
ROBUST NEUROCONTROL FOR
AUTONOMOUS SOARING

NEUROCONTRÔLE ROBUSTE POUR LE VOL
EN SOARING AUTONOME

A Thesis Submitted to the Division of Graduate Studies
of the Royal Military College of Canada

by

Eric Jihun Kim, B.Eng.
Second Lieutenant

In Partial Fulfillment of the Requirements for the Degree of
Master of Applied Science in Aeronautical Engineering

April, 2022
© This thesis may be used within the Department of National Defence but copyright

for open publication remains the property of the author.

A labour of lockdowns.

ii

Acknowledgments

I would like to express my gratitude to my supervisor, Dr. Ruben E. Perez. His sharing of
insight and knowledge on multiple subjects, the attitude of excitement he imparted towards
research, and his constant guidance throughout my graduate studies allowed for the com-
pletion of this work. I am extremely thankful for the many opportunities he provided me
and for continually raising the bar to ensure the highest standards, which made all the effort
worthwhile. I would also like to thank the other members of the Advanced Aircraft Design
Lab for their help and company at the weekly virtual gatherings. Lastly, a thank you to my
parents for supporting me throughout these interesting times.

iii

Abstract

Kim, Eric Jihun. M.A.Sc. Royal Military College of Canada, April 2022. Robust Neurocontrol
for Autonomous Soaring. Supervised by Ruben E. Perez, B.Eng., M.A.Sc., Ph.D., P.Eng.,
Associate Professor.

Currently, the flight endurance of small unmanned aerial vehicles is limited by their on-
board energy capacity. Improving flight duration can increase the utility of such vehicles
and consequently benefit multiple domains from scientific data acquisition to military surveil-
lance. Biologically-inspired techniques such as dynamic, thermal, and ridge soaring offer a
method of achieving this goal by allowing autonomous aircraft to exploit naturally occurring
wind gradients and engage in thrustless flight, reducing the expenditure of energy reserves.
Due to the nonlinear dynamics of aerial systems and the non-ideal, stochastic nature of real-
world environments, recent studies in the field of autonomous soaring have explored the use
of artificial neural networks to generate the soaring trajectory and the subsequent guidance
controls. Nevertheless, the computational limits onboard SUAVs and the necessity for robust
operation make practical implementation a challenge. As a response, this study explores the
use of the Neuroevolution of Augmenting Topologies algorithm to train efficient, effective,
and robust neurocontrollers that can control a simulated aircraft along sustainable soaring
trajectories in the presence of varying initial states and environmental conditions, stochastic
disturbances, and system noise. The proposed approach evolves neural networks in a way that
preserves simplicity while maximizing performance, which allows the resulting policies to be
understood, implemented, and operated onboard real-time SUAV platforms. Application of
the evolutionary method resulted in neural networks capable of conducting various soaring
techniques in a range of environments, with robust neurocontrollers successfully performing
autonomous soaring up to 4.4 times as often as deterministic neural networks. This research
introduces the novel neuroevolutionary control method whose applicability is not limited to
aerial systems, a method of quantifying and measuring robustness for the comparison of dif-
ferent control solutions, a set of metrics to identify the topological characteristics that encode
robustness, and validation for the presented approach in the form of a software-in-the-loop
implementation.

Keywords: autonomous soaring, neurocontrol, artificial neural network, neu-
roevolution, unmanned aerial vehicle, aircraft control, trajectory optimization,
dynamic soaring, thermal soaring, ridge soaring

iv

Résumé

Kim, Eric Jihun. M.A.Sc. Collège militaire royale du Canada, Avril 2022. Neurocontrôle Ro-
buste pour le Vol en Soaring Autonome. Thèse dirigée par Ruben E. Perez, B.Eng., M.A.Sc.,
Ph.D., P.Eng., Professeur adjoint.

Actuellement, l’endurance de vol des drones aériens miniatures est limitée par leur ca-
pacité d’énergie à bord. L’amélioration de l’endurance de vol peut augmenter l’utilité de ces
véhicules et ensuite bénéficier à plusieurs domaines comme l’acquisition des données scien-
tifiques, ou la surveillance militaire. Les techniques inspirées par la biologie comme le vol de
gradient, le vol thermique et le vol d’arête fournissent une façon d’atteindre ce but en per-
mettant à des aéronefs autonomes d’exploiter des phénomènes météorologiques et d’engager
un vol plané, réduisant conséquemment la dépense des réserves d’énergie. À cause des dy-
namiques non-linéaires des systèmes aériens et la nature non-idéale et stochastique des en-
vironnements réels, des études récentes dans le domaine du vol plané autonome ont exploré
l’usage des réseaux de neurones artificiels pour produire la trajectoire de vol et les commandes
de guidage. Néanmoins, les limites informatiques à bord des drones miniatures et la nécessité
pour l’opération robuste rendent difficile la mise en oeuvre pratique. Comme réponse, cette
étude explore l’usage de l’algorithme «Neuroevolution of Augmenting Topologies» pour for-
mer les neurocontrôleurs efficaces et robustes, qui peuvent contrôler un aéronef simulé sur
des trajectoires de vol plané viables en présence des états initiaux et environnements vari-
ables, des perturbations stochastiques et du bruit du système. L’approche proposée évolue
des réseaux de neurones artificiels d’une façon avec laquelle la simplicité est conservée et la
performance est maximisée, ce qui permet les systèmes qui en découlent d’être compris, mis en
oeuvre, et faire fonctionner à bord des plateformes de drone en temps réel. L’application de la
méthode évolutive a donné lieu à des réseaux capables de mener une variété de techniques de
vol plané dans une plage d’environnements, où les neurocontrôleurs robustes ont réalisé le vol
plané autonome avec succès jusqu’à 4,4 fois plus souvent que les neurocontrôleurs entrâınés
en environnements déterministes. Cette recherche présente la nouvelle méthode de contrôle
neuro-évolutif, dont l’applicabilité n’est pas limitée aux systèmes aériens, une façon de quan-
tifier et mesurer la robustesse pour la comparaison des solutions différentes de contrôle, un
ensemble des indicateurs pour identifier les caractéristiques topologiques qui encodent pour
la robustesse et la validation pour l’approche proposée avec une simulation à logiciel dans la
boucle.

Mots-clés: vol plané autonome, neurocontrôle, réseau de neurones artificiels,
neuro-évolution, drone, contrôle d’avion, optimisation de trajectoire, vol de gra-
dient, vol thermique, vol d’arête

v

Contents

Acknowledgments iii

Abstract iv

Résumé v

List of Tables viii

List of Figures ix

Nomenclature xi

1 Introduction 1
1.1 Motivation for the Research . 1
1.2 Research Objectives . 2
1.3 Thesis Layout . 2
1.4 Contributions . 3

2 Literature Review 4
2.1 Wind Detection . 4
2.2 Trajectory Planning . 6
2.3 Aircraft Control . 9
2.4 Intelligent Control . 11

3 Modelling and Trajectory Optimization 15
3.1 Aircraft Characterization . 15

3.1.1 Equations of Motion . 15
3.1.2 3DOF Aircraft Model . 18

3.2 Surface Wind Shear Model . 19
3.3 Thermal Models . 20

3.3.1 Thermal Bubble . 20
3.3.2 Thermal Column . 21

3.4 Ridge Wind Shear Model . 22
3.5 Formulating the Optimal Control Problem . 23
3.6 Solving the Optimal Control Problem . 25
3.7 Trajectory Optimization for Dynamic Soaring 26

4 Neurocontrol 28
4.1 Machine Learning . 28

vi

Contents

4.1.1 Reinforcement Learning . 28
4.1.2 Artificial Neural Networks . 29

4.2 NeuroEvolution of Augmenting Topologies . 31
4.2.1 NEAT Algorithm . 31
4.2.2 NEAT Control . 32

4.3 Neuroevolutionary Control Approach . 36
4.3.1 Fitness Function . 36
4.3.2 Simulation Environment . 39

4.4 Deterministic Dynamic Soaring . 39
4.5 Deterministic Thermal Soaring . 42
4.6 Deterministic Ridge Soaring . 46

5 Robust Neurocontrol 51
5.1 Stochastic Neuroevolutionary Control . 51

5.1.1 Robustness Quantification . 52
5.1.2 Uncertainty Modelling . 54

Variable Initial States . 54
Variable Initial Wind Profile . 54
Dynamic Wind Profile . 55
Wind Gusts . 55
Measurement Noise . 56

5.1.3 Stochastic Simulation Environment . 57
5.2 Robust Dynamic Soaring Case Studies . 57

5.2.1 Deterministic Neurocontrollers . 59
5.2.2 Initial-State-Robust Neurocontroller . 60
5.2.3 Initial-Wind-Robust Neurocontroller . 63
5.2.4 Dynamic-Wind-Robust Neurocontroller 66
5.2.5 Gust-Robust Neurocontroller . 67
5.2.6 Sensor-Noise-Robust Neurocontroller . 69
5.2.7 Multi-Robust Environment . 71

6 Autopilot Implementation 74
6.1 SITL Framework . 74
6.2 SITL Models . 75
6.3 SITL Neurocontroller Evolution . 76

6.3.1 SITL Flight Simulation . 78

7 Conclusions and Recommendations 86
7.1 Conclusions . 86
7.2 Recommendations for Future Work . 88

Bibliography 90

Appendices 93

A Reinforcement Learning Case Details 94
A.1 Simulation Environment . 94
A.2 Actor-critic Reinforcement Learning Implementation 94

vii

List of Tables

3.1 SUAV characteristics. 19

4.1 Dynamic soaring 3DOF flight agent and simulation parameters. 40
4.2 Thermal soaring 3DOF simulation parameters. 44
4.3 Ridge soaring 3DOF simulation parameters. 47

5.1 Dynamic soaring 3DOF simulation parameters. 58

6.1 X-Plane V-tail SUAV characteristics. 75
6.2 Thermal soaring SITL simulation parameters. 76
6.3 Thermal soaring SITL wind speeds. 81

A.1 Cart-pole system parameters. 94
A.2 Actor-critic reinforcement learning hyperparameters. 95
A.3 Actor-critic reinforcement learning topology search results. 96

viii

List of Figures

2.1 Thermal soaring trajectory with a thermal column. 6
2.2 Travelling dynamic soaring trajectory with a linear wind profile. 7

3.1 Free body diagram of SUAV model. 16
3.2 Wind profile shapes. 20
3.3 Toroidal thermal bubble model. 21
3.4 Column thermal model. 22
3.5 Ridge shear wind model. 23
3.6 Flight path of dynamic soaring trajectory optimization. 26
3.7 Trace of dynamic soaring trajectory optimization. 27

4.1 Structure of a feedforward ANN. 30
4.2 Sigmoid activation function. 30
4.3 NEAT encoding. 31
4.4 Cart-pole balancing model. 33
4.5 Simulation traces of NEAT and RL policies. 34
4.6 ANN topologies of policies from different training algorithms. 35
4.7 Neurocontroller evolution scheme. 37
4.8 Topology of the deterministically-evolved dynamic soaring neurocontroller. 40
4.9 Simulated trajectory of the deterministically-evolved dynamic soaring neurocon-

troller. 42
4.10 Trace of the deterministically-evolved dynamic soaring neurocontroller. 43
4.11 Total energies of NEAT and optimal trajectories. 44
4.12 Network signal tracing of the deterministically-evolved dynamic soaring neurocon-

troller. 45
4.13 Topology of the deterministically-evolved thermal soaring neurocontroller. 45
4.14 Simulated trajectory of the deterministically-evolved thermal soaring neurocon-

troller. 46
4.15 Trace of the deterministically-evolved thermal soaring neurocontroller, with kinetic

eK , potential eP , and total eT energies. 47
4.16 Illustration of action space sizes for ridge soaring. 48
4.17 Topology of the deterministically-evolved ridge soaring neurocontroller. 49
4.18 Simulated trajectory of the deterministically-evolved ridge soaring neurocontroller. 50
4.19 Trace of the deterministically-evolved ridge soaring neurocontroller, with kinetic

eK , potential eP , and total eT energies. 50

5.1 Robust neurocontroller evolution scheme. 52
5.2 Uncertainty modelling: uniform distribution range for variable initial states. 55

ix

List of Figures

5.3 Uncertainty modelling: uniform distribution range for variable initial wind profiles. 55
5.4 Uncertainty modelling: dynamically varying wind profiles for dynamic soaring. . . 56
5.5 Uncertainty modelling: horizontal wind gusts. 56
5.6 Uncertainty modelling: sensor measurement noise. 57
5.7 Simplified topology of deterministically-evolved neurocontrollers. 61
5.8 Monte Carlo robustness for deterministic and initial-state-robust neurocontrollers. 61
5.9 Initial state robustness for deterministically-evolved neurocontroller. 62
5.10 Initial state robustness for initial state-robust neurocontroller. 63
5.11 Simplified topology of initial-state-robust neurocontrollers. 64
5.12 Initial wind robustness for deterministically-evolved neurocontroller. 65
5.13 Initial wind robustness for initial wind-robust neurocontroller. 65
5.14 Simplified topology of initial-wind-robust neurocontrollers. 66
5.15 Simulated trajectories of deterministic and dynamic-wind-robust neurocontrollers

in dynamic wind environment. 67
5.16 Simplified topology of dynamic-wind-robust neurocontrollers. 68
5.17 Simulated trajectories of deterministic and gust-robust neurocontrollers in gusty

environment. 68
5.18 Simplified topology of gust-robust neurocontrollers. 69
5.19 Simulated trajectories of deterministic and noise-robust neurocontrollers in noisy

environment. 70
5.20 Simplified topology of noise-robust neurocontrollers. 71
5.21 Sample deterministic and noise-robust neurocontroller topologies. 71
5.22 Success rates for all neurocontroller-environment combinations. 72

6.1 SITL software architecture. 74
6.2 Initialization domain of the SITL random-initial-state environment. 76
6.3 Topology of the robust thermal soaring neurocontroller. 77
6.4 Simulated trajectories of the robust thermal soaring neurocontroller. 79
6.5 Thermal soaring SITL flight trajectory. 80
6.6 Thermal soaring SITL flight trajectory - 3D overview. 81
6.7 Thermal soaring SITL flight trajectory - 3D climbing path. 82
6.8 Thermal soaring SITL flight trace with respect to time (s), including kinetic eK ,

potential eP , and total eT energies. 83
6.9 Thermal soaring SITL ANN signal trace. 84
6.10 Thermal soaring SITL roll angles. 85

x

Nomenclature

Roman Symbols

ĥ Ridge shear transition height [ft]

D Drag [N]

eK Kinetic energy [J]

eP Potential energy [J]

eT Total energy [J]

g Standard gravity [ft/s2]

h Height [ft]

htr Shear wind transition height [ft]

ht Thermal bubble height [ft]

hthmax Maximum thermal persistence duration [s]

htrmax Thermal ceiling height [ft]

L Lift [N]

l Ridge length [ft]

m Mass [slug]

R Ridge radius [ft]

r Distance to thermal centre, projected on horizontal plane [ft]

rz Thermal bubble radius along z-axis [ft]

rxy Thermal bubble radius along horizontal plane [ft]

S Wing reference area [s2]

V Airspeed [ft/s]

W Wind strength [ft/s]

wcore Maximum thermal core updraft wind speed [ft/s]

xi

Nomenclature

Wĥ Wind speed at ridge shear transition height [ft/s]

w∞ Ridge shear wind speed at infinite distance from ridge [ft]

x X-axis position [ft]

y Y-axis position [ft]

z0 Ridge shear height closest to terrain [ft]

Greek Symbols

β Wind profile gradient [ft/s/ft]

δ Discrete time step [s]

γ Pitch [deg]

µ Roll [deg]

π Artificial intelligence policy

ψ Heading [deg]

ρ Local air density [slug/ft3]

θ Aircraft elevation from centre of ridge [deg]

θ′ Greatest-lift aircraft elevation from centre of ridge [deg]

Dimensionless Groups

A Shear wind shape parameter [-]

CD Drag coefficient [-]

CL Lift coefficient [-]

CD0 Zero-lift drag coefficient [-]

Emax Maximum lift-to-drag ratio [-]

K Induced drag factor [-]

n Load factor [-]

Roman Subscripts

x X-axis

y Y-axis

z Z-axis

Abbreviations

xii

Nomenclature

3DOF Three degree of freedom

ANN Artificial neural network

DNN Deep neural network

NEAT Neuroevolution of Augmenting Topologies

NEC Neuroevolutionary control

NLP Nonlinear programming

RL Reinforcement learning

SNEC Stochastic neuroevolutionary control

SUAV Small unmanned aerial vehicle

xiii

1 Introduction

1.1 Motivation for the Research

Interest in small unmanned aerial vehicles (SUAVs) has steadily been increasing due to their
utility in a variety of applications ranging from scientific data acquisition to military surveil-
lance. Unmanned, lightweight aircraft fitted with sensor arrays could be rapidly deployed to
map terrain, record meteorological conditions, conduct aerial patrols, and gather intelligence,
all with fewer resources and support infrastructure than manned vehicles. However, the abil-
ity of current SUAVs to perform operations for extended periods of time is currently limited,
as the power storage limits onboard small-scale aircraft greatly restrict their maximum flight
times. In addition, the remote operation of such vehicles is both impractical for long-duration
missions due to the costly commitment of human resources, and unreliable for long-distance
flights as a result of the reduced availability and quality of wireless communication links in
distant environments. These considerations have motivated research in biologically-inspired
autonomous soaring systems. In nature, certain species of birds such as the albatross and the
frigatebird have evolved methods of extracting energy from the wind by soaring in cyclical
patterns that exploit certain atmospheric features. One such technique known as dynamic
soaring can be observed in albatross, who perform cyclic manoeuvres using horizontal winds
to travel across large, transoceanic distances without flapping their wings [1]. Similarly, ther-
mal soaring allows many birds such as eagles, hawks, and seabirds to continuously loiter over
oceans using columns of rising air, or thermals [2]. Since the discovery of these energy-efficient
techniques, autonomous soaring research for SUAV applications has been a growing field pur-
suing a multidimensional challenge that involves wind field mapping, trajectory planning, and
aircraft control.

The overall problem begins with estimating the local wind field around an aircraft to
identify the presence of an environment suitable for soaring manoeuvres. Past efforts have
largely achieved this task through various approximation and filtering methods [3, 4]. Once
the wind profile has been identified, an energy-efficient soaring trajectory that utilizes the
local atmospheric features while taking into account any mission objectives must be rapidly
computed before the start of the next soaring cycle for sustained soaring and high-level navi-
gation. However, this process is complicated by the limited computational resources onboard
SUAVs, making suboptimal, simplified solutions more suitable than numerically optimal but
calculation-intensive approaches. Assuming the timely generation of a path, control com-
mands must then be actuated through a control scheme to steer the aircraft along the tra-
jectory. Nevertheless, tracking flight paths is also difficult, considering the uncertain and
stochastic disturbances present in real-world environments, which are likely to cause tracking
errors where the vehicle is perturbed or drifted away from the reference trajectory. Correcting
such deviations requires additional energy expenditure that can compromise the vehicle’s abil-

1

1.2. Research Objectives

ity to continue soaring or reduce its maximum flight time, which is a consequence of the lack
of flexibility in the control approaches that have been explored in the field thus far. Therefore,
the planning and control problems remain as significant challenges that have yet to be both
solved and applied through a simple and robust solution capable of autonomously soaring in
a variety of conditions. Robustness in this context is the degree to which an autonomous
system can sustain soaring manoeuvres in the presence of uncertainties, disturbances, and
noise. To avoid the limitations of the tracking approach, and motivated by the need for sim-
ple and robust controllers capable of generalized behaviour, the current research investigates
a neural network-based evolutionary training approach. Mapping states to actions through
the nonlinear nature of neural networks may allow for control behaviours that can adapt and
remain effective in different aircraft and environmental parameters. Furthermore, an evolu-
tionary method of training such controllers can result in sparse, efficient networks that can
be implemented on computationally-limited hardware platforms.

1.2 Research Objectives

The aim of this research is to investigate the applicability of a neuroevolutionary control ap-
proach to autonomous soaring. Through simulation testing, the work analyzes the ability of
the neuroevolutionary method’s resulting controllers to serve as simple, robust, and combined
trajectory planning and control solutions for generating and actualizing the paths of various
autonomous soaring techniques. This study is concerned with the real-time onboard control
task of generating the higher-level paths that enable energy-efficient soaring, instead of the
lower-level systems that manage aircraft stabilization. Specifically, the objectives consist of
the following:

i. Develop a neuroevolutionary method of generating neurocontrollers that can be applied
to various forms of autonomous soaring;

ii. Develop a method of measuring the robustness of neurocontrollers to various uncertain-
ties and disturbances;

iii. Develop a method of analyzing and understanding the structural features of irregular
neural networks;

iv. Assess the performance of the neurocontrollers against canonical soaring trajectories;
v. Assess the neuroevolutionary method’s ability to instill in its neurocontrollers robustness

against different sources of uncertainties and disturbances;
vi. Explore the implementability of the real-time robust control strategy.

1.3 Thesis Layout

The remainder of the thesis dissertation is organized into seven chapters. Chapter 2 presents
a literature review examining the existing body of autonomous soaring research and iden-
tifying the knowledge gaps in the field. Chapter 3 introduces the flight characteristics and
dynamic equations of the representative SUAV used in the research, as well as mathematical
descriptions of the various canonical wind models that simulate the environments necessary for
real-world soaring. The section also describes the optimal control problem and its relevance
to the research, and includes a canonical example of an optimal soaring trajectory. Chapter
4 presents the novel neuroevolutionary control process developed to generate soaring-capable
neurocontrollers for deterministic environments, including the corresponding case studies of

2

1.4. Contributions

the evolved neural networks for the various types of autonomous soaring. Chapter 5 reveals
the stochastic neuroevolutionary process that was subsequently developed to tackle the ro-
bustness problem, as well as the descriptions of the stochastic simulation environments and
the Monte-Carlo estimator designed to measure relative robustness. The section also includes
case studies of different neural network groups trained for the uncertain environments to assess
the validity and applicability of the stochastic neuroevolutionary method to physical systems.
Chapter 6 provides software-in-the-loop flight test results of a soaring neurocontroller that
was evolved and implemented in an autopilot framework for real-time aircraft control. Lastly,
Chapter 7 concludes the dissertation with final remarks and recommendations for future re-
search on the topic.

