3p   which remain relatively small) 

exhibits a significant added-value in terms of cost estimation and domain of attraction interval 

performances compared to the other methods. 

 

Table. 1. Cost index 
pwJ  and cost errors (in %  of 

KPJ )  
LF

2J p



,  

LF

3J p



,  

KP

2J p



,  

KP

3J p



, 

Lin

J  

 1 0x  pwJ   
LF

2J p



  

LF

3J p



  

KP

2J p



  

KP

3J p



 Lin

J  

6  0.0016  20.2  18.6  0.6  0.8  0.0  

12  0.0071 23.8  22.8  1.6  2.6  0.2  

17  0.0196  30.9  30.3  3.7  6.8  0.7  

23  0.0519  46.3  45.7  13.3  31.7  4.3  

29  0.1056  48.3  46.3  Unstable Unstable Unstable 

34  0.4081 71.4  65.6  Unstable Unstable Unstable 

40  1.6170  58.5  50.9  Unstable Unstable Unstable 

 

8. Conclusion 
A practical nonlinear optimal control design for nonlinear dynamics subject to nonlinear cost 

objectives is proposed. An example with simulation and comparative results successfully demonstrates 

the effectiveness of this technique. This method is developed in order to ensure a best compromise 

between the feasibility of the implemented scheme and the stability analysis of the overall system; which 

will be the subject of a follow-on work. 
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Fig. 1. Angle of attack vs. time (left) and Input control vs. time (right) 
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Abstract – This paper presents an investigation on the stability performance and the domain of attraction (DA) of a 

Lyapunov function (LF) based infinite horizon nonlinear optimal control design. A polynomial modeling structure 

represents the nonlinearities using the Kronecker Product (KP) algebra and the vector power series (VPS). A 

practical scheme is proposed to reduce the complexity of such nonlinear design and to improve the requirements in 

terms of stability and bounds of the DA. The computation of the control parameters is partially based on a linear 

matrix inequality (LMI) feasibility problem. Furthermore the asymptotic stability analysis and the DA estimate are 

cast as convex problems. 

 

Keywords: Polynomial systems, KP, Optimal control, Asymptotic stability, Lyapunov function, LMI. 

 

 

1. Introduction 
Many real world systems are inherently nonlinear, but methods for analyzing and synthesizing 

controllers for nonlinear systems are still not as well developed as their counterparts (Ekman, 2005). 

Recently, the LF-based control has been generating renewed interest in nonlinear optimal control (Won 

and Biswas, 2007). Also, the KP algebra has an important role in recent researches dealing with control 

analysis and design (Mtar et al., 2009; Bouzaouche and Braik, 2006; Rotella and Tanguy, 1988). A 

polynomial modeling structure represents the nonlinearities using the KP and VPS algebra (Steeb, 1997; 

Brewer, 1978).  This modeling resembles classical linearization, but with a difference. In fact, the order of 

truncation of the decomposition is high enough to represent well (closely and fairest possible) the actual 

dynamics of the system. In (Khayati and Benabdelkader, 2012), we have discussed the design and 

implementation of a practical scheme for nonlinear control based on LF and KP concepts. We have 

transformed the Hamilton-Jacobi equation (HJE) into a set of algebraic equations in the matrices elements 

of the quadric candidate LF. The infinite horizon control design is derived in formal power series in the 

indeterminate state variables. 

The objective of this work is to evaluate the stability of the overall system, to estimate its DA and 

eventually to enlarge this domain. The case of the globally asymptotically stable (GAS) state-feedback for 

the nonlinear optimal control problem is definitely discussed. This investigation is led under a set of 

convex problems that will be solved using the LMI frameworks (Chesi, 2009; Chesi, 2005). We propose a 

technique that ensures the computation of the largest estimation of the domain of attraction (LEDA) using 

both the well-known complete square matrix representation (SMR) (Chesi, 2009; Chesi, 2003) and a new 

formalism of a complete rectangular matrix representation (RMR). In Section 2, we introduce a set of 

useful notations and definitions; in particular definitions of the existing SMR and a new RMR. Then, we 

recall, in Section 3, the problem statement and the key element of the sub-optimal control design 

discussed in (Khayati and Benabdelkader, 2012). Section 4 is devoted to the sub-optimal state feedback 

stability features. In Section 5, we discuss the computation of the LEDA of the closed loop system. The 

evaluation of a numeric simulated scalar system expected to be shown is omitted due to lack of space 

(readers can still refer to the optimal control of third order dynamics performances discussed in (Khayati 

and Benabdelkader, 2012) in terms of stability and DA), while Section 6 presents concluding remarks. 

