
Learning to Communicate in Multi-Agent

Reinforcement Learning for Autonomous Cyber Defence

Apprendre à Communiquer entre Multi-Agent en

Apprentissage par Renforcement pour une Défense

Autonome en Cybersécurité

A Thesis Submitted to the Royal Military College of Canada
Department of Electrical and Computer Engineering

by

Lt(N) Faizan Contractor

Supervisor: Dr. Ranwa Al Mallah

In Partial Fulfillment of the Requirement for the Degree of
Master of Applied Science in Computer Engineering

April 2024

© This thesis may be used within the Department of National Defence
but copyright for open publication remains the property of the author.

Acknowledgments

Firstly, I would like to take this opportunity and express my deepest gratitude
to my supervisor, Dr. Ranwa Al Mallah, for her unwavering support and guidance
throughout this journey. This thesis was extremely challenging and only made
possible due to her encouragement and providing a steady source of inspiration
along with her knowledge and advice. Next, I would like to thank Dr. Li Li for
her timely expertise at stages when the research felt impossible. I also want to
acknowledge Royal Military College of Canada for accommodating me with key
resources in order to complete this thesis.

ii

Abstract

Multi Agent Reinforcement Learning (MARL) trains multiple Reinforcement
Learning (RL) agents to either achieve a common goal or compete against each
other. Popular methods in cooperative MARL with partially observable environ-
ments, only allow agents to act independently during execution which may limit
the coordinated effect of the trained policies. However, by facilitating the sharing
of critical information such as network topology, known or suspected threats, and
event logs, effective communication can lead to a more informed decision-making
in the cyber battle-space. While a game theoretic approach has shown success in
real world applications, its applicability to cybersecurity is an active area of re-
search. The aim of this thesis is to demonstrate the importance and effectiveness
of communication between blue agents and to show that relaying key information
will allow these agents to stop a malicious actor from compromising hosts across
subnets. This thesis also hopes to contribute in the development of techniques
that can enhance autonomous cyber defence on an enterprise network. The re-
sults demonstrate that through Differentiable Inter Agent Learning, the defender
agents play sequential games in Cyber Operations Research Gym and learn to
communicate to prevent imminent cyber threats. The tactical policies learned
by the autonomous RL agents to achieve the coordination is akin to the human
experts that communicate with each other during an incidence response to avert
cyber threats.

iii

Résumé

L’apprentissage par renforcement multi-agents (aussi connu sous le nom de
Multi Agent Renforcement Learning, MARL) entrâıne plusieurs agents d’apprent-
issage par renforcement soit pour atteindre un objectif commun, soit pour se faire
concurrence. Les méthodes populaires de MARL coopératif dans des environ-
nements partiellement observables permettent uniquement aux agents d’agir de
manière indépendante pendant l’exécution, ce qui peut limiter l’effet coordonné
des politiques apprises. Cependant, en facilitant le partage d’informations cri-
tiques durant l’exécution, telles que la topologie du réseau, les menaces connues
ou suspectées et certains événements, une communication efficace peut conduire à
une prise de décision plus éclairée en cyberdéfense. Bien qu’une approche fondée
sur la théorie des jeux ait fait ses preuves dans des applications réelles, son ap-
plicabilité à la cybersécurité constitue un domaine de recherche actif. L’objectif
de cette thèse est de l’importance et l’efficacité de la communication entre agents
et de montrer que l’échange d’information clé permettra aux agents de la défense
d’empêcher un acteur malveillant de compromettre les hôtes à travers les sous-
réseaux. Cette thèse vise également à contribuer au développement de techniques
permettant d’améliorer la cyberdéfense autonome sur un réseau d’entreprise. Les
résultats démontrent que grâce à la technique d’apprentissage différenciable inter-
agents, les agents de la défense jouent à des jeux séquentiels dans un gymna-
sium appelé Cyber Operations Research Gym et apprennent à communiquer pour
prévenir les cybermenaces imminentes. Les politiques tactiques apprises par les
agents RL autonomes pour réaliser la coordination s’apparentent aux experts hu-
mains qui communiquent entre eux lors d’une réponse à une incidence pour éviter
les cybermenaces.

iv

Contents

List of Figures viii

List of Tables ix

1 Introduction 1
1.1 Motivation . 2
1.2 Statement of Deficiency . 3
1.3 Aim . 3
1.4 Research Activities . 4
1.5 Contributions . 5
1.6 Organization . 5

2 Background 6
2.1 Reinforcement Learning . 6

2.1.1 Markov Decision Process 7
2.1.2 Classification of RL algorithms 8
2.1.3 Q-Learning . 9

2.2 Deep Learning . 10
2.2.1 Deep Q-Networks . 11
2.2.2 Recurrent Neural Networks 12
2.2.3 Deep Recurrent Q-Networks 13

2.3 Multi Agent Reinforcement Learning 13
2.3.1 Advantages and Challenges in MARL 14
2.3.2 QMix . 16

2.4 Learning to Communicate . 17
2.4.1 RIAL and DIAL . 17
2.4.2 CommNet . 20
2.4.3 BiCNet . 21
2.4.4 TarMAC . 22
2.4.5 IC3Net . 22

2.5 Summary . 24

3 Cybersecurity Related Work in Reinforcement Learning 25
3.1 Autonomous Cyber Operations . 25

3.1.1 ACO environments . 26
3.2 RL in Cybersecurity . 28

3.2.1 IDS . 28
3.2.2 Penetration Testing . 29
3.2.3 RL Agents in Cyber Defence 29

3.3 MARL in ACO . 31
3.4 Summary . 32

v

4 Methodology 33
4.1 Establish the Research Environment 33

4.1.1 Cyber Operations Research Gym 34
4.1.2 Network Configuration . 35
4.1.3 Attacker Agent . 37
4.1.4 Defender Agents . 40

4.2 Algorithm Implementation . 44
4.2.1 DIAL-CybORG Integration 45
4.2.2 DIAL Hyperparameters . 46

4.3 Communication Strategy and Game Design 47
4.3.1 Port Scan . 47
4.3.2 Detection Rate . 48
4.3.3 Action Masking . 48
4.3.4 Block Action . 50

4.4 Game Design for Advanced Configurations 50
4.4.1 Green Agent . 51
4.4.2 Scan Detection Rate . 51
4.4.3 Large Simulated Network 51

4.5 Methodology Summary . 52

5 Evaluation and Results 53
5.1 Evaluation Criteria . 53

5.1.1 Benchmarks . 54
5.1.2 Evaluation Metrics . 55
5.1.3 Evaluation Process . 55
5.1.4 Experimental Setup . 57
5.1.5 Optimal Score . 58

5.2 Results . 58
5.2.1 Phase 1 . 58
5.2.2 Phase 2 . 61
5.2.3 Phase 3 . 65

5.3 Discussion . 67
5.3.1 Communication . 67
5.3.2 Monitor action and threat detection 69
5.3.3 Green agent . 70
5.3.4 Large Network . 70

5.4 Evaluation Summary . 71

6 Conclusion 72
6.1 Contributions . 72
6.2 Future Work . 72
6.3 Closing Remarks . 73

References 75

A DIAL Algorithm 81

vi

B Sample Games 82
B.1 Game play for policy analysis in Phase 2 - Scenario 2: ’Block’ . . . 82
B.2 Game play for policy analysis in Phase 3 - Scenario 1: Green Agent 93
B.3 Partial Game play for policy analysis in Phase 3 Scenario 3: Large

Network . 104

vii

List of Figures

2.1 A single agent interacting with an environment. 6
2.2 An example of a neural network with two hidden layers. 11
2.3 Multiple agents interacting with the environment. 14
2.4 Decentralised Learning vs CLDE. 15
2.5 QMix architecture. 16
2.6 Communication flow in RIAL and DIAL 19
2.7 DIAL architecture. 20
2.8 CommNet model. 21
2.9 BiCNet architecture. 21
2.10 TarMAC architecture. 23
2.11 IC3Net architecture. 24
4.1 Research Activities. 33
4.2 Network established for cyber games in CybORG. 36
4.3 Attacker agent’s decision tree in the base scenario. 37
4.4 Observation spaces for blue agents in the base scenario. 43
4.5 Large network with three subnets. 52
5.1 Comparative learning curves in Phase 1 with different detection

levels. 59
5.2 Evaluation scores of DIAL, DIAL-no comms, and QMix for both

trials in Phase 1. Standard deviation is represented by bars. 60
5.3 Trained agent policies in Phase 1 for all scenarios and for all algo-

rithms. 61
5.4 Comparative learning curves in Phase 2 with and without ’block’

action. 63
5.5 Evaluation scores of DIAL, DIAL-no comms, and QMix for both

trials in Phase 2. Standard deviation is represented by bars. 64
5.6 Optimized policies of Phase 2 for DIAL. 64
5.7 Learning curves of the different algorithms for the green agent

scenario in Phase 3. 65
5.8 Learning curve for the varied port scan detection rate in Phase 3. . 66
5.9 Learning curve for the large network in Phase 3. 67
5.10 Protocol of Multi-Step MNIST game. 68

viii

List of Tables

2.1 Comparison of RIAL, DIAL, CommNet, BiCNet, TarMAC, and
IC3Net algorithms . 18

4.1 Parameters used to train agents in baseline 34
4.2 Actions available to the attacker agent 38
4.3 Actions available to the defender agents. 40
4.4 Parameters for the DIAL algorithm. 46
5.1 Evaluation scores across multiple iterations for phase 1, with the

standard deviation. 60
5.2 Evaluation scores across multiple iterations for phase 2, with the

standard deviation. 62
5.3 Evaluation scores across multiple iterations for phase 3, with the

standard deviation. 67

ix

1 Introduction

The digital age has brought forward many technological advancements, amongst
them are the advantages of global inter-connectivity. However, these benefits also
come with increased vulnerabilities to cyber attacks. A cyber attack, defined as
an act or an attempt to compromise the properties of confidentiality, integrity
or availability of cyber systems, poses a significant threat to organizations as
well as individuals [1]. Although the first major attack took place in 1988 with
the ”Morris Worm”, the history of cybercrimes dates back to over a century.
In today’s times, the ”Morris worm” attack is considered very basic as it took
advantage of early vulnerabilities in the Unix Operating System [2]. Since then,
attackers have grown more sophisticated and covert in targeting organizations
and individual users, incurring heavy financial losses and reputational damage.
Recent estimates have shown that the average global cost, to organizations, of
data breaches reached $4.45 million in 2023 which is 15% increase over the previ-
ous three years underscoring the increased challenges in defending cyber systems
[3].

To combat the evolving threat landscape, Machine Learning (ML) techniques
have gained widespread popularity and among these, Reinforcement Learning
(RL) has evolved as a very potent branch in the field of autonomous cybersecurity.
In RL, the goal of an agent (learner) is to learn a policy in an environment
that maximizes a scalar reward over time and the optimal learned policy allows
the agent to make the best decisions (actions) [4]. Combined with deep neural
networks, RL has seen a lot of success in complex games like Go [5] and Chess
[6], as well as in robotics, and image classification [7]. In cybersecurity, RL
has been applied in Network Intrusion Detection Systems (NIDS) that analyze
network traffic to detect malware, phishing, and Distributed Denial of Service
(DDoS) attacks [8]. However, there are limitations for a single agent to respond
to network intrusion especially when the attack is on a larger scale. To address
this, Multi Agent Reinforcement Learning (MARL) may be equipped to train
multiple agents that can coordinate their actions and collectively respond to
threats. This means that the problem can be decomposed into smaller areas of
responsibility by multiple agents learning through RL.

MARL can be largely classified as competitive or cooperative. In a com-
petitive setting, agents are trained to compete against one another, whereas in
cooperative MARL, agents work towards achieving a common goal. In the lat-
ter, communication allows the agents to share observations and coordinate their
actions. This leads not only to efficient problem solving but also better decision-
making. Moreover, there are different approaches to communication: explicit
and implicit. Explicit communication involves the agents exchanging messages
via a communication channel, while implicit communication relies on the agents
observing each other’s actions to infer their intentions [9].

This research delves into the potential of explicit communication between
agents in cooperative MARL for Autonomous Cyber Defence (ACD). ACD is
defined as a ”terminology focusing on the automated decision-making agents for
cyber systems (like enterprise network, industrial control systems) to mitigate

1

1.1 Motivation

highly complex cyber attacks [10].” Furthermore, this study demonstrates the
effectiveness of communication among defender agents in a simulated network
environment and aims to contribute to the development of advanced techniques
that can help in protecting enterprise networks against cyber threats. The appli-
cation of MARL, coupled with explicit communication, offers a different avenue
for augmenting ACD capabilities, mirroring the tactics used by the human ex-
perts in navigating cyber battlespace.

1.1 Motivation

Organizations employ many techniques and systems such as Intrusion Detec-
tion Systems (IDS), Intrusion Prevention Systems (IPS), penetration testing,
and more as detection and prevention measures against cyber attacks. These
techniques require human intervention to some extent and can lead to delays in
detection and response. With novel and automated attacks, it has become in-
creasingly difficult for analysts to cope with the volume and complexity of these
incidents. A solution to these limitations is to automate some of these techniques
which can lead to efficient detection and response. Machine learning, such as su-
pervised and unsupervised learning, have been adopted to automate the detection
of known threats as well as anomalies [8]. Furthermore, an automated response
with pre-defined actions is also employed upon detection [10]. However, these
ML techniques usually require a large amount of dataset for training which relies
on a set number of features for the detection model and the scripted autonomous
response is not able to effectively cope with the benign traffic [10].

ACD using RL can allow the implementation of decision-making agents that
can take appropriate actions against advanced threats [10]. As stated earlier,
ACD can be implemented with hard-coded rules for agents to make decisions
upon threat detection; however, RL can augment it by allowing agents to learn
their behaviors and adapt to changing threats and the environment. In addition,
agents learn the consequences of their own actions and make decisions on how
to respond to threats in real time. Moreover, decision making in RL is dynamic
and the learning is primarily driven by rewards or penalties that an agent re-
ceives, therefore, labeled or unlabeled datasets to train are not a requirement.
Furthermore, by introducing multiple agents, RL in ACD can be applied on a
larger scale, where multiple agents can take coordinated actions for protecting
the system.

Game theoretic approaches using MARL have seen a lot of success in recent
years within various applications such as traffic control at intersections and robot
path planning [11]. However, very few studies have explored the potential of
applying MARL-based algorithms to cyber defence on an enterprise network [8].
The ones that have applied MARL in the cybersecurity of computer networks
are mostly limited to intrusion detection systems. In fact, a model for multi-
agent based IDS was proposed by Bhosale et al. [12]. Their system includes
three agents on either the same or separate hosts and the agents are trained
independently using information fed from a local database, with very little to no
coordination between the agents. A recent study conducted by Wiebe et al. is
the most relevant research in applying MARL to a simulated cyber environment

2

1.2 Statement of Deficiency

[13]. The authors explore the applicability of cooperative MARL in various cyber
defence scenarios and demonstrate MARL’s capability to develop effective cyber
defence strategies.

1.2 Statement of Deficiency

Although recent research demonstrated that cooperative MARL is applicable for
ACD, the methods that were applied neither showed any communication between
the agents nor any coordination of actions [13]. The lack of coordination high-
lights an important area for improvement and necessitates a deeper understanding
and interpretation of cooperative mechanisms formulated by the MARL agents.
Agents coordinating their actions is like the process of teams of cybersecurity an-
alysts that are domain experts, that work together and typically coordinate their
actions to perform incidence response and mitigation. Therefore, for MARL to
closely resemble the collaborative efforts of expert cybersecurity teams, the be-
haviour of the agents needs to be better explained with algorithms enabling them
to do so.

Moreover, many real-life problems are only partially observable which necessi-
tates communication of sharing experiences and observations. This is important
as without communication, the defender (blue) agents may miss vital informa-
tion regarding the attacker’s (red) activities in another agent’s field of view. They
may fail to coordinate their defence effectively allowing the red agent to compro-
mise hosts across subnets. By relaying key information such as the location of
the attacker or an imminent threat, the blue agents collectively can isolate the
red as well as learn from each other’s behaviors. Additionally, there is a signifi-
cant gap in applying MARL to cybersecurity, specifically in the emerging field of
ACD. Therefore, this research intends to utilize MARL and introduce inter-agent
communication to further this research space.

1.3 Aim

The aim of this research is to demonstrate the importance of communication
between blue agents by showing that relaying key information will allow these
agents to stop a malicious actor from compromising hosts across subnets.

This research seeks to expand upon the study conducted by Wiebe et al.,
by developing autonomous agents with a deliberate communication strategy for
coordination [13]. To accomplish this, agents are trained using a communication
enabled MARL algorithm, that allows each agent to not only take an environment
action but also a communication action at every time-step. The communication
protocol is not predefined but is learned along with the policies for the environ-
ment actions. Furthermore, Cyber-MARL (CyMARL) environment developed
by the authors in [13] is leveraged in this research, and allows multiple agents to
learn defensive tactics in a cyber defence scenario. The trained agents are then
evaluated and assessed based on the following:

1. A quantitative measurement with the average reward as a key metric for
comparing the results with a baseline.

3

1.4 Research Activities

2. An analysis of the content, context and timing of the learned communica-
tion.

The tactical strategies and behaviors learned by the communicating agents
can contribute to the development of more advanced defender agents that can be
tested in emulator environments before deployment on real networks. To achieve
this goal, further research in this field, especially in the development of network
simulators with more realism is warranted.

1.4 Research Activities

The following activities are conducted to demonstrate the importance of commu-
nication between agents:

1. Establish a benchmark cooperative MARL system and environment:

CyMARL environment incorporates a MARL library (PyMARL2) [14], and
Cyber Operations Research Gym (CybORG) for training and evaluating de-
fender agents in cooperative MARL [15]. Several scenarios were established
by Wiebe et al. in this environment and from these, a single confidentiality
scenario is adapted and configured to formulate a baseline. This baseline
allowed defender agents to learn tactical-level decision-making to stop the
malicious actor by utilizing host-based monitoring data.

2. Implement a communication enabled MARL algorithm:

Different approaches in the learning to communicate paradigm are investi-
gated. These approaches are mapped to the problem of ACD. By conduct-
ing an in-depth analysis and by varying their conditions, the feasibility of
different communication techniques in the simulated scenario are evaluated.
A learning to communicate MARL algorithm is selected and implemented
in CyMARL.

3. Investigate communication strategy and define the game design:

Preliminary experiments are conducted where factors influencing the com-
munication strategy are explored. The content and the timing of the com-
munication is analysed which laid the foundation of the appropriate game
design for further experiments. Based on the findings from the preliminary
experiments, a scenario is designed which allowed the defender agents to
have meaningful communication, that led to a coordinated effect in stopping
the adversary from lateral movement.

4. Expand complex game design elements:

A ’block’ action is implemented which further augmented the defence capa-
bilities of the defender agents. As an important component of a comprehen-
sive cyber defence strategy, this block action allows the blue agents to stop
all traffic from a specific zone. Different experiments are conducted in the
study of this proactive measure to stop potentially harmful traffic or activ-
ities from reaching their intended target. Furthermore, to test scalability,

4

1.5 Contributions

more complex game design elements are pursued. Different scenarios are
devised to test the communication strategies in larger and more complex
problem spaces.

5. Evaluate communication performance:

The effectiveness of the communication design in the presence of diverse
adversarial strategies and network architectures are assessed in comparison
with the non-communicative strategies set in the baseline.

1.5 Contributions

The biggest contribution made by this study is the successful validation of inter-
agent communication within ACD that applies multi-agent systems. The agents
developed in this research not only autonomously responded to threats but also
meaningfully communicate before making their decision. Furthermore, this re-
search highlights some important limitations of multi-agent ACD simulators that
challenges the ability of agents to collaboratively address cyber threats.

1.6 Organization

Chapter 2 will provide background information on RL, Deep Learning, and
MARL, with a review of learning to communicate algorithms, and an analy-
sis of their applicability in the ACD environments. Chapter 3 discusses related
work where different ACD environments are assessed. A study of the state of
RL in cybersecurity is also provided in this chapter. Chapter 4 describes the
methodology that is adopted for this research. Chapter 5 presents the evaluation
and results that demonstrate the importance of communication between defender
agents in CybORG. Chapter 6 provides the conclusion and future work.

5

2 Background

This research combines two areas of study: multi agent reinforcement learning
and cyber defence. Within MARL, learning to communicate is an emerging
paradigm where agents discover a communication protocol in order to make in-
formed decisions in an environment. This emerging trend is the focus of this
research wherein the learning to communicate paradigm will be applied to au-
tonomous cyber defence. This chapter details the core concepts of RL, Deep
learning and MARL that are relevant to this thesis and leads into the learning
to communicate paradigm. RL will be discussed first with a brief description of
the tabular methods. Deep learning will be covered next with an emphasis on
recurrent neural networks. Additionally, an overview of MARL will be outlined,
with different approaches to training the agents, and benefits and challenges of
training multiple agents. Lastly, the theory of communication between agents
will be examined with a detailed overview of state of the art algorithms.