1.4 Contributions

The contributions of this study include the development of:

i. A novel approach to generate simple, interpretable neurocontrollers for autonomous
soaring;

ii. A novel method to generate robust neurocontrollers that is not limited to aeronautical
applications;

iii. A way to measure the robustness of a controller to different sources of uncertainties and
disturbances;

iv. A tool to analyze the structural characteristics and parameters of irregular neural net-
works and their effects on network behaviour.

v. A software-in-the-loop test of an in silico implementation of the autonomous soaring
control approach.

3

2 Literature Review

Autonomous soaring for small unmanned aerial vehicles is an actively researched field that
has largely been inspired by biologically-evolved flight techniques observed in nature. Two
such methods on which most of the research has been focused are dynamic and thermal
soaring. Enabling an SUAV to perform unique soaring manoeuvres by extracting energy
from the local wind profile using onboard sensors and limited computational power is a yet
unrealized goal that is made particularly difficult by the stochastic, unpredictable nature of
real world environments. This chapter presents a summarized analysis of the existing body
of autonomous soaring literature organized into the subfields of wind detection, trajectory
planning, and aircraft control, before defining the direction of this work.

2.1 Wind Detection

Whether exploiting horizontal winds for dynamic soaring or climbing rising air columns in
thermal soaring, one of the first requirements for the autonomous application of such tech-
niques is the detection of a suitable wind environment. Although environments conducive for
these types of flight can often be expected in certain geographical and meteorological condi-
tions, unmanned aerial vehicles must be able to measure and identify the local wind profile
in real time as it continually changes position. Specifically, in the case of dynamic soaring, a
region with a sufficiently large vertical wind gradient must be found, and one primary method
of identifying such environments is through probabilistic models. Lawrance and Sukkarieh
developed a wind estimation technique based on onboard pitot static airspeed sensors, GPS
data, and sideslip wind vane measurements [3]. The method estimated the horizontal com-
ponents of wind around the aircraft by taking the mean of all directional measurements to
obtain the wind bearing, while using Gaussian process regression to estimate the altitude-
dependent wind speed variation. This method provided a mean function as well as confidence
bounds for the wind gradient, and since a minimum wind gradient is required for a flight
agent to conduct dynamic soaring manoeuvres, it was possible to estimate the maximum and
minimum altitude limits beyond which soaring would not be feasible. Estimates of the wind
profile were based on the assumption that the bearing is constant over large, unobstructed
surfaces such as oceans, which are where albatross birds can be most often observed per-
forming dynamic soaring. Simulated flight results showed that the proposed wind estimation
method was capable of accurately modelling the local wind profile while being inexpensive
enough to achieve on an SUAV’s on-board computer.

Instead of using sensor measurements to directly approximate a wind profile, Langelaan et
al. developed a parameterized approach of representing the wind field using polynomials [4].
The parameters of polynomial functions that described typical wind profiles for dynamic

4

2.1. Wind Detection

soaring were estimated through sensors available onboard SUAVs to generate the complete
wind model. The method used a Kalman filter to predict the wind velocity by estimating
the set of polynomial parameters, assumed to be affected by Gaussian measurement noise.
Additionally, in the likely event that an a priori estimate of the wind profile from external
meteorological data were unavailable, the Kalman filter was initialized using a series of wind
measurements taken by the aircraft at different altitudes. Due to the iterative nature of the
Kalman update equations and the low order of the matrix operations, this method could be
performed rapidly without extensive computational resources. Although the estimated wind
profile parameters had difficulty converging to those of ground truth measurements for more
complex profile shapes, the presented approach performed well in approximating linear wind
shears such as those commonly found in the lee of ridges [4].

While wind estimation for dynamic soaring involves the identification of the horizontal
wind strength at different altitudes, thermal soaring is concerned with detecting the wind
strengths and radii of updraft regions. The primary form of wind approximation involves ex-
perimentally detecting thermal columns, such as the method presented by Allen and Lin [5].
During flight, measurements of the SUAV’s position and rate of change of energy were recorded
and placed in a queue, before being used to estimate the thermal centre, a region in which the
aircraft’s energy would have been relatively high. The thermal radius was calculated through
a gradient descent optimization that minimized the difference between a thermal radius dis-
tribution constructed from the positional readings and a radius estimate generated through
the energy history. Since thermals are known to change position over time, the queue was
continually updated to place a greater emphasis on more recent entries. This allowed the pro-
posed wind estimation approach to successfully track moving columns and exploit thermals
for longer durations, as supported by the experimental results.

In expanding the problem of thermal soaring to include the detecting and tracking of
updrafts for interthermal flight, Depenbusch et al. more recently developed a method of gen-
erating an atmospheric mapping of the wind profile [6]. The approach continually estimated
the local updraft strength at the aircraft’s location by computing the difference between the
vehicle’s estimated energy rate of change, obtained through an unscented Kalman filter ap-
plied to various sensor measurements readily available on typical SUAVs, and the anticipated
sink rate, defined by aerodynamic equations. For instance, if the aircraft rose more quickly
than expected, it could be assumed that it was in an updraft region with a vertical wind
velocity proportional to the difference between the estimated and anticipated energy rates.
This series of mean wind estimates and the variances was superimposed over a square grid
of the environment in which the aircraft was expected to remain, where a single wind value
was used to represent the region over each discrete cell of the grid. In addition to wind
strength, a thermal column must be of sufficient radius so that an aircraft stays within its
turn limits when circling the updraft region. To account for this aspect, a two-dimensional
mask of grid cells in the shape of a doughnut, with the inner and outer circles representing the
vehicle’s minimum and maximum typical orbit radii respectively, was created. A convolution
of this mask with the previous map of the estimated wind velocities resulted in a map of
probabilities that indicated how likely circling manoeuvres centred around a given grid cell
would yield sufficient climb rates. Instead of explicitly obtaining the wind speed and radius
of a thermal, the atmospheric mapping approach generated a feasibility map from the wind
speeds estimated at various locations in the grid. Such a method allows for higher-level path
planning and trajectory generation algorithms that can use and reuse multiple thermals to

5

2.2. Trajectory Planning

extend flight times, which holds a significant advantage over completely relying on chance
encounters to remain soaring.

These various successful approaches of detecting wind for both dynamic and thermal
soaring shows that estimating the wind profile is currently feasible and is not necessarily the
primary obstacle that lies in the way of implementing autonomous soaring.

2.2 Trajectory Planning

After an aircraft has detected a sufficient wind environment that contains the necessary
characteristics for soaring, the vehicle must be placed on a path, or trajectory, that can take
advantage of the wind. In thermal soaring, such paths, illustrated in Fig. 2.1, are quite simple
once an updraft region has been found, typically defined by only a constant bank angle that
dictates the turn radius of the aircraft as it circles the updraft column.

Figure 2.1: Thermal soaring trajectory with a thermal column.

Consequently, research in thermal soaring has not often separated the trajectory planning
and aircraft control tasks into two distinct problems, resulting in the forgoing of any planning
systems by directly commanding aircraft along soaring manoeuvres through heuristic-based
control schemes. On the contrary, dynamic soaring is an area in which trajectory planning is
a significant challenge. Rayleigh first made observations on the soaring patterns of seabirds,
identifying the key elements of a travelling dynamic soaring trajectory [7]:

1. Upwind climb
2. High altitude turn
3. Downward sink
4. Low altitude turn

In examining such trajectories, where energy management must be strictly regulated in
the presence of sharp flight manoeuvres, the field has seen a significant amount of research

6

2.2. Trajectory Planning

(a) Travelling (b) Loitering

Figure 2.2: Travelling dynamic soaring trajectory with a linear wind profile.

involving the use of numerical trajectory optimization. Zhao converted the optimal control
problem of computing dynamic soaring trajectories with minimum cycle times into a nonlinear
programming (NLP) problem, which was solved using a numerical optimizer [8]. The process
required a model of a glider defined by aerodynamic equations of motion, a cost function
that directed the optimization goal, and boundary constraints to ensure the resulting flight
path remained within the limits of the model and environment. Various trajectories were ob-
tained through a sequential quadratic programming-based NLP solver by applying different
objectives, such as minimizing cycle time, maximizing altitude gain, and minimizing the wind
gradient that still led to successful soaring. The resulting loitering and travelling flight paths
were characteristic of the behaviour observed in albatross birds and allowed for an analysis
of the environmental conditions and control objectives conducive to dynamic soaring. An-
other instance of numerical trajectory optimization can be found in the research conducted by
Sachs [1]. A commercial optimizer was used in generating optimal trajectories to determine
the minimum strength of shear wind required for dynamic soaring manoeuvres. The findings
coincided with data on the wind environments in which albatrosses had been found to soar,
noting that the calculated minimum wind strength can often be found or exceeded in such
locations. As these studies show, generating optimal trajectories by numerically solving a
nonlinear programming problem was an early method of examining the characteristics and
general feasibility of dynamic soaring. Although such techniques soon became the basis of
a variety of approaches in supplying optimal control trajectories for real-world soaring, the
extremely lengthy calculation times and large computational power requirements of numerical
optimization methods greatly hindered their applicability as practical solutions. Furthermore,
the resulting single-cycle trajectories were insufficient for the repeating nature of dynamic
soaring, particularly as they often consisted of harsh state and control transitions while not
accounting for aircraft behaviour and energy accumulation between cycles [1].

To take advantage of the numerically optimal trajectories as well as the greater availabil-
ity of data storage in contrast to the limited computational power available on SUAVs, other
strategies have relied on pre-computed paths. Bird et al. proposed a trajectory planning
approach based on a database of locally optimal loitering trajectories computed for a range of

7

2.2. Trajectory Planning

aircraft and environmental conditions, which was loaded ahead of time onto an SUAV com-
puter [9]. The a priori trajectories varied in terms of the aircraft airspeed at the lowest point
of the trajectory, the altitude range of the shear layer, and the maximum wind speed of the
shear. A nearest neighbour interpolation method selected the flight path that best matched
the conditions measured by the aircraft’s sensors, which was then loaded to be tracked by
the attitude controller. However, even if a representative trajectory could be computed and
stored for every meaningful discrete value of a set of parameters, the system would be sus-
ceptible to any unexpected deviations or gradual drift from the reference flight path. The
authors remarked that optimal trajectories are simply not realistic, due to the imperfect and
stochastic nature of real-world systems. For instance, any uncertainties or disturbances that
lead to tracking errors would require the aircraft to expend energy in correcting its trajectory,
which is a critical problem when considering the strict energy management necessary for dy-
namic soaring. In summary, systems that depend on tracking a reference trajectory are at
constant risk of depleting the minimal energy gains accumulated over dynamic soaring cycles,
eventually becoming incapable of continuing soaring manoeuvres [9].

Another class of planning methods that has been explored in the field is the parameter-
ization approach. In a more recent work, Li and Langelaan explored robustness through a
geometric parametrization strategy that used splines and sinusoidal functions to model and
optimize dynamic soaring flight paths [10]. Instead of optimizing for every point of a soaring
trajectory, which has proven to be a lengthy, computationally expensive process, the proposed
method simplified the way in which suitable soaring cycles were defined, allowing for a more
rapid and lightweight optimization. Cubic polynomials and sine functions formed the basic
structures of the trajectories, where the coefficients, frequencies, and biases formed the set
of parameters that were optimized to maximize the total energy experienced by the aircraft
over individual soaring cycles. Simulation results showed that the parameterization approach
required fewer function evaluations than classic point-wise optimization by several orders of
magnitude, allowing for real-time trajectory generation. Furthermore, since the optimization
output trajectories are not defined as functions of time, it was found that the trajectory for
one cycle could be reused, as although gains in energy caused simulated aircraft to slowly
deviate from the original reference trajectory, the system would eventually convergence to
an equilibrium. This behaviour was also observed when the simulation was initialized with
varying initial aircraft conditions, indicating a certain level of robustness. To further gen-
eralize the soaring behaviour, a deep neural network (DNN) was trained through an actor
critic reinforcement learning (RL) method in a continuous action space. The trained neural
network was able to output the sinusoidal parameters for loitering dynamic soaring cycles,
and since training occurred off-line, generating each trajectory through a forward pass of the
neural network required minimal computational effort. Finally, although the trajectory plan-
ning approach could compensate for varying initial conditions, it was ultimately reliant on
a tracking controller that would be sensitive to stochastic disturbances and more significant
uncertainties. Nevertheless this use of deep reinforcement learning exemplifies the latest trend
in the field, which is the application of artificial neural networks (ANNs) to achieve robust,
generalized behaviour.

8

2.3. Aircraft Control

2.3 Aircraft Control

Research in autonomous soaring control systems has largely been concerned with higher level
trajectory tracking techniques, and can be classified into three main categories, the first of
which is the heuristic approach. Many of the heuristic control strategies in thermal soaring
have been based on the experiential findings of Reichmann [11]. The approach lays out simple
rules for setting the bank angle of an aircraft based on its climb rate in a region of updraft,
and suggests increasing, decreasing, or maintaining constant the bank angle as the climb rate
deteriorates, improves, or remains constant, respectively. The main advantages of such an
approach is that its simplicity only requires the consideration of the control surfaces related
to an aircraft’s roll, an estimate of the wind profile is not required, implementation does not
require extensive computational power and storage requirements, and it is generalizable to
different aircraft and thermal conditions. Andersson et al. [12] applied the heuristic approach
as a foundation for a turn rate controller that used the acceleration in specific energy, where
the total energy of the aircraft measured using onboard sensors was normalized with respect
to its mass, and the rate of change in this specific energy was interpreted as the climb rate.
A series of logic operations was designed to trigger the circling controller if the energy rate
achieved a threshold, after which the rate value was used as an input to the proportional-
derivative controller dictating the aircraft’s turn rate.

Similarly, Wharington initially explored the applicability of heuristics for dynamic soaring
control [13]. Due to the more complex manoeuvres required for dynamic soaring, the proposed
method investigated the use of separate pitch and bank control schemes. Assuming a net gain
in kinetic energy over a soaring cycle, a pitch controller was designed to govern the aircraft’s
glide slope to achieve constant soaring velocity while exchanging the excess speed with height.
As a note, while the primary method of energy extraction in thermal soaring is to increase
and decrease wing loading by banking the aircraft, in dynamic soaring, energy is gained by
changing the aircraft’s heading relative to the horizontal wind. As such, the roll heuristic
was implemented to bank the vehicle so that it would turn away from the incoming wind.
These rules formed the basis of multiple controller designs, which were created to address
different types of wind profiles. From testing the heuristic-based controllers in simulation, it
was found that the resulting trajectories consisted of significant variations in airspeed, clearly
showing the ineffectiveness of the pitch controller and consequently invalidating the corre-
sponding heuristic. It was also concluded that the heuristic-based design approach resulted
in controllers that yielded suboptimal trajectories when compared to those of numerical op-
timization methods.

A semi-heuristic strategy by Lawrance and Sukkarieh [3] proposed a piecewise dynamic
soaring control method based on optimized segments of the soaring trajectory illustrated ear-
lier in Fig. 2.2a. The piecewise segments were optimized offline, or prior to flight, through
numerical optimization before being uploaded to the control system as a reference trajectory,
which the aircraft was made to track through simple PID controllers commanding the rud-
der, ailerons, and elevator. The method continuously looped through each part of the cycle,
transitioning from one phase to the next when certain conditions were met. Specifically, the
controller logic would switch from the upwind climb phase to high altitude turn once the max-
imum altitude, based on wind profile estimates, was reached, to the downward sink after the
aircraft was reoriented to point downwind, and to the low altitude turn when the minimum al-
titude was reached. An additional travelling component was added between cycles to expend

9

2.3. Aircraft Control

any additional energy gained from soaring beyond the amount necessary to continue cycling.
This phase also allowed for directional travelling soaring, as the vehicle could be made to soar
towards mission waypoints. Lastly, once all the excess energy had been expended, the control
cycle would return to the upwind climb. Simulation testing showed that the controller could
perform directional soaring over multiple cycles, and that the low complexity of the approach
would make implementation possible. However, the primary disadvantage of the method was
its limited applicability, because the reference trajectories had been optimized within a single
environment with specific parameters that would not necessarily be suitable for the range of
conditions encountered by a real system.

The second category of soaring control systems is characterized by the use of linear models
to approximate the nonlinearities of real-world soaring. In one application of this approach,
Akhtar et al. used a PID-based tracking controller to have an aircraft follow a pre-optimized
reference trajectory [14]. While the previous study used PID control as a low-level controller
for the aircraft’s actuators, this work designed both its low-level stability augmentation con-
troller and the high-level autopilot system using PID control to minimize errors between the
vehicle’s true position and the commanded position references. However, due to time delays
in the control system, the optimal trajectory was found to require manoeuvres that were too
aggressive, and as such, a suboptimal solution was used instead as the reference path, further
illustrating the entangled nature of trajectory planning and aircraft control. Moreover, the
simple approach of exclusively using PID controllers is likely to present additional challenges
in the stochastic, uncertain, and nonlinear nature of real-world environments for which PID
systems are unable to compensate due to their limited operational range around a single lin-
earization point.

Alternatively, Deittert et al. employed a linear quadratic regulator (LQR) optimal con-
troller to a disturbance-injected nonlinear flight model to investigate the controller’s ability
to reject atmospheric turbulence and modelling errors [15]. First, state and control sequences
for an optimal trajectory were passed through a nonlinear flight model containing simulated
disturbances in the form of atmospheric turbulence. Then, the resulting state values were fed
back and compared with the nominal trajectory from the optimizer to compute the flight path
errors, which were sent through an LQR feedback controller to produce an updated control
sequence corresponding to a periodic soaring solution. The LQR, based on a linearized time
invariant system of the nonlinear plant, served to cancel out the trajectory tracking errors
caused by the turbulence. Results of simulation testing showed that for dynamic soaring, the
controller was capable of achieving mean times between failures, or time until the aircraft
model’s impact with the surface, in the order of dozens of minutes. However, the findings also
showed that the proposed controller was unable to account for persistent stochastic distur-
bances, which eventually would cause incorrigible displacement from the optimal trajectory.
It was reported that control schemes that track predefined trajectories are not necessarily
correlated with sufficient energy management, and that future controller designs should focus
on maximizing energy instead of minimizing tracking errors. The design considerations also
highlighted an important dilemma of tracking control: effectuating control actions for trajec-
tory correction due to disturbances causes additional drag and loss of energy, while restricting
corrective actions makes the system less robust to the same disturbances.

The approaches examined thus far illustrate this primary disadvantage of decoupling the
trajectory planning and control problems. The simplicity and convenience of trajectory track-

10

2.4. Intelligent Control

ing solutions are offset by their increased dependence on the path planning algorithm, and
consequent sensitivity to tracking errors. Considering the practical need to account for distur-
bances and uncertainties, the tracking problem becomes an issue of achieving either a limited
number of robust cycles or a greater number of sustainable cycles at the cost of the other.
Furthermore, although systems based on a priori solutions take advantage of the greater
availability of computational storage over computational power onboard SUAVs, such control
systems are nonetheless more vulnerable to changes in the aircraft or environment, as pre-
viously discussed in the context of trajectory planning. These conclusions demonstrate the
need for robust controllers that can perform over a range of conditions and environments while
being capable of adjusting the flight trajectory if error correction is anticipated to irrevocably
compromise the soaring cycle. It is this central requirement of robustness that has motivated
research in the third category of soaring control techniques, comprised of nonlinear methods.

Contrasting the PID controller’s limited operating region or the LQR’s fixed time hori-
zon, Liu et al. investigated a nonlinear model predictive control (NMPC) strategy for UAV
thermal soaring [16]. The scheme initially generated optimal trajectories using a 3DOF flight
model to reduce the large computational costs of NMPC optimization, which is a repetitive
process that occurs along a receding time window. A generalized regression neural network
was used to estimate the local wind field around the aircraft through onboard updraft velocity
measurements, and a heuristic search technique dictated whether the aircraft would search for
or circle a thermal column by taking into account the estimated thermal updraft velocity and
the vehicle’s altitude. In addition, a model interaction strategy allowed the resulting NMPC
control inputs to the 3DOF aircraft model to be used by a more accurate 6DOF model. In
all, the controller used a prediction horizon of 120 seconds to estimate the future state of
the vehicle given certain control inputs, which were obtained with the goal of maximizing the
amount of energy extracted at the end of the horizon. Results of a 6DOF simulation showed
that the proposed strategy could sufficiently estimate the thermal wind regions in the envi-
ronment using the neural network and optimize trajectories to chase moving thermals with
an average computational time of less than 2 seconds. This research serves as an example of
an on-line computational strategy in contrast to the a priori-based systems described thus
far, and shows the potential applicability of neural networks in the field.

2.4 Intelligent Control

In applying the nonlinear approximation abilities of artificial neural networks trained through
machine and reinforcement learning algorithms, research in autonomous soaring control has
recently taken an interest in the collection of such tools and techniques known as intelligent
control. These methods have become increasingly attractive in addressing the complex dy-
namics of nonlinear processes, for which accurate models may be difficult to create, or for
creating systems with generalized behaviours, which is difficult to achieve using explicitly
defined and tuned control laws. This section will examine the existing efforts in applying
intelligent control schemes to dynamic soaring.

Fuzzy controllers use continuous inputs that represent degrees of truth, known as fuzzy
logic, to form control protocols defined by conditional statements. Since the control rules are
derived from the designer’s knowledge about the desired system behaviour, this method by-

11

2.4. Intelligent Control

passes the need to explicitly and accurately model the plant. Taking advantage of this unique
characteristic, Barate et al. designed a fuzzy controller inspired by the observations of alba-
tross birds [17]. Two sets of rules were written for the ascending and descending portions of
the travelling dynamic soaring cycle using aircraft altitude as the variable. The consequences
of the rules, also known as the actions, were defined as linear combinations of the aircraft
states, and directly correlated to control commands for the rudder, elevators, and ailerons.
These rule parameters were initially empirically determined before being optimized through
an evolutionary algorithm to increase robustness and efficiency, where each rule parameter
was encoded in the genome of each species, or controller, of the algorithm. Simulations showed
that while the resulting controller’s ability to fly consecutive soaring cycles was sensitive to
small changes in the rule parameters, it was able to generate travelling trajectories for narrow
ranges of initial states, wind turbulence, and sensor measurement noise with the simple fuzzy
rule set. Nevertheless, the findings also demonstrated the fuzzy system’s high dependence
on the educated initial guess and lack of generalization ability in the absence of explicitly
formulated rules for robust behaviour.