 



 

208-2 

2. Useful Notations and Definitions   
Notations and properties of matrices, vectors, dot product and KP tensors used in this paper are 

exhaustively discussed in the literature (Steeb, 1997; Brewer, 1978) and are not shown here due to lack of 

space (but remain available upon request). 

 For any vector 
nx and any integer j , 

j
x  is the j -power of a vector x  and 

j
x  is the non-

redundant j -power of the vector x  (Steeb, 1997; Brewer, 1978). We have: j  , 
 

!
nj

jn

jT


   s.t. 

j j

jx T x  and 
j j

jx T x  with  
1

T T

j j j jT T T T


   the Moore-Penrose pseudo-inverse of jT . 
 n

j  

stands for the binomial coefficients (Mtar et al., 2009; Bouzaouache and Braiek, 2006; Brewer, 1978). 

 For any 1p  , we denote by  1 2
T

T T p T

pX x x x  and  1 2T T p T

pX x x x . 

We have p p pX XT  and p p pX XT  where 

1

2

0 0

0 0

0 0

p pN

p

p

T

T

T



 
 
  
 
  
 

T  and 

1

2

0 0

0 0

0 0

p

p

T

T

T









 
 
 
 
 
 
 

T  with 
2 p

pN n n n     and 
     
1 2

n n n

p p       . 

 For any vector 
nx  and integers p  and  , we denote by 

    1
1

T
p Tp T

p x x





  

 121
pp pn n n


    . 

 If V  is a vector of dimension p n m  , then  n mM mat V  is the  n m -matrix verifying 

 V vec M . Therefore, it is called the mat  notation. 

 Let  w x  be any homogenous form of degree 2 j , then the SMR of  w x  is defined as: 

  j T j
w x x Wx , where 

 n
jj

x


  is considered a base vector of the homogenous function of degree j  

in any 
nx  and W  is a suitable but non-unique symmetric matrix SMR (Chesi, 2003; Reznick, 2003). 

All matrices W  can be linearly parameterized as:    W W L   , where 
 ,n j

   is a free 

vector and         
2

1
, 1

2

n n n

j j jn j        with 
 n

j  stands for binomial coefficients.  
   n n
j jL

 



  

is a linear parameterization of the set  |TL L  0,
i T i nx Lx x   . We refer to  W   as the 

complete SMR of  w x . 

 Let  w x  any form of degree 2 1j   in any 
nx  given by   2 1 2 1j j TTw x v x x v

 
  , where 

2 1jnv


 . Using theorem T2.13 of (Brewer, 1978),  w x  can be written using a new formulation given 

by RMR as:   1 1j T j j T i
w x x M x x N x

 
      , with  1j j

T

n n
M mat v

  and  1j j

T

n n
N mat v 
 . 

Then, similarly to the homogenous forms of even order, we propose a complete RMR of  w x  as: 
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       1 11 1

2 2

Tj T j j j T
w x x M L x x M L x 

 
    , where   is a vector of free parameters. 

 
   

1

n n
j jL

 
 

  is a linear parameterization of the set  1
0,

j T j nx Lx x

   . We refer to 

   M M L    (resp.  
T

M  ) as the complete RMR of  w x . 

Example 1: Consider the form of degree 3  in two variables   3 2 3

1 1 2 2w x x x x x   . We have 
1

x   

 1 2

T
x x  and  2 2 2

1 1 2 2

T

x x x x x . We obtain   1 2

1 2

1 1

1
M L

 


 

 
   

 
 and 

  2

1 2

T
    . 

Example 2: Consider the form of degree 3  in three variables   3 3 2

1 1 2 3 2 2 3w x x x x x x x x    . We 

have   1

1 2 3x x x x  and  2 2 2 2

1 1 2 1 3 2 2 3 3x x x x x x x x x x . We obtain  M L    

 
1 2 3 4 5

1 3 4 6 7

2 4 5 6 7

1

1 2 1

1 0

M L

    

     

    

 
 

     
     

 and 

1

7

7







 
 

  
 
 

. 