2.1 Reinforcement Learning

Reinforcement Learning is a branch in ML that is distinct from other ML streams
where an agent is enabled to make a sequence of decisions to achieve a goal. Unlike
supervised learning, where a model learns from a labelled dataset for classification
tasks, and unsupervised learning, which seeks to find patterns or structures in
data without labels, prior knowledge in RL is not a requirement. Learning in
RL is primarily driven by reward signals where an agent receives a reward or a
penalty for the decisions it makes in the environment it interacts with. Decision-
making policies are learned via an iterative trial and error process where at every
timestep t, an agent has a pool of actions available to choose from. Moreover,
rewards received by an agent are not necessarily instantaneous, and therefore the
sequence of decision-making unfolds over several timesteps. The underlying goal
of this agent is to maximize the cumulative scalar reward over time [4]. It can be
seen in Figure 2.1, that when an agent chooses an action At, it observes a reward
Rt+1 and a new state St+1.

Figure 2.1: A single agent interacting with an environment.

6

2.1 Reinforcement Learning

2.1.1 Markov Decision Process

Decision-making in RL is typically modelled as a Markov Decision Process (MDP)
which is an extension of Markov processes (or Markov chains). A Markov process
is described as a sequence of events in which the probability of state transition to
the next state St+1 only depends on the current state St and so the history that
led to the current state can be discarded. A Markov process consists of a tuple (S,
P), where S is a set of states, and P is the probability of the state transitioning
from St → St+1 [4]. Equations 2.1 and 2.2 below express the Markov property
and the state transition function.

P[St+1 |St] = P[St+1 |S1, . . . , St] (2.1)

Pss′ = P[St+1 = s′ |St = s] (2.2)

Building upon this foundation, a MDP introduces three additional compo-
nents to the Markov process tuple (S, A, P , R, γ), where A is the set of actions,
R is the reward function for the state transition and γ ∈ [0, 1] is a constant that
discounts future rewards to prioritize immediate or future returns. The transi-
tion to a new state not only depends on the current state, but also on the action
taken and the reward received is a function of the state transition and action as
described in 2.3 and 2.4 [4]:

Pa
ss′ = P[St+1 = s′ |St = s,At = a] (2.3)

Ra
s = E[Rt+1 |St = s,At = a] (2.4)

The notion of return in MDP encompasses the cumulative future rewards,
that emphasises the goal of maximizing long term return rather than immediate
rewards. This return Gt can be written as a sum of all discounted future rewards
in the following equation 2.5:

Gt = Rt+1 + γRt+2 + . . . =
∞∑
k=0

γkRt+k+1 (2.5)

A policy π in this context is a mapping that defines the probability of choosing
an action given the current state, that guides the agent’s decision-making process
in 2.6:

π(a|s) = P[At = a |St = s] (2.6)

The equations above can now be used to formalise the Bellman expectation
equations for state-value functions and action-value functions. These equations
express the recursive relationship between the value of a current state (or a state-
action pair) and the values of the next states. The state-value function vπ(s) is
defined as the expected return starting in state s and by following a policy π.

vπ(s) = Eπ[Gt |St = s] = Eπ[Rt+1 + γvπ(St+1) |St = s]

=
∑
a∈A

π(a|s)(Ra
s + γ

∑
s′∈S

P a
ss′vπ(s

′)) (2.7)

7

2.1 Reinforcement Learning

The action-value function qπ(s, a) is defined as the expected return starting in
state s, taking the action a and by following a policy π [4].

qπ(s, a) = Eπ[Gt |St = s,At = a]

= Eπ[Rt+1 + γqπ(St+1, At+1) |St = s,At = a]

= Ra
s + γ

∑
s′∈S

P a
ss′

∑
a∈A

π(a′|s′)qπ(s′, a′) (2.8)

The Bellman expectation equations above evaluate how good a given policy
is but does not reveal the best way to behave in a MDP. In order to solve a
RL problem, a policy needs to be derived that maximises the return over time.
The optimal state-value and action-value functions are the ones that generate
the maximum values in comparison to other values. To find these, the equations
above are refined into the Bellman optimality equations as follows [4]:

v∗(s) = max
a

[Ra
s + γ

∑
s′∈S

P a
ss′v

∗(s′)] (2.9)

q∗(s, a) = Ra
s + γ

∑
s′∈S

P a
ss′ max

a′
q∗(s′, a′) (2.10)

Most RL problems can be solved by leveraging these Bellman equations in
some capacity that iteratively updates the value functions and improves the policy
towards optimality. These principles make the framework of MDP versatile,
enabling it to solve a wide range of problems such as robotics and even tactical
level decision making in cybersecurity.

2.1.2 Classification of RL algorithms

A RL algorithm can be defined as a method for training agents to make decisions
in an environment to achieve a goal [4]. Through RL, an agent learns the mapping
of states to actions (deterministic) or states to action probabilities (stochastic).
RL algorithms are broadly categorized based on the model of the environment
they use, if they are value-based or policy-based and the type of policy they
follow.

Model-Free vs Model-Based: Model-free algorithms train agents directly
from the experiences of the interaction with the environment. Meaning, agents
learn a policy or a value function based on the states and rewards observed and
rely on trial and error in gradually refining the decision-making strategies. On the
other hand, in model-based learning, a model of the environment is constructed,
including the transition probabilities P a

ss′ and the reward function Ra
s , for plan-

ning and decision-making. This allows the agent to simulate the environment
without directly interacting with it. In other words, agents can predict the next
state and the reward without actually having to take an action in an environment
[4].

8

2.1 Reinforcement Learning

Value-Based vs Policy-Based: Value-based learning is concerned with
learning the value functions that generate an optimal policy. Note that the opti-
mal policy is not generated directly but implicitly. These value functions provide
a measure of how good it is to take a particular action in a certain state. In
contrast, the policy optimization methods also known as policy-based methods,
directly optimize the policies that maximize the expected return as shown in the
policy gradient Equation 2.11 below. These methods seek to adjust the parame-
ters of the policy via gradient ascent on the expected return. An obvious benefit
of directly handling a policy is that it allows the agents to learn a continuous
action space and also enables them to learn stochastic policies [7].

∇θJ(θ) = Eπθ

[∑
t

∇θ log πθ(at|st)Rt

]
, (2.11)

J(θ) represents an objective function and θ represents the policy parameter.
Off-Policy vs On-Policy: Off-policy algorithms can learn the target policy

from data generated from following a different policy. This approach allows learn-
ing to be flexible where an agent is able to learn from sampled historical data
(experience replay) or from exploring multiple strategies simultaneously. On-
Policy algorithms are the methods that learn policies by directly following and
updating them. Meaning, an agent takes actions in the environment according
to its current policy and then updates the policy based on the action taken. The
policy being improved is the same one used to interact with the environment [4].

2.1.3 Q-Learning

Q-Learning is a model-free, value-based, off-policy algorithm in RL, that seeks to
find an optimal policy for any given finite MDP. It operates by learning an action-
value function that ultimately allows an agent to take an action in a given state.
The algorithm is one of the earliest tabular forms of learning, where q-values for
each state-action pair are stored in a table [4].

As it can be seen in Algorithm 1, the Q function is updated iteratively using
the Bellman equation, as the agent explores in an environment [4]. This tabular
approach is obviously limited for RL problems with large and continuous state
spaces. To address these issues, Q-Learning and other RL algorithms adopted
function approximation. Techniques such as linear regression were used to ap-
proximate the Q-values instead of storing them in tables. This approach allows
for generalization across similar states but were still limited in handling more
complex environments. Nonetheless, these techniques provided a foundation for
future algorithms that leverage deep neural networks which will be discussed in
the next section.

A few notable terms introduced in the Q-Learning Algorithm are as follows:

• Episode: This refers to a trajectory of an agent from an initial state to a
terminal state, through an environment. An episode usually ends when an
agent reaches the final state but also can be a fixed number of timesteps.
The game is reset after the end of an episode and repeated for agents to
learn an optimal policy.

9

2.2 Deep Learning

Algorithm 1 Q-Learning Algorithm for estimating π ≈ π∗

1: Algorithm params: step size α ∈(0,1] , small ϵ > 0
2: Initialize Q(s, a) arbitrarily for all s ∈ S, a ∈ A(s)
3: for each episode do
4: Initialize state s
5: for each step of episode do
6: Choose action a from state s using policy derived from Q (e.g., ϵ-

greedy)
7: Take action a, observe reward r and next state s′

8: Q(s, a)← Q(s, a) + α [r + γmaxa′ Q(s′, a′)−Q(s, a)]
9: s← s′

10: end for
11: end for

• ϵ: This refers to the exploration rate of an agent. Depending on this rate,
it allows the agent to sometimes explore new actions in a given state and
at other times follow the learned policy.

• α: This represents the learning rate, which scales the size of the updates of
the value function.

2.2 Deep Learning

Deep Learning (DL) is another subset of ML, that utilizes Artificial Neural Net-
works (ANN) in order to learn representations directly from data. ANN’s are
composed of nodes (neurons) which are interconnected through an input layer
to the output layer, and includes one or more hidden layers. The distinction
between a Deep Neural Network (DNN) and a shallow network lies in the fact
that there are multiple hidden layers within a DNN.

As depicted in Figure 2.2, data in a neural network is fed to the input layer,
which is then passed to the neurons in the hidden layers through a system of
weighted connections. A weight, essentially, is the importance of a particular
neuron. Basically, the values of the input layer are multiplied with the weights and
the sum of all weighted inputs is then sent to the nodes in the hidden layers. This
weighted sum goes through an activation function which subsequently determines
the output signal of a particular neuron. Additionally, each neuron within the
hidden layers has a scalar value associated with it known as bias. Bias allows
the model to shift the activation function towards left or right to better fit the
data. In general, this whole process is sequentially applied across all hidden layers
until reaching the output layer, which outputs the node with the highest value
representing the model’s prediction [16]. However, there are other architectural
possibilities depending on the type of neural network and the specific task such
as convolutional and pooling layers in Convolutional Neural Networks (CNNs),
recurrent and attention mechanisms in Recurrent Neural Networks (RNNs) and
transformers respectively [16].

The training of a neural network involves backpropagation which is virtually

10

2.2 Deep Learning

Figure 2.2: An example of a neural network with two hidden layers.

the reverse of the forward propagation process described above. During back-
propagation, the information flows from the output layer to the hidden layers.
Here, the model uses a loss function to evaluate its accuracy on the predicted
output value by calculating the deviation (error) of the predicted value from the
actual output. To minimize this error, the model typically employs gradient de-
scent which iteratively adjusts the weights and biases by calculating the gradient
of the loss function with respect to each weight and bias [16].

An important aspect of deep learning is that the model can learn by processing
large amounts of raw data without a need for manual feature manipulation and
extraction which is usually the case with supervised and unsupervised learning.
This has led to major advancements particularly in fields like image processing,
speech recognition, and language translation where traditional algorithms had
previously fallen short [7].

2.2.1 Deep Q-Networks

The application of DNN to RL, also known as Deep Reinforcement Learning
(DRL), posed a significant challenge initially. The issue arises in the fact that
deep learning models learn by using large samples of datasets to make their
predictions. However, in RL, data is generated sequentially as agents take their
actions and receive their rewards which proved infeasible in learning DNNs. To
combat these challenges, Mnih et al. proposed Deep Q-Networks (DQN) [17].

In DQN, outlined in Algorithm 2, an online network (Q-network) actively
learns and approximates the Q-value function during training. Thus, it is respon-

11

2.2 Deep Learning

Algorithm 2 Deep Q-Network (DQN) Algorithm

1: Initialize replay memory D to capacity N
2: Initialize action-value function Q with random weights θ
3: Initialize target action-value function Q̂ with weights θ− = θ
4: for episode = 1,M do
5: Observe initial state s1
6: for t = 1, T do
7: With probability ϵ select a random action at
8: otherwise select at = maxaQ(st, a; θ)
9: Execute action at and observe reward rt and new state st+1

10: Store transition (st, at, rt, st+1) in D
11: Sample random mini-batch of transitions (s, a, r, s′) from D
12: Set y = r if episode terminates at step t+ 1
13: otherwise set y = r + γmaxa′ Q̂(s′, a′; θ−)
14: Perform a gradient descent step on (y − Q(s, a; θ))2 with respect to

the network parameters θ
15: Every C steps reset Q̂ = Q
16: end for
17: end for

sible to make predictions of agent actions based on the current state. The key
innovation of this algorithm is the use of experience replay, which provides enough
samples, and an additional neural network (target network), which stabilises the
training of the main network. Experience replay stores agent experiences (actions
in a given state, rewards etc.) in a replay buffer and after enough samples have
been collected, the buffer is then sampled again to train the main network. The
target network has the same architecture as the main network but its weights
are updated less frequently. The use of the secondary network, prevents the
moving target problem, where the Q-value updates of the main network are not
as significant, and are aligned with the target network [17]. This integration of
deep learning with Q-Learning was a breakthrough that significantly improved
the ability of RL algorithms to solve problems in large state spaces, such as atari
games that provide pixel input as observations.

2.2.2 Recurrent Neural Networks

The most basic type of deep neural networks are Multi-Layer Perceptrons (MLP)
which are fully connected feed forward networks. Typically, these networks take
a set number of inputs and have fixed-size outputs. And although, these models
are powerful in solving many complex problems, they have limitations especially
with processing sequences of data.

Unlike MLP, RNN can have variable input length and have connections that
loop within the hidden layers. This means that RNN use not only the current
input for their prediction, but also the hidden state from the previous input,
which allows the knowledge from the previous input to persist. This memory
characteristic makes RNN particularly suited for tasks that involve sequential

12

2.3 Multi Agent Reinforcement Learning

inputs, such as time series analysis [16].

2.2.3 Deep Recurrent Q-Networks

While MDP scenarios require the visibility of the entire state, there exists another
framework called Partially Observable Markov Decision Process (POMDP) that
enable agents in RL to solve problems without complete access to an environment.
This obviously adds a layer to the complexity where agents now must make
decisions based on partial observations. The DQN algorithm, discussed in Section
2.2.1, is designed for situations where an environment is fully observable and
inherently assumes that the observations provided are a complete representation
of the environment state, and therefore struggles in a POMDP framework.

To address this deficiency of DQN in POMDP, Hausknecht and Stone pro-
posed Deep Recurrent Q-Networks (DRQN), an extension of DQN algorithm that
incorporates RNN, specifically the Long Short-Term Memory (LSTM) network,
into the DQN architecture [18]. With this integration, past observations became
accessible via the hidden states due to the memory mechanism of RNN. Along
with the observations from the current timestep, DRQN agents are enabled to
aggregate observations over time which allows agent’s to make more informed
decisions in a partially observable environment.

2.3 Multi Agent Reinforcement Learning

Many real-world problems cannot be solved by a single agent system, and there-
fore multi-agent systems are necessary. MARL extends RL by allowing multiple
agents to interact with one another and the environment. The main difference is
that, in MARL, the environment state is represented as a joint state that includes
individual observations of all agents; the state transitions are then the result of
joint actions of all agents. Rewards for each agent are based on a combination of
the joint state and joint actions [19]. Figure 2.3 shows multiple agents interacting
with the environment.

Cooperative MARL as noted in Chapter 1, is a research area where multi-
ple agents cooperate and potentially coordinate their actions to achieve a com-
mon goal. Cooperative algorithms are generally classified by the way agents are
trained. The most common approaches to training within MARL are: indepen-
dent learning, and centralized learning with decentralized execution.

Independent Learning: In this setting, each agent learns its policy for their
own actions by observing a state and the agents receive a joint reward as seen
in Figure 2.4a [19]. The learned policies are naturally executed independently
as well. This is sometimes also known as decentralized training and execution
paradigm. Experiences and observations of other agents may be monitored but
it does not play any part in making decisions. An example of this approach is the
independent DQN, an extension of single agent DQN, where each agent learns its
own Q-value function independently, without explicitly considering the policies
or behaviors of other agents [20].

Centralized Learning with Decentralized Execution (CLDE): This
paradigm has been extensively studied in recent years and has proven to be better

13

2.3 Multi Agent Reinforcement Learning

Figure 2.3: Multiple agents interacting with the environment.

performing over fully decentralized learning algorithms. It differs from other
frameworks in the way agents coordinate during training versus during execution.
Depending on the algorithm, in the training phase, each agent is allowed to
observe policies or states of all other agents and usually there is no limit to this
coordination [19] as seen in Figure 2.4b. However, during execution, the agents
act independently on the learned policies with limited to no communication. This
technique provides an obvious benefit of reduced overhead during execution. One
such example of CLDE is QMix, which is a popular Q-Learning algorithm for
cooperative MARL and discussed further in Section 2.3.2.

2.3.1 Advantages and Challenges in MARL

One of the main advantages of MARL algorithms is their ability to decompose
a larger problem space of single agent RL into smaller areas of responsibility.
It also offers several other advantages such as robustness and scalability over
single agent RL. If an agent is compromised in a system, others can take over
the responsibilities of the failed agent. Moreover, if more agents are needed to
accomplish any given task, new agents can be introduced. MARL also provides
benefits of experience sharing. This allows for a faster training process and results
in more efficient use of the resources. However, introducing multiple agents also
brings forward many challenges which can make it difficult for agents to find an
optimal policy [21].

Single agent algorithms, like the tabular Q-Learning, calculate all state-action
values known as Q-values for every possible state or state-action pair, which be-
comes computationally infeasible as the number of dimensions grow. In MARL,
this is compounded as the joint state-action space increases exponentially with
the number of agents. This is known as the curse of dimensionality. Moreover,

14

2.3 Multi Agent Reinforcement Learning

(a) Decentralised learning and execution.

(b) Centralised learning and execution.

Figure 2.4: Decentralised Learning vs CLDE.

agents in MARL learn concurrently and therefore the best policy of each agent
changes while other agents take their actions causing the environment to be-
come non-stationary. Additionally, many real-world problems are only partially
observable which necessitates coordination and communication of sharing experi-
ences and observations. However, it is especially challenging to design algorithms
that can impart messages to other agents. Sharing of actions taken, observations
and how much to share over limited bandwidth all depend on the efficiency of
the designed algorithm. A lot of recent work has primarily focused on dealing
with these challenges such as combining deep neural networks with Multi Agent

15

2.3 Multi Agent Reinforcement Learning

Reinforcement Learning, adopting varying learning rates and designing commu-
nication mechanisms and protocols [21].

2.3.2 QMix

Decentralized training and execution such as independent DQN have performed
well for relatively simple tasks such as the atari video games. But for more com-
plex tasks such as the Star Craft II challenge, they fail to converge as it renders
the environment non-stationary. Several methods for centralized training have
drawbacks such as requiring prior knowledge, for example, coordination graphs
and sparse cooperative Q-learning [22]. Even for CLDE, some methods are im-
practical in scaling the number of agents and restricted to on-policy learning
only as seen in Counterfactual Multi-Agent (COMA) [23]. Sometimes they only
represent simple action-value functions and cannot learn extra state information
during training as observed in Value Decomposition Networks (VDN) [24]. There-
fore QMix was introduced in [22] within the CLDE paradigm, which improves
upon all the drawbacks mentioned above.

During learning, QMix architecture incorporates a single feed-forward mixing
network along with DRQN networks (agent network) aseen in Figure 2.5. Inde-

Figure 2.5: QMix architecture [22].

pendent agent policies (Q-values) are output from all agent networks which are
then passed to the mixing network. This mixing neural network aggregates all
individual Q-values of each agent into a global Q-value and is constrained to en-
sure that the joint action-value function is monotonic with respect to each agents
individual Q-value. This constraint aligns the agent’s objectives and guarantees
that if an agent’s individual Q-value changes while others remain fixed, the over-
all Q-value cannot decrease. Additionally, the parameters of the mixing network
are generated by a separate hyper-network, which takes the global state of the
environment as an input. Subsequently, the Qtot output from the mixing network
is then decomposed into individual values which are used for agent actions in the
environment. It is important to note that, during execution, mixing network
plays no part in the decision-making and the agents act independently based on
the Q-values generated by the agent networks [22].

16

2.4 Learning to Communicate

2.4 Learning to Communicate

While CLDE paradigm, without any coordination during execution have been
successfully applied in many applications, it has drawbacks. One major issue is
it limits the ability of agents to respond to situations that require coordinated
actions during execution. It is also limiting when agents do not have a global
view of the state, especially if they are not properly addressed during training.
Centralised execution may be beneficial in overcoming the above shortcomings,
but it suffers with scalability and information overhead. For example, for cyber
defence in an enterprise network, bandwidth may be limited and dealing with the
vast amount of network traffic becomes impractical.

This leads us to the learning to communicate paradigm. This technique al-
lows agents to not only send messages during learning but also during execution.
This area has been extensively researched in the last few years, and has led to
many solutions to enable agents to coordinate by communicating. While some
approaches use CLDE and enable agents to fully cooperate during training while
allowing them to send limited bandwidth messages during executing [25]. Others
have applied the learning to communicate paradigm fully centralised [26] as well
as decentralised policies [27]. Below is a review of some of the state of the art
algorithms in this paradigm. They all have their advantages and disadvantages,
listed in Table 2.1, where algorithms may be only suited to very specific tasks
that they were designed for.

2.4.1 RIAL and DIAL

Foerster et al. proposed two methods, namely Reinforced Inter-Agent Learn-
ing (RIAL) and Differentiable Inter-Agent Learning (DIAL) for commu-
nication for fully cooperative and partially observable problems [25]. Both ap-
proaches are based on DRQN that employ the CLDE framework. In this setting,
the agents can fully communicate without any restrictions during learning, but
during execution, communication is restricted via the limited-bandwidth channel.
As can be deduced, the application of CLDE is atypical in these algorithms, in
which they allow for some abstract information to be conveyed directly even after
the policies have been trained.