In exploring generalization ability, Montella and Spletzer investigated a reinforcement
learning control approach to loitering soaring [18]. The strategy was based on the model-free
Q-learning algorithm, which was modified to accelerate and reduce the computational com-
plexity of the learning process. In reinforcement learning, training data is typically collected
by a learning agent that repeatedly explores the state-action space. However, since finding
a successful dynamic soaring cycle by chance through random actions is both unlikely and
impractical, a two stage learning process was implemented. After optimal trajectories were
generated using a collocation-based nonlinear optimization technique, a teaching controller
was made to steer an aircraft model along the optimal trajectories. By observing the teaching
controller’s actions, a learning controller passively generated a Q-function, which was approx-
imated using a K nearest neighbours selection. In the second stage, control of the aircraft
was given to the learning controller, which used the previously constructed Q-function to
determine which actions from a given state allowed for the greatest reward, defined by the
total kinetic and potential energies gained from completing a single loitering cycle. Results
of point mass model simulations showed that a learned controller was able to fly trajecto-
ries with greater net energy gain than those of the teaching controller after just ten training
flights. In addition, its ability to find novel trajectories indicated that the learned controller
was not simply recreating the training trajectories. Further testing in a higher fidelity 6DOF
simulator revealed that even without retraining, when not starting along the planned trajec-
tory, the controller was able to generate new flight paths that closely resembled those of the
optimal training sets, instead of sacrificing energy to steer the aircraft back onto the initially
planned trajectory. This result directly addresses the primary issue with tracking controllers,
showcasing the generalization ability of certain neurocontrollers.

Another subset of intelligent control is the field of neurocontrol, which is defined as the
direct application of artificial neural networks in control strategies. Kim et al. explored the
use of deep neural networks for directional dynamic soaring, where a series of DNNs were
trained on a point mass UAV model [19]. To obtain the large training sets required for gener-
ating deep neural networks, 1000 optimal trajectories were first computed, each of which had
different wind gradients and initial conditions. This library of trajectories was generated by
solving optimal control problems that maximized the final energy, altitude, and directional
velocity of a UAV travelling along the trajectory, and the dataset was used in a machine

12

2.4. Intelligent Control

learning algorithm to train three controller networks regulating the angle of attack, the bank
angle, and a wing morphing parameter for backwards-swept configurations. These networks
were then integrated into a single feedback controller. Finally, the trained neurocontrollers
were tested and compared to the optimal trajectories of a test set. Simulation results for
various wind and initial conditions showed that the DNN-based control scheme was able to
generate commands that mimicked those of the corresponding optimal trajectories even in
various wind fields and with different initial conditions, albeit sub-optimally. One significant
advantage of neural network-based controllers is that once trained, obtaining the control com-
mands is a near-instantaneous process that simply involves a feedforward pass through the
network. However, one aspect of deep neural networks that may be of concern are their size.
Each of the three networks of the DNN control strategy consisted of 80 neurons with over 1200
neural weights. Simpler networks would reduce training times, provide greater efficiency in
calculating control commands, and allow for the interpretation of the network’s topology and
weights with respect to its outputs. Additionally, machine learning methods require many
training samples that are representative of the environment in which the real system will
fly. It is yet unclear how the cumbersome process of generating these numerically optimized
training sets can be applied to account for stochastic disturbances and time-varying uncer-
tainties, which is another crucial aspect of real-world implementation that must be addressed.

Using a different form of neurocontrol, Perez et al. applied the NeuroEvolution of Aug-
menting Topologies (NEAT) algorithm in generating dynamic soaring-capable neural net-
works [20]. The dynamic soaring problem was formulated as an optimization task, where the
goal was to optimize the topology and weights of various neurocontrollers to eventually se-
lect the neural network that exhibited the best soaring performance. The networks accepted
states of a simulated aircraft model as inputs and produced control commands as outputs to
steer the vehicle. The trained neural networks were not only extremely simple, consisting of
just six or seven neurons, but were also capable of providing control commands for optimal
trajectories that extracted more energy per single cycle than those of numerically optimized
paths. The study serves as the initial work that is expanded on in this research.

An important commonality between these neurocontrol approaches is that the trajectory
planning and aircraft control problems are no longer distinct. Earlier methods of addressing
these challenges relied on separate planning and control schemes, where the path planner
would explicitly pass a trajectory to a high-level controller, which would then actuate the
aircraft accordingly using low-level control techniques. On the other hand, the aforemen-
tioned intelligent control systems simply conveyed commands directly to low-level controllers,
bypassing the trajectory planning phase as well as the disadvantages associated with tracking
control.

Knowledge Gaps

Autonomous soaring research has largely focused on exploring different solutions to the prob-
lems of trajectory planning and aircraft control. Existing efforts in addressing these inter-
connected tasks can be categorized into trajectory-dependent approaches, which focus on
simplifying the path planning system and relegating aircraft control to tracking methods, and
control-dependent approaches, which instead forgo explicit trajectory planning by consign-

13

2.4. Intelligent Control

ing the task to the controller. Regardless of the approach, the actualization of autonomous
soaring systems necessitates simple and robust solutions that can be implemented using the
limited hardware onboard SUAVs while accounting for the stochastic and uncertain nature of
real-world environments. While the works presented in the previous sections have explored
techniques of either achieving efficient computation through various simplification methods,
or of addressing the problem of generalizability using intelligent control schemes, there is a
relative lack of research that directly examines robustness, and an even greater scarcity of
attempts to achieve both. Based on the overview of autonomous soaring research presented
in this literature review, this thesis dissertation aims to fill the identified knowledge gaps
through the development of a neuroevolutionary control solution.

14

3 Modelling and Trajectory
Optimization

This chapter presents the models used to define and characterize flight behaviour in a windy
environment. The equations of motion and formulations of the aircraft and wind models
shown in this section are integrated in the flight simulation that was used throughout this
research. Furthermore, this chapter describes the optimal control problem framework and its
specific application to the dynamic soaring case, while highlighting the challenges associated
with the use of numerical optimization methods for autonomous applications to validate the
case for a robust neurocontrol approach that can rapidly generate energy-neutral trajectories
in various conditions. Finally, in the scope of this research, the optimal control problem
is formulated as a trajectory optimization problem, and therefore, the two terms are used
interchangeably.

3.1 Aircraft Characterization

The design of an autonomous soaring control system first requires a characterization of flight
dynamics. In particular, both trajectory optimization methods and neural-network-based
controllers require a simulated training environment with which they can find feasible flight
solutions or interact under an iterative learning algorithm. Therefore, this research used a
three-degree-of-freedom (3DOF) point mass model of a typical commercial SUAV, along with
wind models common in the field. The 3DOF framework was selected, because its control
variables were more representative of the higher-level commands that would be conveyed
to an autopilot system for trajectory generation, compared to the lower-level stabilization
variables that would need to be managed in a higher-fidelity six-degree-of-freedom model. This
work assumes the controllability and observability of the aircraft and therefore its stability.
In addition, the simpler 3DOF model allows for more rapid calculations when simulating
trajectories.

3.1.1 Equations of Motion

The equations of motion of the 3DOF point-mass aircraft model are formulated for a Cartesian
coordinate system, where the aircraft’s motion is considered relative to an inertial frame
located on the Earth’s surface. Figure 3.1 depicts a free body diagram of the model which
indicates, along with the forces acting on the aircraft, the positive directions for roll and pitch.
The equations account for wind in the x, y, and z directions for various types of soaring, and
are defined by the airspeed V , lift L, drag D, mass m, standard gravity g, pitch γ, heading
ψ, roll µ, coordinate positions x, y, and h, the various wind components W , as well as their
rates of change Ẇ [8]:

15

3.1. Aircraft Characterization

V̇ = −D
m
− gsin(γ)− Ẇxcos(γ)sin(ψ)− Ẇycos(γ)cos(ψ) (3.1)

ψ̇ = Lsin(µ)
V mcos(γ) −

Ẇxcos(ψ)
V cos(γ) −

Ẇysin(ψ)
V cos(γ) (3.2)

γ̇ = 1
V

(
Lcos(µ)
m

− gcos(γ) + Ẇxsin(γ)sin(ψ) + Ẇysin(γ)cos(ψ)
)

(3.3)

ẋ = V cos(γ)sin(ψ) +Wx (3.4)
ẏ = V cos(γ)cos(ψ) +Wy (3.5)
ḣ = V sin(γ) (3.6)

Figure 3.1: Free body diagram of SUAV model.

The equations for lift, drag, and drag coefficient CD are shown below. The drag coefficient
is modelled as the sum of both parasitic and lift-induced drag, with local air density ρ, wing
reference area S, lift coefficient CL, zero-lift drag coefficient CD0, induced drag factor K, and
maximum lift-to-drag ratio Emax:

16

3.1. Aircraft Characterization

L = 1
2ρV

2SCL (3.7)

D = 1
2ρV

2SCD (3.8)

CD = CD0 +KC2
L (3.9)

K = 1
4CD0E2

max

(3.10)

Additionally, the total energy eT of the aircraft is comprised of both the kinetic eK and
potential eP energies:

eK = 1
2mV

2 (3.11)

eP = mgh (3.12)
eT = eK + eP (3.13)

Another potential consideration would be the internal energy of the aircraft, such as the en-
ergy stored in onboard batteries and used for control actuation. However, the target platform
for implementing autonomous soaring primarily consists of SUAVs, whose control surfaces
are actuated by servo motors that are governed by constant-voltage, continuous pulse-width-
modulated signals. Therefore, there is no appreciable increase in internal energy expenditure
associated with a greater frequency of control actions, and as such, the calculation of control
effort is not considered in this work.

Regardless, this mathematical model of the aircraft describes the dynamics of the simu-
lation, which can be accessed by a control agent through the following state x and control u
variables:

x =

V
ψ
γ
h

ḣ

 , u =
[
CL
µ

]
(3.14)

The airspeed can be estimated through a pitot-static system, the heading and pitch angles
calculated from gyroscopes, and the aircraft’s height and its rate of change can be obtained
through an altimeter and variometer, respectively. These inputs were selected specifically
because their values are typically accessible using onboard sensors, which is necessary for
the high-frequency control required to perform soaring. Additionally, the lift coefficient and
roll were used as the control variables due to their higher, navigation-level nature, which
is more appropriate for tasks that focus on vehicle attitude control rather than the precise,
but lower-level actuators commonly associated with aircraft stabilization. In particular, the
lift coefficient can be related to the angle of attack through the aircraft’s lift curve polar.
Furthermore, the lift coefficient is used over the angle of attack, because the 3DOF system
does not model the complete dynamics of the vehicle, and as a result, the former is more
appropriate as an instantaneously-changing state. Directly commanding a lift coefficient
through the presumed actuating of an aircraft’s control surfaces is more accurate than an
instantaneous change in its angle of attack.

17

3.1. Aircraft Characterization

3.1.2 3DOF Aircraft Model

The specific SUAV model used in the 3DOF simulator was based off RnR Products’ SBXC
cross country sailplane and the model used in Zhao’s seminal work on SUAV dynamic soaring
[8]. However, computing a flight trajectory either explicitly through trajectory optimization or
implicitly using neural network training algorithms requires limiting the states and controls
of the vehicle. As a result, the minimum airspeed was calculated to be equal to the stall
velocity. From the definition of lift (Eqn. 3.7):

L = 1
2ρV

2SCL (3.15)

V =
√

2L
ρSCL

(3.16)

In level flight, the lift force balances the weight that is acting downwards on the aircraft.
Therefore, to obtain the minimum speed at which an aircraft of a fixed weight and size at a
given altitude can remain in level flight, the lift coefficient must be maximized:

V =
√

2mg
ρSCL

(3.17)

Vmin =
√

2mg
ρSCLmax

= Vstall (3.18)

Additionally, instead of an arbitrary initial airspeed for soaring trajectories, the best glide
speed was used. This value is the airspeed at which the lift-to-drag ratio is maximized, and
can be computed using the definitions of the drag coefficient (Eqn. 3.9):

L

D
= CL
CD

(3.19)

= CL
CD0 +KC2

L

(3.20)

The maximum of this ratio is obtained by taking the root of the first derivative with
respect to CL:

d

dCL

(
CL
CD

)
= CD0 +KC2

L − CL(2KCL)
(CD0 +KC2

L)2 (3.21)

= 0
CD0 +KC2

L − CL(2KCL) = 0 (3.22)
CD0 −KC2

L = 0 (3.23)

CL =
√
CD0
K

(3.24)

Combining Equations 3.17 and 3.24 yields the following, where the airspeed that maxi-
mizes the lift-to-drag ratio is also known as the minimum drag speed:

18

3.2. Surface Wind Shear Model

Vmd =
√√√√ 2mg
ρS
√

CD0
K

(3.25)

Table 3.1 details the specifications of the glider. This model is representative of the small,
lightweight, manually-launched aircraft for which the implementation of autonomous soaring
technology is intended.

Table 3.1: SUAV characteristics.

Parameter Symbol Value Units
Wing area S 10.7 sq ft
Mass M 0.295 slug
Maximum lift-to-drag ratio Emax 20.0 -
Maximum lift coefficient CLmax 1.5 -
Minimum lift coefficient CLmin -0.2 -
Zero-lift drag coefficient CD0 0.025 -
Maximum load factor nmax 5 -
Maximum absolute bank angle |µ|max 60 deg
Stall speed Vstall 22.3 ft/s
Minimum drag speed Vmd 27.3 ft/s

3.2 Surface Wind Shear Model

Dynamic soaring requires the presence of a vertical wind gradient, or wind shear. One of
the most common models, initially formulated by Zhao [8], assumes a horizontal wind whose
strength is a function of altitude and whose shape is dependent on several shape parameters.
As shown in Figure 3.2, the model takes a logarithmic shape according to the shape parameter
A when 0 ≤ A < 1, a linear profile when A = 1, and an exponential form when 1 < A ≤ 2.
Additionally, the transition height htr stretches or compresses the altitude range within which
the gradient exists, and the maximum wind strength Wmax determines the overall magnitude
of the profile. The wind strength and bearing are assumed to be uniform over the ground
surface.

Wx =

β
[
Ah+ 1−A

htr
h2
]

h < htr

Wmax h ≥ htr
(3.26)

β = Wmax

htr
(3.27)

The rates of change of the wind profile used in the aircraft model’s equations of motion
are dependent on the existence of wind components in the respective axes. For instance, a
purely eastward wind would have the following gradient:

19

3.3. Thermal Models

Figure 3.2: Wind profile shapes.

Ẇx = βx

[
Ax + 21−Ax

htrx
h

]
ḣ (3.28)

Ẇy = 0.0 (3.29)
Ẇz = 0.0 (3.30)

3.3 Thermal Models

3.3.1 Thermal Bubble

Thermal soaring involves circling an updraft region to gain altitude before eventually exchang-
ing the potential energy for kinetic energy by soaring out of the thermal once the updraft
fades. A common model for thermals is the toroidal bubble model described by Lawrance
and Sukkarieh [21], which is characterized by a core updraft region surrounded by sinking
air, disconnected from the ground and moving upwards over time. This representation is
visualized in Figure 3.3.

The model, minimally altered from the original formulation to fit the coordinate system
presented in Section 3.1.1, is defined by the agent’s distance from the thermal centre r, the
maximum core updraft wind speed wcore, the thermal’s height ht, the thermal radius over the
xy plane rxy, the radius over the z axis rz, the bubble eccentricity factor k, and the rising

20

3.3. Thermal Models

(a) Vector field (b) Vertical wind speed cross-sections

Figure 3.3: Toroidal thermal bubble model.

velocity ḣt, where x, y, and h are the agent’s location in the inertial frame:

r =
√
x2 + y2, k = rz

rxy
(3.31)

Wz =

wcore r = 0, h ∈ [ht − rz, ht + rz]
cos(2π

4rz (h− ht)) rxywcoreπr sin(πrrxy) r ∈ (0, 2rxy], h ∈ [ht − rz, ht + rz]
(3.32)

Wx = −Wz
h− ht

(r − rxy)k2
x

r
(3.33)

Wy = −Wz
h− ht

(r − rxy)k2
y

r
(3.34)

The rates of change of the wind components were calculated using the finite difference
approximation method for simplicity. In this model, the bubble rises from an initial height
ht0 at a speed ḣt, which allows a flight agent to continually gain potential energy as long as
it remains within the thermal region.

3.3.2 Thermal Column

Contrarily, studies on boundary layer meteorology suggest that thermals are less like bubbles
and instead better represented as finite-length-and-duration columns [22]. These empirical
observations have prompted the design of a column-based thermal model, which exists below
a maximum altitude htrmax and persists for a maximum duration tthmax :

21

3.4. Ridge Wind Shear Model

r =
√
x2 + y2 (3.35)

Wz =

wcore r = 0, h < htrmax , t < tthmax
rxywcore

πr sin(πrrxy) r ∈ (0, 2rxy], h < htrmax , t < tthmax

0.0 otherwise
(3.36)

Wx = 0.0 (3.37)
Wy = 0.0 (3.38)

This model, illustrated in Fig. 3.4, is a simpler representation of thermal winds that does
not require a flight agent to time its entrance into the thermal region as would be the case
with the bubble model.

Figure 3.4: Column thermal model.

3.4 Ridge Wind Shear Model

Ridge or orographic soaring involves using the winds around geographic features such as ridges
and hills. Airflow becomes compressed as it approaches a hill to form a region of higher pres-
sure, which results in a wind velocity gradient that increases in magnitude proportionally to
the altitude. This wind field can then be exploited by a flight agent to continuously loiter on
the windward side of the hill.

The model for the ridge wind shear [23] is based on a semi-cylindrical feature spanning
east to west with a radius R and length l, and is a function of the infinitely-far horizontal
wind speed w∞ also referred to as the freestream wind, the distance from the centre of the
hill to the aircraft r, and the angle between the horizontal plane and the aircraft θ. The
freestream wind is represented by a logarithmic profile as a function of the transition height ĥ
of the boundary layer Wĥ, the vehicle’s altitude h, and the shear height nearest to the terrain
z0. The flow vectors are illustrated in Fig. 3.5.

22

3.5. Formulating the Optimal Control Problem

W∞ =
Wĥln(hz0

)

ln(ĥz0
)

(3.39)

Wy = w∞ + w∞
R2

r2 (sin2 θ − cos2 θ) (3.40)

Wz = 2w∞
R2

r2 sin θ cos θ (3.41)

If the aircraft flew past the length of the ridge, it would experience an exponentially
decaying wind profile, where the wind components Wy and Wz would be computed as per
Eqn. 3.39-3.41 before being multiplied by a decay factor kd:

Wy = kdWy (3.42)
Wz = kdWz (3.43)

kd = 1.05− (|x|−l)
2 (3.44)

Figure 3.5: Ridge shear wind model.

3.5 Formulating the Optimal Control Problem

One of the most common methods of solving optimal control problems is by transforming it
into a nonlinear programming problem, which involves finding a set of values that optimize
an objective function under a set of constraints. The problem of soaring is an energy extrac-
tion task, in which the objective is to maximize the kinetic and potential energies obtained
through environmental wind phenomena. This quantifiable goal allows for the formulation
of a trajectory optimization problem for the solving of energy-optimal soaring trajectories.
In the general case, trajectory optimization involves determining the control inputs u(t), the
initial time t0, and the final time tf that minimizes the cost function J along the states x(t),
with boundary conditions Φ and Lagrange term performance index L, all summarized as [24]:

23

3.5. Formulating the Optimal Control Problem

J = Φ [x(t0), t0,x(tf), tf] +
∫ tf

t0
L [x(t),u(t), t] dt (3.45)

The cost function is minimized with respect to the control inputs within the system defined
by a set of ordinary differential equations in the form of the state equations. Furthermore,
while the cost function directs the optimization process, it is also necessary to impose certain
rules, such that the solution is within the domain of physically realizable solutions. Therefore,
the formulation of an optimal control problem requires a set of differential equations ẋ that
represent the dynamic constraints of the system, path constraints C that enforce restrictions
along the trajectory, and boundary constraints ϕ, which limit the initial and final system
states:

ẋ(t) = f [x(t),u(t), t] (3.46)
C [x(t),u(t)] ≤ 0 (3.47)
ϕmin ≤ ϕ [x(t0), t0,x(tf), tf] ≤ ϕmax (3.48)

Path constraints, or inequalities, ensure that states and controls stay within defined limits
in a way that reflects a physical system. For soaring, constraints would include restrictions
on altitude h, structural limits such as the airframe load factor n, and aircraft control limits
for any control variables such as the lift coefficient CL and the roll angle µ:

h(t) ≥ 0 (3.49)

n(t) = L

mg
≤ nmax (3.50)

CLmin ≤ CL(t) ≤ CLmax (3.51)
−µmax ≤ µ(t) ≤ µmax (3.52)

Boundary conditions, or equality constraints, are also specified to define the initial and
final states of the trajectory at initial and final times t0 and tf , and are necessary to distinguish
between different soaring techniques. For instance, the different set of boundary conditions
for loitering and travelling soaring are shown below, where the former requires the aircraft to
return to its initial spatial position, while the latter requires a displacement along a certain
direction:

Loitering: V (t0) = V0 V (tf) = Vf

ψ(t0) = ψ0 ψ(tf) = ψf

γ(t0) = γ0 γ(tf) = γf
...

...
x(t0) = x0 x(tf) = x0

y(t0) = y0 y(tf) = y0

24

3.6. Solving the Optimal Control Problem

Travelling: V (t0) = V0V (tf) = Vf

ψ(t0) = ψ0ψ(tf) = ψf

γ(t0) = γ0 γ(tf) = γf
...

...
x(t0) = x0 x(tf) = xf

y(t0) = y0 y(tf) = yf

Together, these elements define the trajectory optimization problem, which can be solved
through various techniques.

3.6 Solving the Optimal Control Problem

The two main categories of solving optimal control problems consist of direct and indirect
methods. Direct methods use a sequence of NLP points y1, y2, . . . , yf that minimize the objec-
tive function, where the NLP variable y = (u1,x2,u2,x3, . . . ,xM ,uM). Contrarily, indirect
methods find the point y that satisfies the necessary condition F ′(y) = 0, where the derivative
of the objective function is near zero [25]. Therefore, the direct method’s relative simplicity
of only requiring evaluations of the objective function and not its derivative makes it more
practical for the dynamic soaring optimal control problem.