 

3. Problem statement 
3. 1. Nonlinear Dynamics and Nonlinear Optimal Objective Function 

Consider the polynomial system given by: 

 

             
1

m

k k

k

x t F x G x u t F x G x u t


              (1) 

 

where t  is the time,   nx t   the state vector,      1

T m

mu t u t u t    R  the input 

vector.  .F ,  .kG , 1,...,k m   are analytic vectors fields from 
n

R  into 
n

R , given by the 

polynomial forms  
1

f
j

j

j

F x F x


  ,  
0

g
j

k kj

j

G x G x


   and then      1 mG x G x G x     

 
0

g
j

j m

j

G I x


  . Let     qz t H x   a vector function of the states with  
1

h
j

j

j

H x H x


  . 

Note 
jn n

jF  , 
jn n

kjG   1, ,k m   and 1

jn mn

j j mjG G G      (Khayati and 

Benabdelkader, 2012). 

For Q  a symmetric non-negative definite matrix of 
q q

R  and R  a symmetric positive definite (SPD) 

matrix of 
m m

R , the optimal control problem is to design a state feedback which minimizes the 

continuous-time cost functional 

 

       
0

1

2

T T
J z t Qz t u t Ru t dt



  
            (2) 
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If we denote by  arg minuu J   the optimal control, the optimal cost  V x , with an initial 

condition x  at t , is 

 

         
1

2

T T

t

V x z Qz u Ru d    


   
           (3) 

 

3. 2. Lyapunov-Function-Based Sub-Optimal Controller 
Based on the optimality conditions introduced in literature (see e.g. (Borne et al., 1990; Rotella and 

Tanguy, 1988)), we have built a procedure to obtain a sub-optimal state feedback in a polynomial form 

using the KP tensor, vec  and mat  notations (Khayati and Benabdelkader, 2012). Such a design is based 

on the determination of the cost function  V x  in a quadratic form, as 

 

 
1

2

T

p pV x X X P              (4) 

 

where 

 

2

2 2 2 2

2

p

T T T

p

T T T

p p p p

P P P

P P P P P

P P P P P

 





 
 
 
 
  
 

P            (5) 

 

with R , P  is an SPD constant matrix of 
n n

R  and jP  constant matrices of 
jn n

R . The matrices P , 

2P , …, pP  are determined by the computation of a set of algebraic equations (6) for P , (7) for pP  with 

p  even and (8) for pP  with p  odd, respectively (Khayati and Benabdelkader, 2012): 

 
1

1 1 1 1 0 0 0T T TPF F P H QH PG R G P              (6) 

   1p p

T T

p p p pn n n
I U vec P 

  F T H           (7) 

 T

p p pvec P F H              (8) 

 

where  1

1 0 0 p

T

p n
F G R G P I  F ,    

1 1 1
1

, , , 1 , 0 , 1 1

3 2

p p p p
T T

p ijk bcd ij k

i j b c k d i j k

i j k b c d p i j k p

vec W R W vec V F
  



   

          

  
  H  

   
1

, 1
i j p

p
T T

k ij i j

i j

vec F V vec H QH

  



 
  ,    

1

n

p p n pT I

 T D  and  1 1p pp p p pn n n
I U T 

 F T F  be 

rectangular full rank matrices of 
   1n p

pn n    and 
     1

n n

p pn     , respectively, and finally 

1

T

p p pT  H H . Note    
  1i j

nT T

ij ji j j in n
V mat vec P P  

 
 

D  and  1i j k

T T

ijk ij kn m
W mat vec V G   

 
 

 

where 
  11 1

P P , with 1P  is obtained from the Cholesky decomposition 1 1

TP P P , 
 1 nj

P I  
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2, 3,j   and 
  ii j

P P  2, 3,i   1, 2,j  . 
 n

jD  is the square j -differential Kronecker 

matrix of 
jn
 introduced in (Khayati and Benabdelkader, 2012). If P , 2P , …, 1pP   are known, then pP  

can be calculated as a solution of the linear equations (7) and (8), and thus, p p pP P T   is deduced. Note 

that  1

1 0 0

TF G R G P  is a Hurwitz matrix (Rotella, 1988), 
 

1

n

pD  is a singular matrix for all integers 

2, ,p p  and  1p pn n n
I U 

  is regular for p  even and singular for p  odd. The practical suboptimal 

control  u x  introduced by (Khayati and Benabdelkader, 2012) is given by: 

 

 
1

gp

p

p

p

u x K x


               (9) 

 

with 2 1gp p g    and 1

, 1 0

1

p g

p ijk

i j k

i j k p

K R W

 

   

  . 