In RIAL, the Q-network is separate for all agents where the network for
each agent is split in two, one for the environment actions and the other for
the communication actions. The action selector then determines the appropriate
actions for communication and the environment. It is important to note that the
Q-Networks, that includes the q-values for both, environment and messages are
trained based on the independent DQN foundation and does not take advantage of
centralized learning. Therefore, once a message is sent by an agent, the feedback
of the received message is not provided to the sender. Authors also experimented
with training a singular network for all agents which is known as parameter
sharing. They showed that RIAL benefited from centralized training with this
approach where the agents learn a common network but are still able to deduce
a specialised policy based on the inputs the agent provides [25]. The author’s
intuition was that in a real-world interaction between two people, the listener

17

2.4 Learning to Communicate

Algorithm Features Advantages Disadvantages
RIAL DRQN with CLDE. Interpretable commu-

nication.
Lacks feedback
mechanism.

Parameter sharing.
DIAL DRQN with CLDE. Feedback between

agents during learn-
ing.

Computationally ex-
pensive when scaled.

Gradients for commu-
nication.

Interpretable commu-
nication.

Discrete communica-
tion.

CommNet Average hidden
states of other agents
as inputs.

Integration with stan-
dard RL algorithms.

Communication hid-
den within neural
network.

Continuous commu-
nication

Central Controller.

BiCNet Multi-agent actor-
critic framework.

Scalability due to pa-
rameter sharing.

Increased computa-
tional requirements.

Policy network gen-
erates actions based
on shared observa-
tions and local views.

Communication hid-
den within neural
network.

Q-network evaluates
the actions taken by
agents.

Central Controller.

TarMAC Targeted communi-
cation with learned
message addressing.

Adaptive to variable
team sizes and diverse
environments.

Multi-round commu-
nication approach.

Signature-based soft
attention mechanism.

IC3Net Gating mechanism
to control continuous
communication.

Designed for het-
erogenous agents.

Optimal communica-
tion in large-scale en-
vironments may be
challenging.

Individualized re-
wards for each agent.

Applicable to cooper-
ative and competitive
settings.

Table 2.1: Comparison of RIAL, DIAL, CommNet, BiCNet, TarMAC, and IC3Net
algorithms

must provide some indicators of the level of understanding of a conversation to
the speaker. Based on this principle and on the fact that RIAL is limited in the
fact that agents are unable to provide feedback on each other’s communication
actions, DIAL was introduced.

In DIAL, during centralized learning, both the communication and the envi-
ronment actions are output from a C-Net with a direct connection between one
agent’s network output and another agent’s network input as seen in Figure 2.6.
This allows agents to send direct and continuous real-valued messages to each
other that uses backpropagation of the gradient via the communication channel.
The feedback mechanism functions such that when an agent acts based on the
received communication, the resultant reward informs the value of the communi-
cation where positive outcomes reinforce the message and negative results deter

18

2.4 Learning to Communicate

Figure 2.6: Communication flow in RIAL and DIAL [25].

its future use. During execution, learned messages are transformed into a discrete
set of communication actions suitable for the task.

The C-Net for DIAL as illustrated in Figure 2.7 is a RNN which has two hid-
den layers h that are interconnected and maintained for the entirety of an episode.
The architecture is designed such that it takes four inputs as a tuple (oat , m

a′
t−1,

uat−1, a) that produces z
a
t at each timestep. Subsequently, zat is processed through

a 2-layer RNN alongside the first hidden layer ha1,t from the previous timestep to
produce the outputs. a is the agent identifier, input oat is the partial observation
of agent a at time t, ma′

t−1 is the message received from agent a′ from previous
timestep and uat−1 is previous action of agent a. The output at timestep t con-
sists of q values for the environment actions that are fed to the action selector
and q values for the message that are transmitted to a Discretize/Regularize unit
(DRU). During learning, DRU regularizes the communication signal using a sig-
moid function and during execution, it converts the signal into a discrete binary
value. While, DIAL can handle continuous messages as they are part of the
centralized training process, the authors choose to discretize the real-valued mes-
sages as they aligned better with the experiments they conducted, for instance,
representing the light bulb switch as a binary communication mechanism. Also,
to note, DIAL allows to increase from 1-bit to a larger message space depending
on the task [25]. The algorithm for DIAL can be found in Appendix A.

The authors of DIAL experimented with two simple tasks that are partially
observable and require cooperation and coordination from agents [25]. The first
activity is the prisoner switch riddle, where one hundred prisoners are isolated
and each one is randomly and daily brought into a room with a light bulb. The
task for the prisoners is to announce if everyone has visited the room. If they
announce it correctly, they are all set free but should they be wrong then everyone
will be executed. The authors formalised this game with three and four prisoners
where each prisoner is represented as an agent and the light bulb serves as a
communication channel through which agents can send a message to the next
agent in the room.

The next task involved two agents receiving a random MNIST digit ∈ [0,...,9]
and each agent is to determine the other agent’s digit. The game was designed

19

2.4 Learning to Communicate

Figure 2.7: DIAL architecture [25].

such that each agent has four communication steps, followed by an environment
action to derive the other agent’s number. Experimental results on both of these
tasks showed the success of DIAL in learning effective communication proto-
cols. Agents in each case derived an encoding that unfolded over the number of
timesteps allowed, and solved these games.

2.4.2 CommNet

Communication Neural Network (CommNet) is another proposed algo-
rithm allowing agents to communicate with each other before taking actions in
multi-agent systems [26]. A continuous communication is realized with this model
and the algorithm is trained via backpropagation. The model, as seen in Figure
2.8, involves a central controller that receives information about the state of all
agents and their communication messages and uses multiple steps of communica-
tion to generate output actions for all agents. The process starts with encoding
the state observations and setting the communication messages to zero. Then, in
each round, the controller concatenates the previous hidden and communication
states of all agents and passes them through a linear layer followed by a non-linear
function to obtain new hidden and communication states. The final hidden state
is decoded to provide a distribution over the action space.

The effectiveness of CommNet was tested on cooperative navigation tasks and
compared with other methods in this field. The results showed that CommNet
produced communication strategies that were easy to understand and useful.
However, the algorithm assumes full cooperation between agents at every time-
step, which may not be true in all situations.

20

2.4 Learning to Communicate

Figure 2.8: CommNet model [26].

2.4.3 BiCNet

Bidirectionally-Coordinated Nets (BiCNet) was proposed for training deep
reinforcement learning agents with different parameters to communicate with
each other using a RNN [28]. The architecture, depicted in Figure 2.9, comprises
of a multi-agent actor (policy) and a multi-agent critic (Q-network) network.
The policy network takes shared observations and local information to generate

Figure 2.9: BiCNet architecture [28].

actions for all agents. The Bi-Directional recurrent network serves as a local
memory, allowing individual agents to maintain their own internal states over

21

2.4 Learning to Communicate

time while sharing information with their neighbors. To compute the backward
gradients, the network is unfolded for a certain number of time steps (N), which
represents the length of the sequence of actions taken by the agents. Backprop-
agation Through Time (BPTT) is then applied to propagate the gradients back
through the network, updating the parameters at each time step. The gradients
are then aggregated from both the value function and the policy function, which
determines the actions taken by the agents. This approach assumes that each
agent is aware of the global state of the environment which may not hold true in
a partially observable environment.

2.4.4 TarMAC

Another communication architecture called the Targeted Multi Agent Com-
munication (TarMAC) was proposed, where agents learn what messages to
send and to whom to address them in order to perform cooperative tasks in
partially-observable environments [29] and follows the centralized learning with
decentralized approach. Figure 2.10 illustrates the TarMAC architecture. Each
agent’s policy is implemented as a 1-layer Gated Recurrent Unit (GRU) and takes
the local observation and messages received from other agents as input to update
its hidden state. Each message contains a signature that includes the intended
recipient and a value which is the actual message. Each receiving agent learns
the messages and computes attention weights for every incoming message. The
attention weights are then aggregated and used as input for the local actor along
with the local observation. The system is then trained using a centralized critic
model. The communication system enables multi-round communication to in-
crease efficiency. The goal of the system is to maximize the team reward while
executing joint actions in the environment.

2.4.5 IC3Net

Individualized Controlled Continuous Communication Model (IC3Net)
is introduced by Singh et al. not only for cooperative multi-agent settings but
also for competitive and mixed scenarios, where agents can learn what and when
to communicate based on a given scenario [30]. Figure 2.11 outlines the architec-
ture for IC3Net and can be seen that the observations of each agent are passed
to a Long Short Term Memory (LSTM) module, which is a variant of RNN. The
observations are then encoded and relayed to the communication-action mod-
ule. A gating communication mechanism is employed and controlled by a gating
function, which contains a soft-max layer for two actions (communicate or not).
Subsequently, the communication vector for each agent is calculated as a linear
combination of the hidden states of all other agents and weighted by their binary
communication actions. The binary action is determined based on the output
of the gating function at the current time-step. Both the action policy and the
gating function are trained using the REINFORCE algorithm [4].

The authors demonstrate the effectiveness of IC3Net through experiments in
three different environments, including StarCraft, and show that it outperforms
other baselines such as IC3Net without communication and CommNet [26] in

22

2.4 Learning to Communicate

Figure 2.10: TarMAC architecture [29].

terms of convergence speed and final performance. However, the paper acknowl-
edges some limitations of IC3Net, including the computational cost of training
and the potential difficulty in scaling to very large agent populations. The au-
thors suggest that future research could focus on addressing these limitations and
further improving the performance of the model in more complex scenarios.

23

2.5 Summary

Figure 2.11: IC3Net architecture [30].

2.5 Summary

This chapter provides an overview of essential concepts and algorithms founda-
tional to this thesis. It begins by discussing single-agent RL within the framework
of MDPs and the Q-Learning algorithm. The chapter then transitions to DRL,
highlighting the DQN algorithm and the role of RNNs in handling sequential
data, leading to an exploration of DRQN for environments with partial observ-
ability. The chapter further delves into cooperative MARL, covering CLDE and
the learning to communicate paradigm, where agents share information before
taking actions. A particular focus is given to the DIAL algorithm, which extends
DRQN by enabling direct agent-to-agent communication, thereby improving co-
ordination and learning efficiency.

These advancements in MARL, especially the ability for agents to communi-
cate, have significant implications for ACD. In such scenarios, multiple defensive
agents can collaborate in real-time to detect and mitigate cyber threats more
efficiently than independent agents. This chapter sets the foundation for the de-
tailed exploration of the research presented in subsequent chapters, emphasizing
the potential of MARL with communication for ACD systems.

24

3 Cybersecurity RelatedWork in Reinforcement Learn-
ing

In this chapter will present the current state of cybersecurity within the context
of RL. Particularly, the composition of this chapter is divided such that the first
section delves into the field of Autonomous Cyber Operations (ACO), with an
overview of various ACO environments to train RL agents. Next, we will brief on
various studies that have been conducted in the field of RL in ACO and lastly,
we discuss some real world research of applying communication in MARL.

3.1 Autonomous Cyber Operations

So far, ACD has been introduced and discussed in Chapter 1, which is concerned
with allowing blue agents to autonomously respond to threats in a network. How-
ever, Autonomous Cyber Operations (ACO) is a broader term that encompasses
the autonomous decision making of both, the attacker as well as the defender
agents in a network [15]. Training the red agents alongside blue is critical and
serves two purposes: 1) It provides tools for the red team to automate the of-
fensive, and 2) it enables the development of blue agents that can respond to
dynamic threats rather than static attacks.

This research is focused on training blue agents against a scripted attacker
agent with the argument that, to test the viability of any framework in au-
tonomous defence, defender agents must be evaluated against a predefined ad-
versary as a starting point. Naturally, the next step is then to validate these
techniques against a well trained attacker, who can potentially mimic the threats
of real-world settings, although this approach is left for future work.

RL, specifically DRL, has emerged as an important research area for ACO,
that offers a potential for both, cyber defence as well as offensive capabilities for
the red team. Unlike supervised and unsupervised learning, DRL can facilitate
the simulation of red and blue agents in a network with a sequential gameplay
where red and blue agents take turns, at every step, to deploy their actions.
One of the key potentials of DRL in ACO is its ability to handle large state
spaces, which is essential in environments where agents must make decisions
based on vast amounts of data, such as the enterprise network traffic of real-time
system activities [31]. Here DRL has the ability to extract meaningful patterns
from network and host logs, thereby facilitating more strategic decision-making
processes.

Moreover, DRL is proficient in managing large action spaces that is particu-
larly useful in ACO where the agents must choose from a comprehensive list of
possible actions [31]. These actions may include different mitigation techniques
for blue agents or distinct exploit mechanisms that an attacker can employ at any
given time. The dynamism of the red agent is particularly interesting, where blue
agents can adapt their strategies based on the changing tactics of an attacker, en-
suring that blue agents are well prepared for unpredictable threats. Additionally,
MARL compliments the use of single agent RL, where now multiple agents can
dissect the larger problem space with smaller areas of responsibility. For instance,

25

3.1 Autonomous Cyber Operations

although blue agents still have to learn to detect threats and their mitigation ac-
tions in their respective zones, they individually only have to process data on a
smaller scale compared to one single agent monitoring the entire network.

However, developing agents using MARL on a real network is not feasible due
to the nature of RL requiring many iterations in order to train an agent towards
an optimal policy. Therefore, simulators and emulators must be used to design
these agents. The broader idea is that once these agents are trained in a simulated
network, they can then be validated on an emulated network (virtual machines)
and subsequently can be deployed on a real network. The biggest challenge that
is faced in this area of research is to replicate an actual network with realism and
details in simulations.

Real-world networks are complex, where they are usually divided in segments
for security reasons and also with a possibility of large amounts of benign network
traffic [32]. Networks also consist of many hosts with different operating systems
and unique vulnerabilities they may carry. To capture these intricacies of a real-
world environment in a simulator is difficult and therefore must be simplified when
transferring the details. Although simulations are cost-effective and eliminate
risks associated with real networks or actual malware, it creates a gap where
trained agents on a simulator may develop strategies that are ineffective beyond
the simulated scenarios [33].

Emulated networks, on the other hand, offer a more realistic approach to
training agents within the DRL and MARL frameworks. Unlike simulations, em-
ulations replicate the characteristics of actual networks more closely, and provide
a detailed representation of network behaviors. This allows for the development
of agents that can interact with network dynamics that mirror real-world opera-
tions more accurately.

However, a significant drawback of using emulation is the substantial increase
in training time. They require the setup and maintenance of a nearly full-scale
system, which includes running actual network protocols and services. This not
only demands more computational resources but also slows down the iteration
speed of training cycles. While they bridge the realism gap than simpler simula-
tions, the computational overhead and slower training processes pose challenges
for scaling up experiments, especially when multiple agents are involved and need
to interact in complex scenarios. For this particular reason, this research only
utilizes a simulator and leaves the emulation aspect for future work.

3.1.1 ACO environments

Any RL research in any field requires an environment that allows the agents to
make sequential decisions in that environment. Thus, many environments over
the years have been developed for simulating a cyber space within the context
of RL. Although the developed agents may not be ready to be used on a real
network, yet they still provide a good foundation for all subsequent researches
for autonomous agents.

Microsoft’s Cyber Battle Sim (CBS) is one such simulator that is specif-
ically implemented to train red agents that focus on moving laterally through
a network [34]. The architecture of this environment includes a parameterized

26

3.1 Autonomous Cyber Operations

network where each node represents a windows host with specific vulnerabilities
that an attacker can exploit to move through the network. The actions available
to an agent include local attacks, remote attacks, and connecting to other nodes.
This environment is only partially observable to the agent, where the attacker
has to explore the network for full visibility. The environment is built on the
Python-based OpenAI Gym interface, which can facilitate the training of agents
using various RL algorithms. Lastly, it employs a heuristics based blue agent,
although, with modifications, a blue agent can be trained as well.

Another example of a simulator is the Gym IDS game that allows for train-
ing both the blue and the red agents. The simulator is designed for competitive
RL which is modelled as a Markov game and uses self-play for developing secu-
rity methods that can be used to prevent intrusions [35]. Action space for the
attacker agents comprise of reconnaissance and different exploits for specific vul-
nerabilities. Blue agents can perform the monitor action and various mitigation
actions. The observations for each agent are partial, where attacker only observes
the machines they control, whereas defender agents do not have any visibility of
attacker actions. Similar to CBS, this environment is also based on OpenAI gym
interface, that enables it to be used with various RL algorithms.

Framework for Advanced Reinforcement Learning for Autonomous
Network Defense (FARLAND), developed by MITRE Corporation, provides
both a simulator as well as an emulator, where a set of networked machines
are used to train a single blue agent against heuristic based red agents [36].
The simulation layer allows for testing of strategies without the overhead of real
network operations, while the emulation is used for validating these strategies.
Furthermore, the action space in FARLAND includes a wide range of maneuvers
such as reconfiguring network settings, isolating compromised nodes, or even
deploying decoy systems to mislead attackers. The observation space provides the
defender agent with network activities, from which agents are to find potential
threats and mitigate them. Unfortunately, FARLAND is closed source at this
time.

CyBORG on the other hand is made open-sourced through the Cyber Au-
tonomous Gym for Experimentation (CAGE) challenges [37] and provides both,
a simulator and an emulator [15]. Initially, CybORG was released to train a
single blue agent against a scripted attacker. However, CybORG is modular and
seamlessly allows the red agent to be trained as well. Additionally, with the re-
lease of version 3, it enables multiple agents to cooperate for kinetic and network
defence scenarios for CAGE challenge 3 purposes, which is obviously a distinct
feature when compared to other environments previously discussed. The kinetic
scenarios allow users to train agents that are not only responsible for the simu-
lated computer network but also for simulated drones that are connected to the
network.

Furthermore, CybORG has a large action space compared to others, that
varies depending on the agent’s role and the scenario configuration. Some ex-
amples of blue agent actions include removing a malicious software from a host,
restore if malware cannot be removed, analyse and many more, while red actions
are catered for exploits and privilege escalation [15]. The observation space is

27

3.2 RL in Cybersecurity

equally detailed, providing agents with cues into the network’s state which also
varies based on red or blue’s perspective. All the observations are formatted as a
dictionary of key-value pairs detailing different aspects of the network and host
states. Unfortunately, to facilitate training of RL agents, and to provide the ob-
servation space to an algorithm’s architecture, the dictionary must be formatted
strategically which may abstract a lot of the information. In addition, CybORG
is flexible where it can be modified to add more actions, change the basic game
scenarios and allows for defender agents to train with real world intricacies such
as the green agents which simulate actions similar to normal users generating
network traffic. For these reasons CybORG is chosen as an ideal simulator to
train agents to communicate in a MARL setting.

3.2 RL in Cybersecurity

Historically, the use of RL in cybersecurity has been sporadic, with early appli-
cations exploring its potential in a limited scope [8]. With the success of deep
learning in RL for various sectors such as gaming [17] and autonomous driving
[38], there is an added focus to apply these methods to cybersecurity.

Cybersecurity applications of DRL span various domains, from automating
intrusion detection to formulating multi-agent strategies for cyber defence. This
section will explore how RL has been integrated into cybersecurity efforts, high-
lighting its role in developing autonomous systems capable of dynamic decision-
making. First it will briefly examine different cybersecurity applications, ranging
from IDS to penetration testing and then delineate the strategic deployment of
autonomous agents in cyber defence which is relevant to this thesis.

3.2.1 IDS

Traditional machine learning techniques have been extensively used for IDS,
where normally, a signature based system is developed through supervised learn-
ing and an anomaly based system is designed through unsupervised learning [8].
RL frameworks treat the problem of intrusion detection as a dynamic process
where an agent (the IDS) interacts with an environment (the network), modeled
as a MDP. Within this framework, the state of the network, including various
metrics and other observations, defines the environmental states. The agent’s
actions may involve modifying security settings, conducting deeper inspections,
or adjusting network components to trace ongoing attacks [39].

Essential data for training agents in IDS may include network logs for network
IDS and specific operating system information for host IDS, which are processed
and transformed into a structured format suitable for RL. Network-based IDSs
monitor traffic for signs of widespread threats like Distributed Denial of Service
(DDoS) attacks, while host-based systems scrutinize activities on individual ma-
chines to detect breaches or malware installations [39]. The agents learn through
trial and error, receiving rewards or penalties based on the effectiveness of their
actions, thereby refining their policies towards optimal intrusion detection.

28

3.2 RL in Cybersecurity

3.2.2 Penetration Testing

Penetration testing (PT) is another area in cybersecurity where RL methods are
being investigated. In general PT assesses the security of networks as well as host
machines within these networks, by identifying and exploiting vulnerabilities in
these systems. Traditional approaches involve manual simulations by testers,
which can be inefficient, especially in large and complex networks. Automated
tools aim to emulate human testers by applying intelligent strategies rather than
exhaustive attack attempts. RL, in this context, adapts well to PT by treating it
as a sequential decision-making process where an autonomous agent interacts with
a network and learns to perform attacks based on partial observations, adapting
its strategy as it gains more information about the network.

A more recent study conducted by Guo et al. explores this space, where they
introduce a novel DRL framework to automate the PT process [40]. Their model
uses a POMDP framework, where the agents receive partial observations such
as operating systems data and existing vulnerabilities. The action space is de-
composed into manageable subsets, including actions like local attacks, remote
attacks, and connectivity operations. Furthermore, a single agent RL algorithm,
Proximal Policy Optimization (PPO) [41], guides the agent’s learning process.
Moreover, a simulated environment is utilized where the network consists of vari-
ous nodes with predefined vulnerabilities and each node is exploitable based on a
specific vulnerability. Each node possesses certain properties and vulnerabilities,
which the DRL agent can exploit.