This section describes the trapezoidal collocation approach. The continuous-time soaring
task is transcribed into a nonlinear programming problem by dividing the fixed time interval
[t0, tf] of the expected solution intoN discrete subintervals andM = N+1 nodes or collocation
points [25]:

t0 < t1 < t2 < ... < tk < ... < tM (3.53)
tM = tf (3.54)

The direct collocation approach parameterizes the state and control trajectories using
functions, which are usually select-order polynomials. In order to ensure continuity in the
states between collocation points, a set of defect constraints ξ must be satisfied, which for
the trapezoidal method are as follows, with state at node k as xk, duration of subinterval hk,
and system dynamics fk:

ξ = xk+1 − xk −
hk
2 (fk + fk+1) = 0 (3.55)

hk = tk+1 − tk (3.56)

Therefore, the trapezoidal collocation process involves finding a trajectory that ensures
that defects are zero. The optimal control problem is reformulated as a nonlinear programming
problem, which is summarized as follows, dependent also on path and boundary constraints
C and Φ:

25

3.7. Trajectory Optimization for Dynamic Soaring

minimize J =
∫ tk

t0
L [x(tk),u(tk), tk] dt (3.57)

with respect to x(tk),u(tk), k = 0, 1, ...N (3.58)

subject to ζk = yk+1 − yk = hk
2 [fk+1 + fk] = 0 (3.59)

C[x(tk),u(tk), tk] ≤ 0 (3.60)
Φ[x(t0), t0,x(tN), tN] = 0 (3.61)

3.7 Trajectory Optimization for Dynamic Soaring

To understand the nature of trajectory-optimization-based path solutions, this section presents
a canonical example of an optimal control solution for dynamic soaring. Since dynamic soar-
ing is the more challenging technique when compared to thermal soaring due to the rapid and
precise control manoeuvres required for the former, its study in this section better showcases
the weaknesses of numerical trajectory optimization for path planning.

Sachs used commercial optimization software to compute the optimal energy-neutral tra-
jectory requiring minimum shear wind strength, where the lift coefficient was kept constant
throughout the entirety of the flight [1]. Therefore, this configuration implies a constant angle
of attack, which was used to simplify the overall control problem. The resulting flight path
is shown in Fig. 3.6, along with its trace in Fig. 3.7.

Figure 3.6: Flight path of dynamic soaring trajectory optimization, with start marker (green),
end marker (red), path (blue), and axis projections (dashed) [1].

The trajectory reveals that the aircraft, whose parameters remain unknown, heads into
the easterly (+X) wind to gain potential energy before conducting the high-altitude turn and
descending the wind gradient to regain airspeed. Furthermore, the airspeed and height plots
indicate that the vehicle did not lose any significant amount of total energy. However, one of
the main challenges with tracking such a trajectory on a real aircraft is that the optimized
solution typically only accounts for a single cycle. Therefore, it is necessary that the boundary
constraints at the start and end of the path are equal, if the solution were to be reused for
subsequent cycles. Even so, the more significant issue is that the vehicle may deviate from the

26

3.7. Trajectory Optimization for Dynamic Soaring

Figure 3.7: Trace of dynamic soaring trajectory optimization [1].

trajectory. One consequence of this event would be that the same trajectory is no longer able
to be recycled as the aircraft’s states become misaligned with those of the reference path.
Optimal trajectories are directly dependent on the initial guess provided to the optimizer,
and therefore, are local solutions that can become obsolete if the vehicle sufficiently diverges
from the path. Furthermore, calculating optimal trajectories is a computationally-intensive
process that must be completed prior to flight, while computing longer trajectories comprised
of multiple soaring cycles is significantly more costly in terms of computation time and more
difficult to achieve, even with specifically-engineered objective functions.

Another scenario is that while correcting the tracking errors, either the energy state of the
vehicle decreases as it takes a less efficient path, or the vehicle is forced to expend internal
energy reserves by using thrust. In any case, consistently drifting from the flight path would
result in a gradual loss of soaring ability as additional energy is consumed for course correction,
which is necessary despite the consequent impact to the effectiveness of soaring manoeuvres,
because new optimal trajectories cannot be computed in real time. As a result, the local
nature of optimal control trajectories along with their computational requirements present
obstacles to the implementation of such schemes for real-world environments that contain
uncertainties and stochastic disturbances. Since it is impractical to preemptively calculate
and store a trajectory for every combination of potential initial conditions or time-varying
parameters, the design of a successful autonomous soaring system requires the consideration
of robust control schemes.

27

4 Neurocontrol

This chapter presents the neural-network-and-artificial-intelligence-based methods that have
recently gained interest in the field of autonomous soaring control, before introducing the
novel neuroevolutionary approach that represents the main effort of this research. The appli-
cability of popular machine learning techniques to the soaring problem are discussed, and the
NEAT algorithm is described in detail, along with the advantages that allow for its use in the
neurocontroller-generation scheme. Multiple case studies demonstrate the applicability of the
developed method for control problems and its advantages over other techniques. This sec-
tion also compares the trajectories resulting from evolved neural networks against canonical,
numerically-optimized flight paths to validate the neurocontrol behaviour.

4.1 Machine Learning

Although trajectory optimization techniques provide numerically optimal solutions, the re-
sulting flight paths are not always practical in suboptimal real-world environments. Modern
advancements in artificial intelligence research have encouraged the exploration of controllers
that are potentially capable of exhibiting more generalized behaviour without the computa-
tional burden of storing and searching through enormous datasets of pre-optimized trajecto-
ries. For instance, the field of dynamic soaring has already seen the application [18,19,26,27]
of one of the most common disciplines of artificial intelligence, known as reinforcement learn-
ing.

4.1.1 Reinforcement Learning

Reinforcement learning involves three major components: an agent, an environment, and
rewards. The agent is the decision-maker that produces the action after receiving information
on the situation, or the state of a system, similar to a control scheme. The way in which the
agent selects actions is through a set of rules known as the policy π, which estimates the
value V of taking a specific action from a certain state. Learning the values of all the possible
state-action pairs allows the comparison of multiple actions so that the agent can select the
action with the greatest value. The process of machine learning involves updating the policy
through an algorithm to produce the optimal policy π∗, which maximizes the value across all
states.

π : S → A (4.1)

The environment is the dynamical system that is used to generate the data used for learn-
ing. It accepts actions as inputs and outputs state values, which are fed-back to the agent

28

4.1. Machine Learning

so that it can select the next action. Repeatedly interacting with the environment allows an
agent to learn its policy. For the case of autonomous soaring, the costly nature of learning
on physical systems through trial and error requires a simulation-based training approach, so
the environment takes the form of a virtual simulation, which in this work is defined by the
dynamics model described in Section 3.1.1.

Rewards are the feedback signals that indicate how good it was for the agent to take a
specific action from a particular state. The numerical reward value of every decision is com-
puted through a reward function, which is analogous to the cost function of optimal control
theory. Learning algorithms use the reward history of an actor’s sequence of actions to calcu-
late state-action values and subsequently update the policy. Therefore, the reward function
is designed to encourage and discourage certain behaviours.

These elements are components in all reinforcement learning algorithms. However, one im-
portant consideration of applied machine learning is the way in which the policy is encoded.
To observe relatively high-level, generalized behaviour, mapping a near-infinite number of
state-action pairs and storing their values would be impractical. Therefore, the policy is often
in the form of an artificial neural network, a type of function approximator. Specifically, deep
neural networks are favoured for their improved approximation abilities, which make them
more appropriate for learning relatively complex behaviours.

4.1.2 Artificial Neural Networks

The typical feedforward artificial neural network as shown by Fig. 4.1 is defined by an input
layer, a hidden layer, and an output layer, all consisting of nodes and connections defined
by numerical values. The feedforward process multiplies the values xi at each input node or
unit with the weights of all outbound connections wij, adds the node’s bias value bj , and
passes the result hj for hidden layers or yk for the output layer through a activation function
such as the sigmoid function σ(z) of Fig. 4.2, the nonlinear nature of which allows ANNs to
approximate functions:

hj = σ

([5∑
i=1

xiwij

]
+ bj

)
(4.2)

yk = σ

 3∑
j=1

hjwjk

+ bk

 (4.3)

σ(z) = 1
1 + e−z (4.4)

Modern computational advancements have improved the accessibility of ANNs with mul-
tiple hidden layers, referred to as deep neural networks. The additional depth allows for more
complex policies, but also extends the duration of the learning process. Regardless, the use of
DNNs in autonomous soaring control systems suffers from two main problems. First, neural
networks with many hidden layers each with a large number of nodes can pose computational
challenges, particularly when considering that SUAVs are often significantly hardware-limited.
Assuming that such networks can be stored in onboard memory, there will be an inevitable
delay in exciting the network that is proportional to its depth. This time lag can reduce the

29

4.1. Machine Learning

Figure 4.1: Structure of a feedforward ANN.

Figure 4.2: Sigmoid activation function.

control action frequency to levels insufficient for the rapid and precise commands required
for an energy-sensitive task such as soaring. However, even if computational challenges are
overcome, the second issue is that the black-box nature of deep neural networks hinders their
interpretability. Their innate complexity and the consequent lack of transparency in the feed-
forward process make it difficult to trace and predict the signals that dictate the emergent
behaviour, which presents obstacles in the testing, regulation, and certification of aerial ve-
hicles. For these reasons, this research develops and uses an evolutionary-algorithm-based
approach to generate simple neural networks that can exhibit autonomous soaring behaviour.

30

4.2. NeuroEvolution of Augmenting Topologies

4.2 NeuroEvolution of Augmenting Topologies

4.2.1 NEAT Algorithm

The NeuroEvolution of Augmenting Topologies algorithm developed by Stanley and Miikku-
lainen [28] is an evolutionary algorithm that operates on the principle of Darwinian fitness, a
measure of how well an individual is able to propagate itself through successive generations.
It relies on an encoding scheme that allows neural networks to be represented in a way that
is analogous to genetic data. Specifically, the weights and connections of a given network are
stored as a linear sequence of data, the order of which corresponds to the point in time in the
evolutionary process when the feature was created. This encoding of the genome is shown in
Fig. 4.3.

Figure 4.3: NEAT encoding [28].

The nodes, or neural network units, are identified by numbers and are categorized as sen-
sor or input units, hidden units, and output units. Similarly, each encoding of the network
connections indicates which two nodes are connected, the connection weight, whether the link
is enabled or disabled, and the innovation number, which marks the point in the evolutionary
sequence when the connection was formed. This representation of a neural network allows
for their evolution into more complex structures that exhibit novel behaviours. Nevertheless,
understanding the NEAT algorithm is important to realize its applicability to the autonomous
soaring problem.

NEAT first creates an initial population of members, or neurocontrollers, each with ran-
domly generated features consisting of nodes and connections. Members that share similar
network shapes are grouped together into subcategories classified as species, which allows
for the nondestructive optimizing of the node and connection weights. For instance, it is
highly unlikely that a random mutation that results in a new connection would immediately
increase a member’s fitness, since the weight associated with the connection would not have
yet undergone tuning, or the optimization process. By only comparing a member against
other members within its own species through this mechanism known as speciation, innova-

31

4.2. NeuroEvolution of Augmenting Topologies

tive mutations have a chance to mature. Nevertheless, the features of each initial network are
dictated by random number generators to promote a diverse starting population.

After initialization, the performance of every member with respect to the objective is
evaluated by allowing the neural network to interact with the environment. The output of
this evaluation step is a fitness value that is assigned to the member, which is used to rank
the networks by how successful each member was at the task. Members with the lowest
fitness scores are eliminated from the gene pool, and those that remain undergo reproduc-
tion or are mutated. Offspring arise when two genotypes, or parent networks, are spliced
and concatenated in a process known as crossover at randomly determined points along each
genotype, with any genes that do not undergo crossover being inherited from the parent with
the higher fitness value. This operation merges two different neural networks to create a
potentially better-performing network that contains characteristics from both of its parents.
Once offspring are generated, mutations have a chance to occur. Mutation processes encom-
pass various different operations, including the random addition and subtraction of nodes
and connections, all of which are made possible by the genomic history encoded in each geno-
type through the innovation numbers. The crossover and mutation operations allow for the
creation of new, unique neural networks while persevering the genes or characteristics that
contribute to high performance. Lastly, competition between species is addressed through
stagnation, which is when the highest fitness achieved within a specie has not improved after
a certain number of generations, where a generation is defined as one cycle of the evaluation
and reproduction steps. Such species are marked as stagnant and are prohibited from repro-
ducing further, eventually becoming extinct through the generational culling process. Yet, to
prevent the complete extinction of all species, an elitism mechanism preserves a small number
of the highest-performing species, regardless of whether they have stagnated. This entire pro-
cess is managed by the NEAT algorithm, which populates each generation, evaluates every
member, and outputs the best-performing neural network after a fitness threshold is reached
or a certain number of generations has elapsed.

4.2.2 NEAT Control

To initially verify the feasibility and potential of applying NEAT-evolved neural networks to
physical control problems, the algorithm was tested on the canonical cart-pole balancing task
and compared with the results of the actor-critic reinforcement learning algorithm. Initially,
a simulation environment was created for an inverted pendulum system on a track, which
approximates the cart-pole system and is depicted in Fig. 4.4, where the objective of the
control agent is to keep the pole balanced at the unstable equilibrium position by applying
horizontal forces.

The system was modelled using the following equations of motion [29], which included
the mass of the cart M , the mass of the pole m, half of the pole length l, the cart’s lateral
position x, the pendulum’s angle θ with respect to the vertical axis, the force f applied to
the cart, the pendulum’s mass moment of inertia I, and standard gravity g:

32

4.2. NeuroEvolution of Augmenting Topologies

Figure 4.4: Cart-pole balancing model.

θ̈ =
g sin θ + cos θ

(
−f−mlθ̇2 sin θ

M+m

)
l
(

4
3 −

m cos2 θ
M+m

) (4.5)

ẍ = F +ml(θ̇2 sin θ − θ̈ cos θ)
M +m

(4.6)

The system’s states x and controls u are indicated below, where at every timestep of the
simulation, the control agent outputs the external force that is exerted on the cart:

x =

x
ẋ
θ

θ̇

 , u =
[
f
]

(4.7)

For both the RL and NEAT implementations, each simulation or training episode termi-
nated when the cart and pole exceeded position and angle limits, and the algorithm stopped
after encountering the first simulation in which the system remained within bounds for the
full simulation time of 30.0s. Furthermore, continuous state and action spaces were used,
and the reward was computed to be the duration of each simulation, thereby encouraging
behaviour that maintained the pole’s upright position.

After only 13 generations of evolution, taking a CPU time of 1.91s, the NEAT algorithm
produced the extremely sparse network shown in Fig. 4.6a, consisting of two hidden units
and six connections. The algorithm was able to rapidly evolve a successful policy that was
capable of keeping the pole balanced for the full 30.0s.

33

4.2. NeuroEvolution of Augmenting Topologies

Contrarily, the actor-critic reinforcement learning algorithm was used to train the model
of Fig. 4.6b, which consists of a hidden layer of 32 units. This topology was experimen-
tally determined through a hyperparameter tuning, elaborated in Appendix A, that tested
the performances of networks with various numbers of hidden units and layers. However,
although the policy encoded by the 32-unit network was found to perform the best among the
other topologies that were tested, the neural network of Fig. 4.6b that trained through 1000
simulations taking a CPU time of 1.50hrs only kept the pole balanced for 5.5s. The states
and control actions in the last 5.5 seconds of the NEAT and RL simulations are shown in Fig.
4.5, revealing how the RL policy exceeded the cart position limit in its best episode while the
NEAT policy successfully maintained balance.

Figure 4.5: Simulation traces of NEAT and RL policies.

Apart from the difference in performance, which can be attributed to the extremely large
number of training episodes required for the RL algorithm to adequately map the continuous

34

4.2. NeuroEvolution of Augmenting Topologies

state space, the total number of connection weights and biases for the NEAT-based neural
network is 9 while the RL-based policy is characterized by 161 values. Although the RL
network is relatively small compared to reinforcement learning standards, the number of con-
nections grows exponentially with the number of hidden nodes and layers. Therefore, for more
complex control tasks with a larger continuous action space, the feedforward process may be-
come a computational bottleneck within the control scheme. Another benefit of NEAT is
that the topology is automatically tuned by the algorithm, while typical RL methods require
the network’s shape to be predefined prior to training. This is advantageous when the region
in an algorithm’s hyperparameter domain that would result in a successful policy solution is
unknown.

(a) NEAT (b) Actor-critic RL

Figure 4.6: ANN topologies of policies from different training algorithms.

While the inverted pendulum task has smaller action and state spaces compared to au-
tonomous soaring control, it was hypothesized that the repeatable, periodic nature of the
behaviours required in both problems and the progressively-evolving nature of NEAT policies
would yield similarly sparse networks for the soaring problem. The primary focus of the test

35

4.3. Neuroevolutionary Control Approach

case was on validating the simplicity of the evolutionary networks when trained for physics-
based control tasks. Ultimately, it was clear that the NEAT algorithm exhibited training
and implementation advantages, thereby demonstrating its potential applicability to more
challenging control problems.

4.3 Neuroevolutionary Control Approach

When applied to autonomous soaring, each member or neural network produced by NEAT
represents a neurocontroller that dictates the attitude of an aircraft model in different soaring
environments. The neuroevolutionary control (NEC) approach developed in this research is
depicted by Fig. 4.7, which represents a method of evolving sparse neural network controllers.
In the outer loop, the NEAT algorithm provides an initial population of neurocontrollers, with
each member entering an inner evaluation loop so that its fitness, or soaring performance,
can be determined. Every neural network is subjected to a single flight simulation, where the
controller receives the states of the aircraft model and outputs control commands that are
used to propagate the simulation and obtain the vehicle’s future states. The loop continues
for every discrete time interval from t0 until the aircraft crashes or exceeds flight limits at
tf . Once the entire state and control trajectories experienced and commanded by the neural
network are collected, they are used to calculate the member’s fitness score, which is based on
how well the network succeeded at the soaring task and by how much it exceeded constraints.
The value is then passed back to the NEAT algorithm, which ranks the neurocontroller relative
to others in its species and either eliminates the member or reuses its genes in subsequent
generations. The entire process terminates once a fitness threshold has been reached, or a
maximum number of generations has elapsed.

4.3.1 Fitness Function

The fitness function used to assess the relative performance of neurocontrollers is critical to
the overall NEC process. Although adjustments must be made for different types of soaring,
the core formulation that remains consistent across flight modes is defined by a penalty func-
tion.

The penalty function was designed to penalize behaviours that result in the destruction
of the aircraft model, caused by the exceeding of aerodynamic and control constraints. Using
the state and control trajectories collected during the flight simulation, the function outputs
a value that is proportional to the degree to which the aircraft exceeded the various limits
presented below:

36

4.3. Neuroevolutionary Control Approach

Figure 4.7: Neurocontroller evolution scheme.

Airspeed:
Height:

Pitch angle:
Load factor:

Pitch rate of change:
Heading rate of change:

Lift coefficient rate of change:
Roll rate of change:

Vmin ≤V ≤ Vmax
hmin ≤h ≤ hmax
γmin ≤γ ≤ γmax

n ≤ nmax

γ̇min ≤γ̇ ≤ γ̇max
ψ̇min ≤ψ̇ ≤ ψ̇max
ĊLmin ≤ĊL ≤ ĊLmax
µ̇min ≤µ̇ ≤ µ̇max

The penalty spen for exceeding the constraints of one of these variables s is taken as the
sum across all timesteps of the amount by which the limits smin and smax were exceeded.

37

4.3. Neuroevolutionary Control Approach

spen =
tf∑
t=0

[min(0, st − smin) +max(0, st − smax)] (4.8)

The total penalty of the neurocontroller pπ is calculated as the sum of the square of each
penalty, divided by the total flight time tf to ensure that the evolutionary process, in early
generations, favours longer trajectories with correspondingly greater penalties over shorter
flights with smaller penalties. Furthermore, a large penalty constant was added in the event
of the aircraft crashing.

pπ =
(V 2
pen + h2

pen + γ2
pen + n2

pen + γ̇2
pen + ψ̇2

pen + ĊL
2
pen + µ̇2

pen)
tf

+ pcrash (4.9)

This penalty value is computed for each neurocontroller at every generation, and is consis-
tent regardless of the type of soaring. However, there must also be an incentive for the agent
to remain soaring for prolonged durations, which motivated the design of reward functions
unique to the dynamic, thermal, and ridge soaring cases.

For travelling dynamic soaring, the objective is to maximize flight distance while consum-
ing the minimal amount of energy reserves. As such, the reward rπ was calculated as the
square of the aircraft’s total displacement at the end of the flight, where x and y represent
the vehicle’s position over the horizontal plane:

rπ = (xf − xi)2 + (yf − yi)2 (4.10)

Contrarily, thermal soaring involves maximizing the flight duration by remaining in up-
draft regions. Therefore, the reward was computed as the square of the vehicle’s change in
potential energy eP over the flight interval [ti, tf]:

rπ = (eP f − eP i)2 (4.11)

Finally, while the objective of ridge soaring is to also extend flight duration, a pacing
reward was formulated to direct the agent towards learning the figure-eight pattern that allows
for sustained soaring. Members were rewarded based on each cycle’s lateral displacement,
summed over the total number of cycles C in the entire trajectory, where x is the vehicle’s
position along the x-axis:

rπ =
C∑
i=1

max(x[i])−min(x[i]) (4.12)

Therefore, the fitness value fπ of a single neurocontroller after evaluation was calculated
as the sum of the type-dependent reward and negated boundary penalty, with additional
scaling constraints k that were experimentally tuned to prevent either value from dominating
the other:

fπ = k1rπ − k2pπ (4.13)

38

4.4. Deterministic Dynamic Soaring

4.3.2 Simulation Environment

To evolve neurocontrollers, an explicit time simulation environment was created. Using the
equations of motion for the flight agent along with the wind models described in Section 3, the
simulation time was incremented by a discrete timestep δ > 0, and future state values were
computed through a first-order approximation. The rapid and simple to implement forward
Euler method used to advance the simulation is detailed below, where a state xk at timestep
k is updated to xk+1:

xk+1 = xk + δẋk (4.14)

A neurocontroller undergoing evolution influences the states of the flight agent through
the control commands that it outputs, consequently dictating its own trajectory. Throughout
the simulation, the state and control histories are recorded for the fitness calculation after the
simulation terminates either due to the member crashing the vehicle or sustaining flight for
the maximum simulation duration. Therefore, the system dynamics are calculated separately
from the fitness function called at the end of each simulation. The inner loop is summarized
by Algorithm 1.