 

4. Stability of the Sub-optimal State-feedback 
To investigate the stability of the closed loop system, consider  V x  given by (4) as a Lyapunov 

candidate function. Note that  V x  is radially unbounded continuous function and its derivative exists 

and is continuous. From (4) and (5), if 

 

 2, , , ,  0pP P P P                     (10) 

 

holds, then the Lyapunov candidate function  V x  is positive definite; that is   0V x  , 0x  . The 

time derivative of the LF along the trajectories of the closed loop system (1) and (9) is given by 

  

         
T T

TV V
V x x t F x u x Ru x

x x

 
   
 

                (11) 

 

Let us define 1B  and 1C  by 
1

0 0

TG R G
 and 1 1

TH QH , respectively. We assume the triplet  1 1 1, ,F B C  

is stabilizable-detectable. Note that if P  a solution of an algebraic Ricatti equation (ARE) exists, then it 

is the unique SPD matrix solution of the optimal control on the linearized system and  1

1 0 0

TF G R G P  

is a Hurwitz matrix. Thus, the linearized system is asymptotically stable (Rotella and Tunguy, 1988). 

Moreover, the nonlinear closed loop system (1) and (9) is locally asymptotically stable (LAS) and 

0x   s.t. 
 

0

Tx Px

t





. In the following, assume   \ 0 | 0nx V   . Consider the closed 

ball   B   |nx x   . Assuming that   s.t. (11) holds; i.e.   0V x  , 
nx  ,  B  is 

an estimate of the DA if    | 0 0nx V     B  (Chesi, 2009; Chesi, 2003). The 

computation of the maximum   s.t.    B , i.e. (1) and (9) is LAS and the LEDA is given by  B  

where (Chesi, 2009) 
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  \ 0 . . 0
inf

nx s t V x

x
 

                     (12) 

 

5. LEDA Computation of the Closed-loop System   
Let  S  be a sphere given by (Chesi, 2003):    |nx x   S . The problem (12) turns 

out that 

 

     sup | 0, , 0,V x x           S                 (13) 

 

The terms  
T

V
F x

x




 and    

T
u x Ru x  are polynomials in x  of degrees 2 1p f   and 

2 4 2 2gp p g   , respectively. For any 0  ,  x  S , we write 

 

 
2 1

1 1 1 1

g gp pp f
k T l i T jT T

k l i j

k l i j

V x x v F x x K RK x


   

                   (14) 

 

with 
1 1

1

p p

k ij

i j

i j k

v V
 

  

  . Using the non-redundant VPS in 
i

x  and the vector notations of pX  and 
pX  

introduced in Section 2, without loss of generality, we assume that 0T

d d     s.t. 

   
1 1

g g

d d

p p

i T jT T

i j p d p e o

i j

x K RK x X X w x w x
 

    . The term  ow x  (resp.  ew x ) is polynomial in 

odd (resp. even) vector power terms of x  of order 2 1op   (resp. 2 ep ). The integers 
dp , 

ep  and 

op  are s.t. 0 d gp p  , 0 e gp p   and 0 2o gp p  . Thus, we obtain 

  

       1 1

1 , 1 2 , 1 2

1 1

1

2

s t

d d

p p
i T i i T i i T iT T

ii i i i i i i i p d p

i i

V x x S x x S x x S x X X  
 

 

 

      
             (15) 

 

 1,2, , si p  ,  
   

1

n n
i i

ii iS
  

  is the SMR matrix of terms in  
2 1

1 1

p f
k T lT

k l e

k l

x v F x w x


 

   

of order 2i , and 
  .