3.2.3 RL Agents in Cyber Defence

Often, the attackers adopt the lateral movement to gain extensive access after
breaching a single point within a network [8]. Once they establish a presence on a
critical asset, attackers can carry out their goals of compromising the properties
of confidentiality, availability and integrity. Also for a simple fact that CybORG
allows to simulate these different behaviors of attacker agents, it is intuitive to
model cooperation and communication that can enable agents to stop a lateral
movement. Thus, this thesis is focused on demonstrating the applicability of
communicative MARL in such scenarios and therefore this subsection details
a few studies conducted for automating the defence, especially against lateral
movements within a computer network.

Prior to recent advancements, the field had encountered a stagnation period
due to limitations in available simulation environments. Previously, most re-
search in this area utilized custom-built simulation environments that adopt a
simple graph-based framework [42]. In these models, each node represents a host
machine within the network, and the connections between them illustrate pos-
sible pathways for an attacker’s lateral movement [43]. Additionally, the action
spaces are simplified as well, where the possible actions are ’to detect threats’ and
’re-image a host’. While this approach provided a basic structure for studying
cyber defence tactics, the simulations often suffered from a lack of realism and
practical applicability. It is important to clarify that graph-based frameworks
are a foundation for most modern simulators, but the custom-built environments

29

3.2 RL in Cybersecurity

that predate the new simulators were typically oversimplified, failing to capture
any complexity and dynamic nature of real-world network interactions.

With the development and open-sourcing of more sophisticated ACO environ-
ments in recent years, the research interest in this field has been reinvigorated.
The new generation of simulators not only improves the fidelity of the scenarios
but also supports the integration of advanced RL algorithms capable of learning
and adapting to complex attack patterns in real-time.

For instance, through CAGE challenge 2, CybORG has been utilized to
demonstrate the potent of various state of the art single agent RL algorithms
in the field of ACD [44]. The challenge is structured in an enterprise network
setting which includes multiple subnets with varying roles and importance. The
action space for the blue agents comprises of recon, deception and mitigation ac-
tions. Moreover, a significant focus is on the hierarchical DRL approach, which
uses multiple policy networks with a selector agent to choose the most suitable de-
fensive strategy based on the current threat. The effectiveness of these strategies
were measured against various types of red agents, ranging from highly aggres-
sive to more passive ones, which highlights the adaptability of DRL algorithms
in ACD.

In a more recent work, Dutta et al. investigate RL algorithms such as DQN
and PPO in a cyber defence environment that they developed [45]. The aim of
their research is to evaluate the efficacy of various model-free DRL algorithms
in adapting to dynamic threats. The environment is based on a multi-stage
attack propagation template derived from the MITRE ATT&CK framework. The
action space for the defender includes decisions like altering system configurations,
implementing security patches, or adjusting monitoring settings to detect and
mitigate potential threats. The state of the system is partially observable and
the observations include indicators of compromise, network traffic patterns, and
alerts that provide information about the potential security breaches or ongoing
attacks.

The primary goal of the defender is to avoid the propagation of the attacker
through various network stages while maintaining the integrity and availability
of the system. The attacker is predefined and is modeled to execute a sequence of
actions that evolve as the simulation progresses. The attacker’s strategy includes
escalating privileges, moving laterally through the network, and achieving their
end goals such as data exfiltration or system damage [45].

A recent research is conducted by Nyberg and Johnson, although atypical of
the reviewed frameworks of this subsection, but similar in the sense that it trains
a blue agent against various scripted attackers to defend a computer network
[46]. The simulated environment that the authors used models with attack graphs
where nodes symbolize attack steps or defence steps. Attack steps have associated
probabilities indicating the time required to compromise them, and the defence
steps, when activated, can block the progression of attack steps directly linked
to them. The system assumes the presence of an imperfect IDS that provides
alert signals. However, the variable detection rate adds a layer of uncertainty.
The defender’s actions include enabling various predefined defence mechanisms or
choosing to take no action. The observation space comprises the states of attack

30

3.3 MARL in ACO

steps, represented by binary indicators of whether each step is compromised.

3.3 MARL in ACO

MARL with inter-agent communication is an emerging field and recently there
have been a significant amount of research of implementing it for applications in
various fields. An area that has attracted some attention is the traffic control at
intersections. The problem involves coordinating the movements of multiple ve-
hicles at an intersection to minimize congestion, reduce travel time, and improve
safety [47]. Various approaches and algorithms using communication have been
proposed, in which an intersection or even a traffic light may be represented as
an agent that monitors a number of lanes and a number of vehicles in each lane,
share this observation with other agents and collectively agree on the duration of
the green light state for each traffic light.

Another area where communication has been applied with some success is
resource management. An example is, data centres, where computing resources,
such as CPU and memory, are allocated to on-demand applications, albeit in-
efficiently. In this scenario, multiple agents compete for limited resources, and
the goal is to allocate resources efficiently to maximize overall performance [11].
Additionally, cooperative MARL has been realized as a solution in the robot
path planning problem. This problem involves finding collision-free paths for
multiple robots in an environment with obstacles [11]. Recently there have also
been studies in security of Cyber Physical systems such as electric power grids
[48], Electric Vehicle Charging Station [49] and other Critical Infrastructures (CI)
using MARL.

MARL has also been applied to network IDS, where Shi and He propose a
novel approach, called Major-Minor-RL [50] using the Double Deep Q-Networks
(DDQN) algorithm [51]. Their model leverages a collaborative multi-agent system
consisting of one ’major’ agent and several ’minor’ agents to improve prediction
accuracy in detecting normal versus abnormal network traffic. The environment
used for this study is simulated using an offline dataset, which includes a variety
of network behaviors classified as either normal or malicious. The major agents
have full visibility of the environment whereas the minor agents have smaller
areas of responsibility. Each agent is allowed to take an action of classifying if a
particular observation is either malicious or benign. The final decision on whether
the network traffic is normal or abnormal is determined by a consensus approach
where the minor agents can override the major agent’s decision if their collective
judgment differs.

The most relevant research of incorporating MARL in ACO is the study
conducted by Wiebe et al. that applies an independent and a cooperative MARL
algorithms, IQL and QMix respectively, to train defender agents to learn tactical
level decision making in CybORG [13]. As previously stated, QMix does not
use any explicit communication and the coordination is only during training
but not during execution. The authors tested the blue agents in confidentiality,
integrity and availability scenarios and found that in each case, IQL and QMix are
applicable for ACD. Additionally, authors made modifications to the CybORG
simulator where they isolated the cyber kinetic aspect and strictly focused on

31

3.4 Summary

the multi-agent system of an enterprise network. They incorporated this version
of CybORG with PyMARL2, a popular MARL library, which they named it
CyMARL.

Moving away from cooperative MARL, there are also studies that evaluate
agents in a competitive setting. For instance, in a recent work, McDonald ex-
amines the application of competitive RL using the CybORG platform [52]. The
primary methodology involved developing game designs for red and blue agents,
where both agents learn and adapt their strategies in an adversarial setting. The
environment is designed to simulate cyber operations, with both agents having
distinct roles, observation spaces, and action spaces. Furthermore the author
chose a setup where agents use policies based on the Fictitious Play algorithm
[53]. This approach allows both agents to continuously adapt by considering the
average policy of their opponent, which evolves as each agent updates its strat-
egy through iterative learning cycles. The aim is to reach a Nash Equilibrium,
where neither agent can unilaterally improve their policy without decreasing their
performance against the other’s strategy.

3.4 Summary

This chapter detailed various ACO environments, with a key finding that simu-
lation environments abstract away a lot of intricacies of real networks that may
potentially hinder deployment of autonomous agents in a real world setting. This
chapter also reviewed various studies of cybersecurity problems, including the
field of ACO, which highlights the potential of RL. Lastly, MARL research is
discussed, where it is found that very limited studies have been conducted with
applying multi agent systems in cybersecurity. To the best of our knowledge,
there has yet to be an empirical study of communication algorithms in coopera-
tive MARL for the problem of ACD.

32

4 Methodology

This research unfolds across three distinct phases as seen in Figure 4.1, where the
composition of the experiments in each phase is influenced by the evaluation of
results from the previous phase. This chapter outlines the methodology employed
at each stage of the research and how these experimental procedures evolve in
response to the iterative analysis of results. The next chapter will then detail the
evaluation and results derived from these trials.

Figure 4.1: Research Activities.

In Phase 1, the CyMARL environment is adopted, where a confidentiality
scenario is selected from various available scenarios and a baseline is established.
A communication enabled MARL algorithm is then integrated within the es-
tablished environment. Subsequently, agents are trained and evaluated after the
integration of the algorithm. Based on the analysis of results from this evaluation,
the base scenario is reconfigured to enable agents to convey meaningful messages
to each other which entails Phase 2 work. Furthermore, more complex game
design elements are explored where a new action is introduced in the scenario
allowing the agents to stop the adversary from lateral movement. Lastly, Phase 3
of this research introduces new and more complex scenarios with the established
game design to test the scalability of the learned communication strategies..

4.1 Establish the Research Environment

As stated earlier, CyMARL incorporates CybORG, the cyber defence simula-
tor environment for RL [15], and PyMARL, a MARL library [14]. The DIAL
algorithm is not incorporated within PyMARL. As such, in order to train the de-
fender agents to communicate, the algorithm is integrated separately. A design
decision needed to be made because although it is possible to utilize the default

33

4.1 Establish the Research Environment

version of CybORG and modify it with the communication algorithm, it was a
better to proceed with CyMARL for two reasons: 1) using QMix in PyMARL to
train agents for baseline, and 2) for the fact that CyMARL code-base consists of
a utility that allows for multi-agent scenarios in CybORG.

Furthermore, the use of a command-line interface provides a simplified pro-
cess for training agents. Users are able to start the training sessions with specific
configurations of the environment and choose the reinforcement learning algo-
rithm through command-line arguments. This approach eliminates the need for
extensive coding, making it accessible to users with varying levels of expertise
and programming knowledge.

Additionally, to conduct research that explores wide range of cyber defence
strategies, CyMARL enables users to experiment with algorithm parameters,
adjust the network architecture of agents, modify environment variables, and
simulate different attack scenarios using simple human readable configuration
(YAML) files. Table 4.1 lists some important parameters that were applied for
the baseline.

QMix configuration Environment Configuration

Parameter Value Parameter Value

Batch size 128 Total timesteps 19.2M
Buffer size 10000 Episode limit 30 timesteps
Learning rate (α) 0.001 Scenario Confidentiality
Rollout size 8 Wrapper type Vector
Discount Factor (γ) 0.90 Action Masking False
RNN hidden layer dim 64 Reward Calculator Confidentiality
Target update interval 200

Table 4.1: Parameters used to train agents in baseline [13].

Moreover, the results of each experiment, including the performance metrics
and learned policies are automatically saved in a specific directory. The frame-
work supports evaluation on trained models that can be used to test against ex-
isting or new attack scenarios. This feature is especially important to assess the
robustness and generalizability of the learned defensive strategies. In addition, a
utility is provided that aids in visual analysis of training progress and outcomes
in real time. Different types of plots and charts can be generated utilizing the
visual analysis tools that shows agent performance over time.

4.1.1 Cyber Operations Research Gym

CybORG, at its core, is heavily influenced by game theory principles with the
defensive challenges it presents for cyber operations. The environment is designed
to simulate complex interactions between blue and red cyber agents, where they
engage in a continuous strategic game. While it is possible to train both, offensive
and defensive agents, this research is focused on the cooperative strategies of
defender agents and therefore, the red agent is predefined.

CybORG is distinguished by its modularity and diversity of scenarios it sup-

34

4.1 Establish the Research Environment

ports, ranging from simple network configurations to complex enterprise-like sim-
ulations. These scenarios are outlined using YAML files and define the rules of
the game such as the role of participating agents, the zones they control, their
available actions, their initial knowledge, and the criteria for success. The file
also dictates the configuration of host and network connections, simplifying the
environment setup by employing minimal information requirement. A scenario
generator utility then takes these configurations and initializes the environment
where each element reflects the real-world intricacies.

At the onset of each training session, an environment controller is created,
that keeps track of the true state of the game. This state contains network
configuration information as well as all the details pertaining to hosts that are
reset at the beginning of every episode of the game. Data such as name of the
host, host ip address, host-subnet mapping, and active sessions of each agent on
all hosts are part of the true state. These are maintained and updated as blue and
red engage in this gym cyber battle. Only partial information from this true state
are passed down to each agent, red and blue, which helps them in determining
their next action.

Moreover, CybORG simulator is designed to be a host-based system, where
the environment enables the agents to learn host-level defensive tactics. These
tactics are tailored to the unique characteristics and vulnerabilities of each host
within the simulation. The realism of the simulated environment is further en-
hanced with the variety of host images that CybORG supports. Various Linux
distributions and Windows versions are incorporated, where each host image
comes with its own unique set of vulnerabilities, mimicking the heterogeneity
found in actual cyber ecosystems. In addition, these images are detailed to in-
clude a variety of processes and the specific ports they operate on as well as
the user permission settings, complete with usernames and passwords for both
standard and administrative accounts.

Finally, wrappers are provided in the environment, which play a pivotal role
in interfacing between the agents and the simulation environment. A wrapper is
essentially a tool that wraps the environment with features that ensure compati-
bility of RL algorithms without having to modify the underlying code. One such
wrapper is responsible for constructing actions for the blue agents, translating
high-level defence strategies into specific, executable commands within the Cy-
bORG environment. Another critical wrapper translates the complex dictionary
of observations returned by the scenario into a vector form. This conversion is
essential for making the data machine-readable, thereby enabling the algorithms
to process and learn from the environment’s state effectively.

4.1.2 Network Configuration

The network architecture for the cyber defence simulations in this research is
depicted in Figure 4.2. The setup involves six hosts across two subnets, where
two blue agents, each overseeing a separate subnet, work to mitigate the advances
of a red attacker agent. At the start of every episode IPv4Network and the
IPv4Address for each subnet and host respectively, are randomly generated along
with the routing information to other hosts. Each host in the network has a

35

4.1 Establish the Research Environment

Figure 4.2: Network established for cyber games in CybORG.

specific service running, which the attacker aims to exploit. Each host also has a
defender session that is administered by a controller (Defender Server) and allows
the blue agents to perform mitigating actions. This foundation forms the basis
of the scenario that is leveraged to train the blue defender agents. The network
comprises:

• User1: Operating on Windows Operating System (OS) and exposing a
Secure Shell (SSH) service on port 22, this host is susceptible to SSH
brute-force attacks, representing a common vulnerability point within the
network.

• User2: Running on Linux OS, this host has multiple processes running
across various ports, each associated with exploitable vulnerabilities. Criti-
cally, User2 holds a unique interface to the operational subnet, enabling the
red agent, upon achieving admin escalation, to uncover the subnet’s net-
work address. After this discovery, the red agent can initiate reconnaissance
for IP addresses and open ports within the operational subnet.

• OpHost: A Linux-based system offering a SSH service. With the open
port 22, it is also vulnerable to brute-force attacks.

• OpServer: Similar to OpHost, it is also a Linux-based system with an
open SSH port. This server is a critical asset and also the main objective

36

4.1 Establish the Research Environment

of the attacker. A service is running on this server, where once escalated,
a simulation of stopping this key service can be executed by the red agent.

• User0: This host is shielded from blue agents’ field of view and is integral to
simulating the red agent’s initial network foothold. Although this windows-
based host has many vulnerabilities and open ports, it is modelled such that
blue agents cannot remove the red agent’s session from this host.

• Defender: This server acts as the operational base to both the blue agents
and by design remains invulnerable to red agent’s attacks throughout the
game. This ensures the uninterrupted functionality and response capability
of the defence mechanisms within the simulated network.

4.1.3 Attacker Agent

The attacker agent begins each episode with a strategic foothold within the user
subnet, specifically on User0. This initial presence sets the stage for a series of at-
tacks, where the agent systematically targets each host based on the intelligence
gathered throughout the scenario. The red agent follows a predetermined at-
tack path designed to exploit vulnerabilities and escalate privileges, methodically
working its way towards the operational subnet’s critical server. The sequence
of strategic decisions made by the red agent is illustrated in Figure 4.3. As can

(a) Sequence of
attacker actions
on a host. (b) Trained policy for agent 2 with block action.

Figure 4.3: Attacker agent’s decision tree in the base scenario.

37

4.1 Establish the Research Environment

be observed, once User2 is escalated, red gains a crucial advantage, effectively
bridging the gap to the operational subnet.

The red agent has many actions in its repertoire, detailed in Table 4.2, and are
available throughout an episode. Initiating its offensive from the initial session,
the agent commences with an IP address sweep in the user subnet. Upon acquir-
ing the IP addresses, it proceeds to scan them for any open ports. Identifying a
vulnerable port, the agent then randomly attempts to compromise a host. The
success for spawning a shell is contingent on a combination of factors such as the
specific exploit utilized as well as the service that is associated with the targeted
port. After obtaining a user shell, a deliberate random delay of 2-3 timesteps is
imposed before advancing to escalate the host’s privileges. This intentional pause
not only allows the agent to extend its control to other hosts, but also injects a
degree of unpredictability in its attack pattern, which complicates the defensive
strategies of the blue agents.

Action Description

DiscoverRemoteSystems Action that performs a pingsweep on a par-
ticular subnet. Requirement is to know the
IPv4Network.

DiscoverNetworkServices Performs a portscan on a particular IP address
found after performing the above action.

ExploitRemoteService This requires an IP address and a port identified
from the above 2 actions after which the attacker
will be able to exploit a known vulnerability.

PrivilegeEscalate Allows the attacker to escalate to admin after a
vulnerability has been exploited.

Impact This action can only be performed on the opera-
tional server, where once escalated, it simulates
stopping of a key service on the server.

Table 4.2: Actions available to the attacker agent

Additionally, should the defender agents succeed with their mitigation actions,
the red agent will attempt to reestablish its sessions on these hosts. Similarly,
after the discovery of the operational subnet, red follows the same sequence of
actions and attempts to gain admin privileges on the operational server. Lastly,
red agent can ’impact’ to stop a key service provided by the server. The decision
making process that governs the red agent’s actions is shown in Algorithm 3.

The default scripted attacker leverages the session established on User0 for
targeting hosts across both subnets. Consequently, once red discovers the oper-
ational subnet, it no longer requires the session on User2 for recon and exploit
actions on hosts in the other subnet. All pertinent data, including IP addresses
and their corresponding open ports are saved in the initial session. As a result,
the attacker navigates its way to the operational server, undeterred by any coun-
termeasures deployed by the blue agents. This is especially discouraging in blue
agent’s ability to learn to thwart the red’s lateral movement. For instance, even
if blue manages to remove the red’s session on User2 following its compromise,

38

4.1 Establish the Research Environment

Algorithm 3 Scripted Attacker Agent

1: Initialize: discovered subnets, scanned subnets, discovered ips, scanned ips,
exploited ips, escalated hosts

2: function GetAction(observation, action space)
3: Process success of the last action and update internal state
4: if Op Server in escalated hosts then
5: return Impact action on Op Server
6: end if
7: for each subnet in discovered subnets do
8: if subnet not in scanned subnets then
9: return DiscoverRemoteSystems action for subnet

10: end if
11: end for
12: for each IP address in discovered ips do
13: if IP not in exploited ips or scanned ips then
14: return DiscoverNetworkServices action for IP address
15: end if
16: end for
17: for each IP address in exploited ips do
18: if privilege escalation delay met and not in escalated hosts then
19: return PrivilegeEscalate action for host
20: end if
21: end for
22: for each IP address in scanned ips with open ports do
23: if IP not in exploited ips then
24: return ExploitRemoteService action for IP address
25: end if
26: end for
27: return Sleep action if no other actions are applicable
28: end function
29: function ProcessSuccess(observation)
30: Update internal tracking based on the success of the last action
31: end function

red has an easy path without any defence to the critical asset due to the cached
IP addresses and ports. From a real-world standpoint, this is an acceptable be-
haviour if there are no access restrictions between subnets. However, a more
logical and realistic approach would be to use the session established on User2 as
a springboard that moves the attacker one step closer to its goal.

A minor but pivotal modification to the default scripted attacker enables the
red agent to use the session that is closest to its target. In this modified scenario,
following the escalation of User2 and the discovery of the operational subnet, the
actions to move into the other subnet are executed from the User2 session. This
adjustment ensures that if the blue agents intercept the attack before red advances
to the operational subnet, the attacker must regroup from the initial foothold,

39

4.1 Establish the Research Environment

re-compromising necessary hosts to progress. This logic significantly influences
the defender agent’s learning curve and strategic responses. The scenario makes
an important assumption in implementing this strategy, that User2 has some
specific connections to the interface of the operational subnet.

4.1.4 Defender Agents

The goal of the scripted attacker is to infiltrate the operational server and dis-
rupt the essential services it provides to its network users. In response to this
behaviour, blue agent’s objectives can be articulated as preventing the attacker’s
advances to the server or mitigating the impact if the server is compromised.
Ideally, the mandate for each defender agent is simply to learn defensive tactics
that effectively confines the attacker to its starting point. This demands not only
timely and appropriate defensive responses but also a concerted effort between
agents. The reward function plays a pivotal role in guiding the blue agents to-
wards optimal behavior. It encourages actions that effectively neutralize threats
and penalizes those that fail to secure the network. Lastly, the observation space
equips the agents with insights into the network state, that enables the agents to
make informed decisions.