Algorithm 1 Flight simulation.
1: for neural network πi in population Π do
2: while t < tf do
3: states ← get states() ▷ fetch aircraft states
4: if states > constraints then
5: break
6: actions ← πi(states) ▷ obtain control commands from ANN
7: Wx, Wy, Wz ← get wind() ▷ calculate local wind profile
8: xk+1 ← xk + δẋk ▷ apply dynamics model
9: t += δ

10: fπ ← get fitness() ▷ compute rewards and penalties

Each run of the NEC process presented in this paper consisted of a population size of 250
members, repeated over a maximum of 100 generations. To accelerate the process of testing
neural networks in the simulated flight environment, the 250 simulations conducted at every
generation were run in parallel, with each simulation ending after a maximum flight time of
600s. The simulation environment, advanced at discrete intervals of 0.1s, was integrated into
a NEAT implementation built in the Python programming language [30]. After the fitness of
a neural network was evaluated, a new instance of the simulation environment was initialized
so that all members of the population would experience the same training environment.

4.4 Deterministic Dynamic Soaring

This section presents the neurocontroller that was evolved for dynamic soaring in a determin-
istic, unidirectional wind environment, where parameters such as the initial aircraft position
or wind profile remained unchanged between simulations. To validate the neural network’s
behaviour, its trajectory is compared with the canonical optimal solution presented in Sec-
tion 3.7. Therefore, the flight agent’s parameters, wind profile, and initial conditions listed

39

4.4. Deterministic Dynamic Soaring

in Table 4.1 were selected to match those found in Sachs’ work [1] as closely as possible.

Table 4.1: Dynamic soaring 3DOF flight agent and simulation parameters.

SUAV Value Wind Value Initial Valueparameters parameters conditions
S [sq ft] 7.0 Ax [-] 1.0 V0 [ft/s] 41.3
M [slug] 0.582 htrx [ft] 60.0 ψ0 [deg] 0
Emax [-] 20.0 Wmaxx [ft/s] 33.5 γ0 [deg] 0
CLmax [-] 1.5 h0 [ft] 60
CLmin [-] -0.2 Ay [-] 1.0 x0 [ft] 0
CD0 [-] 0.033 htry [ft] 60.0 y0 [ft] 0
nmax [-] 5 Wmaxx [ft/s] 15.7
|µ|max [deg] 60
Vstall [ft/s] 38.7
Vmd [ft/s] 41.3

Figure 4.8 shows the sparse neurocontroller that was successfully evolved in this environ-
ment after a CPU time of merely 3.38s. Effectively, the NEC process indirectly encoded the
characteristics of the wind profile that the neurocontroller was subjected to during evolution
into the neural network’s topology and weights, and this knowledge of the environment al-
lowed the agent to execute pitch and roll manoeuvres that led to dynamic soaring trajectories.

Figure 4.8: Topology of the deterministically-evolved dynamic soaring neurocontroller.

The output node biases bCL′ and bµ′ , the hidden node’s bias bα0 , as well as the connection

40

4.4. Deterministic Dynamic Soaring

weights w that were all evolved by the NEAT algorithm take the values:

bCL′ = 0.979 wCL′
ḣ

= −0.0189
bµ′ = −0.728 wα0γ = 2.07
bα0 = 0.225 wCL′

α0
= 0.0655

wµ′
α0

= −1.04
wµ′

h
= 1.78

wµ′
ψ

= −2.05

Mathematically, the feedforward network can be described as shown below, where Equa-
tion (4.19) converts the normalized outputs CL′ and µ′ of the sigmoid function σ(x) to values
within the control limits:

α0 = σ(wα0γγ + bα0) (4.15)
C ′
L = σ(wCL′

ḣ
ḣ+ wCL′

α0
α0 + bC′

L
) (4.16)

µ′ = σ(wµ′
α0
α0 + wµ′

h
h+ wµ′

ψ
ψ + bµ′) (4.17)

σ(x) = 1
1 + e−x (4.18)

[
CL
µ

]
=
[
C ′
L 0

0 µ′

] [
CLmax − CLmin

2µmax

]
+
[
CLmin
−µmax

]
(4.19)

These input-output relationships produced the soaring cycles illustrated below, where Fig.
4.9a shows the simulation results of a 600s flight, and Fig. 4.9b shows a single period at the
midpoint of the same trajectory, superimposed with the reference optimal trajectory of Fig.
3.6. In addition, the trace of the same cycle is displayed in Fig. 4.10, normalized in time for
ease of comparison. Since the two paths were obtained through different objective and fitness
functions, the flight paths vary in shape. However, the similarities between the airspeed,
height, and roll plots reveal that the neuroevolutionary control approach can train neural
networks that can control a flight agent along trajectories similar to those obtained through
numerical optimization. The constant lift coefficient also shows that an agent can perform
soaring with a fixed angle of attack. Lastly, the energy histories and specifically the peak total
energy values at the start and end of the cycle indicate that after the initial transient period
of energy gain shown in Fig. 4.9a, the neurocontroller consistently maintains potential and
kinetic energies to produce sustained and repeatable dynamic soaring trajectories. Regarding
the neural network itself, the use of different activation functions in the feedforward process
had no noticeable effect on soaring performance, since the outputs were scaled to bounded
control values as shown in Eqn. 4.19.

To better understand the differences in flight path, Fig. 4.11 shows the total specific
energy of the first three cycles of the NEAT trajectory and the estimated energy of Sachs’
optimal trajectory. The overall energy of the latter is lower due to the path’s proximity to the
surface. Regardless, the flight agent initially flies into the wind to climb the gradient before
rapidly accelerating downwards. The NEAT-evolved trajectory behaves similarly in the first

41

4.5. Deterministic Thermal Soaring

(a) 79 cycles (600.0s) (b) 1 cycle (NEAT: 5.1s, Sachs: 7.2s)

Figure 4.9: Simulated trajectory of the deterministically-evolved dynamic soaring neurocon-
troller, with start marker (green), end marker (red), and path (blue).

cycle, where the agent, starting from a low-energy state, exploits the shear wind by sharply
turning into the wind vector. However, after quickly gaining sufficient energy, the flight agent
no longer needs to climb the wind profile as aggressively, and instead uses its momentum
to cover distance. This change in priority from energy gain to soaring distance is a unique
phenomenon that demonstrates the more complex, emergent behaviours of NEAT-evolved
trajectories.

Apart from soaring performance, to demonstrate the close relation between the states and
controls, Fig. 4.12 shows the input signals of an arbitrarily-selected slice of the trajectory
plotted against the output control commands. While the lift coefficient was nearly constant
throughout the flight, it was rescaled for this illustration. Even without the effect of the sig-
moid function and the subsequent nonlinear shaping of the normalized controls, the outputs
can be seen to track their respective inputs. While the traces of both the height RoC and
the hidden node are similar and add to define the lift coefficient command, it is the height
input in particular whose signal is closest to that of the roll angle, indicating its importance
in determining the output. The proximity of the network’s inputs to its outputs in terms
of the number of intermediary nodes and connections enables the observing and analytical
tracking of the network’s feedforward process, and this topological traceability allows for an
intuitive understanding of the neurocontroller. This interpretability is an important aspect
for validating neurocontrol schemes that is difficult to achieve with the abstract, black-box
nature of densely interconnected deep neural networks.

4.5 Deterministic Thermal Soaring

For the thermal soaring case, the input space was reduced to four variables by excluding the
aircraft’s heading. Without heading information, the neurocontroller is forced to evolve soar-
ing behaviour that is dependent not on the geographic position of the thermal learned through
trial and error, but instead on an identification of whether the aircraft is inside an updraft
region, ultimately resulting in a more generalized policy. The thermal column parameters

42

4.5. Deterministic Thermal Soaring

Figure 4.10: Trace of the deterministically-evolved dynamic soaring neurocontroller, NEAT
(solid), Sachs (dashed) with respect to normalized cycle time, including kinetic eK , potential
eP , and total eT energies.

obtained from meteorological data [22] as well as the aircraft’s initial conditions are described
in Table 4.2, where the column’s maximum height and maximum duration were extended to
infinity to observe strictly intra-thermal soaring performance and not thermal mapping and
searching behaviour. In addition, the evolutionary cases presented in the remainder of this
chapter used the aircraft parameters listed in Table 3.1.

The evolved neurocontroller is depicted in Fig. 4.13, with its parameters described below.
This particular member, trained in 5.81s of CPU time, formed a hidden node between the lift
coefficient and roll angle outputs, such that the roll angle is partially dependent on the lift

43

4.5. Deterministic Thermal Soaring

(a) NEAT (3 cycles) (b) Sachs (1 cycle)

Figure 4.11: Total energies of NEAT and optimal trajectories.

Table 4.2: Thermal soaring 3DOF simulation parameters.

Wind Value Initial Valueparameters conditions
wcore [ft/s] 8.0 V0 [ft/s] 27.3
rxy [ft] 160.0 ψ0 [deg] 0.0
htrmax [ft] ∞ γ0 [deg] 0.0
tthmax [s] ∞ h0 [ft] 100

x0 [ft] 0
y0 [ft] -160

coefficient.

bCL′ = −0.991 wα0h = 1.28
bµ′ = 1.56 wµ′

α0
= −1.34

bα0 = 0.296 wµ′
α1

= −1.43
bα1 = 0.200 wα1γ = −0.169

wCL′
α1

= 1.42

The policy resulted in the trajectory of Fig. 4.14. The neurocontroller climbs the thermal
column for the full simulation time without leaving the updraft core. The regular, patterned

44

4.5. Deterministic Thermal Soaring

Figure 4.12: Network signal tracing of the deterministically-evolved dynamic soaring neuro-
controller.

Figure 4.13: Topology of the deterministically-evolved thermal soaring neurocontroller.

trajectory as shown in Fig. 4.14a is a product of the evolutionary tuning of the network’s
connections and biases, since ensuring that the vehicle remains within the core would have
maximized the flight-duration-based fitness function. The gradual drift towards the centre of
the thermal indicates that the neural network evolved to exploit the higher updraft strengths
at the core to maximize the potential energy gained during the flight. Furthermore, the states
of Fig. 4.15 show that the constant lift coefficient and roll angle controls in the latter half of
the trajectory allowed the aircraft to climb the updraft.

45

4.6. Deterministic Ridge Soaring

(a) 99 cycles (600.0s) (b) Bird’s eye view

Figure 4.14: Simulated trajectory of the deterministically-evolved thermal soaring neurocon-
troller, with flight path (solid), inner updraft core (dashed), and outer downdraft region
(dotted).

4.6 Deterministic Ridge Soaring

Evolving neurocontrollers becomes more difficult as the domain of potential action sequences
increases. For instance, training a neural network to perform orographic soaring when starting
at a high altitude near a cylindrical ridge model with a large radius is less likely to result in
a successful neurocontroller after N generations when compared to an environment in which
the vehicle is situated close to the ground and near a smaller ridge. The space of potential
action sequences is much greater in the first case, since the aircraft is physically further from
the ground and ridge, meaning the agent can perform a greater number of actions before
crashing. Therefore, the search for a solution becomes a slow process. Contrarily, agents in
the second case are more physically constrained and so is the action space, which increases
the ratio of sequences resulting in successful soaring to action sequences that would cause a
crash, assuming a successful trajectory is possible. This problem, illustrated Fig. 4.16, is one
of the weaknesses of NEAT that was encountered for the autonomous ridge soaring case.

It was necessary to model ridges that had relatively large radii to produce sufficient updraft
winds, such that a flight agent could remain soaring for extended periods of time. However,
this also increased the aircraft’s starting altitude, since the vehicle needed to clear the geo-
graphic feature to prevent an immediate crash and remain in the region of optimal soaring
at 60 degrees elevation, noted in Section 3.4. To account for the extended action space, addi-
tional constraints were imposed on the aircraft, where breaking any of the following conditions
terminated the flight and imposed the crash penalty:

• y < y0 - discourages agent from moving backwards away from the ridge
• |x| > l - discourages agent from moving past the edges of the ridge, lengthwise
• y > R - discourages agent from flying in the leeward side of the ridge

The neurocontroller members were also provided information on the aircraft’s ground
track, with variables x and y being additional inputs. While this extended the search space
of topologies and subsequently prolonged the evolutionary process to require 500 generations

46

4.6. Deterministic Ridge Soaring

Figure 4.15: Trace of the deterministically-evolved thermal soaring neurocontroller, with
kinetic eK , potential eP , and total eT energies.

and a CPU time of 70.53s, the final network was able to use the supplementary data in
generating the characteristic figure-eight trajectories of ridge soaring. These restrictions and
additions allowed for the evolution of the network shown in Fig. 4.17 in the environment
containing the ridge feature and local wind model listed in Table 4.3.

Table 4.3: Ridge soaring 3DOF simulation parameters.

Wind Value Initial Valueparameters conditions
Wĥ [ft/s] 10.0 V0 [ft/s] 27.3
z0 [ft] 2.13 ψ0 [deg] 0.0
ĥ [ft] 19.7 γ0 [deg] 0.0
R [ft] 300 h0 [ft] 600
l [ft] 200 x0 [ft] 0

y0 [ft] -1000

The network parameters detailed below describe a more complex ANN than previously

47

4.6. Deterministic Ridge Soaring

(a) Case 1 (large action space) (b) Case 2 (small action space)

Figure 4.16: Illustration of action space sizes for ridge soaring, with soaring flight path (solid)
and potential flight paths (dotted).

seen, comprised of four hidden nodes and eleven connections. While the aircraft’s position
along the y axis remained unused, its x position proved to be a necessary input.

bCL′ = 0.139 wα2x = 1.81
bµ′ = 6.33 wα0h = 0.300
bα0 = 0.793 wα1α0

= −5.73
bα1 = −0.325 wα2α1

= −0.956
bα2 = −0.547 wα1ḣ

= −0.411
bα3 = −1.91 wα2ḣ

= −0.808
wµ′

α2
= 4.26

wµ′
ψ

= −7.16
wα3γ = 0.433

wCL′
α3

= 1.57

wCL′
γ

= −0.758

The simulated trajectory and trace of the neural network are shown in Fig. 4.18 and
4.19, which show the characteristic figure-eight manoeuvre of ridge soaring on the windward
side of the ridge. Although the rapid control actions shown in the trace are undesirable, the
rate-of-change limits for the state and control variables can be adjusted to better filter the
high-frequency signals. Nevertheless, the trajectory demonstrates how the NEC process is ca-
pable of generating more complex trajectories, albeit with additional constraints and inputs
that guide evolution in the enlarged action and state spaces.

These cases show that through the developed NEC approach, neural networks can be
evolved for a variety of soaring techniques, and may be further extended to other control

48

4.6. Deterministic Ridge Soaring

Figure 4.17: Topology of the deterministically-evolved ridge soaring neurocontroller.

problems. The primary advantage of these networks is their simplicity over the deep neural
networks most commonly used alongside reinforcement learning algorithms. As a consequence
of the neurocontrollers being defined by extremely few parameters, their resulting trajecto-
ries can be traced to each network’s structural topology. Additionally, the evolution of the
presented dynamic, thermal, and ridge soaring neurocontrollers took 3.38, 5.81, and 70.53
CPU seconds respectively, which correspond to wall times of 1.18m, 2.10m, and 15.45m on
an Intel i5 4-core CPU. These relatively rapid training phases would be far exceeded by the
backpropagation cycles of training DNNs using typical reinforcement learning algorithms.
The neuroevolutionary control approach offers advantages in the training, interpretation, and
implementation of neural networks for autonomous aircraft control.

49

4.6. Deterministic Ridge Soaring

(a) Complete trajectory with ridge (600.0s) (b) Expanded view of trajectory (600.0s)

Figure 4.18: Simulated trajectory of the deterministically-evolved ridge soaring neurocon-
troller.

Figure 4.19: Trace of the deterministically-evolved ridge soaring neurocontroller, with kinetic
eK , potential eP , and total eT energies.

50

5 Robust Neurocontrol

This chapter presents the stochastic neuroevolutionary control (SNEC) approach that was
developed as a continuation of the deterministic NEC method. The section describes the
models of various uncertainties, as well as a way of quantifying the property of robustness
from observations of neural network behaviour. Groups of dynamic soaring neurocontrollers
are evolved for each type of uncertainty, producing an unbiased sample set of neural networks,
whose topology and performance are analyzed to validate the SNEC method of evolving robust
neural network controllers.

5.1 Stochastic Neuroevolutionary Control

The neurocontroller evolution scheme depicted previously in Fig. 4.7 describes the process of
evolving neural networks capable of soaring in deterministic environments. Similar to trajec-
tory optimization solutions, the resulting neurocontrollers are only successful for the specific
set of conditions in which they were trained, and introducing any variations results in failure
to exhibit soaring behaviour. Therefore, while the NEC approach was appropriate for demon-
strating the applicability of neuroevolutionary control to the autonomous soaring problem,
the local nature of its solutions is inadequate for real systems.

The next objective was to design a method of evolving robust neurocontrollers that could
perform soaring in uncertain environments, where the aircraft and wind parameters are ran-
domized. Thus, instead of evaluating each network once, it was deemed necessary to perform
multiple flights per neurocontroller, where the fitness of each member is equivalent to some
quantifiable measure of robustness. In consideration of these aspects, the stochastic neuroevo-
lutionary control method illustrated in Fig. 5.1 was designed.

In the inner loop, each member of the neurocontroller population undergoes Ns evalu-
ations, where the environment parameters are randomly sampled. With a sufficiently large
number of unique evaluation loops, a given member’s experience will span the domain of
parameter values for which robustness is being evolved. Correspondingly, the network’s final
fitness value Fπ after completing Ns simulations is computed by taking the sum of all the
single-simulation fitnesses, whose formulation was shown earlier in Eqn. 4.13.

Fπ =
Ns∑
n=0

fπn (5.1)

fπ = k1rπ − k2pπ (5.2)

51

5.1. Stochastic Neuroevolutionary Control

Figure 5.1: Robust neurocontroller evolution scheme.

This random sampling of stochastic environments in which neural networks are tested
allows all the networks in the population to experience a variety of conditions, with the
NEAT algorithm optimizing for the member that exhibits the best performance across all of
its stochastic runs. Additionally, this effectively random sampling of neurocontroller perfor-
mances can also be used to define a metric for robustness.

5.1.1 Robustness Quantification

In stochastic environments, a controller’s performance during a single simulation is insufficient
in describing its overall robustness to the uncertainty. Instead, a more accurate measure of
robustness would be based on simulation results that encompass all combinations of initial
parameters or random events within the range of values for which the network was trained.
For instance, a neurocontroller evolved in a random initial pitch angle environment would
need to be tested for each meaningful discrete pitch value in order to assess its resilience
against the uncertainty. Multiple evaluations would also be needed for the initial heading
angle, airspeed, altitude, and wind profile parameters. However, the extreme number of tests

52

5.1. Stochastic Neuroevolutionary Control

that would be required to account for all combinations of these discrete values, in addition
to the fact that time-related stochastic events that occur within a single simulation would
further extend this number to infinity, make such exhaustive attempts to measure robustness
impractical.

In light of these considerations, a Monte Carlo estimator was used to quantify and com-
pare the relative robustness of neurocontrollers. The resilience of a given neurocontroller to an
uncertainty was based on the accumulated results of a large number of nondeterministic flight
simulations, and a robustness score rb was defined as the number of simulations ns for which
a neurocontroller exhibited successful soaring trajectories without crashing up to the maxi-
mum simulation time tf , divided over the total number of simulations performed nT , taken
as a percentage. This value, also referred to as the success rate and shown in Eqn. 5.3, pro-
vides a sense of how often a neurocontroller is able to conduct continuous autonomous soaring.

rb = ns
nT
× 100% (5.3)

In applying Monte Carlo estimation, the central limit theorem states that the distribution
of sample means of a sequence of independent and identically distributed (i.i.d.) random
variables approximates a normal distribution. Defining µ̂n as the mean of n samples of an
i.i.d. random variable with a true mean µ and standard deviation σ, the theorem can be ex-
pressed as the probability of a sample mean being within a standard score z tending towards
the cumulative distribution function Φ(z) for a standard normal distribution, assuming the
number of samples tends towards infinity [31]:

P

(√
n
µ̂n − µ
σ

≤ z|n→∞
)
→ Φ(z) (5.4)

A controller’s robustness score can be considered as an i.i.d. random variable given that
simulations are mutually independent and the probability distributions for the sources of
uncertainty present across all simulations remain constant. By repeatedly sampling a neuro-
controller’s performance, or maximum achieved flight time, over numerous tests, it is possible
to obtain the mean time of successful soaring for a certain confidence value.

For instance, the standard score z of a 95% confidence interval c = 0.95 can be obtained
as shown below, where Φ−1(1+c

2) is the inverse of the cumulative distribution function Φ(z).

z = Φ−1(0.975) = 1.96 (5.5)

Substituting z into Eqn. 5.4, the probability that the sample mean exceeds a value of
z Sn√

n
units on either side of the true mean, where Sn is an unbiased estimate of the sample

variance, can be expressed as:

P

(
|µ̂n − µ| ≥ z

Sn√
n

)
= 1− c = 0.05 (5.6)

S2
n = 1

n− 1

n∑
i=1

(
Xi − X̄

)2
(5.7)

53

5.1. Stochastic Neuroevolutionary Control

Therefore, to obtain an estimate of the sample mean with a 95% confidence that the in-
terval defined by ±x units contains the true mean, the Monte Carlo process can be set to
continue until:

1.96 Sn√
n
< x (5.8)

As long as n is large, the sample variance estimate can be used to terminate the evalua-
tions and obtain an accurate mean. Therefore, in evaluating the neurocontrollers presented
in this work, the Monte Carlo evaluations were set to end according to Eqn. 5.8, along with
a minimum sample size nmin = 1000, with x = 0.1. In other words, the evaluation of a
neurocontroller continued until the sample average of the fraction of successful simulations
with respect to the total number of simulations stabilized within 0.1 percentage points, since
the random variable, or the robustness score, is expressed as a percentage.