1

n
in

i

 

   a free vector with 
         

2

1
, . 1

2

n n n n

i i i in        and 
 n

i  stands 

for binomial coefficients (Mtar et al., 2009).  , 1 2i i iS   is the RMR of terms in 

 
2 1

1 1

p f
k T lT

k l o

k l

x v F x w x


 

   of order 2 1i  . 
1

max ,
2 2

s e

f
p p p

 
   

 
 and 

3
max ,

2 2
t o

f
p p p

 
   

 
 if f  is odd, and max 1,

2
s e

f
p p p

 
   

 
 and max 1,

2
t o

f
p p p

 
   

 
 

if f  is even. Finally, we obtain 
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m m d d

T T

p p p d pV x X X X X   S                   (16) 

 

where  max ,m s tp p p .  S  is a general block-tridiagonal matrix in form 

 

1 1 1

1

11 12

12 22 23

23 33

, ,

, ,

0 0 ... 0

0 ... 0

0

0

0

0 0

m m m m

m m m m

T

T

p p p p

T

p p p p

S S

S S S

S S

S S

S S



  



 
 
 
 
 
 
 
 
 
 

S . The decision variables   are set by the 

concatenation of all 1i  and 2i . 

 

5.1. Case of d mp p  
We have   0V x   if the LMI   0d  S  holds in the free decision variable  . Thus if (10) 

holds and the LMI   0d  S  is feasible in  , then the sub-optimal state-feedback (1) and (9) is 

GAS. 

 

5.2. Case of d mp p  

Consider v  the least common multiple of dp  and mp , i.e.     2, | 0,0m dv v   s.t. 

m m d dv v p v p  .  x  S , we have  
12

2 2

0

m

m m

m

v
v ip

p m

i

  




  ,  
12

2 2

0

d

d d

d

v
v ip

p d

i

  




   and 

   m d

m m d d

v v

p p p p vX X X     . Thus, (16) is equivalent to  V x   

 2 2

1 1
m m

T

v d v

m d

X I I X 
 

  
    

 
S , with    

m m

T

p p   S T S T  and 
d d

T

d p d p

    T T . 
dp


T  (resp. 

mp


T ) is obtained from 

p pd d

d

N

p


T  (resp. p pm m

m

N

p


T ) using notations introduced in Section 2, 

 12
1 ... d dd d

v pp p

d n n n


     , 
 12

1 ... m mm m
v pp p

m n n n


     . Based on the assumption 

0T

d d    , 
d d

T

d p d p

    T T  is SPD. Let   be its Cholesky’s factor, i.e. 
T

d

   . Then, it follows 

 x  S ,   0V x   is equivalent to 

 

     1 0
d m d d pd

T

NI I I I          S                (17) 

 

Note the factor 

2

2

m

d





  is a function of  . Notice that if m dv v    m dp p  then 1   and 

monotically increasing with  . The following result holds. 

a) Sub-case m dp p :  , 1   s.t. the LMI (18) holds. Thus, if (10) holds, then the sub-optimal 

state-feedback (1) and (9) is GAS. 

b) Sub-case m dp p : Given  , consider the LMI 
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     1 0
d m d d pd

T

NI I I I          S                (18) 

In the vector   and the scalar  . If 0   s.t. the LMI (18) holds, then the LMI constraint holds 

0  , then we select 1   and we have   decreasing . .w r t    (i.e.    as 0  ). Thus, if 

(10) holds and the LMI (18) is feasible in 0   and  , then the sub-optimal closed-loop (1) and (9) is 

GAS. 

c) Sub-case 
m dp p  and  1,0   : then, a lower bound  of  , introduced in (14), is given 

by: 

  
  

 

2 12

2 12

1 ...
ˆ arg

1 ...

m m

d d

v p

v p

 
 

 





  
  

  
, where   is a solution of the following eigen-value 

problem (EVP): max   subject to  1 0    and LMI (18). If arg max  of this EVP is negative, 

then the linear inequality constraint 1 0    corresponds to 1   as m dp p . 

 

6. Conclusion 
In this paper, the analysis of the stability of the closed loop infinite horizon control is discussed in 

terms of the LMI feasibility problem. Then, the problem of computing the LEDA is cast as a convex EVP 

design. The contribution of this work is to develop a systematic LF based approach and a practical KP-

based design for a large scale of nonlinear systems operating inside wider DA conditions. 
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