Environment Actions: Defender agents can perform a variety of actions
to achieve the goal at protecting the network. These actions are listed in Table
4.3 and fundamentally are two types of actions: passive and active. In this sce-
nario, ’monitor’ is devised to be a passive action that is executed at the end of
each turn. This action can be conceptualized as a host-based IDS that generates
alerts in response to multitude of connections between hosts or when processes
are created or tampered with on a host. These indicators signal the agents of

Action Description

Monitor1 Allows the defender agents to detect port scans and ex-
ploits on hosts within its field of view.

Sleep Do nothing.

Remove Removes any suspicious processes from any host within
its visibility.

Restore This action allows the defender agent to re-image and
restore a particular host.

Analyse Defender agents can use this action to identify malicious
files on a host.

Block2 Allows agents to block any traffic from a particular sub-
net.

1Passive action available at the end of every turn. 2 Action available in Phase 2.

Table 4.3: Actions available to the defender agents.

a potential malicious activity that may require intervention. While the ’moni-
tor’ action is passive, it could be regarded as an active measure that require the
agents to learn to take it appropriately. Especially within the context of a larger
enterprise network and with a significant amount of network activity, it is infea-

40

4.1 Establish the Research Environment

sible to monitor every single host passively. Nonetheless, given the focus of this
research to enable agents to learn a communication protocol within a relatively
contained network, it is appropriate to provide the agents with a comprehensive
state information at every step.

The remaining actions are implemented as active measures and therefore are
required to be learned. Upon discovering a threat on a host, a suspicious process
ID is identified and added to the blue agent’s session. The defender then can
use the ’remove’ action to kill this process, which removes the red’s session on
that host. This means that the ’remove’ action will only work after a successful
discovery of an exploit. It will also not function after red has escalated its priv-
ileges. The assumption here is that once red has gained a privileged shell, it is
persistent and therefore a process cannot be killed at this stage.

’Restore’ action is essential for blue agents if a ’remove’ action is not success-
ful. By using the ’restore’ action, a system can be reverted back to its initial
state which allows the removal of all the attacker sessions on the host. This
action causes some disruption on the network in particular to the server that is
providing key services and therefore is designed to function only on hosts with
known or suspected threats. Moreover, ’block’ action is the only action that is
not applicable to a host but to a particular zone (subnet). This action allows an
agent to block any traffic for one timestep that is initiated from a singular sub-
net. This is primarily useful to the agent responsible for the operational subnet
in averting an imminent attack on its hosts.

Furthermore, the passive ’monitor’ action is able to detect a user-level shell
on a host. However, it is not able to detect an elevated shell because once red
escalates a system, it is obfuscated from blue’s observations. The only way blue
can determine this is by using the ’analyse’ action. A successful escalation by
red results in a malware file being left on a system and with the use of the
’analyse’ action, blue agents are able to find these malicious files. This action is
an abstraction of malware analysis tools such as DensityScout, which measures
the entropy of files, and SigCheck, which verifies the signature of a file.

All defender actions are parameterized which means that the blue agents
require specific information to execute the actions. Firstly, blue agent’s session
ID is a common parameter for all actions. Each agent that is responsible for a
subnet has an active session running on the defender controller and the agent that
is executing an action must use its own session. An IP address is also required
to perform actions on a specific host. The ’block’ action is the exception, as it
does not require an individual IP address but instead needs an IPv4 network
address to block an entire zone. Lastly, the ’remove’ action requires an extra
parameter, which is the process ID of the suspicious process identified by the
’monitor’ action.

Reward Function: The reward function is intricately designed such that
there are no positive rewards but only penalties associated with any failures in
defence. It does so by assigning negative rewards that reflect the importance of
different hosts within the network. It is also devised to impose costs for unsuit-
able action or actions that cause disruption to the network, thus guiding agents
towards a prioritized defence strategy.

41

4.1 Establish the Research Environment

The reward function does not assign a penalty or a reward for successfully
removing a malicious process or for finding a privileged shell through the use of
’analyse’ action. Although experiments were conducted where positive rewards
are assigned for these two specific scenarios, there is no added benefit with the
positive rewards in the agents ability to learn. This is due to the fact that any
privileged red session that stays active will accumulate the penalties at each
timestep and both agents must mitigate the exploits to minimize these penalties.
The function is outlined as follows:

• Penalties for Host Capture (Escalation by Red): If the attacker success-
fully escalates privileges on a host, the defender incurs a penalty propor-
tional to the host’s importance within the network.

– User Subnet Hosts: Being of lower importance, each captured host in
this subnet results in a minor penalty of -0.1, signaling a breach but
recognizing its relatively lower strategic value.

– Operational Host: This host carries a medium importance value, and
the capture of this host results in a more significant penalty of -1.0,
indicating the attacker’s progression towards the server.

– Operational Server: As the most critical asset, the operational server’s
compromise leads to a severe penalty of -10.0, reflecting its high im-
portance and the consequent impact of its loss on the network’s overall
security posture.

• Penalties for Restore Action: When a ’restore’ action is performed, the
penalty is once again based on the importance of the host being restored
which is -0.1, -1.0, and -10.0 for low, medium, and high importance hosts,
respectively. This encourages defenders to prioritize the recovery of more
critical systems and emphasizes the importance of swift recovery actions in
maintaining network integrity.

• Penalties for Inappropriate Actions: The defenders are also penalized for
actions that do not contribute to the network’s security, for example, unnec-
essary or ineffective use of ’remove’ and ’analyse’, with a standard penalty
of -0.5. This ensures that the agents learn to perform only strategic actions.

• Block Penalty: To discourage excessive blocking actions, which could dis-
rupt network functionality, a flat penalty of -1.0 is imposed for each ’block’
action.

This reward function serves as a feedback mechanism that teaches the defend-
ers to distinguish between the varying degrees of priority among the network’s
assets. Likewise, it equips the agents to minimize the damage caused by red’s
presence on low priority hosts, where penalties are accrued over time. Addition-
ally, given the fact that the red agent penetrates the high-valued server through
an unimportant host and since the penalties are significant for the operational
systems, the reward function also enables the agents to adapt their priorities.

42

4.1 Establish the Research Environment

Observations: As previously stated, CybORG returns raw observations in
the form of a python dictionary which provides information that is related to the
previous actions undertaken by both the red and blue agents. The dictionary
encompasses details pertaining to each host such as network interfaces, processes
and system details. Suitable information from the output of these raw observa-
tions is transformed into a binary format that are meant to aid the blue agents
to learn cyber defence tactics. As an example, a combined observation space for
each agent represented as a vector is shown in Figure 4.4, where each host’s state
is described by four binary digits. The first pair of bits portray recent activity
of the red agent while the last two bits denote the current status of the host,
detailed as follows:

Activity indicators:

• [0,0]: No activity detected

• [1,0]: System was scanned for open ports in the previous timestep.

• [1,1]: Host was exploited in the previous timestep.

Status indicators:

• [0,0]: No threats detected on the device.

• [1,0]: Status is unknown.

• [0,1]: Red has at-least a User shell.

• [1,1]: Red has a privileged shell on the host.

Figure 4.4: Observation spaces for blue agents in the base scenario.

43

4.2 Algorithm Implementation

Additionally, the raw observations contain a success factor for each blue
agent’s active action, indicating whether an action achieved its intended out-
come. This aspect refines the observation vectors, enabling the blue agents to
discern the impact of their decisions within a given state. Furthermore, in Phase
2 trials, an extra bit is introduced to signify whether a ’block’ action is executed
in the preceding timestep.

Moreover, it is impractical to monitor every aspect of a network comprehen-
sively, especially given the covert nature of many cyber attacks. Acknowledging
this, CybORG is designed to realistically simulate the detection conditions by en-
suring that all exploits, that are not ssh brute force attacks, are detectable with
a 95% rate. Furthermore, the observation vector is not a complete representation
of the true state. For example, agents are not aware of any reverse shells that are
privileged, nor do they have information on host status or red activity in other
subnets. Nonetheless, the partial observations play an important role in enabling
the blue agents with the necessary situational awareness to effectively defend
the network. The observations serve as the primary input to the algorithmic
architecture, which is designed to guide each agent’s decision making process.

4.2 Algorithm Implementation

Several state of the art algorithms, discussed in 2.3, were considered for this
research within the CybORG environment. The DIAL algorithm distinguished
itself as the best selection due to its simplicity, efficiency, and emphasis on inter-
pretable and discrete communication mechanisms. Although, all algorithms that
were examined allowed explicit messages to be sent, DIAL facilitated an environ-
ment where the communication is external to the neural network architecture.
For instance, models such as CommNet, BiCNet and IC3Net has communication
embedded within the network, obscuring the content of inter-agent messages.
This means that only partial observations are provided as inputs to the network,
while the communication occurs within the hidden layers without any strategic
message outputs. On the contrary, in DIAL, messages from each agent are pro-
vided as specific inputs to the network, leading to distinct communication actions
alongside environment actions.

Additionally, CommNet and BiCNet utilize a central controller that receives
individual agent messages and disseminates them among agents. This central-
ized approach is a potential bottleneck and risks efficiency losses, particularly
in scenarios requiring rapid and scalable responses to dynamic threats. DIAL’s
methodology sidesteps this issue by enabling direct, agent-to-agent communica-
tion. Furthermore, CommNet, TarMAC and IC3Net allow a multi-step commu-
nication process within each timestep which introduces an additional layer of
complexity to training. In contrast, DIAL’s single-step communication model
aligns better with the decision-making in cyber defence.

Lastly, CybORG simulations are designed for homogeneous agents. Homoge-
neous agents in a multi agent system refers to all the agents in an environment
that fundamentally have identical functionalities and characteristics, while het-
erogeneous agents have diverse set of actions and features. IC3Net is designed to
handle heterogeneous agent scenarios and although the approach can be applied

44

4.2 Algorithm Implementation

in CybORG, it does not offer any substantial benefits.

4.2.1 DIAL-CybORG Integration

The authors of the DIAL algorithm provided a version of their implementation1

that can be used to train agents for the switch riddle game. This not only offered
a foundational model to imitate switch game’s communication mechanisms but
also provided a code which, with a few modifications, can be adapted for agent
communications in CybORG. Firstly, agents in CybORG were conditioned to
communicate based on specific observations on their monitored hosts. This elim-
inated unwanted communication that can be regarded as noise to other agents.
This also mirrored the specifics of the switch game where communication occurred
in a constrained environment (e.g., within a room). Additionally, communication
is limited to a 1-bit message, similar to the switch game’s communication strat-
egy. Despite DIAL’s capacity for more complex messages, the 1-bit approach,
validated through experimentation, proved more conducive to learning within
the abstracted context of CybORG.

Moreover, to bridge the gap between CybORG’s outputs and the DIAL algo-
rithm’s inputs, a critical utility is designed. This utility ensured that environment
outputs such as observations, rewards and terminal information were formatted
correctly into data structures suitable for the algorithm. This utility, along with
the use of the ’action wrapper’, also transformed the high level actions output
by the algorithm into specific commands in the environment. Furthermore, uti-
lizing the methods in CyMARL, parallel processing is enabled that significantly
provided performance boost of the integrated system.

As discussed in Section 2.4.1, a task embedding zat is produced from four
inputs from the current timestep which is passed to the RNN. To produce zat at
each timestep, the four inputs are summed element-wise as seen below:

zat = (TaskMLP (oat) +MLP [|M |, 128](mt−1) + Lookup(uat−a)

+Lookup(a)) (4.1)

The TaskMLP (oat) is the embedding for the partial observations from the
environment and is dependent on the type of observations the environment pro-
duces. For instance, in the case of the switch riddle experiments performed by
the authors of DIAL, the oat are passed through a lookup table which produces
this embedding of size 128. The message input ma′

t−1 is passed through a 1-layer
MLP, and inputs uat−1 and a are passed through lookup tables all producing an
embedding of size 128 [25].

The message, previous action and agent identifier inputs were unchanged from
the switch game implementation. However, the complex observation space of cy-
ber defence scenarios in comparison to the switch game proved to be challenging.
Due to the finite state space associated with each host, a systematic technique is
employed to represent a host. These were further summed element-wise to obtain
the final embedding of the partial observations of each agent which is illustrated

1https://github.com/minqi/learning-to-communicate-pytorch

45

https://github.com/minqi/learning-to-communicate-pytorch

4.2 Algorithm Implementation

below:

zat = ((Lookup(host 1at) + Lookup(host 2at)) +MLP [|M |, 128](mt−1)

+Lookup(uat−a) + Lookup(a)) (4.2)

4.2.2 DIAL Hyperparameters

Hyperparameters are configuration settings that are used to structure the learning
process of machine learning models. These values are set prior to training. They
cannot be changed during the learning process and have a significant influence
on the model’s ability to learn patterns from the data [54]. Proper adjustments
of these parameters allows for increased performance and accuracy of the model.
Although there are many techniques available to fine-tune these parameters, it
is considered to be out of scope for this research. And therefore, the exploration
of hyperparameters is targeted rather than exhaustive, with a primary focus
on refining game design over optimizing algorithmic efficiency. Table 4.4 below
outlines the key hyperparameters and their configured values.

DIAL configuration
Parameter Value

Batch size 128
Rollout size 8
Learning rate (α) 0.0005
Discount Factor (γ) 0.90
Exploration rate start, finish (ϵ) 1.0, 0.05
Exploration anneal time 1M timesteps
RNN hidden layer dim 128
Target update interval 100 Epochs

Table 4.4: Parameters for the DIAL algorithm.

Nonetheless, a few parameters were experimented with, which are outlined
below:

• Batch Size: This determines the number of samples processed before the
model is updated. A relatively larger batch size of 128 is chosen based on
experiments that indicated better performance compared to smaller batches
(32, 64). It may have been possible to further improve the performance with
a higher value, but this would significantly extend the training duration.

• Learning Rate: Learning rates of 0.001, 0.0005 and 0.00025 were experi-
mented with and the 0.0005 proved better in stabilizing the learning process.
The parameter impacts the convergence speed and stability, where a higher
rate accelerates learning with a risk of overshooting the global minima and
a slower rate significantly lowers the magnitude of the updates.

• Exploration Rate: In the switch riddle, the authors applied a static ex-
ploration rate of 0.05, which proved sufficient as the agents in that game

46

4.3 Communication Strategy and Game Design

could only take 2 possible environment actions at any given time step.
There are 7-8 possible actions per agent in the CybORG environment and
therefore, adjustments were necessary to accommodate the increased action
complexity. Each training session started with an exploration rate of 1.0
(pure exploration) which is annealed to 0.05 over 1 million timesteps which
facilitated a more balanced exploration-exploitation trade off.

• Discount Factor: A discount rate of 0.9 is selected for the experiments. The
discount factor signifies the importance of future rewards and is especially
important in CybORG where a miscalculation in defending a low priority
host can lead to a compromise of higher-valued asset with harsher penalties.

4.3 Communication Strategy and Game Design

Originally, CybORG was designed for single-agent scenarios where an agent is
enabled to oversee an entire network. This implies that the abstracted environ-
ment might not require more than one agent for its autonomous defence. Indeed,
it has been demonstrated through CAGE challenges that sophisticated single-
agent algorithms are capable of securing the network across diverse scenarios
[44]. Furthermore, as highlighted by Wiebe’s research, the CybORG game can
be successfully navigated by multiple agents without the need for coordination.
This suggests that, in its current form, CybORG does not inherently necessitate
communication between agents.

The capacity for resolving the game through independent agent strategies is
further affirmed in the initial trial phase with the DIAL algorithm. Notably, in the
base scenario where 95% detection rate is used on hosts susceptible to non-SSH
brute-force attacks, agents independently formulate effective strategies to counter
threats before they jeopardize critical assets. Nonetheless, the goal of this work
extends beyond simply integrating a communication algorithm. The primary
focus is to leverage the DIAL algorithm’s capabilities for fostering meaningful
agent communication and ensure that the network’s defence is coordinated.

4.3.1 Port Scan

In a real-world setting, port scanning is a critical activity in network security,
that not only serves as a diagnostic tool for administrators but also a precursor
to potential attacks [55]. Generally, benign users are not allowed to scan hosts
for open ports, especially those in operational networks and vital systems. And
even if scanning is required, it is not done without proper permissions and prior
coordination. Therefore, port scanning is typically viewed as a hostile action and
signals an increased likelihood of an impending security breach.

During trials in Phase 1, it was noted that the defender agent in operational
subnet actively responded to instances of port scanning. This agent would send
alerts to the other agent in the user subnet, indicating possible compromise of
a host. This strategy proved effective in the early to middle stages of training,
where the receiving agent reacted promptly to mitigate any threats. However, as
the trials progressed, the agents gradually shifted away from using this commu-

47

4.3 Communication Strategy and Game Design

nication strategy. Communication became less meaningful as agents learned to
independently and efficiently devise their defensive strategies. Regardless, these
initial communication policies paved the way to solidify the game design elements
for future experiments. The details of the analysis is reserved for Chapter 5.

4.3.2 Detection Rate

As noted, a relatively high detection rate of 95% is used in Phase 1 trials. This
means that in the latter stages of these trials, where agents are close to converg-
ing on optimal defensive strategies, they rarely encountered scenarios where the
intruder initiated its recon and infiltrated the operational subnet. The agent be-
havior in reinforcement learning is fundamentally shaped based on the data the
learning model receives. The samples with high detection provided to the model
naturally skewed the policies towards non-communicative and independent. Ad-
ditionally, it is uncharacteristic of real-world scenarios where a high certainty in
threat detection is rare.

To address these limitations and to introduce more realism, a scenario with
reduced detection rate of 50% is setup. This adjustment would enable the agent
in the user subnet to autonomously mitigate threats on User2 host in half of the
instances. For the other 50%, where the red agent manages to covertly elevate its
privileges on User2 host and initiate recon on the operational subnet, the corre-
sponding blue agent must promptly alert its counterpart. Initially, this strategy
proved to be effective, where agents leveraged the communication channel to
manage threats. However, over time, agents again veered away from meaningful
communication.

This evolution of the defensive tactics can be attributed to the recurrent
neural network architecture of the DIAL algorithm. RNN, which has a memory
mechanism, allows the agents to minimize the penalties by adequately timing
their responses even without detection. Basically, the agents, after observing
the game for a few thousand episodes, are able to anticipate the compromise
of hosts without any valuable information received from their counterparts. To
some extent, this is also true in the case of the QMix algorithm, which is used
as benchmark against DIAL and also uses RNN for its agent network. Similar to
DIAL, agents in QMix are not aware of host status in other subnets within its
learned decentralized policies, but are able to effectively mitigate threats in same
conditions. While this technique is efficient within the CybORG framework, its
applicability in real-world scenarios, with more variable and less frequent attacks,
is limited. To account for this drawback, a technique known as action masking
which is discussed below, is devised that limits the environment actions to be
used only after specific observations.

4.3.3 Action Masking

Masking of invalid actions in RL has been widely utilized in many simulators that
have a large discrete action space. For instance, in the StarCraft II challenge,
which has over a hundred actions, it is used to limit the invalid actions and
refine the learning process [56]. The technique is implemented by restricting bad

48

4.3 Communication Strategy and Game Design

actions in a given condition, within the environment, and not allowing an agent
to execute it. This enables the model to only process and learn certain actions in
any given state. Studies have shown that this method significantly accelerates the
learning process, which facilitates agent’s attention on viable actions and reduce
the exploration space [57].

In value-based learning frameworks, for exploitation, the agent selects its ac-
tions based on the highest predicted Q-value. With action-masking, the Q-values
are set to 0 for all irrelevant actions, ensuring that the agent only considers per-
missible actions. Meanwhile, during exploration, an action is randomly selected
from the list of only available actions.

For the CybORG environment, action masking is implemented for the ’re-
move’, ’restore’, and the ’analyse’ actions. These actions are now contingent
upon the detection of a threat on a host and serves many purposes in stream-
lining the learning process. Firstly, ’remove’ action would fail anyways and be
rendered illegal without prior detection. This is due to the fact that a malicious
process is not identified on a host where a reverse shell is undetected. Secondly,
the ’restore’ action, could technically be executed on hosts with undetected com-
promises. However, restricting it to be used on hosts with known threats prevents
unnecessary disruptions especially on the operational systems. Lastly, restricting
the ’analyse’ action reflects upon some real-world considerations such as time
and resource cost associated in using this action. The availability of this action
is conditioned based on two criterias: 1) Similar to ’remove’ and ’restore’, it is
available when detection occurs, and 2) without detection, it can be only used
after inter-agent communication. The core idea and assumption here is that the
operational subnet is not directly accessible to malicious actors. This is normally
the case with enterprise networks where the architecture is segmented and has
multiple layers of security that place the essential systems much deeper within
the network. Therefore, once front facing segments are penetrated, attackers have
to probe deeper to get to the controlled environment. With this, the defender
agents can deduce that the intrusion into the critical zone must be from the user
networks. Therefore, even if red has covert sessions in a user network, the oper-
ational agent is able to send a signal to its counterparts, alerting them of some
malicious activity. Obviously, for this to function as described, there has to be
some indicators, with 100% confidence, within the critical zone. Although port
scanning in a real-world situation may not be sufficient and not identified at all
times, it is strategically used in these scenarios to provide the certainty that is
required.