Another aspect of robustness is that for any given stochastic environment containing
bounds on the values of its variations, it is not always guaranteed that a success rate of 100%
is achievable, even for a hypothetical, optimally robust controller. That is, there may be
regions of the stochastic parameter space in which dynamic soaring manoeuvres would be
physically impossible. Therefore, a neurocontroller’s score must be interpreted as a relative
measure of performance in relation to other control schemes tested in the same environment.

5.1.2 Uncertainty Modelling

To test the SNEC approach through the unique trajectories of the travelling dynamic soaring
case, various uncertainties were modelled, including environments with variable initial states,
variable initial wind profiles, time-varying wind profiles, stochastic wind gusts, and sensor
measurement noise.

Variable Initial States

There is a practical need for autonomous systems to initiate soaring manoeuvres from a range
of initial aircraft states. As a result, neurocontrollers that were evolved to be robust against
variable initial states were subjected, during the NEAT process’ evaluation simulations, to
environments in which the initial flight agent’s states were randomly determined. The airspeed
and altitude were initialized according to uniform distributions that spanned a certain multiple
m ∈ [0, 1] of a nominal value. The heading angle was assigned a value within a 360 degree
arc, and the pitch angle was set to be between 45 degrees above and below the horizontal
plane. The altitude’s rate of change was except from any stochastic mechanisms under the
assumption that soaring manoeuvres would typically commence from level flight. The uniform
distribution ranges are depicted by Fig. 5.2.

Variable Initial Wind Profile

In real-world soaring, flight agents will be encountering a variety of wind profiles. Therefore,
the parameters that characterize the winds necessary for dynamic soaring were randomly

54

5.1. Stochastic Neuroevolutionary Control

Figure 5.2: Uncertainty modelling: uniform distribution range for variable initial states.

initialized similar to the way in which the initial aircraft states were set. These variables
include the shape parameter, the transition height, and the maximum wind strength.

Figure 5.3: Uncertainty modelling: uniform distribution range for variable initial wind pro-
files.

Dynamic Wind Profile

In addition to stochastic initial parameters, wind profiles can be expected to change during
flight. In the dynamic or time-varying wind profile environment, one of the three wind
parameters (A, htr,Wmax) was selected to be varied sinusoidally throughout the simulation.
The frequency and amplitude of change were set during the simulation’s initialization process
based on a uniform distribution to oscillate the parameters in the timescale of typical soaring
cycles. This effect is illustrated in Fig. 5.4, which shows a sinusoidal variance in the maximum
wind strength Wmax, indirectly inducing a similar variation in the wind profile at every
altitude.

Wind Gusts

Another phenomenon of real-world environments is gusts, which are modelled as stochastic
disturbances of various strengths and durations. At every simulation timestep, there is a
probability p of a gust occurring in any direction in the three-dimensional Cartesian coordinate

55

5.1. Stochastic Neuroevolutionary Control

Figure 5.4: Uncertainty modelling: dynamically varying wind profiles for dynamic soaring.

system. If a gust is triggered, an initial gust magnitude up to a maximum value, a wind
strength decay rate between 10% and 50%, and a maximum gust duration up to 1s are
randomly generated based on uniform distributions. The gust magnitude is added to the
preexisting local wind experienced by the flight agent at a given timestep, and this magnitude
undergoes an exponential attenuation according to the decay rate until either the magnitude
decreases to zero or the gust expires according to the maximum duration parameter. Finally,
since gusts are treated as independent random variables, it is possible for multiple occurrences
to overlap. The complete mechanism is illustrated in Fig. 5.5, which shows the magnitude,
direction, and decaying of four separate gust events in various directions.

Figure 5.5: Uncertainty modelling: horizontal wind gusts.

Measurement Noise

Aside from parameter variations, environmental factors, and external disturbances, another
form of uncertainty common to real-world systems is sensor measurement noise. Measurement
noise is the stochastic fluctuations that perturb the states of a control system independently
of the state values themselves. Therefore, the noisy environment was modelled by zero-mean

56

5.2. Robust Dynamic Soaring Case Studies

Gaussian distributions and unique standard deviations for each state. At every timestep, a
random sample of the normal distribution is added to the state value, which is fed back into
the neurocontroller as an input. Figure 5.6 shows the airspeed state that is experienced by
the aircraft (solid) along with the signal that is inputted into the neural network (dashed).

Figure 5.6: Uncertainty modelling: sensor measurement noise.

5.1.3 Stochastic Simulation Environment

Algorithm 2 outlines the process that was used to train and evaluate neurocontroller robust-
ness. The pseudocode consists of, at simulation interval k: the aircraft states xk, the simu-
lation number n, the standard deviation of the robustness score Sn, the confidence threshold
v, and the robustness score sample mean m̄.

5.2 Robust Dynamic Soaring Case Studies

This section presents an analysis of the various neurocontrollers that were evolved through
the stochastic neuroevolutionary control approach. Their dynamic soaring performance in
uncertain environments and the topological characteristics that enabled the robust behaviour
are examined. However, the stochastic mechanisms of the NEAT algorithm make unlikely the
generation of identical neural networks, resulting in variations in performance and structure
even among neurocontrollers trained in the same environment. Conclusions from investigating
a single neural network are therefore biased by the unique aspects of the particular controller.
To account for these biases and to also demonstrate the approach’s consistency in producing
control solutions, a group of ten neural networks are consecutively evolved in each of the
stochastic environments described in Section 5.1.2. Furthermore, instead of examining the
Monte Carlo robustness scores of each neurocontroller in the group independently, a single
score is computed for the entire group of networks by taking the weighted average of the ten
members’ individual success rates, based on the respective number of simulation runs that
were required for convergence. The neural networks presented in this section were evolved for
a maximum of 50 generations, each consisting of 100 evaluations. The time elapsed during
evolution was dependent on the difficulty of the stochastic environment, but a training cycle
lasting all 50 generations took an average CPU time of 6.77s, or a wall time of 2.78hrs. The

57

5.2. Robust Dynamic Soaring Case Studies

Algorithm 2 Robustness quantification.
1: for neural network πi in population Π do
2: n← 1
3: while 1.96 Sn√

n
> v and n < nmin do

4: x0 ∼ U(0, σ2
x) ▷ initialize states from uniform distribution

5: w0 ∼ U(0, σ2
w) ▷ initialize wind parameters from uniform distribution

6: while t < tf and xk < constraints do
7: states ← get states() ▷ fetch aircraft states
8: noise←normal dist(σ) ▷ sample from normal distribution
9: xk ← xk + noise ▷ add measurement noise

10: actions ← πi(xk) ▷ obtain control commands
11: Wx, Wy, Wz ← get wind() ▷ calculate dynamic wind profile
12: if X ∼ U[a,b] > p then ▷ if gust is toggled
13: Wx, Wy, Wz ← add gusts() ▷ apply stochastic wind gusts
14: xk+1 ← xk + δẋk ▷ apply dynamics model to update states
15: t← t+ δ
16: m̄k ← m̄k−1 + mk−m̄k−1

n ▷ update robustness score sample mean
17: Sn ← Sn + (mk − m̄k−1)(mk − m̄k) ▷ update robustness score std dev.
18: m̄k−1 ← m̄k

19: n← n+ 1
20: fπ ← get fitness() ▷ compute rewards and penalties if evolving networks
21: rπ ← m̄k ▷ get robustness score if testing networks

aircraft and environment parameters of the SUAV model and unidirectional wind profile have
been specified in Tables 3.1 and 5.1 respectively.

Table 5.1: Dynamic soaring 3DOF simulation parameters.

Wind Value Initial Valueparameters conditions
Ax [-] 1.0 V0 [ft/s] 27.3
htrx [ft] 60.0 ψ0 [deg] 0
Wmaxx [ft/s] 30.0 γ0 [deg] 0

h0 [ft] 40
Ay [-] N/A x0 [ft] 0
htry [ft] N/A y0 [ft] 0
Wmaxx [ft/s] N/A

Unlike the black-box nature of deep neural networks whose signals and behaviours are
difficult to trace and intuitively comprehend, the sparse networks generated by the NEAT
algorithm are more easily interpretable. In evolving the various neurocontroller groups, it was
found that neural networks trained in the same environment consisted of similar connections.
Therefore, a set of metrics were developed to examine the similarities and differences in the
topologies of different groups by reducing the networks into their fundamental input-output
connections.

58

5.2. Robust Dynamic Soaring Case Studies

First, the prevalence metric measures the frequency of all input-to-output connections in a
group of networks, ignoring any intermediary nodes and duplicate connections. For instance,
a prevalence score of 50% for a particular input-output pair would indicate that half of the
neurocontrollers in a group contained a connection between the two nodes, regardless of the
number of hidden nodes separating the pair.

In addition, an influence metric is computed as the product of all the connection weights
between each input and output to provide a sense for an input-output relation’s significance,
taking into account hidden nodes and redundant connections. Since the connection weights
that are linked to the input variables are dependent on the magnitude of the input value, the
aircraft states being fed to the network are first normalized to a common order of magnitude
between 0 and 1. Influence scores themselves are also normalized such that the sum of all
scores of each input that head into a single output sum to 100. The connection in a network
with only a single connection would have an influence score of 100 regardless of its weight,
and a path between input-output nodes consisting of multiple hidden nodes would have a
relatively small score, being the product of numerous intermediary connection weights whose
magnitudes are naturally between 0 and 1. Taking the product of the prevalence and influence
scores provides an importance score that quantifies each connection’s overall value within the
network.

Lastly, a complexity ratio was formulated to allow for the comparison of neural network
topologies in terms of the relative number of interconnected pathways and neurons. While
a single ratio is calculated by dividing the total number of connections and neurons of one
network π by that of another, the complexity ratio c of a neurocontroller group A with nA
members with respect to another group B with nB members is taken to be the mean ratio
across all of its members:

c =
1
nA

∑nA
π=1(number of biasesπ + number of connection weightsπ)

1
nB

∑nB
π=1(number of biasesπ + number of connection weightsπ)

(5.9)

The use of these metrics, for the analysis of unique neural network topologies, presents
a quantifiable method of determining a connection’s necessity in performing the control task
and its impact in calculating the network’s control output, while providing a sense of net-
work complexity. This section presents an analysis on the robustness and topology of the
neurocontroller groups that were evolved for each stochastic environment.

5.2.1 Deterministic Neurocontrollers

To assess the relative robustness of neurocontroller groups trained through the SNEC method,
it was necessary to first train a collection of baseline neural networks in a deterministic en-
vironment. The ten networks were evolved with constant initial conditions and without
disturbances or noise through the procedure presented in a previous work [32]. The simula-
tion performance of this group is used for comparison of the robust neurocontrollers, and the
deterministically-evolved group’s topology provides a sense of the fundamental connections
required for soaring flight.

59

5.2. Robust Dynamic Soaring Case Studies

Figure 5.7 presents the simplified network of all the neurocontrollers trained in the deter-
ministic environment. The leftmost number of each pair of values above every input variable
refers to the connection between the input and the lift coefficient, and the rightmost number
relates the input to the roll angle. Furthermore, the first row indicates the prevalence as a
percentage of the total number of neural networks in the group, and the second row repre-
sents the influence, with both metrics also visualized through the thickness and darkness of
the connections, respectively. The third row displays the overall importance score. Lastly, the
deterministically-evolved group is the baseline relative to which the complexity of the other
network groups are compared. As a result, its complexity ratio is shown to be 1.0, and groups
with more complex networks that consist of a greater number of connections would have a
larger ratio.

The reduced network shows that every neurocontroller in the deterministically-evolved
group had evolved a connection between the heading angle and the roll command. Addition-
ally, the height and airspeed were shown to be the most common inputs for the lift coefficient.
These topological traits reveal the most significant correlations between input-output pairs,
which can be explained by examining the nature of dynamic soaring. For instance, the ground
track trajectory of cycles on the xy plane is not linear and instead takes the shape of a curve,
making the heading angle an important variable in determining the aircraft’s roll. Specifically,
the vehicle must roll towards the wind profile during the low altitude turn and away from the
wind in the high altitude turn segment. For the lift coefficient, however, the relative lack of a
single prominent connection reflects the high variance in the topologies within the group. The
evolutionary process did not find any particular input-to-lift-coefficient relation that substan-
tially improved fitness, so the different connections manifested in nearly equal proportions.
The training of successfully soaring neurocontrollers that only had access to the roll control
in flight simulations where the lift coefficient had been fixed to an experimentally-tuned con-
stant demonstrates the lower importance and therefore higher connection variance of the lift
coefficient control. Regardless, the deterministic topology is used as a baseline to compare
and examine the specific attributes that encode robust properties in the stochastically-evolved
neurocontrollers.

5.2.2 Initial-State-Robust Neurocontroller

The deterministically-evolved neurocontroller would be ineffective and impractical in real-
world environments, where it is not guaranteed that the initial aircraft states would precisely
match those seen during the controller’s training. Therefore, for the evolution of the neuro-
controller group that was evolved to be resilient to randomized initial states, the values of the
state variables were sampled from uniform distributions, which, for the airspeed and height,
spanned a range of ±25% of the nominal value.

The collective results of the Monte Carlo simulations for the deterministic and initial state-
robust neurocontroller groups tested in the variable initial state environment are plotted in
Fig. 5.8. The height of each bar represents the percentage of the total number of tests where
the aircraft soared for the amount of time reflected in the horizontal axis, and was computed
through a weighted average of the simulation results of every controller in the group. The
group success rate is simply the height of the bar at the maximum simulation time of 600.0s.

60

5.2. Robust Dynamic Soaring Case Studies

Figure 5.7: Simplified topology of deterministically-evolved neurocontrollers.

(a) Deterministic group (b) Initial state-robust group

Figure 5.8: Monte Carlo robustness for deterministic and initial-state-robust neurocontrollers.

The results are polarized towards immediate failure and sustained soaring, since a con-
troller would either fail to initially extract sufficient energy and soon crash, or quickly enter
and maintain a sustainable dynamic soaring trajectory for the duration of the simulation.
The success rates show that neurocontrollers evolved in the stochastic environment are much
less affected by randomized initial states than the neural networks of the deterministic en-
vironment. Considering that each network in the robust group had been, during evolution,
the member of the population pool with the highest fitness, this network by definition also
had been the most robust. Therefore, the SNEC process explicitly optimizes for robustness
against the range of parameters that are varied during evolution. Moreover, the difference
in the averaged success rates of both the deterministic and initial-state-robust groups, when
calculated over multiple consecutively-evolved members, shows that the robustness training
method consistently produced resilient controllers.

To better understand the individual sensitivities of the deterministic and initial-state-

61

5.2. Robust Dynamic Soaring Case Studies

robust neurocontrollers, Figures 5.9 and 5.10 show the mean survival times of the Monte
Carlo runs against each of the initial states that were varied in the stochastic test environ-
ment. Every data point represents the average time for which the aircraft remained soaring
at various discrete values of the initial parameters, calculated once again by averaging all
the simulations from every network in the group. The results of the deterministically-evolved
group show that low airspeeds, low altitudes, and extreme pitch angles were unfavourable for
dynamic soaring, while the stochastically-evolved networks were only particularly susceptible
to high pitch angles, which point the aircraft towards the ground. Regardless, although the
performance of a nonexistent optimally robust controller is unavailable, the stochastically-
evolved group is clearly less sensitive to the aircraft’s initial orientation. Furthermore, the
robustness of a neurocontroller is a function of the number of situations it encounters dur-
ing training, and therefore, longer evolutionary cycles with a greater number of randomized
domains can further reduce the performance loss in certain parts of the stochastic parameter
space.

Figure 5.9: Initial state robustness for deterministically-evolved neurocontroller.

Figure 5.11 presents the simplified topology of the initial-state-robust neurocontrollers,
where the fourth row indicates the change in importance scores relative to those of the
deterministically-evolved group. The pitch angle became completely decoupled from the roll
angle, which suggests that the connection was found to be detrimental to soaring. Instead, the
heading-to-roll connection became slightly more emphasized in controlling the vehicle, while

62

5.2. Robust Dynamic Soaring Case Studies

Figure 5.10: Initial state robustness for initial state-robust neurocontroller.

the prevalence of all the other input variables decreased for both controls. In the initial-state-
varying environment, the controller must reorient the aircraft in a specific direction from
which dynamic soaring is possible. Since the heading cannot be derived as a function of the
other inputs, the heading input’s importance in steering the vehicle is amplified. The simpli-
fied topology also reveals a greater variance in the importance of each input-to-lift-coefficient
connection, again marked by the decrease in the prevalence scores for all inputs. The already
weak relation between successful soaring performance and the lift coefficient is emphasized
by the uncertain nature of the environment. Lastly, the complexity ratio of 0.80 indicates
that the average network in the initial-state-robust group consists of 20% fewer parameters
than the average deterministically-evolved neurocontroller, showing that robustness can be
achieved with sparse topologies.

5.2.3 Initial-Wind-Robust Neurocontroller

To produce the initial-wind-robust neurocontroller group, the parameters of the wind profile,
A, htr, and Wmax, were obtained from uniform distributions spanning ±50% of the nominal
values for each parameter.

Figures 5.12 and 5.13 show the sensitivities of the deterministic and initial wind-robust

63

5.2. Robust Dynamic Soaring Case Studies

Figure 5.11: Simplified topology of initial-state-robust neurocontrollers.

neurocontrollers with respect to the wind parameters. Although the average success rate of
the robust controller group is over 1.6 times that of the deterministically-evolved group, the
objectively low value of the former indicates that it is difficult to conduct dynamic soaring
for a significant portion of the randomized parameter space. In particular, logarithmic profile
shapes, extreme transition heights, and low wind strengths were shown to pose significant
challenges for the neural networks. However, both groups exhibited greater performance in
exponential wind profiles, where the wind strength at all altitudes is either equal to or greater
than the corresponding wind strength experienced in logarithmic profiles. Comparison of each
group’s transition height sensitivity also shows that the robust neurocontrollers evolved to
take advantage of the lower transition heights’ stronger gradients. The decrease in average
flight times at the lowest values indicates that there exists an optimal altitude range that
is best suited for dynamic soaring regardless of the gradient strength, due to the control
boundaries and subsequent limits to how quickly an aircraft can climb the wind profile to suf-
ficiently extract energy. Lastly, the monotonically increasing trendline of the robust group’s
maximum wind strength sensitivity shows that greater values resulted in longer soaring tra-
jectories. This is expected, since the amount of energy that an aircraft can extract from the
wind is proportional to the magnitude of the wind’s vertical gradient, which is proportional
to the maximum wind strength. In this case, the wind strength was also not large enough
to completely overwhelm the aircraft. Regardless, the analysis shows how the stochastic sim-
ulations and Monte Carlo robustness scores can lead to an improved understanding of not
only the neurocontroller, but also the environments that are best suited for certain flight
techniques.

The most notable difference between the initial-wind-robust networks, summarized in Fig.
5.14, and the deterministic baseline is the higher prevalence and influence of the height input
with respect to the roll angle. At every simulation instance, although all three wind parame-
ters are randomly sampled from uniform distributions, only the transition height affects the
behaviour of the controller with respect to the vehicle’s height. The shape parameter and

64

5.2. Robust Dynamic Soaring Case Studies

Figure 5.12: Initial wind robustness for deterministically-evolved neurocontroller.

Figure 5.13: Initial wind robustness for initial wind-robust neurocontroller.

maximum wind strength influence the wind magnitude at every point in the altitude range,
but it is the transition height that dictates the altitude at which the profile saturates and the
gradient terminates. The simplified topology reveals that the majority of robust networks
depend on not only the heading angle but also the height to roll the vehicle. The equations
of motion show that the vehicle’s height is independent of the horizontal wind profile, and
therefore, the controllers in the robust group had evolved to soar in an altitude region that
guarantees the greatest number of successful flights, regardless of the specific wind environ-
ment. Once again, the prevalence of all inputs feeding the lift coefficient command decreased,
further supporting the idea that in stochastic environments particularly, there are no spe-
cific connections that singly characterize successful soaring. Notably, the initial-wind-robust

65

5.2. Robust Dynamic Soaring Case Studies

group’s complexity ratio was 1.03, showing that the average neurocontroller was defined by a
3% greater number of weights and biases with respect to the deterministically-evolved group.
Therefore, marginally larger networks were required to encode the properties that character-
ized the resilience against randomly-initialized wind parameters.

Figure 5.14: Simplified topology of initial-wind-robust neurocontrollers.

5.2.4 Dynamic-Wind-Robust Neurocontroller

For the dynamic-wind-robust group, one of the three wind profile parameters was sinusoidally
varied by a randomly sampled amplitude, obtained from a uniform distribution between 0 and
1. Since this factor is multiplied with the varying parameter’s nominal value, an amplitude
factor of 0 would result in no fluctuation, and a factor of 1 would cause the parameter to swing
between zero and double its nominal value. For instance, with a nominal shape parameter
of 1.0 and an amplitude factor of 1, the wind profile would periodically transition from a
completely exponential shape to a fully logarithmic profile. For the frequency of oscillation,
another random value was sampled from a uniform distribution between 0 and 1 Hz.

Unlike the previous environments, the effects of the time-varying wind profile can be easily
visualized through the resulting trajectories. Figure 5.15a shows a sample trajectory of one
of the deterministically-evolved neurocontrollers along with the environment’s sinusoidally
changing transition height, whose value is shown by the vertical axis. Figure 5.15b displays
a sample trajectory of one of the robust neurocontrollers in an identical environment. The
deterministic controller’s irregular trajectory contrasts the robust network’s much more reg-
ular altitude. This difference, corroborated in the more general sense with the success rates
of the deterministic and robust groups at 74.2% and 93.4% respectively, explains the effect
of the dynamic wind profile and the way in which the robust neurocontroller had evolved
to compensate for the variations. As the transition height increases beyond the maximum
cycling height, the gradient weakens and the aircraft gains energy at a decreased rate. The
trajectory is consequently affected, since the aircraft dynamics are functions of the wind

66

5.2. Robust Dynamic Soaring Case Studies

strength. Similarly, when the transition height falls below a certain threshold and the wind
profile is condensed, the vertical gradient changes such that the aircraft extracts more energy
per cycle, also influencing the trajectory. It should be stressed that this behaviour is induced
by the wind, and is not a deliberate pattern that is actively pursued by the controller. This
exemplifies how the evolutionary process produces networks that have evolved to handle such
conditions through trial and error. Nevertheless, the nontrivial performance difference be-
tween the two groups represents a definite improvement in flight behaviour.