Within the DIAL algorithm architecture, messages are directly sent from one
agent to another where the algorithm is designed to not allow the communication
to flow into an environment. However, to facilitate the strategic use of the ’anal-
yse’ action, the message output from an agent is allowed to filter into CybORG.
A received message, during both learning and execution, is discretized without
affecting the model inputs and determines the availability of the action to the
receiving agent. A ’1’ enables the analyse action for all of its hosts, whereas a ’0’
prevents the action.

Once the user agent receives a signal, ’analyse’ can be employed, which should

49

4.4 Game Design for Advanced Configurations

result in the detection of a privileged shell. The agent is then permitted to use
other actions to neutralise the red’s session on the undetected host. Since red can
only infiltrate using escalated sessions, and the ’remove’ action does not function
on these hosts, blue agents over time will learn to re-image a host rather than
try to kill a malicious process. This entire approach proved prudent in effectively
eliminating any randomness of agent’s deploying their actions and also ensured
that actions are taken based on direct observations of compromise or through
communication. It is important to note that communication itself is constrained,
where agents are only allowed to send messages if they detect malicious activity
on their monitored hosts. This allows the agents to prevent any unnecessary
communications and ensures that messages are relevant.

4.3.4 Block Action

By implementing the action masking strategy, the behavior of the agents changed
drastically, which allowed the agents to only make informed decisions. However,
a significant gap of multiple timesteps is created for attacker to make its moves.
Firstly, the operational agent has to recognize the port-scan indicators, then at
the next timestep, it has to send an alert of these indicators, to the user agent.
Subsequently, the user agent receives the alert after another timestep has elapsed.
And lastly, the mitigation actions to remove the red agent from a host is a 2-step
process; ’analyse’ and ’restore’. In the meantime, the compromise actions of the
red agent can be executed immediately after discovering the ports which created
an opening for red to intrude into the operational subnet.

Obviously, this necessitated an adjustment of the scenario to allow the de-
fender agents to stop the attacker before its lateral movement. Thus, the ’block’
action is implemented which provides a strategic proactive tool for the defender
agents. The action is adapted from CybORG’s code revision from CAGE chal-
lenge 4 and is devised to be used as a single step action. In other words, when
an agent employs this action on a particular subnet, it is valid for 1-timestep and
at the end of a turn, the block is automatically lifted.

Although, this may not be the most accurate and realistic design of this
action, there are a few reasons for this type of functionality. Initially, this action
was imagined to be a toggle action, where agents have to use the same action
to block and unblock traffic. Another idea was to have two deliberate actions;
’block’ and unblock’. Both of these approaches required agents to learn the
isolation of networks as well the unblocking of subnets. While experimenting,
each of these strategies led to conservative behaviour of the agents, where they
learned to maintain the block for longer periods of time. A single-step ’block’
aligned well with the communication strategy of the operational agent where once
a message is sent, the agent repeatedly blocks the user network until the threat
is eliminated.

4.4 Game Design for Advanced Configurations

After successful trials of Phase 1 and 2, a natural progression is to assess and eval-
uate the established game design principles in more complex scenarios. Therefore

50

4.4 Game Design for Advanced Configurations

three new scenarios are devised, where the first two tasks deal with the added
uncertainty in the agent detection operation and the last task is concerned with
adding an new subnet and an agent.

4.4.1 Green Agent

The first scenario in Phase 3 consisted in adding a green agent to the existing
scenario. A green agent in CybORG is a normal user that is empowered with
performing three actions: ’sleep’, spawn a process, and scan an IP for ports.
A probability function is assigned for the execution of these actions, where a
higher chance is given to the ’sleep’ action that essentially does nothing and
lower probabilities for the other two actions. This ensures that the use of ’scan’
and ’process spawn’ actions by the green user is less frequent and may appear as
malicious activity to the defender agents. Although only a single green agent is
utilized in this scenario, it proved sufficient in CybORG simulator for blue agents
to deal with this added complexity.

4.4.2 Scan Detection Rate

Throughout the trials, the exploit detection rates are varied to test the develop-
ment of behaviors and agent strategies. Only the port scan identifiers remained
constant which led to the agents devising a communication protocol that helped
them in mitigating threats in uncertain conditions. However, this may again not
be true in real world situations with the covert nature of malicious actors.

Obviously, a logical approach is to vary the detection rate on port scans
and observe the evolution of the schemes of the MARL system. Similar to the
visibility of the exploits, detection rates on port scans are lowered to 50% in order
to analyse the behavior of the agents. Likewise, both defender agents struggled
in this obscured environment where they were only able to deal with threats
half of the times. Their communication strategies also proved to be inconclusive
due to the fact that agents communicate only after observing some activity on
their hosts. To address this adapted strategy, communication is enabled at every
timestep regardless of detection.

4.4.3 Large Simulated Network

The last task of the experimentation involved the introduction of a new subnet
(Enterprise subnet) with four hosts for which an additional agent is unveiled to
oversee the added network. To align with the enterprise subnet, the size of the
original two subnets is also increased with the addition of two additional hosts:
one for each network.

The network configuration can be seen in Figure 4.5. It can be observed that
similar to the base scenario established in Section 4.1.2, red agent has a network
foothold in the user subnet and its goal is to navigate to the operational server.
Only this time, the attacker has to also compromise necessary hosts in the en-
terprise subnet before it can capture the critical asset. This is an immensely

51

4.5 Methodology Summary

Figure 4.5: Large network with three subnets.

complicated problem for MARL agents to solve especially in developing a com-
munication strategy, where now these agents have to devise their mechanisms
which involve sending messages to more than 1 agent at a time.

The scenario is set up such that, one of the hosts in the user network has
specific configuration to the network interface of the enterprise subnet which
allows the red agent to move into this area. From this point, similar to the
original scenario, the red agent, after compromising another specific host, moves
into the operational zone. All the game design elements designed for Phase 2
remain unchanged for this scenario. However, to maintain a simplistic approach,
green agents and the variable detection for port scans are removed.

4.5 Methodology Summary

This chapter has delineated the methodology employed to advance the under-
standing and application of MARL with inter-agent communication in cyber
defence scenarios. The research adopts a structured approach to integrate and
adapt the DIAL algorithm in CybORG, and aims that with strategic communica-
tion between agents, decision-making capabilities can be improved. Additionally,
through a phased experimental design, the methodology facilitated the itera-
tive refinement of agent policies to increasingly complex cyber scenarios. The
evaluation design and the results of the application of this methodology will be
presented in the subsequent chapter.

52

5 Evaluation and Results

This chapter provides the design and process involving the evaluation of the
trained MARL agents as well as any key findings of the research. To this end,
it is organized to first discuss the criteria for evaluating the experiments which
includes the experimental setup, the benchmark, and the evaluation metrics used
for the assessment. Next, the results of these experiments including an analysis
of the trained policies are outlined. The chapter concludes with a comprehensive
discussion of the findings, including the capabilities, limitations and any strategic
insights gained from the implementation of communication techniques in cyber
defence scenarios.

5.1 Evaluation Criteria

As discussed in Chapter 4, this research develops a MARL system, in phases,
that enables agents to perform tactical level decision making via communication
to counter the advances of an attacker agent. Initially, the system is trained
using the cooperative algorithm, QMix, which sets a benchmark for evaluating
the learning capabilities of a communicative MARL algorithm, DIAL. Subse-
quently, the DIAL algorithm is integrated, modified, and adapted to allow agents
to convey meaningful messages which hypothetically should lead to better deci-
sion making. Additional trials are then conducted to test the ability of the agents
in increasingly complex scenarios. The purpose of this evaluation is to assess the
effectiveness of DIAL agents in CybORG and to validate the aim of this research
that communication can improve agent’s performance in ACD tasks.

Recall that unlike traditional MARL algorithms, DIAL incorporates explicit
communication among agents, allowing them to share information and make co-
ordinated decisions. DIAL allows agents to learn policies that are contingent
on the partial state they observe as well as on the message received from other
agents. On the contrary, models that learn independently only account for the
state, each agent is permitted to view, and some CLDE architectures process
the entire state of the environment to learn joint policies. Thus, DIAL can be
interpreted as a hybrid of independent learning and CLDE approaches where it
is uniquely equipped to interpret the observations and actions of other agents,
albeit in a condensed form.

Training of DIAL agents, in each phase, starts with randomized communi-
cation and action policies which are then optimized through the iterative trial
and error process. Throughout the training, agents engage in episodes of inter-
actions with the environment, where they not only make decisions on the actions
to counteract an attacker but also decide on the communication message to send
to other agents. The learning process of DIAL is driven by both the environ-
mental rewards and the effectiveness of communication in improving collective
performance.

In the implementation of DIAL, each agent at every timestep generates a
communication message, which is real-valued during training and discrete in the
execution stage. This message is fed into the network along with partial environ-
ment observations, previous timestep action and an agent identifier. The intuition

53

5.1 Evaluation Criteria

for providing the previous action to the model, lies in the fact that through RNN
hidden states, agents will remember all the previous actions they performed in an
episode and aid them in choosing the next action. Moreover, the agent identifier
is useful because a single network is trained and combining it with the observa-
tions and messages allows the policies of each agent to be different. Subsequently,
the network processes these inputs to update the agent’s policies for both, actions
and communication. This mechanism highlights a distinct feature of DIAL where
it backpropagates the communication errors directly from one agent to another
[25]. This backpropagation influences how communication strategies develop over
time, reinforcing messages that lead to successful outcomes and discouraging less
effective communication.

The capability of DIAL algorithm within the CybORG environment relies on
how well the agents can evolve from their initial state to effectively coordinate
their actions through communication. Obviously, the reward function plays a
pivotal role in assessing the performance of the DIAL system. Minimizing the
accrued penalties over time is a good indicator of the learned defensive strate-
gies. Moreover, a key aspect of this evaluation is observing how the integration
of communication influences the overall strategy of the agents compared to base-
line models like QMIX, which relies on a central training mechanism without
direct agent-to-agent communication. This approach to evaluating the DIAL al-
gorithm aligns with the broader goals of advancing autonomous cyber defence
capabilities, offering insights into how different learning architectures can affect
the adaptability of MARL systems in practical applications.

5.1.1 Benchmarks

Naturally, to test the viability of any MARL system, mechanisms need to be
devised that assess the effectiveness of the developed system against a benchmark.
Two benchmarks are used for these trials: 1) DIAL - without communication,
and 2) QMix. Recall that DIAL is an adaptation of DRQN architecture with
additional mechanisms that facilitate multiple agents as well as a communication
channel. Thus, DIAL-no comms can essentially be conceptualized as multi-agent
DRQN. Although, for DIAL-no comms, a single architecture is used to train
the policies of all agents, the strategies are learned and executed independently.
In the paper that introduced the DIAL algorithm, results of the experiments
on the switch riddle and the MNIST games were measured against this model
of independent strategies without any communication [25]. This provides the
added motivation of comparing the developed cyber MARL system against fully
decentralized policies.

Furthermore, to demonstrate the applicability of MARL methods in cyber
defence, Wiebe et al. utilized the QMix algorithm to train agents in CybORG [13].
QMix is inherently a cooperative algorithm, where the policies are learned jointly,
but the trained policies operate in a decentralized fashion. Nonetheless, QMix,
via its centralized training approach, offers a different avenue for comparison of
the overall MARL system.

Both the benchmarks are separately trained for the first two phases of the
trials, and only QMix is trained for the last phase of the trials conducted. Due

54

5.1 Evaluation Criteria

to the consistent under performance of the DIAL-without communications algo-
rithm, it was excluded from the last phase. Moreover, the initial conditions of
QMix and no-comms DIAL is set according to Tables 4.1 and 4.4 respectively.
Furthermore, the training of the benchmarks is dependent on the game design
elements of that specific scenario. However, in phase 2, where action masking
is adopted for the DIAL system, it is also implemented for the two benchmarks
with a slight modification. As previously discussed, for DIAL implementation,
the use of the ’analyse’ action is limited and is available only via communication
or through a detection of an exploit on a host. For the benchmarks, it is irrational
to apply this methodology as there is no mechanism for explicit message relay
and therefore, the action will never be utilized by the agents in given conditions.
Thus, it is logical to only restrict the ’remove’ and ’restore’ actions and not the
’analyse’ action.

5.1.2 Evaluation Metrics

While the original DIAL paper opted for normalized rewards, this research adopts
the metrics used by Wiebe et al., with mean return as the primary evaluation
metric [13]. Mean return is calculated as the average cumulative reward received
per episode across three distinct and independent training iterations, which serves
as a good indicator of an agent’s performance over time. Training iterations refer
to the experiments of a particular scenario that is executed multiple times. This
approach does not fully account for variability in the learned policies but ensures
that it captures some divergence in the learning process. Furthermore, mean
return metric offers a straightforward measure of the system’s performance across
multiple episodes, providing a clear view of the learning progression. Accordingly,
learning curves are plotted at every 10 epochs using this measure.

Once the policies are fully trained, their effectiveness is evaluated by run-
ning them through 128 episodes per iteration, capturing both the mean and the
standard deviations of the returns. This approach of assessing the trained policy
validates the consistency of the learned behaviors. Standard deviation in this
context highlights the variability in performance, which is critical for assessing
these policies.

In addition to numerical metrics, the learned policies are analyzed during
the evaluation phase. This analysis includes observing the strategies adopted
by the agents, particularly how they utilize communication in each phase of
training. It is essential to understand how communication strategies evolve over
time and their impact on the overall effectiveness of the agents in coordinating
and responding to cyber threats.

5.1.3 Evaluation Process

The evaluation of the DIAL algorithm within the CybORG environment un-
folds across three distinct phases. The objective of this multistage evaluation is
twofold: 1) to affirm the functionality of a communication enabled MARL algo-
rithm, and 2) to illustrate agent performances across various scenarios through
modifications of the communication and action strategies. The first phase sets the

55

5.1 Evaluation Criteria

foundation that integrates DIAL in a relatively straightforward setup, that facili-
tates basic communication between agents to address tactical cyber defence tasks.
Subsequent phases build on the preliminary results, progressively introducing in-
tricate game design elements aimed at augmenting the real-world applicability of
the learning system.

Throughout these phases, training and evaluation are methodically conducted
to compare the evolved strategies against established benchmarks. Each phase
is designed to isolate and test the influence of specific changes to the system’s
configuration, from communication protocols to reward structures. Performance
metrics are aggregated and averaged across several training iterations that en-
sures the robustness of the findings. This approach provides a comprehensive
assessment of DIAL’s efficacy in managing complex network defence operations.

Phase 1 Trials: In Phase 1, the research is centered on integrating the
DIAL algorithm within the CybORG environment. As detailed in Chapter 4,
this phase involves setting up the environment and running the baseline models
for evaluating DIAL. Hyperparameters are also tuned here to optimize the sys-
tem’s response, though specifics are elaborated in the Methodology Chapter’s,
Section 4.2.2. Moreover, efforts are made to adapt CybORG to enable agents
to use the communication channel in DIAL, primarily by shaping the rewards,
and experimenting with multi-bit messages. Various methods are tested, includ-
ing different penalties for host captures and illegal actions to encourage more
strategic gameplay. For instance, additional penalties were added for the initial
compromise of a host with a user shell by the red agent with the penalties dou-
bling upon escalation. However, this did not yield any advantages. Additionally,
a 2-bit communication strategy is tested but it also proved insignificant. The
simplicity of a 1-bit message aligned well with red agent’s sequential compro-
mise pattern, allowing for a condensed but sufficient representation of states of
other agent’s observations. Furthermore, a reduced exploit detection rate is ex-
perimented with and subsequently evaluated which proved beneficial in revealing
critical cues for further game design elements.

To evaluate the trained model, mean return along with the training curves are
compared and analysed with the benchmarks. The evolution of the agent policies
are also monitored across initial, middle and final training stages which provided
insights into the effectiveness of communication strategies at different points of
the training process. This detailed analysis was important in understanding
the practical implications of the tactics across all learning stages as well as in
assessing the potential of coordination within the independent MARL framework
of CybORG.

Phase 2 Trials: This phase introduces more dynamic elements to evaluate
the robustness of communication strategies under varying conditions. Specifically,
two pivotal changes are implemented: action masking and the addition of a ’block’
action. These modifications are aimed at enabling the agent’s strategic use of the
communication channel and refine agent’s tactical decision-making capabilities.
The impact of these modifications are significant, with agents demonstrating
actual coordination and improved defensive strategies compared to the earlier
phase. As with phase 1, the training progress is assessed by comparing learning

56

5.1 Evaluation Criteria

curves and mean returns against newly established benchmarks for Phase 2.
Phase 3 Trials: The third and final phase advanced the environmental

design to evaluate the scalability of the developed MARL system. This phase
involves the introduction of a benign actor, ’green’ agent, where it performs non-
malicious actions which added layers of complexity to the agent’s operational
environment. Additionally, experiments are conducted with varying the port scan
detection rates. Lastly, the scenario expanded to include an additional subnet
along with a new agent overseeing this network, thus increasing the operational
space that the agents are required to defend. This phase did not involve further
hyperparameter tuning or changes to the reward structure or communication
strategies established in previous phases. Instead, it focused on evaluating how
well the strategies developed in earlier trials could adapt to potential ambiguities
in the threat landscape.

5.1.4 Experimental Setup

The sequence of actions within each timestep is carefully designed, where blue
agents are configured to initiate each timestep with their active mitigation actions
followed by the red agent’s compromise strategies. The blue agent’s mitigation
actions are generally reactive and is based on the previous moves of the red agent.
Typically, until the red agent exploits a host, the defender agent’s active actions
consist largely of the ’sleep’ action, which effectively simulates the attacker’s
first-move advantage observed in real world settings. Following this, the defender
agents are set to passively monitor their respective zones at the end of each turn.

Each trial in the first two phases and the initial tasks of Phase 3 are structured
to run for 30 timesteps per episode. The final task of Phase 3 expanded this to
60 timesteps, allowing for more extended engagement due to the introduction of
the larger network configuration. These timestep constraints are selected to bal-
ance the simulation’s complexity with the computational feasibility. In any cyber
defencee scenario, the interaction between the red and blue agents could theo-
retically continue indefinitely. However, for the purpose of this study, limiting
the episodes to 30 and 60 timesteps allowed for a focused analysis of the agent’s
strategies in defending the operational server. Moreover, instead of designing the
game with a terminal condition such as the compromise of the operational server,
the scenarios are left open-ended to encourage the agents to learn defence strate-
gies without prematurely terminating the episode, ensuring they gain experience
in all stages of a cyber battle space.

Training for each trial is extended over 5,000 epochs, with each epoch com-
prising 128 episodes. This setup resulted in a substantial total of 19.2 million
timesteps per trial for the initial phases and 38.4 million timesteps for the larger
network, providing a robust dataset for evaluating the learning model’s perfor-
mance and stability over time. Furthermore, each trial configuration is executed
across three independent iterations. Average return is calculated to assess the
performance variations and to establish confidence in the observed outcomes.
Additionally, every 10 epochs, the game scenarios are tested under greedy poli-
cies not only to gauge the effectiveness of the learned strategies, but also to use
them to plot the learning curves. All performance data are recorded in CSV files

57

5.2 Results

for subsequent analysis. Lastly, all simulations are conducted on a Windows 11
system, utilizing only the CPU, with no GPU acceleration. The computational
setup included 8 cores, which are essential for multiprocessing, that enables the
efficient handling of these simulations.

5.1.5 Optimal Score

The optimal score reflects the theoretical best outcome which the learned system
can achieve under given conditions. Given the game dynamics, where penalties
are accrued for maintaining escalated privileges on a host but not for the ini-
tial compromise, the optimal strategy for the blue agents is to remove the red’s
session corresponding to that host. This will yield a score 0. However, during
a 30-timestep game and with a detection rate of 50% at User2 host, there is a
chance that an exploit goes undetected at least once or twice. If undetected, red
can escalate privileges and commence intelligence gathering on the operational
subnet. From that point on, at every timestep, an escalated shell maintained by
red on User2 or any subsequent host will result in accumulated penalties for the
blue side.

The half chance of missing an exploit necessitates additional strategic actions
when the threat eventually becomes apparent. These actions typically include
blocking access from the user subnet and restoring the integrity of User2. While
these actions are necessary for containment and recovery, they inherently carry
penalties which impacts the overall score. Therefore, an optimal score in this
setup would be the one where blue agents manage to keep the penalties to a
minimum by managing the trade-offs between immediate action costs and the
potential for higher penalties if red actions are unchecked.

5.2 Results

This section presents the empirical outcomes derived from the experimental trials
conducted across the three phases of the study. For each phase, the results are
outlined to illustrate the effectiveness of the MARL system with the integration
of the DIAL algorithm within the CybORG environment. The results for each
phases are presented in their respective subsections, with full sample games for
two scenarios and partial sample game for the large network scenario is illustrated
in Appendix B, providing a structured overview of how the agent’s performance
evolved with each experimental setup.

5.2.1 Phase 1

The first phase of the trials focuses on assessing the adaptive capabilities of
DIAL under varied detection rates and subsequently, compares its performance
with the QMix and DIAL-no comms benchmarks. Firstly, models are trained
with the default 95% exploit detection rate of CybORG. The learning curves, as
illustrated in Figure 5.1a, reveal that QMix marginally outperforms the DIAL
algorithm, with DIAL-no comms lagging slightly behind both. This indicates
that while DIAL facilitates communication, the high detection rate diminishes

58

5.2 Results

the noticeable impact of this feature, as the environment’s demands can be met
without extensive agent coordination.