(a) Deterministic (454.2s) (b) Robust (600.0s)

Figure 5.15: Simulated trajectories of deterministic and dynamic-wind-robust neurocontrollers
in dynamic wind environment, with trajectory (solid, blue) and transition height (dashed,
black).

Both neurocontroller groups attempt to perform standard dynamic soaring, but are af-
fected in different ways by the wind profile due to the robust networks’ better-tuned param-
eters. This is supported by a comparison of the robust group’s simplified topology of Fig.
5.16 to that of the deterministic controllers, which shows that the topologies are extremely
similar. Once again, all networks relied on the heading-to-roll connection. Simulated flight
tests revealed that every network of the dynamic-wind-robust group exhibited trajectories
similar to that of Fig. 5.15. Therefore, it is likely that the resulting successful trajectories
originate from the only trait common to all networks, which is the heading-to-roll connection.
This topological observation, coupled with the complexity ratio of 0.84, suggests that the
performance difference between the neurocontroller groups is not necessarily due to added
network complexity, but is instead a product of the robust networks’ better-tuned weights
and biases that encode for dynamic soaring.

5.2.5 Gust-Robust Neurocontroller

The gusty environment consisted of stochastically triggered wind disturbances that occurred
in any direction in the three-dimensional Cartesian space, with a maximum horizontal gust
component strength of 10 ft/s, a maximum vertical gust strength of 2 ft/s, a maximum dura-
tion of 1s, and a 10% probability of occurrence at any given second. Monte Carlo evaluations
showcased the significant improvement in the robust group’s success rate of 92.8% in contrast
to the deterministic networks’ 26.4%.

67

5.2. Robust Dynamic Soaring Case Studies

Figure 5.16: Simplified topology of dynamic-wind-robust neurocontrollers.

The effect of the stochastically-occurring gusts can be visualized through sample trajec-
tories of deterministic and gust-robust neurocontrollers, depicted in Fig. 5.17. It can be seen
that gusts, whose magnitude and direction are indicated by the length and orientation of
the black vectors respectively, decrease the cycling altitude of the trajectory by disturbing
the aircraft’s energy state. Figure 5.17a shows that after every significant gust event, the
aircraft loses potential energy, until the final gust irrevocably perturbs the vehicle and causes
it to crash. Contrarily, the robust network is able to withstand the disturbances and remain
soaring for the full simulation time.

(a) Deterministic (219.5s, 23 gusts) (b) Robust (600.0s, 53 gusts)

Figure 5.17: Simulated trajectories of deterministic and gust-robust neurocontrollers in gusty
environment.

In explaining this difference in performance, the most significant change in the topology of
the gust-robust group illustrated in Fig. 5.18 is the lift coefficient’s increased reliance on the
heading angle and height RoC inputs, which opposes the decreased importance of all other
input-to-lift-coefficient connections. The equations of motion presented in Section 3.1.1 show

68

5.2. Robust Dynamic Soaring Case Studies

that unlike the airspeed or pitch angle, the heading angle is independent from the rate of
change of the vertical wind gust component Ẇz. In addition, the height input is a function of
the vertical gust component Wz, and the prevalence of these inputs as variables for the lift co-
efficient is explained by the limits on the horizontal and vertical gust components. The gusts’
horizontal magnitude was sampled from a distribution with an upper limit of 10 ft/s, and the
vertical magnitude was assigned a value up to 2 ft/s. Therefore, it was more advantageous for
networks to use the heading angle and height RoC variables to compute the lift coefficient,
because these inputs were generally less perturbed by each gust. The heading angle dynamics
were only dependent on two of the three wind components, and the height RoC was a function
of only the vertical wind, which fluctuates less severely than the horizontal components. For
the roll command, although the airspeed’s value suffered from abrupt fluctuations, its preva-
lence as an input variable increased when compared to the deterministically-evolved group.
Since each state is affected differently by gusts, the network evolved to combine multiple in-
puts as a way of filtering out the disturbances.

Figure 5.18: Simplified topology of gust-robust neurocontrollers.

5.2.6 Sensor-Noise-Robust Neurocontroller

The sensor-noise-robust neurocontroller group was trained by adding Gaussian noise to the
neural network inputs at each timestep. The standard deviations σ for each input variable
are listed below.

σV = 5.0 ft/s
σψ = 5.0 deg
σγ = 5.0 deg
σh = 5.0 ft
σḣ = 1.0 ft/s

69

5.2. Robust Dynamic Soaring Case Studies

Testing showed that the robust group significantly outperformed the deterministically-
evolved group in noise-injected environments, resulting in success rates of 94.9% and 27.7%
respectively. The effect of measurement noise on the trajectory is exemplified by Fig. 5.19,
where it is clear that a sample deterministically-evolved neurocontroller was unable to sus-
tain flight, while one of the robust neurocontrollers performed dynamic soaring for the full
simulation time.

(a) Deterministic (90.0s) (b) Robust (600.0s)

Figure 5.19: Simulated trajectories of deterministic and noise-robust neurocontrollers in noisy
environment.

The simplified topology of Fig. 5.20 suggests that the decrease in the use of the pitch
angle and height RoC inputs is a result of their values periodically approaching zero. As the
aircraft levels out mid-cycle or begins to descend after gaining altitude and vice versa, the two
states take on extremely small values, which causes any noise to induce greater errors in the
states as a percentage of the true value. Therefore, networks that heavily rely on the pitch
and height RoC variables would have more difficulty in characterizing the dynamic soaring
cycle, causing lower performance.

In addition, the success rate difference between the two groups is likely a consequence of
better-tuned network parameters that allow members of the robust group to perform soaring
in the presence of measurement noise. This can be seen when comparing the topologies of
individual networks in both groups, such as the pair illustrated in Fig. 5.21. Although both
neural networks use extremely similar inputs without any hidden layers for the roll angle, the
deterministic network’s success rate of 0.0% indicates that it is completely unable to remain
flying, in contrast to the robust controller’s rate of 99.9%, suggesting that the connection
weights are the significant factors that affect flight time in the noisy environment. This com-
parison of topologies and the sensor-noise-robust group’s complexity ratio of 0.72 suggest that
robustness is first a product of the specific connections that filter for the least-affected input
variables, and secondly the result of extensive parameter tuning. While certain neuronal links
are important for particular environments, a robust network’s weights and biases are also sig-
nificantly optimized during evolution.

70

5.2. Robust Dynamic Soaring Case Studies

Figure 5.20: Simplified topology of noise-robust neurocontrollers.

(a) Deterministic (success rate of 0.0%) (b) Robust (success rate of 99.9%)

Figure 5.21: Sample deterministic and noise-robust neurocontroller topologies.

5.2.7 Multi-Robust Environment

While the previous sections demonstrate the SNEC method’s applicability to individual ran-
dom environments, real-world implementation of autonomous systems must account for com-
binations of uncertainties and disturbances. Therefore, this section presents a multi-robust
neurocontroller group that was evolved in an environment containing all of the previously ex-
amined stochastic elements, which serves to demonstrate the evolutionary approach’s ability
in instilling robustness to multiple sources of uncertainty in severely varying and disturbance-
prone environments.

Monte Carlo evaluations of the multi-robust group demonstrated that while the chaotic
environment caused large variances in the topologies between networks, the most notable
change was an even greater emphasis on the heading-to-roll connection, supported by a 21%

71

5.2. Robust Dynamic Soaring Case Studies

increase in its importance factor. The necessity of the heading input, which acts as an anchor
in characterizing successful dynamic soaring cycles, is further reinforced in the multi-robust
environment. Regardless, the weighted average success rates of the deterministic and robust
groups were 4.7% and 20.8%, respectively. This marks a significant improvement, particularly
when considering again that the highest achievable success rate in the multi-robust environ-
ment is unknown and likely less than 100%.

To provide a summarized analysis of the various neurocontroller groups examined in
this work, Fig. 5.22 presents the complete matrix of all Monte Carlo evaluations for each
neurocontroller-environment combination. Every cell contains the weighted average success
rate for the neurocontroller group indicated by the row tested in the environment shown by
the column, with the colour value of the cell corresponding also to the success rate. The
leftmost column references the results of the deterministically-evolved group (italicized, red),
the diagonal elements (blue) represent the native pairings where the neurocontroller group
was tested in the stochastic environment for which it was evolved, and the values in bold
indicate the best-performing neurocontroller group for each environment.

Figure 5.22: Success rates for all neurocontroller-environment combinations.

Despite the multi-robust group’s relatively high performance in the chaotic environment,
its subpar success rates when evaluated in each individual environment shows that generaliz-
ing backwards from the significantly chaotic environment is a challenge. These results suggest
that the overwhelming number of variations necessitates more extensive training. Further-
more, the highly specialized success of the noise-robust controllers in their native environment
indicates an overfitting of the neural networks in that group, and the colour value of rows
provide a sense of each environment’s relative difficulty, with the noise and multi-robust en-
vironments being the most challenging. Nevertheless, despite these potential shortcomings,

72

5.2. Robust Dynamic Soaring Case Studies

the positioning of the best performing groups on the diagonal shows that the highest success
rates were achieved by the neurocontrollers that were tested in the environment for which they
were trained. The stochastic neuroevolutionary method is conclusively capable of targeting
resilience against specific variations.

In practice, however, a robust network with only a 20.8% success rate in the harshest
environments will likely not be the most appropriate neurocontroller for flight in typical con-
ditions. A more nuanced approach would be to evolve a neurocontroller in an environment
that mirrors the expected real-world conditions, where the number and severity of uncertain-
ties are reduced to only include those to which the vehicle is most susceptible.

73

6 Autopilot Implementation

This chapter examines the transferability of evolved knowledge as a precursor to implement-
ing robust SNEC networks on a commercially-available SUAV platform. An open source
autopilot software suite for UAVs was used in conjunction with a flight simulator to emulate
the performance of a thermal soaring neurocontroller evolved through the neuroevolutionary
control process. This initial software implementation considers the thermal soaring problem
due to the relative simplicity of the control sequences required to climb thermals. Lastly, a
software-in-the-loop (SITL) simulation was conducted to test the software implementation
and observe the differences in neurocontroller flight behaviour between the 3DOF training
environment and the higher-fidelity flight simulator.

6.1 SITL Framework

The SITL architecture, depicted in Fig. 6.1, consisted of a custom ArduPilot [33] SITL build,
the commercial flight simulator X-Plane 10 [34], and the popular ground control station (GCS)
Mission Planner [35], all of which communicated through various network protocols.

Figure 6.1: SITL software architecture.

To demonstrate specifically the intrathermal behaviour of an SNEC neural network, the
preexisting thermalling mode within ArduPilot’s base autopilot software was modified such
that the neural network logic would only replace the aircraft’s roll behaviour when inside a
thermal column. This way, the neurocontroller could be tested without disrupting the takeoff,
waypoint navigation, and thermal detection routines.

74

6.2. SITL Models

The original autopilot’s thermalling mode uses an extended Kalman filter to estimate the
vehicle’s sink rate, which is then compared to the expected sink rate, obtained from airspeed
data and the aircraft’s sink polar. The estimated and expected values are used to compute a
thermalability factor that dictates whether the autopilot engages the thermalling logic. Upon
deciding that soaring is feasible, a loitering radius is calculated, from which the roll angle
required to achieve the radius is commanded to the attitude controller.

For the SITL neurocontroller test, the functions for determining the thermalling radius
and roll angle were replaced by a neural network generated from the SNEC method. Using
aircraft states available in the autopilot software, the target roll angle is sent to the low-level
actuator controller directly.

6.2 SITL Models

The aircraft used in the flight simulator was a V-tail RC plane, whose parameters are listed in
Table 6.1. To facilitate the transferability of the behaviour trained through the 3DOF simu-
lation to the higher fidelity flight simulator, it was necessary to match the aircraft parameters
of the model used for evolution to the vehicle flown in X-Plane. For simplicity, the parameters
of the training model were set nearly identically to that used in the previous sections, apart
from the wing area and mass, which were calculated from its 3D model.

Table 6.1: X-Plane V-tail SUAV characteristics.

Parameter Symbol Value Units
Wing area S 4.65 sq ft
Mass M 0.124 slug
Maximum lift-to-drag ratio Emax 20.0 -
Zero-lift drag coefficient CD0 0.025 -
Maximum load factor nmax 5 -
Maximum absolute bank angle |µ|max 60 deg
Stall speed Vstall 22.0 ft/s
Minimum drag speed Vmd 26.9 ft/s

Although the thermal wind modelling in X-Plane 10 is not explicitly known, test flights
suggested that thermals exist as vertical columns with a single, uniform updraft speed. The
columns seemed to persist either until a maximum altitude or until a maximum time. Addi-
tionally, while the range or probability distribution of column radii remained unknown, the
thermal coverage percent, which is proportional to the number of thermals over a ground
surface area, was a user-defined variable that could be set to a value between 0% and 20%.
The thermal climb-rate was also configurable to values from 0 to 25 ft/s.

75

6.3. SITL Neurocontroller Evolution

6.3 SITL Neurocontroller Evolution

The neurocontroller implemented in the autopilot was evolved in the 3DOF environment
through the SNEC process, where the initial aircraft conditions and the thermal wind param-
eters were randomized. For the aircraft states, the airspeed and pitch angle were initialized
using the uniform distribution detailed in Section 5.1.2. Furthermore, to match the flight sim-
ulator’s thermal model, which lacked the outer downdraft region of the mathematical model
described in Section 3.3.2, the vehicle’s initial position on the horizontal plane was set to a
point in the half-ring defined by the thermal column’s updraft region that has a thickness of
one-half the column radius, with the heading angle set to point the aircraft towards the other
half of the disk. This way, the vehicle would enter different parts of the thermal column,
and successfully soaring agents would remain in the updraft region without experiencing any
downward wind. The initialization scheme is depicted in Fig. 6.2, and the stochastic param-
eter space is detailed in Table 6.2.

Figure 6.2: Initialization domain of the SITL random-initial-state environment.

Table 6.2: Thermal soaring SITL simulation parameters.

Wind Range Initial Rangeparameters conditions
wcore [ft/s] [5.0, 15.0.] V0 [ft/s] [20.2, 33.6]
rxy [ft] [50.0, 150.0] ψ0 [deg] 0.0
htrmax [ft] ∞ γ0 [deg] [-45.0, 45.0]
tthmax [s] ∞ h0 [ft] 100

x0 [ft] (Inside core updraft disk)
y0 [ft] (Inside core updraft disk)

76

6.3. SITL Neurocontroller Evolution

The inputs were reduced to only include the airspeed, pitch angle, and climb rate, as
their values were readily available in the ArduPilot source code. The control output was also
limited to a single dimension by fixing the lift coefficient to a constant due to ambiguity in
the X-Plane aircraft model’s lift polar. The fitness function was identical to the formulation
described in Section 4.3.1, where the reward is proportional to the change in potential energy.
Due to the reduced state and action spaces, the resulting neural network of Fig. 6.3 defined
entirely by the six parameters listed below was evolved with only 20 generations, each with
10 stochastic flights.

Figure 6.3: Topology of the robust thermal soaring neurocontroller.

The node biases and connection weights are:

bµ′ = −1.16 wµ′
V

= 0.262
bα0 = −0.845 wα0V = −0.197

wµ′
α0

= 0.430
wµ′

ḣ
= 0.164

While experiencing only 10 randomly-initialized environments may seem insufficient in
evaluating successful soaring performance for the full range of varied parameters, the rapid
training process took only 0.06 CPU seconds and provided consistent thermal soaring trajec-
tories. Five flights, each with a constant core radius of 100ft but randomly sampled updraft
strength, are shown in Fig. 6.4. The simulations lasted for 600s, and demonstrate how the
neurocontroller tends to increase the aircraft’s roll angle as the wind speed increases. This
behaviour can be deduced from the network’s topology and weights, where there is a propor-
tional relationship between the height RoC and the roll command.

A typical thermalling technique that is well-known to glider pilots is the Reichmann
method [11], where the aircraft’s bank angle is set to be inversely proportional to the climb
rate. For instance, when experiencing a low rate of climb, a steeper roll angle is favoured so
that the aircraft remains near the thermal centre, where the updraft is strongest. However,

77

6.3. SITL Neurocontroller Evolution

SUAVs are typically much smaller than manned gliders, which allows for greater manoeuvra-
bility within thermal columns and less of a concern of exiting the updraft region. Contrary
to the Reichmann heuristics, the neurocontroller evolved to increase its roll angle proportion-
ally to the height RoC, because the fitness function rewarded gains in potential energy. The
aircraft can maximize its altitude by flying with a greater velocity at a steeper roll angle than
with a lower velocity at a shallower roll angle, since the climb rate is a function of the wind
velocity, which is strongest at the thermal centre.

Interestingly, the output’s dependence on the airspeed and the negative connection weight
between the airspeed input and the hidden node accounts for the spiralling of the trajectory
at the highest updraft magnitude, which is shown Fig. 6.4e. Beyond a certain airspeed, the
hidden node’s effect on the roll angle becomes greater than the direct relationship between
the updraft strength and roll command, which results in regular fluctuations in the bank
angle during a single cycle and causes translational motion. Regardless, the neurocontroller’s
robustness score in the hybrid stochastic environment was 88.14% after 1609 Monte Carlo
simulations, which was anticipated to be sufficient for the SITL test.

Since the ArduPilot software’s existing autopilot program would manage the interthermal
wind mapping and thermal mode activation logic, and because the goal of the SITL simulation
was to validate the ability to implement a SNEC network in a higher fidelity simulation, the
rapidly-trained, minimal network of Fig. 6.3 was deemed sufficient.

6.3.1 SITL Flight Simulation

The neurocontroller trained in the 3DOF environment was then directly integrated without
further tuning into the autopilot system of the X-Plane simulator’s V-tail aircraft SITL flight
testing. The aircraft model was winch-launched from a runway and allowed to climb to a min-
imum altitude before the vehicle’s motor was disabled and the neurocontroller thermalling
mode was engaged. Therefore, without exploiting thermal updrafts, the SUAV, with no means
of generating thrust, would be unable to remain flying. A series of waypoints guided the air-
craft’s interthermal heading, and while the thermal column coverage was set to the maximum
value of 25% for the entirety of the simulation, the updraft wind speed was varied for each leg
of the flight path. Figure 6.5 shows the resulting 50-minute trajectory overlaid on a satellite
map of the region, with numbered legs that correspond to the wind speeds listed in Table
6.3, which match the parameters used in Fig. 6.4. Additionally, Figures 6.6 and 6.7 provide
three-dimensional views of the same trajectory. The aircraft’s high-level mission objective is
to reach each waypoint, but upon detection of a thermal column through the Kalman filtering
mechanism described in Section 6.1, the vehicle enters the thermalling logic defined by the
neurocontroller. After the wind estimation system determines the loss of the thermal region,
the aircraft’s heading is set by the mission controller such that the vehicle glides towards the
next waypoint.

The trajectory shows that the neural network was able to continuously soar for 50 minutes
by controlling the vehicle’s roll angle. Telemetry and data logs extracted from the simulator
and the GCS showed that when inside a thermal region, the neurocontroller provided com-
mands at a frequency of approximately 50 Hz, or every 0.02s of simulation time, providing
also a benchmark for the 3DOF training simulator. Furthermore, the extracted flight trace
shown in Fig. 6.8 shows the aircraft gaining potential energy during every soaring event,

78

6.3. SITL Neurocontroller Evolution

(a) Wcore = 5.0, V̄ = 34.7, µ̄ = 41.5 (b) Wcore = 7.5, V̄ = 35.3, µ̄ = 43.6

(c) Wcore = 10.0, V̄ = 35.9, µ̄ = 45.5 (d) Wcore = 12.5, V̄ = 36.4, µ̄ = 47.2

(e) Wcore = 15.0, V̄ = 36.7, µ̄ = 45.8

Figure 6.4: Simulated trajectories of the robust thermal soaring neurocontroller, with core
updraft strength (ft/s), mean airspeed (ft/s), and mean roll (deg).

which is exchanged for kinetic energy immediately after leaving the updraft as the aircraft
pitches downwards and gains airspeed.

To numerically verify and interpret the neurocontroller’s behaviour, Fig. 6.9 shows the
input and output traces of the neural network. The topmost numbers correspond to each leg
of the flight, which are inferred from the heading plot and delineated by the dotted, black,

79

6.3. SITL Neurocontroller Evolution

Figure 6.5: Thermal soaring SITL flight trajectory, with start marker (green), end marker
(red), highlights of soaring events (yellow), and legs (white).

vertical lines. The airspeed, pitch angle, and climb rate traces for the entire trajectory are also
illustrated, where the segments corresponding to soaring events are emphasized and the max-
imum values of the states across each thermal occurrence within individual legs are marked
by the dashed red lines. Finally, the last two plots contain the traces of the roll commands
sent to the low-level attitude controller and the vehicle’s actual, or experienced, roll angle.
While the heading and experienced roll plots were obtained from telemetry logs, the other
states were extracted from the onboard autopilot program’s data logs, and therefore show the
values as seen by the neurocontroller.

The traces indicate a significant correlation between the airspeed and the commanded roll,
which shows how the neural network implemented within the autopilot system was function-
ing as intended. However, the range of commanded roll values was much smaller than when
the neurocontroller was tested in the 3DOF model. This is due to the large airspeed values
of the V-tail aircraft that were not experienced during evolution, which biased the network

80

6.3. SITL Neurocontroller Evolution

Figure 6.6: Thermal soaring SITL flight trajectory - 3D overview.

Table 6.3: Thermal soaring SITL wind speeds.

Leg Updraft strength (ft/s)
0 10.0
1 12.5
2 15.0
3 7.5
4 5.0

outputs. The increase in the values entering the neural network’s output node saturated
the nonlinear activation function, resulting in roll commands that approached the maximum
threshold of 60.0 degrees. This phenomenon can be best observed in leg 2 of the trajectory,
where despite the various airspeed and climb values seen by the neurocontroller, the network’s
output consistently reached its predefined limit.