(a) Learning curve in Phase 1 with 95% detection.

(b) Learning curve in Phase 1 with 50% detection.

Figure 5.1: Comparative learning curves in Phase 1 with different detection levels.

As detection rates are halved to 50%, the gaps in performance widened as
seen in Figure 5.1b. QMix maintains the superiority over both versions of DIAL.
This suggests that QMix is better under uncertain conditions, as it effectively
handles the reduced information without any reliance on inter-agent communi-
cation. The intuition here is that while QMix and DIAL both employ RNN’s in

59

5.2 Results

their architecture, QMix, due to its centralised learning ability, is able to better
equip its agent’s to mitigate threats in a timely manner even without detection.
As previously stated, in real-world situations, this may not be the best way to
deploy agents in cyber defence scenarios, as the threats are far more covert and
less frequent.

Figure 5.2: Evaluation scores of DIAL, DIAL-no comms, and QMix for both trials in
Phase 1. Standard deviation is represented by bars.

Figure 5.2 visually details the evaluation scores and their standard deviation
for all trials within this phase, illustrating the consistency and fluctuations in each
algorithm’s performance. Again, it can be observed that during the evaluation of
the learned policies, QMix slightly outperformed DIAL, while DIAL-no comms
under performed compared to the other two algorithms. Evaluation scores across
all phases are listed in Table 5.1.

Algorithm 95% detection 50% detection

DIAL −4.9± 1.4 −8.2± 1.5
NoComms −5.3± 1.4 −9.1± 1.7
QMIX −4.2 ± 1.1 −7.3 ± 1.2

Table 5.1: Evaluation scores across multiple iterations for phase 1, with the standard
deviation.

The comparative analysis of learning curves and evaluation scores quantify
the performance of each algorithm. However, to understand each algorithm’s
operational strengths and weaknesses in a simulated cyber defence context, an
analysis of the learned policies is warranted. Therefore, the evolved agent policies,
as seen in Figure 5.3, across all algorithms and with varied detection rates are
investigated. Despite the variances in performance metrics, the learned policies

60

5.2 Results

showed similar strategic patterns for all algorithms. Agents are quick to utilize
the ’remove’ action upon detecting exploits, which is a commonality among all
the algorithms and asserts the independent nature of the CybORG environment.
However, the nuances emerged more distinctly when exploits went undetected.
In all cases agents resorted to the ’restore’ action, with QMix timing this action
more efficiently after a covert exploit. Both DIAL methods, with and without
communication, were slightly slow in utilizing the ’analyse’ restore, hence the
lower evaluation scores.

Figure 5.3: Trained agent policies in Phase 1 for all scenarios and for all algorithms.

Furthermore, the learned policies of DIAL did not show any substantial com-
munication strategies. There could be many reasons for this behavior but the
general perception is that learning additional Q-values for communication is chal-
lenging and the RNN architecture forces the agents to resort to independent
strategies rather than collaborative. Note that DIAL is originally designed for
fully cooperative environments that require communication. The results of the
experiments conducted by DIAL authors show that a non communicative algo-
rithm will fail to converge in their fully cooperative environment [25]. In knowing
this, it does not help that CybORG can be solved independently with a random
use of the ’analyse’ action at every few timesteps.

Despite this discouraging behavior of DIAL agents, DIAL displayed signs of
its potential in the initial and middle stages of each training iteration. During
these stages, meaningful communication is observed as agents utilized the 1-bit
message system. The operational subnet agent used the communication chan-
nel to alert the agent in the user subnet on the potential threats, such as port
scans or exploits. Over time, agents in DIAL veered away from using this strate-
gic communication. Nonetheless, this strategy was instrumental in shaping the
modifications implemented in Phase 2.

5.2.2 Phase 2

The two benchmarks, QMix and DIAL-no comms, are trained and re-evaluated
in this phase with the added game design elements: action masking and the

61

5.2 Results

’block’ action. DIAL’s adaptability of communication strategies in both of these
scenarios are evaluated against the new benchmarks. The learning curves for
both the scenarios are illustrated in Figure 5.4 and shows the progression of all
three algorithms: DIAL, QMix, and DIAL-no comms.

As evidenced by Figure 5.4a, the inclusion of strategic action masking shows
that DIAL slightly outperforms QMix and considerably excels over DIAL-no
comms. The addition of the ’block’ action significantly boosted DIAL’s per-
formance as seen in Figure 5.4b. The corresponding evaluation scores as outlined
in Table 5.2 also reveal the same trend of DIAL being better at these tasks com-
pared to the benchmarks. The evaluation scores and standard deviations for this
phase are graphically represented in Figure 5.5.

Algorithm No Block With Block

DIAL −6.4 ± 0.9 −3.6 ± 0.8
NoComms −9.5± 1.5 −16.9± 1.9
QMIX −7.1± 1.3 −7.8± 1.2

Table 5.2: Evaluation scores across multiple iterations for phase 2, with the standard
deviation.

Analysis of the evolved policies, as evidenced in Figure 5.6, reveal that agents
in DIAL effectively utilize the communication channel to coordinate actions like
’analyse’ and ’restore’ when threats are undetected. This strategic communica-
tion is pivotal in scenarios where immediate mitigation is crucial but delayed due
to the covert nature of the threat.

For both tasks in this phase, it can be observed from the Figure 5.6a, that
similar to phase 1, agents in DIAL swiftly act to remove the attacker from a
host upon detection. This is an expected behavior of an optimized policy across
all learning phases. However, when a compromise goes undetected and with the
imminent attacks on the operational assets, the defender agent in the operational
subnet makes a vital decision to alert the user agent of the threat at hand. The
operational agent sends the alert in 2 situations: 1) When it observes a port
scan, and 2) when it observes an exploit on one of its hosts. In the final policies,
the user agent always acted quickly to mitigate the undetected exploit on User2
host and therefore, the operational agent never had to send additional signals
after the port scanning. This alert from the operational agent expands the action
space of the user agent to include the ’analyse’ action, which it promptly uses to
disclose a privileged shell of the red agent. It is important to note that although,
the analyse action is masked and available only via a communication signal,
agents are required to learn this communicative behavior and not a predefined
mechanism.

In the task incorporating the block action, the operational agent’s immediate
response to port scans are twofold: 1) send a signal to the user agent, and 2)
isolate the user subnet from where the attack is being initiated as seen if Figure
5.6b. This quick coordination helps bridge the critical gap that existed without
the ’block’ action, as previously the red agent could move into the operational
subnet during this delay. A sample game is provided for the block scenario in

62

5.2 Results

(a) Learning curve in Phase 2 without the ’block’ action.

(b) Learning curve in Phase 2 with the ’block’ action.

Figure 5.4: Comparative learning curves in Phase 2 with and without ’block’ action.

Appendix B.1.
QMix continues to exhibit similar patterns to those observed in Phase 1 for

both the tasks, with one difference. Instead of using the ’restore’ action, which
is masked, it utilizes the ’analyse’ action in a similar fashion. This indicates that
while effective, its strategies do not diverge significantly with the addition of new

63

5.2 Results

Figure 5.5: Evaluation scores of DIAL, DIAL-no comms, and QMix for both trials in
Phase 2. Standard deviation is represented by bars.

(a) Trained policy for agent 1 across both scenarios.

(b) Trained policy for agent 2 with block action.

Figure 5.6: Optimized policies of Phase 2 for DIAL.

64

5.2 Results

game elements. It also did not make good use of the ’block’ action which incurs
penalties, rather it opted for the use of ’analyse’ action at every few timesteps.
’Analyse’ does not have any penalties if a compromise is detected and has lower
penalties than ’block’ if it illegally uses it. Conversely, the no comms strategy
follows a similar approach as QMix for the first scenario. However, in the ’block’
action scenario, it adopts an aggressive defence posture, frequently deploying the
block action, which although incurs penalties, prevents more significant losses
from potential host captures. These results not only illustrate the strategic flex-
ibility of DIAL in a more difficult scenario but also highlights the limitations of
non-communicative algorithms, where although the decision making may appear
strategic, but inherently they are random.

5.2.3 Phase 3

The introduction of a ’green’ agent, simulating benign user behavior that could be
misconstrued as malicious by defender agents, marked the first task of this phase.
As depicted in Figure 5.7, the learning curves illustrate that while DIAL main-
tained superior performance over QMix, its effectiveness is somewhat diminished
compared to Phase 2. This reduction in performance primarily stems from false
positives, where DIAL struggled a little to distinguish between actual threats
and benign actions by the green agent. Despite this, DIAL prevented the lat-
eral movement from the user to the operational subnet, with the negative scores
largely attributed to the penalties from unnecessary defensive actions. The policy
analysis indicates that DIAL’s communication facilitated quick responses, though
often triggered by misleading cues from the green agent’s actions as observed in
Appendix B.2.

Figure 5.7: Learning curves of the different algorithms for the green agent scenario in
Phase 3.

65

5.2 Results

The second task experimented with altered detection rates for port scanning
and allowed unrestricted communication throughout the episode, removing the
green agents for this trial. The scenario kept all the other conditions from Phase 2,
including the ’block’ action. Interestingly, as illustrated in Figure 5.8, the learn-
ing curve shows that DIAL significantly under performed compared to QMix.
The graph also shows huge fluctuations in the learning curve, which possibly in-
dicates that the agents policies may have varied throughout the learning phase.
After analyzing the policies it became apparent that communication within DIAL
depends heavily on reliable threat indicators. The absence of consistent and cred-
ible threats led to a breakdown in cooperative strategies, with agents reverting
to more independent actions, as detailed in the evaluation scores in Table 5.3.
QMix, with its consistent access to the ’analyse’ action, better managed the
threats before they could laterally move. Another interesting observation is that
QMix, does not heavily rely on the port scan detection.

Figure 5.8: Learning curve for the varied port scan detection rate in Phase 3.

The final task expanded the network size and introduced an additional agent
to manage the increased scope. This setup aimed to test DIAL’s performance in
a more extensive network environment. Training curves and evaluation scores,
presented in Figure 5.9 and Table 5.3 respectively, show that although scores for
DIAL are lower compared to the smaller scenario in Phase 2, DIAL significantly
outperformed QMix, and successfully adapted to the larger network with the
same communication strategies observed in Phase2. The agents not only pre-
vented red’s movement to the operational subnet but also managed threats in
the intermediary subnet which is illustrated in Appendix B.3.

Overall, Phase 3 demonstrated the potential of DIAL to scale up to more
complex network environments while maintaining effective communication among
agents. The imperfect detection is obviously a large concern for scenarios that

66

5.3 Discussion

Figure 5.9: Learning curve for the large network in Phase 3.

Algorithm Green Agent 50% port scan detection Large Network

DIAL −18.4 ± 1.8 −68.7± 22.4 −26.4 ± 1.5
QMIX −32.7± 2.3 −9.6 ± 1.5 −43.4± 4.6

Table 5.3: Evaluation scores across multiple iterations for phase 3, with the standard
deviation.

require inter-agent communication to manage threats which will be discussed in
detail in the next section. With the exception of one scenario, the results from
this phase provide promising indications of DIAL’s applicability in realistic cyber
defence scenarios.

5.3 Discussion

This section delves into some of the intricacies of the developed MARL system
within the CybORG environment by reflecting on the challenges and observa-
tions throughout the research process. It aims to detail the nuances between
the designed communication strategies, the limitations imposed by the simula-
tor, and the implications these have on the broader field of ACD. It will also
explore several other key areas including, the role of the ’monitor’ action and
threat detection, the influence of benign agents in network simulations, and the
scalability of the system to larger networks.

5.3.1 Communication

In the first phase of the research, the DIAL algorithm within CybORG presented
unique challenges in allowing agents to learn communication. Originally, this
research envisioned an ideal scenario that would have enabled the communication

67

5.3 Discussion

strategies to be proactive rather than reactive. The strategy would allow agents
in the exposed network segments, such as the user subnet in CybORG, to alert
other parts of the network. The alert signal would obviously depend on threat
indicators within the user subnet. For instance, once the user agent detects a
compromise on one of its hosts, it would seek to alert the operational agent of
this compromise. In the meantime, while the user agent is busy in dealing with
mitigation of an attack, the operational agent would employ a defensive posture,
which would include CybORG’s ’misinform’ action and the ’block’ action. The
’misinform’ action, which is not utilized in this research, allows any agent to create
mock processes on hosts, that appear real to the attacker agent and essentially is
designed to delay any exploits initiated by Red. This proactive communication
was conceptualized to simulate cyber defence dynamics where early warnings from
compromised segments could trigger preemptive defences across the network.
Unfortunately, limitations in DIAL algorithm’s adaptation to CybORG as well
as CybORG’s structure hindered the realization of such dynamics.

In DIAL, communication is an indirect aspect of learning, where the formu-
lated messages are not directly tied to immediate rewards. Instead, the value of
a message is learned through its impact on subsequent environment interactions
and associated rewards which led to fluid communication patterns. This indirect
feedback loop made it challenging to directly quantify the impact of a specific
message on overall strategies. Additionally, DIAL is designed to encode messages
as part of a broader decision-making process. For example, in the Multi-Step
MNIST game from the experiments that presented DIAL, communication plays
a pivotal and sequential role, where agents have to devise a protocol to iden-
tify other agent’s MNIST digit as illustrated in Figure 5.10 [25]. In contrast,
CybORG’s scenarios did not inherently support such complex communication
dynamics.

Figure 5.10: Protocol of Multi-Step MNIST game [25].

Furthermore, a misalignment is noted in the behaviors of each agent. Due
to the sequential patterns of the attacker, the defender agent in the user subnet
performed majority of the mitigation actions and the operational agent remained

68

5.3 Discussion

inactive until signs of a compromise is detected. This highlighted a fundamental
mismatch between the intended use of DIAL and the intrinsic design of CybORG
as an environment geared more towards independent agent operation.

Nonetheless, this research overcame the above challenges. Firstly, while the
initial objective of the research to model the proactive communication mecha-
nism is unsuccessful, the game design elements that are eventually adopted are
effective within the confines of the simulation, mirroring the conventional inci-
dence response tactics. Secondly, DIAL’s encoding strategy is adapted to enable
the operational agent to relay a simple signal which proved sufficient for a co-
ordinated autonomous defence. Lastly, the importance of the operational agent
is expanded, where now along with its environment actions, it has to utilize the
communication mechanism to inform other agent’s of imminent attack on its
hosts.

5.3.2 Monitor action and threat detection

The reliance of the ’monitor’ action to trigger any defensive response highlights a
critical aspect of cyber defence: the detection of threats. The simulation’s setup,
where the network is monitored passively without necessitating explicit agent
action, is akin to a host-based IDS. This setup simplifies the decision-making
process by allowing agents to continuously receive information from this ”IDS”.
Therefore, any failures in threat detection is a failure of the IDS in capturing
threat data. However, this may limit realistic training conditions and poses an
important question of whether a more active learning approach of this action may
have induced more nuanced strategies.

Addressing threat detection raises another important question: how can sys-
tems be designed to more confidently detect threats? While it is not the focus of
this research to devise better detection mechanisms, it is clear that in applying
RL for ACD, the focus often rests on responding to observed threats rather than
the detection methods. However, without high-confidence threat detection, the
effectiveness of MARL systems in a defensive role might be compromised. Fur-
thermore, the performance degradation observed when the port scan detection
rates were lowered in the second task of Phase 3 indicates the sensitivity of the
system to the reliability of threat detection. This scenario underscores the deli-
cate balance between detection accuracy and response effectiveness, emphasizing
the need for robust detection mechanisms as a foundation for ACD.

Another approach that is extensively discussed in literature is to feed the
agents with host and network logs which would allow them to learn to detect
threats from these logs. However, such a learning system would require realistic
network traffic to be simulated in ACO environments. This is obviously a big
limiting factor of today’s simulated environments. Furthermore, with this type of
approach, the complexity in the agent’s learning ability also increases to not only
learn the detection mechanisms from network logs but also to perform mitigation
actions from these detections.

Moreover, the use of the ’analyse’ action also revealed some challenges. Ini-
tially, agents did not benefit in the use of this action, primarily due to the high
exploit detection rate but also due to no contingencies on the ’remove’ and ’re-

69

5.3 Discussion

store’ actions. For instance, when a threat is detected, agents learned to use the
’remove’ action, and when a threat is not detected, agents resorted to using the
’restore’ action every few timesteps as a more proactive approach. The ’analyse’
action proved beneficial only when the ’restore’ action is masked to work when
a threat is detected. Although this strategy is useful in balancing the use of
the actions, the defender agents shifted their policies to use the ’analyse’ action
more often. This suggests that while ’analyse’ is critical under certain conditions,
its use needs careful consideration to avoid excessive resource expenditure. The
question then becomes whether to employ the ’analyse’ action sporadically to
ensure higher threat detection certainty or to use it in an efficient manner such
as a relayed message signal from another agent within the network.

5.3.3 Green agent

Green agents in the CybORG simulator offers some valuable insights into the
complexities of network defence in real-world settings. In a typical enterprise
network, normal users generate substantial network traffic, which can mask ma-
licious activities. This is obviously a challenge for the network analysts in dif-
ferentiating between malicious and benign activities. The incorporation of green
agents in CybORG is aimed at replicating this aspect by introducing actions,
such as process spawning or port scanning.

The presence of a single green agent significantly increased the complexity
of decision-making for the defender agents, leading to a notable accumulation
of penalties. While these penalties are not necessarily indicative of actual host
compromises, they represent the costs, both in terms of time and resources, as-
sociated with addressing false positives. Such costs are a realistic aspect of cyber
operations, where not all security alerts correspond to genuine threats, yet they
require investigation and consume valuable resources.

Despite this, DIAL agents demonstrate an ability to handle the added com-
plexity in a manner that may reflect realistic defence of cyber systems. For
instance, when either green or red agents conducted port scans on a host in
the operational subnet, the defender agents utilized the communication channel.
Agent in the operational subnet alerts the user agent, leading to a defensive mea-
sure of analyzing all hosts in subsequent timesteps. Once the ’analyse’ action is
used, the ’restore’ action is triggered if a threat is detected, otherwise the agent
opted for the ’sleep’ action.

5.3.4 Large Network

The broader objective of this research is to expand the developed methodologies
to larger, more complex environments. To explore scalability, the simulation
introduced an additional agent and a new subnet, increasing from two hosts
per subnet in the base scenario to four. This increase resulted in each agent
managing a larger action space, growing from 8 to 15 possible actions. To manage
this complexity, the strategy of action masking proved valuable. By selectively
narrowing the actions available based on a host compromise, agents could focus
on pertinent actions related to the compromised host. This selective focus helps

70

5.4 Evaluation Summary

in maintaining efficiency without overwhelming the agents with too many choices
at each step.

Interestingly, the expanded scenario with 60 timesteps revealed a notable
trend. Despite the fact that the red agent succeeded in compromising the opera-
tional subnet early in the training, the evolved strategies as seen in Appendix B.3
prevented the attacker from advancing beyond the intermediary subnet. The com-
parison of results between the base scenario and the expanded network showed
that while the specific scores might differ, the underlying policies learned by the
agents remained consistent. Although definitive conclusions about scalability to
even larger networks remain untested, the success in a 3-agent environment sug-
gests that the agents are capable of scaling their strategies to larger networks,
obviously with careful considerations of the communication strategies.

5.4 Evaluation Summary

This evaluation chapter has presented the outcomes of integrating and testing
the DIAL framework within the CybORG simulated environment through vari-
ous experimental phases. The results validate and demonstrate the algorithm’s
capacity in enabling agents to formulate both the communication as well as the
defensive strategies. The performance of the DIAL algorithm, compared against
QMix and the non-communicative variant, points to the potential benefits of
structured communication in multi-agent settings for ACD. Although the DIAL
algorithm outperformed in scenarios requiring active communication for coordina-
tion, it also revealed limitations in scenarios with decreased detection capabilities,
highlighting the importance of precise threat detection.

Notably, the addition of more complex game elements, such as the intro-
duction of benign green agents and the expansion of network, provided valuable
insights into the scalability of the learned behaviors. These experiments showed
that while the agents are capable of adapting to complex environments, the per-
formance is influenced by the realism of the threat models employed.

71

6 Conclusion

This Chapter concludes this research, first, by highlighting the contributions
made towards the broader scope of ACD. It will also suggest future research
directions based on the observations and insights gained during the methodology
and the evaluation processes of this research.

6.1 Contributions

To the best of our knowledge, this research on the application of multi-agent com-
munication frameworks for ACD simulations marks an advancement in the field.
A major contribution of this work is the successful implementation and validation
of a communicative MARL algorithm within an ACD environment, demonstrat-
ing its practical utility in cyber defence scenarios. This adaptation facilitated
strategic decision-making by enabling agents to communicate. It allowed agents
to utilize their actions in an informed manner rather than randomly.

Another key contribution is the identification of the limitations that exist in
current cyber defence simulations. The research found critical gaps in threat mit-
igation capabilities, particularly under conditions of imperfect detection rates. It
also identified challenges posed by the abstraction levels in CybORG and similar
environments. These abstractions, which simplify elements like agent observa-
tions, actions, operating system complexities, and network intricacies, may not
accurately reflect the operational challenges faced in real-world cyber defence set-
tings. Furthermore, the findings suggest that the configuration of agents, where
each agent is responsible for a specific subnet, may not optimally leverage the
potential for collaborative threat mitigation.