In addition, there exists a discrepancy between the commanded and experienced roll an-
gles, which can be more easily seen in Fig. 6.10. Only the values when the aircraft was in
the thermalling manoeuvre are shown, which was the only time that commands were sent to
the attitude controller. The plot reveals that the vehicle’s bank angle, which lags behind the
commanded value, overshoots the desired bank angle before oscillating near the set point.
Although this behaviour is not ideal, it can be remedied by tuning the autopilot’s actuator
controller. Nevertheless, the general trend of the experienced roll follows that of the neurocon-
troller’s outputs, supporting the implementation of SNEC-based neural networks on real-time
systems.

81

6.3. SITL Neurocontroller Evolution

Figure 6.7: Thermal soaring SITL flight trajectory - 3D climbing path.

82

6.3. SITL Neurocontroller Evolution

Figure 6.8: Thermal soaring SITL flight trace with respect to time (s), including kinetic eK ,
potential eP , and total eT energies.

83

6.3. SITL Neurocontroller Evolution

Figure 6.9: Thermal soaring SITL ANN signal trace.

84

6.3. SITL Neurocontroller Evolution

Figure 6.10: Thermal soaring SITL roll angles.

85

7 Conclusions and Recommendations

The aim of this research was to investigate, design, and validate an artificial-neural-network-
based control approach for autonomous soaring that can be implemented on small unmanned
aerial vehicles for a variety of stochastic environments. This final chapter will provide con-
cluding remarks, suggestions for improvement, and recommendations for future research on
this topic.

7.1 Conclusions

This research is the first study in the current body of knowledge on autonomous aircraft
control that examines a neuroevolutionary method of generating simple, effective, and robust
neurocontrollers. Initially, the cart pole balancing task was used to explore the feasibility
of applying the Neuroevolution of Augmenting Topologies algorithm to control tasks. The
extremely simple yet effective neural networks that resulted from the experiment suggested
that a similar approach could be applied to autonomous soaring, whose trajectories are also
characterized by repetitive signals. Application of a reinforcement learning algorithm to the
same problem revealed the advantages of evolved, irregular neural networks over large, fixed-
topology networks. Despite requiring a vastly greater amount of computational power, the
reinforcement learning technique unsuccessfully trained a 32-unit network, exemplifying the
method’s inefficiency in mapping continuous action and state spaces, its increased complexity,
and also its reduced interpretability.

With this initial experiment validating the potential applicability of evolutionary neural
networks, the neuroevolutionary control approach was developed. The fitness function that
guides the training process was designed to discourage flight agents from exceeding boundary
constraints that would otherwise be infeasible or catastrophic to the vehicle, while encourag-
ing certain behaviours by maximizing rewards that were proxies for successful soaring. The
goal was to loosely direct the evolution of soaring manoeuvres without an extensive artifi-
cial restricting of the search space so that the process ultimately discovers a general solution
that is not explicitly engineered by the designer. The creation of the simulation environment
along with the aircraft and wind models allowed for its integration with the NEAT algorithm,
defining the NEC process.

The travelling dynamic soaring case was then used to compare the evolved trajectories
to that of numerical optimization. The policy that was encoded in the neurocontroller was
found to be similar to the canonical reference, where the flight agent learned to initially orient
itself into the wind profile to gain potential energy before exchanging it for kinetic energy by
descending the gradient. However, the neurocontroller also learned to change its behaviour

86

7.1. Conclusions

from maximizing energy gain to maximizing flight distance after accumulating sufficient to-
tal energy for continued soaring. This demonstrated the NEC method’s ability to achieve
the higher-level objective of sustained soaring, which contrasts the limited-time-horizon tra-
jectories of numerical optimization techniques. The NEC approach also required minimal
computational time to generate simple dynamic, thermal, and ridge soaring neurocontrollers
whose outputs could be traced backwards to reconstruct the internal network signals and
determine the relative importance of certain inputs. However, it was also discovered that
the process suffers from large action spaces, where the greater number of possible state and
control trajectories necessitates longer evolutionary periods and more restrictive conditions.
In the ridge soaring case, this was overcome by reducing the space of allowable states. Re-
gardless, the various soaring cases demonstrated the NEC process’ capacity to find solutions
to different soaring problems.

Subsequently, the necessity for robust behaviour prompted the design and development
of the stochastic neuroevolutionary approach. Various models defined environments with
random initial conditions, time-varying wind profiles, unexpected wind gusts, and Gaussian
sensor noise for the travelling dynamic soaring problem. The method of randomizing the
training domain during evolution resulted in neural networks that indirectly encoded the ex-
periences of its ancestors to ultimately exhibit resilience to the random environment. The
Monte Carlo estimation process also enabled the quantification of robustness so that neuro-
controllers could be compared relative to each other. To account for the individual variances
between neural networks trained in identical environments, the analysis presented groups of
multiple neurocontrollers, whose performances were averaged to obtain a more representative
assessment of the SNEC technique’s efficacy. Interestingly, not only did the performances
of the stochastically-evolved networks show clear evidence of robustness, where in some in-
stances, robust neurocontroller groups were capable of sustained soaring at a rate 4.4 times
that of deterministically-evolved neural networks, but their topologies also revealed consistent
patterns both between and within neurocontroller groups. The analytical metrics and network
reduction method that were developed to examine the role of network structure on robust-
ness indicated how the SNEC process, after evolving the fundamental connections that are
required to define the soaring manoeuvres, tuned the network’s weights and biases to achieve
resilience instead of continuing to add topological complexity. This suggests that network
depth, a characteristic of deep neural networks, may not necessarily be required to encode
robust flight behaviour. Additionally, the topological analysis allowed for the explanation of
specific, recurring connections, leading to an intuitive understanding of the neural networks
that may eventually be valuable for industrial or commercial certification, and further sup-
porting their applicability over fixed-topology ANNs.

Finally, the simplicity of the SNEC-trained networks enabled the software implementa-
tion of a thermal soaring neurocontroller for a software-in-the-loop experiment using an open
source autopilot platform. Despite the modelling differences between the commercial flight
simulator and the 3DOF environment used for training, the general behaviours that were
learned in the lower-fidelity simulation transferred to the more advanced simulator.

87

7.2. Recommendations for Future Work

7.2 Recommendations for Future Work

Throughout this research, a number of potential areas for future development were identified
that, if implemented, would contribute to the overall objective of operational autonomous
flight.

While this work explored the trajectories of travelling dynamic soaring, intrathermal soar-
ing, and ridge soaring, there also exist other techniques such as loitering dynamic soaring and
interthermal soaring that can offer different use cases for autonomous aircraft. For instance,
loitering dynamic soaring trajectories would require a reformulation of the fitness function’s
reward mechanism to prioritize geographically local, energy-neutral flight. On the contrary,
interthermal soaring is a higher-level task that necessitates either the identification and track-
ing of multiple thermals or an exploratory method of seeking updraft regions. To evolve more
complex behaviours beyond the predictable, repetitive trajectories demonstrated in this re-
search, it is recommended that the input space accessed by the neurocontroller is sufficiently
large. As an example, for the travelling dynamic soaring case, the sparse set of attitude and
inertial data consisting of the airspeed, heading, pitch, height, and height RoC was found to
be adequate for the neural network to learn successful trajectories. Similarly, the ridge soar-
ing neurocontroller used additional positional data to characterize its trajectory. However,
one significant dimension that remains to be explored is time. Expanding the input space
by simply adding a clock variable that allows for time-dependent behaviour is the evident
approach, but the more interesting method of incorporating memory through recurrent or
long-short-term-memory neural networks is recommended. While the input space used in this
work did not explicitly provide the neurocontrollers any temporal knowledge of the vehicle
or environment, such topologies and mechanisms may produce solutions that are encoded in
time, opening another dimension along which evolution can occur.

Another recommendation is the exploration of other variations and uncertainties in the
evolutionary environment. The presence of signal noise in a neurocontroller’s output com-
mands that are sent to the actuator controller is a possibility in real systems, and can be sim-
ulated through Gaussian distributions. Robustness experiments of neural networks trained
in such an environment may reveal the degree of attitude control accuracy that is required
for sustained soaring. In addition, control delay and low control frequencies may also be
obstacles in SUAV platforms, which are defined by numerous subsystems. The outputs of
neurocontrollers will inevitably be delayed as the signals are passed between autopilot soft-
ware modules and eventually to the attitude controller. Similarly, while the neural networks
presented in this work were evolved to output controls at a frequency of 10 Hz, which were
successfully interpolated at 50 Hz in the SITL thermal soaring experiment, an examination
of the control sequence’s extrapolation to lower frequencies is recommended as well. Another
area of robustness that remains to be explored is system failures, comprised of, for instance,
variations in sensor availability and changes in physical aircraft characteristics. An environ-
ment could be modelled to simulate the sudden loss of the neurocontroller inputs to evolve
a system that is resilient against internal signal corruption or failure. An ablation study on
the input space would also be useful in determining the most necessary connections used in
characterizing different types of soaring trajectories. An abrupt change in the physical state
of the aircraft is another scenario for which robustness may be trained by altering the system’s
dynamics in the evolutionary environment.

88

7.2. Recommendations for Future Work

The final recommendation for future research is the continued reduction of the gap be-
tween simulation training and physical implementation. Further experiments in the SITL
environment for dynamic or interthermal soaring are required prior to integrating neurocon-
trollers on real-world systems. The SITL experiment revealed that there exists discrepancies
when transferring learned behaviours from the 3DOF environment to higher-fidelity models,
due to differences in dynamics as well as aircraft and wind parameters. As a result, future
work on the tuning of training environments to better align with the expected reality is rec-
ommended, where the domain randomization technique of the SNEC approach can also be
applied to bridge the sim-to-real gap. For instance, marginally varying the control limits and
physical properties of the training vehicle between evolutionary episodes would effectively
decouple the desired flight behaviour from the specific vehicle, and facilitate the real-world
implementation of autonomous soaring systems.

89

Bibliography

[1] Gottfried Sachs. Minimum shear wind strength required for dynamic soaring of alba-
trosses. Ibis, 147(1):1–10, 2005.

[2] C. J. Pennycuick. Thermal Soaring Compared in Three Dissimilar Tropical Bird Species,
Fregata Magnificens, Pelecanus Occidentals and Coragyps Atratus. Journal of Experi-
mental Biology, 102(1):307–325, January 1983.

[3] Nicholas R. J. Lawrance and Salah Sukkarieh. A guidance and control strategy for
dynamic soaring with a gliding UAV. In 2009 IEEE International Conference on Robotics
and Automation, pages 3632–3637, Kobe, Japan, May 2009.

[4] Jack W. Langelaan, John Spletzer, Corey Montella, and Joachim Grenestedt. Wind field
estimation for autonomous dynamic soaring. In 2012 IEEE International Conference on
Robotics and Automation, pages 16–22, May 2012.

[5] Michael Allen and Victor Lin. Guidance and Control of an Autonomous Soaring Ve-
hicle with Flight Test Results. In 45th AIAA Aerospace Sciences Meeting and Exhibit.
American Institute of Aeronautics and Astronautics, June 2012.

[6] Nathan T. Depenbusch, John J. Bird, and Jack W. Langelaan. The AutoSOAR au-
tonomous soaring aircraft, part 1: Autonomy algorithms. Journal of Field Robotics,
35(6):868–889, 2018.

[7] Rayleigh. The Soaring of Birds. Nature, 27(701):534–535, April 1883.
[8] Yiyuan J. Zhao. Optimal patterns of glider dynamic soaring. Optimal Control Applica-

tions and Methods, 25(2):67–89, 2004.
[9] John J. Bird, Jack W. Langelaan, Corey Montella, John Spletzer, and Joachim L. Gren-

estedt. Closing the Loop in Dynamic Soaring. In AIAA Guidance, Navigation, and
Control Conference, AIAA SciTech Forum. American Institute of Aeronautics and As-
tronautics, January 2014.

[10] Zhenda Li and Jack W. Langelaan. Parameterized Trajectory Planning for Dynamic
Soaring. In AIAA Scitech 2020 Forum. American Institute of Aeronautics and Astro-
nautics, Orlando, FL, USA, January 2020.

[11] Helmut Reichmann. Cross Country Soaring. Soaring Society of America, 1993.
[12] Klas Andersson, Isaac Kaminer, Vladimir Dobrokhodov, and Venanzio Cichella. Thermal

Centering Control for Autonomous Soaring; Stability Analysis and Flight Test Results.
Journal of Guidance, Control, and Dynamics, 35(3):963–975, May 2012.

[13] J. M. Wharington. Heuristic control of dynamic soaring. In 2004 5th Asian Control
Conference (IEEE Cat. No.04EX904), volume 2, pages 714–722 Vol.2, July 2004.

90

Bibliography

[14] N Akhtar, J F Whidborne, and A K Cooke. Real-time optimal techniques for unmanned
air vehicles fuel saving. Proceedings of the Institution of Mechanical Engineers, Part G:
Journal of Aerospace Engineering, 226(10):1315–1328, October 2012.

[15] M. Deittert, A. G. Richards, C. Toomer, and A. Pipe. Dynamic Soaring Flight in Tur-
bulence. AIAA Guidance Navigation and Control Conference, Chicago, August 2009.

[16] Yuyi Liu, Stefano Longo, and Eric C. Kerrigan. Nonlinear predictive control of au-
tonomous soaring UAVs using 3DOF models. In 2013 European Control Conference
(ECC), pages 1365–1370, July 2013.

[17] Renaud Barate, Stéphane Doncieux, and Jean-Arcady Meyer. Design of a bio-inspired
controller for dynamic soaring in a simulated unmanned aerial vehicle. Bioinspiration &
Biomimetics, 1(3):76–88, September 2006.

[18] C. Montella and J. R. Spletzer. Reinforcement learning for autonomous dynamic soaring
in shear winds. In 2014 IEEE/RSJ International Conference on Intelligent Robots and
Systems, pages 3423–3428, Chicago, IL, USA, September 2014.

[19] Seong-hun Kim, Jihoon Lee, Seungyun Jung, Hanna Lee, and Youdan Kim. Deep Neural
Network-Based Feedback Control for Dynamic Soaring of Unpowered Aircraft. IFAC-
PapersOnLine, 52(12):117–121, January 2019.

[20] Ruben E. Perez, Jose Arnal, and Peter W. Jansen. Neuro-Evolutionary Control for Opti-
mal Dynamic Soaring. In AIAA Scitech 2020 Forum. American Institute of Aeronautics
and Astronautics, January 2020.

[21] Nicholas Lawrance and Salah Sukkarieh. Wind Energy Based Path Planning for a Small
Gliding Unmanned Aerial Vehicle. In AIAA Guidance, Navigation, and Control Confer-
ence, Guidance, Navigation, and Control and Co-located Conferences. American Institute
of Aeronautics and Astronautics, Chicago, IL, USA, August 2009.

[22] Roland B. Stull. An Introduction to Boundary Layer Meteorology. Atmospheric Sciences
Library. Springer, Dordrecht, first edition, 1988.

[23] Mark Cutler, Tim McLain, Randal Beard, and Brian Capozzi. Energy Harvesting and
Mission Effectiveness for Small Unmanned Aircraft. In AIAA Guidance, Navigation,
and Control Conference, Guidance, Navigation, and Control and Co-located Conferences.
American Institute of Aeronautics and Astronautics, August 2010.

[24] Anil Rao. A Survey of Numerical Methods for Optimal Control. Advances in the Astro-
nautical Sciences, 135, January 2010.

[25] John T. Betts. Practical Methods for Optimal Control and Estimation Using Nonlinear
Programming, Second Edition. Advances in Design and Control. Society for Industrial
and Applied Mathematics, January 2010.

[26] Timothy D. Woodbury, Caroline Dunn, and John Valasek. Autonomous Soaring Using
Reinforcement Learning for Trajectory Generation. In 52nd Aerospace Sciences Meeting,
AIAA SciTech Forum. American Institute of Aeronautics and Astronautics, National
Harbor, MD, USA, January 2014.

[27] Jen Chung, Nicholas Lawrance, and Salah Sukkarieh. Learning to soar: Resource-
constrained exploration in reinforcement learning. The International Journal of Robotics
Research, 34:158–172, January 2014.

[28] Kenneth O. Stanley and Risto Miikkulainen. Evolving Neural Networks through Aug-
menting Topologies. Evolutionary Computation, 10(2):99–127, June 2002.

91

Bibliography

[29] Răzvan Florian. Correct equations for the dynamics of the cart-pole system. August
2005.

[30] Alan McIntyre, Matt Kallada, Cesar G. Miguel, and Carolina Feher da Silva. Neat-
python. CodeReclaimers, 2015.

[31] Art B. Owen. Monte Carlo Theory, Methods and Examples. 2013.
[32] Eric J. Kim and Ruben E. Perez. Neuroevolutionary Control for Autonomous Soaring.

Aerospace, 8(9):267, September 2021.
[33] ArduPilot. ArduPilot Autopilot Software Suite, 2010.
[34] Laminar Research. X-Plane 10, 2013.
[35] Michael Osborne. ArduPilot Mission Planner, 2015.
[36] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction.

Adaptive Computation and Machine Learning Series. A Bradford Book, Cambridge,
MA, USA, second edition, November 2018.

92

Appendices

93

A Reinforcement Learning Case
Details

This section provides additional details on the actor-critic and NEAT algorithms implemented
for the cart-pole case presented in Chapter 4.

A.1 Simulation Environment

The simulation model of the cart-pole system used the parameters listed in Table A.1. The
state space was continuous for both algorithms.

Table A.1: Cart-pole system parameters.

Parameter Value
Maximum simulation time 30.0s
Discrete time step size 0.02s
Control actuation frequency 25 Hz
Cart mass 0.711 kg
Pole mass 0.209 kg
Pole length 0.652 m
Maximum cart position ±2.4 m
Maximum pole angle ±12 deg
Control force 10 N

A.2 Actor-critic Reinforcement Learning Implementation

The actor-critic algorithm use separate models to select actions through the policy structure
known as the actor, and estimate the value function through the critic [36]. Both the pol-
icy and values are typically encoded in artificial neural networks. After obtaining an action
at from the actor network, the action is taken to calculate the reward rt+1 and the agent’s
next state st+1. The critic network subsequently calculates the values of the previous V (st)
and new states V (st+1), which are used to compute the advantage A(st, at) and update the
networks through backpropagation. The advantage, a measure of how much better it is to
take a specific action from a certain state than the average value of that state, is estimated
using the formula for the temporal difference (TD) error δt, where γ is the discount factor
that dictates the degree of importance attributed to future rewards:

94

A.2. Actor-critic Reinforcement Learning Implementation

δt = rt+1 + γV (st+1)− V (st) (A.1)
≈ A(st, at) (A.2)

The advantage and the value of the new state are used to update the neural networks.
The algorithm is summarized in Algorithm 3.

Algorithm 3 Actor-critic algorithm.
1: Create and initialize actor and critic networks with random weights
2: for each episode: do
3: Fetch initial state s
4: for each step in episode: do
5: Sample action A from actor network
6: Obtain next state s′, reward r
7: Compute neural network update targets (advantage, value of new state)
8: Update network weights using the targets and the inputs
9: s← s′

To compare the topologies and performances of the RL and NEAT policies, it was first
necessary to determine the actor network’s topology. Initially, a hyperparameter search was
conducted to find a set of parameters that consistently resulted in successful policies, which
is listed in Table A.2.

Table A.2: Actor-critic reinforcement learning hyperparameters.

Hyperparameter Value
Actor learning rate 1× 10−3

Critic learning rate 5× 10−3

Discount factor 0.99
Number of episodes 1000

A second parameter search was conducted to find the best-performing topology, and the
results are shown in Table A.3. The network with 1 hidden layer with 32 units was shown to
keep the system within state bounds for the greatest duration, and therefore, it was selected
for comparison with the NEAT-evolved network.

95

A.2. Actor-critic Reinforcement Learning Implementation

Table A.3: Actor-critic reinforcement learning topology search results.

Number of Number of hidden Maximum balancing time, s
hidden layers units per layer

0 0 1.60
1 4 1.34
1 16 3.20
1 32 5.50
1 64 4.38
2 4 2.04
2 16 1.74
2 32 1.64
2 64 2.90

96

	Acknowledgments
	Abstract
	Résumé
	List of Tables
	List of Figures
	Nomenclature
	Introduction
	Motivation for the Research
	Research Objectives
	Thesis Layout
	Contributions

	Literature Review
	Wind Detection
	Trajectory Planning
	Aircraft Control
	Intelligent Control

	Modelling and Trajectory Optimization
	Aircraft Characterization
	Equations of Motion
	3DOF Aircraft Model

	Surface Wind Shear Model
	Thermal Models
	Thermal Bubble
	Thermal Column

	Ridge Wind Shear Model
	Formulating the Optimal Control Problem
	Solving the Optimal Control Problem
	Trajectory Optimization for Dynamic Soaring

	Neurocontrol
	Machine Learning
	Reinforcement Learning
	Artificial Neural Networks

	NeuroEvolution of Augmenting Topologies
	NEAT Algorithm
	NEAT Control

	Neuroevolutionary Control Approach
	Fitness Function
	Simulation Environment

	Deterministic Dynamic Soaring
	Deterministic Thermal Soaring
	Deterministic Ridge Soaring

	Robust Neurocontrol
	Stochastic Neuroevolutionary Control
	Robustness Quantification
	Uncertainty Modelling
	Variable Initial States
	Variable Initial Wind Profile
	Dynamic Wind Profile
	Wind Gusts
	Measurement Noise

	Stochastic Simulation Environment

	Robust Dynamic Soaring Case Studies
	Deterministic Neurocontrollers
	Initial-State-Robust Neurocontroller
	Initial-Wind-Robust Neurocontroller
	Dynamic-Wind-Robust Neurocontroller
	Gust-Robust Neurocontroller
	Sensor-Noise-Robust Neurocontroller
	Multi-Robust Environment

	Autopilot Implementation
	SITL Framework
	SITL Models
	SITL Neurocontroller Evolution
	SITL Flight Simulation

	Conclusions and Recommendations
	Conclusions
	Recommendations for Future Work

	Bibliography
	Appendices
	Reinforcement Learning Case Details
	Simulation Environment
	Actor-critic Reinforcement Learning Implementation