6.2 Future Work

The study presented in this research highlights the potential of MARL based
algorithms that facilitate inter-agent communication in cyber defence scenarios.
While the aim of this research is successfully achieved, a few complexities that
were originally envisioned remained untested within the context of the DIAL
algorithm as follows:

• Multiple Red Agents: The setup used throughout the research involved
a single adversarial agent, which allowed for a simplified threat dynamics.
The theory of introducing multiple red agents would enable a simulation
where multiple threats arise simultaneously. This scenario would be chal-
lenging for the defender agents where now they would have to prioritize
and manage multiple threats. This setup would test the robustness of the
communication strategies developed and the expectation is that, with some
adjustments, the coordination tactics would not diverge from the ones that
are presented in this work.

• Multiple Green Agents: To realistically mirror the noisy network traffic
found in enterprise network settings, this research hoped to incorporate

72

6.3 Closing Remarks

multiple green agents and evaluate in comparison to the single green agent
scenario of Phase 3.

• Individual Host Responsibility: Shifting from subnet-based to host-
based responsibilities for each agent naturally benefits with a more refined
action space where now agents would be responsible for a small number
of actions. The change would potentially increase the inter-agent coordi-
nation due to a more distributed task structure. However, this approach
would require reevaluation of the communication mechanism, possibly ex-
tending the 1-bit communication to multi-bit to handle the need for detailed
information sharing.

Additionally, this research discussed some limitation in Section 6.1 and there-
fore, to overcome them, a few topics in the broader context of cyber defence
simulators and MARL are presented as follows:

• Realism in Simulation: Training AI agents directly on real networks is
impractical. Simulators must therefore replicate the complexities of these
environments accurately. CybORG simplifies certain elements to stream-
line its cyber games between red and blue agents. Consequently, simulators
must evolve to encapsulate the reality of network dynamics more compre-
hensively. Improving simulators to encompass a broader scope of network
operations, attack methods, and defensive mechanisms will create a more
authentic environment to test and evaluate communicative MARL strate-
gies.

• Revised MARL Structures: Considering the limitations observed with
the ’single agent responsible for an entire subnet’ structure, a more inte-
grated MARL strategy could be beneficial. This might involve heteroge-
neous roles among agents, such as specialized monitoring agents and action-
specific agents (e.g., remove, restore). Such a configuration could enable for
more dynamic cooperation. For example agents monitoring a network have
to relay information to agents who are responsible for the mitigation ac-
tions.

• Exploration of other MARL architectures: So far only value-based
MARL algorithms have been explored in ACD, that includes the commu-
nication mechanism of DIAL which essentially is a Q-value network. In-
vestigating other frameworks such as policy-based methods could offer new
avenues for learning communication and action strategies in a MARL set-
ting.

6.3 Closing Remarks

This research successfully validated the aim presented in Chapter 1, to demon-
strate the importance of communication between blue agents by showing that
relaying key information allows these agents to stop a malicious actor from com-
promising hosts across subnets. In doing so, DIAL algorithm is first integrated in
the CybORG simulation environment. Then, DIAL is adapted in CybORG and

73

6.3 Closing Remarks

enables agents to send a 1-bit binary message as an abstraction of its observa-
tions. Subsequently, CybORG is modified to utilize the action masking strategy,
particularly with the ’analyse’ action that enables agents to make informed de-
cisions on its mitigation actions. CybORG is also revised to include a ’block’
action that significantly changed the behavior of DIAL agents to stop the lateral
movement. Following this, the game design is evaluated in varied conditions, that
included green agents of CybORG, imperfect detection and a larger network.

Training graphs and evaluation scores are then compared with benchmarks
across all the tasks. Agent policies are also analyzed which provided valuable in-
sights into the adaptability and scalability of the evolved communication strate-
gies. The training setups, specifically in the latter phases, tested the agent’s abil-
ities to cope with increased complexity that widened the understanding of some
of the limitations imposed by the current architectural settings within simulated
environments. In particular, threat detection with more confidence is identified
as a critical factor for any scenario requiring meaningful communication between
agents. Additionally, the MARL structure implemented in CybORG, where each
agent manages an individual subnet, proved challenging for agents to learn to
coordinate their actions.

Nonetheless, it is evident that MARL with communication offers an invaluable
tool in the development of blue agents for real world cyber threat mitigation.
This research provides a path for future work to address the limitations outlined,
while also adapting with the knowledge and understanding from the evaluation
presented in this work.

74

References

References

[1] I. H. Sarker, A. Kayes, S. Badsha, H. Alqahtani, P. Watters, and
A. Ng, “Cybersecurity data science: an overview from machine learning
perspective,” Journal of Big data, vol. 7, pp. 1–29, 2020. [Online]. Available:
https://link.springer.com/article/10.1186/s40537-020-00318-5

[2] H. Orman, “The morris worm: A fifteen-year perspective,” IEEE
Security & Privacy, vol. 1, no. 5, pp. 35–43, 2003. [Online]. Available:
https://ieeexplore.ieee.org/document/1236233/

[3] P. Institute, “Cost of a data breach report,” 2023. [Online]. Available:
https://www.ibm.com/reports/data-breach

[4] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT press, 2015. [Online]. Available: https://web.stanford.edu/class/
psych209/Readings/SuttonBartoIPRLBook2ndEd.pdf

[5] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van
Den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam,
M. Lanctot et al., “Mastering the game of go with deep neural networks
and tree search,” nature, vol. 529, no. 7587, pp. 484–489, 2016. [Online].
Available: https://pubmed.ncbi.nlm.nih.gov/26819042/

[6] M. Lai, “Giraffe: Using deep reinforcement learning to play chess,”
arXiv preprint arXiv:1509.01549, 2015. [Online]. Available: https:
//arxiv.org/abs/1509.01549

[7] K. Arulkumaran, M. P. Deisenroth, M. Brundage, and A. A. Bharath,
“Deep Reinforcement Learning: A Brief Survey,” IEEE Signal Processing
Magazine, vol. 34, no. 6, pp. 26–38, Nov. 2017. [Online]. Available:
http://ieeexplore.ieee.org/document/8103164/

[8] T. T. Nguyen and V. J. Reddi, “Deep reinforcement learning for cyber
security,” IEEE Transactions on Neural Networks and Learning Systems,
2021. [Online]. Available: https://arxiv.org/abs/1906.05799

[9] N. A. Grupen, D. D. Lee, and B. Selman, “Multi-agent curricula
and emergent implicit signaling,” arXiv preprint arXiv:2106.11156, 2021.
[Online]. Available: https://arxiv.org/abs/2106.11156

[10] S. Vyas, J. Hannay, A. Bolton, and P. P. Burnap, “Automated cyber
defence: A review,” arXiv preprint arXiv:2303.04926, 2023. [Online].
Available: https://arxiv.org/abs/2303.04926

[11] A. OroojlooyJadid and D. Hajinezhad, “A Review of Cooperative
Multi-Agent Deep Reinforcement Learning,” 2019. [Online]. Available:
https://arxiv.org/abs/1908.03963

75

https://link.springer.com/article/10.1186/s40537-020-00318-5
https://ieeexplore.ieee.org/document/1236233/
https://www.ibm.com/reports/data-breach
https://web.stanford.edu/class/psych209/Readings/SuttonBartoIPRLBook2ndEd.pdf
https://web.stanford.edu/class/psych209/Readings/SuttonBartoIPRLBook2ndEd.pdf
https://pubmed.ncbi.nlm.nih.gov/26819042/
https://arxiv.org/abs/1509.01549
https://arxiv.org/abs/1509.01549
http://ieeexplore.ieee.org/document/8103164/
https://arxiv.org/abs/1906.05799
https://arxiv.org/abs/2106.11156
https://arxiv.org/abs/2303.04926
https://arxiv.org/abs/1908.03963

References

[12] R. Bhosale, S. Mahajan, and P. Kulkarni, “Cooperative machine
learning for intrusion detection system,” International Journal of
Scientific and Engineering Research, vol. 5, no. 1, pp. 1780–
1785, 2014. [Online]. Available: https://www.ijser.org/researchpaper/
Cooperative-Machine-Learning-For-Intrusion-Detection-System.pdf

[13] J. Wiebe, R. A. Mallah, and L. Li, “Learning Cyber Defence Tactics
from Scratch with Multi-Agent Reinforcement Learning,” 2023. [Online].
Available: https://arxiv.org/abs/2310.05939

[14] PyMARL 2, 2021, accessed: 2023-09-05. [Online]. Available: https:
//github.com/hijkzzz/pymarl2

[15] M. Standen, M. Lucas, D. Bowman, T. J. Richer, J. Kim, and
D. Marriott, “Cyborg: A gym for the development of autonomous
cyber agents,” arXiv preprint arXiv:2108.09118, 2021. [Online]. Available:
https://arxiv.org/abs/2108.09118

[16] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” nature,
vol. 521, no. 7553, pp. 436–444, 2015. [Online]. Available: https:
//hal.science/hal-04206682/document

[17] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou,
D. Wierstra, and M. Riedmiller, “Playing atari with deep reinforcement
learning,” arXiv preprint arXiv:1312.5602, 2013. [Online]. Available:
https://arxiv.org/pdf/1312.5602.pdf

[18] M. Hausknecht and P. Stone, “Deep recurrent q-learning for partially
observable mdps,” in 2015 aaai fall symposium series, 2015. [Online].
Available: https://cdn.aaai.org/ocs/11673/11673-51288-1-PB.pdf

[19] L. Canese, G. C. Cardarilli, L. Di Nunzio, R. Fazzolari, D. Giardino,
M. Re, and S. Spanò, “Multi-Agent Reinforcement Learning: A Review of
Challenges and Applications,” Applied Sciences, vol. 11, no. 11, p. 4948, May
2021. [Online]. Available: https://www.mdpi.com/2076-3417/11/11/4948

[20] A. Tampuu, T. Matiisen, D. Kodelja, I. Kuzovkin, K. Korjus, J. Aru,
J. Aru, and R. Vicente, “Multiagent cooperation and competition with
deep reinforcement learning,” PloS one, vol. 12, no. 4, p. e0172395, 2017.
[Online]. Available: https://journals.plos.org/plosone/article?id=10.1371/
journal.pone.0172395

[21] L. Busoniu, R. Babuska, and B. De Schutter, “A Comprehensive
Survey of Multiagent Reinforcement Learning,” IEEE Transactions on
Systems, Man, and Cybernetics, Part C (Applications and Reviews),
vol. 38, no. 2, pp. 156–172, Mar. 2008. [Online]. Available: https:
//ieeexplore.ieee.org/document/4445757/

[22] T. Rashid, M. Samvelyan, C. S. De Witt, G. Farquhar, J. Foerster,
and S. Whiteson, “Monotonic value function factorisation for deep

76

https://www.ijser.org/researchpaper/Cooperative-Machine-Learning-For-Intrusion-Detection-System.pdf
https://www.ijser.org/researchpaper/Cooperative-Machine-Learning-For-Intrusion-Detection-System.pdf
https://arxiv.org/abs/2310.05939
https://github.com/hijkzzz/pymarl2
https://github.com/hijkzzz/pymarl2
https://arxiv.org/abs/2108.09118
https://hal.science/hal-04206682/document
https://hal.science/hal-04206682/document
https://arxiv.org/pdf/1312.5602.pdf
https://cdn.aaai.org/ocs/11673/11673-51288-1-PB.pdf
https://www.mdpi.com/2076-3417/11/11/4948
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0172395
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0172395
https://ieeexplore.ieee.org/document/4445757/
https://ieeexplore.ieee.org/document/4445757/

References

multi-agent reinforcement learning,” The Journal of Machine Learning
Research, vol. 21, no. 1, pp. 7234–7284, 2020. [Online]. Available:
https://arxiv.org/pdf/1803.11485.pdf

[23] J. Foerster, G. Farquhar, T. Afouras, N. Nardelli, and S. Whiteson,
“Counterfactual multi-agent policy gradients,” in Proceedings of the AAAI
conference on artificial intelligence, vol. 32, no. 1, 2018. [Online]. Available:
https://ojs.aaai.org/index.php/AAAI/article/view/11794

[24] P. Sunehag, G. Lever, A. Gruslys, W. M. Czarnecki, V. Zambaldi,
M. Jaderberg, M. Lanctot, N. Sonnerat, J. Z. Leibo, K. Tuyls et al.,
“Value-decomposition networks for cooperative multi-agent learning,”
arXiv preprint arXiv:1706.05296, 2017. [Online]. Available: https:
//arxiv.org/pdf/1706.05296.pdf

[25] J. Foerster, I. A. Assael, N. de Freitas, and S. Whiteson, “Learning
to Communicate with Deep Multi-Agent Reinforcement Learning,” in
Advances in Neural Information Processing Systems, D. Lee, M. Sugiyama,
U. Luxburg, I. Guyon, and R. Garnett, Eds., vol. 29. Curran Associates,
Inc., 2016. [Online]. Available: https://proceedings.neurips.cc/paper/2016/
file/c7635bfd99248a2cdef8249ef7bfbef4-Paper.pdf

[26] S. Sukhbaatar, a. szlam, and R. Fergus, “Learning Multiagent
Communication with Backpropagation,” in Advances in Neural In-
formation Processing Systems, D. Lee, M. Sugiyama, U. Luxburg,
I. Guyon, and R. Garnett, Eds., vol. 29. Curran Associates, Inc.,
2016. [Online]. Available: https://proceedings.neurips.cc/paper/2016/file/
55b1927fdafef39c48e5b73b5d61ea60-Paper.pdf

[27] K. Zhang, Z. Yang, H. Liu, T. Zhang, and T. Basar, “Fully Decentralized
Multi-Agent Reinforcement Learning with Networked Agents,” 2018.
[Online]. Available: http://proceedings.mlr.press/v80/zhang18n.html

[28] P. Peng, Y. Wen, Y. Yang, Q. Yuan, Z. Tang, H. Long, and J. Wang,
“Multiagent Bidirectionally-Coordinated Nets: Emergence of Human-level
Coordination in Learning to Play StarCraft Combat Games,” 2017. [Online].
Available: https://arxiv.org/abs/1703.10069

[29] A. Das, T. Gervet, J. Romoff, D. Batra, D. Parikh, M. Rabbat,
and J. Pineau, “TarMAC: Targeted Multi-Agent Communication,” 2018.
[Online]. Available: https://arxiv.org/abs/1810.11187

[30] A. Singh, T. Jain, and S. Sukhbaatar, “Learning when to Communicate at
Scale in Multiagent Cooperative and Competitive Tasks,” 2018. [Online].
Available: https://arxiv.org/abs/1812.09755

[31] G. Palmer, C. Parry, D. J. Harrold, and C. Willis, “Deep reinforcement
learning for autonomous cyber operations: A survey,” arXiv preprint
arXiv:2310.07745, 2023. [Online]. Available: https://arxiv.org/pdf/2310.
07745

77

https://arxiv.org/pdf/1803.11485.pdf
https://ojs.aaai.org/index.php/AAAI/article/view/11794
https://arxiv.org/pdf/1706.05296.pdf
https://arxiv.org/pdf/1706.05296.pdf
https://proceedings.neurips.cc/paper/2016/file/c7635bfd99248a2cdef8249ef7bfbef4-Paper.pdf
https://proceedings.neurips.cc/paper/2016/file/c7635bfd99248a2cdef8249ef7bfbef4-Paper.pdf
https://proceedings.neurips.cc/paper/2016/file/55b1927fdafef39c48e5b73b5d61ea60-Paper.pdf
https://proceedings.neurips.cc/paper/2016/file/55b1927fdafef39c48e5b73b5d61ea60-Paper.pdf
http://proceedings.mlr.press/v80/zhang18n.html
https://arxiv.org/abs/1703.10069
https://arxiv.org/abs/1810.11187
https://arxiv.org/abs/1812.09755
https://arxiv.org/pdf/2310.07745
https://arxiv.org/pdf/2310.07745

References

[32] N. Wagner, C. Ş. Şahin, M. Winterrose, J. Riordan, J. Pena, D. Hanson,
and W. W. Streilein, “Towards automated cyber decision support: A case
study on network segmentation for security,” in 2016 IEEE Symposium
Series on Computational Intelligence (SSCI). IEEE, 2016, pp. 1–10.
[Online]. Available: https://ieeexplore.ieee.org/abstract/document/7849908

[33] L. Li, R. Fayad, and A. Taylor, “Cygil: A cyber gym for training autonomous
agents over emulated network systems,” arXiv preprint arXiv:2109.03331,
2021. [Online]. Available: https://arxiv.org/abs/2009.08120

[34] W. Blum, “Gamifying machine learning for stronger
security and ai models,” 2021. [Online]. Avail-
able: https://www.microsoft.com/en-us/security/blog/2021/04/08/
gamifying-machine-learning-for-stronger-security-and-ai-models/

[35] K. Hammar and R. Stadler, “Finding effective security strategies through
reinforcement learning and self-play,” in 2020 16th International Conference
on Network and Service Management (CNSM). IEEE, 2020, pp. 1–9.
[Online]. Available: https://arxiv.org/abs/2009.08120

[36] A. Molina-Markham, C. Miniter, B. Powell, and A. Ridley, “Network
environment design for autonomous cyberdefense,” arXiv preprint
arXiv:2103.07583, 2021. [Online]. Available: https://arxiv.org/pdf/2103.
07583

[37] TTCP CAGE Challenge, 2021, accessed: 2023-09-05. [Online]. Available:
https://github.com/cage-challenge

[38] S. Shalev-Shwartz, S. Shammah, and A. Shashua, “Safe, multi-
agent, reinforcement learning for autonomous driving,” arXiv preprint
arXiv:1610.03295, 2016. [Online]. Available: https://arxiv.org/pdf/1610.
03295

[39] Z. Utic and K. Ramachandran, “A survey of reinforcement learning
in intrusion detection,” in 2022 1st International Conference on AI
in Cybersecurity (ICAIC). IEEE, 2022, pp. 1–8. [Online]. Available:
https://ieeexplore.ieee.org/document/9897058

[40] X. Guo, J. Ren, J. Zheng, J. Liao, C. Sun, H. Zhu, T. Song, S. Wang,
and W. Wang, “Automated penetration testing with fine-grained control
through deep reinforcement learning,” Journal of Communications and
Information Networks, vol. 8, no. 3, pp. 212–220, 2023. [Online]. Available:
https://ieeexplore.ieee.org/document/10272349

[41] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Proximal
policy optimization algorithms,” arXiv preprint arXiv:1707.06347, 2017.
[Online]. Available: https://arxiv.org/abs/1707.06347

[42] O. Sheyner, J. Haines, S. Jha, R. Lippmann, and J. M. Wing, “Automated
generation and analysis of attack graphs,” in Proceedings 2002 IEEE

78

https://ieeexplore.ieee.org/abstract/document/7849908
https://arxiv.org/abs/2009.08120
https://www.microsoft.com/en-us/security/blog/2021/04/08/gamifying-machine-learning-for-stronger-security-and-ai-models/
https://www.microsoft.com/en-us/security/blog/2021/04/08/gamifying-machine-learning-for-stronger-security-and-ai-models/
https://arxiv.org/abs/2009.08120
https://arxiv.org/pdf/2103.07583
https://arxiv.org/pdf/2103.07583
https://github.com/cage-challenge
https://arxiv.org/pdf/1610.03295
https://arxiv.org/pdf/1610.03295
https://ieeexplore.ieee.org/document/9897058
https://ieeexplore.ieee.org/document/10272349
https://arxiv.org/abs/1707.06347

References

Symposium on Security and Privacy. IEEE, 2002, pp. 273–284. [Online].
Available: https://ieeexplore.ieee.org/document/1004377

[43] Y. Sun, W. Xiong, Z. Yao, K. Moniz, and A. Zahir, “Network defense
strategy selection with reinforcement learning and pareto optimization,”
Applied Sciences, vol. 7, no. 11, p. 1138, 2017. [Online]. Available: https://
pdfs.semanticscholar.org/4f3c/53bba5acfa7507c4c487c71eaf74771dc382.pdf

[44] M. Kiely, D. Bowman, M. Standen, and C. Moir, “On autonomous agents
in a cyber defence environment,” arXiv preprint arXiv:2309.07388, 2023.
[Online]. Available: https://arxiv.org/pdf/2309.07388

[45] A. Dutta, S. Chatterjee, A. Bhattacharya, and M. Halappanavar, “Deep
reinforcement learning for cyber system defense under dynamic adversarial
uncertainties,” arXiv preprint arXiv:2302.01595, 2023. [Online]. Available:
https://arxiv.org/pdf/2302.01595

[46] J. Nyberg and P. Johnson, “Training automated defense strategies using
graph-based cyber attack simulations,” arXiv preprint arXiv:2304.11084,
2023. [Online]. Available: https://arxiv.org/pdf/2304.11084

[47] S. Vanneste, G. de Borrekens, S. Bosmans, A. Vanneste, K. Mets,
S. Mercelis, S. Latré, and P. Hellinckx, “Learning to communicate with
reinforcement learning for an adaptive traffic control system,” in Advances
on P2P, Parallel, Grid, Cloud and Internet Computing: Proceedings
of the 16th International Conference on P2P, Parallel, Grid, Cloud
and Internet Computing (3PGCIC-2021). Springer, 2022, pp. 207–216.
[Online]. Available: https://arxiv.org/pdf/2110.15779

[48] M. Panfili, A. Giuseppi, A. Fiaschetti, H. B. Al-Jibreen, A. Pietrabissa,
and F. D. Priscoli, “A game-theoretical approach to cyber-security of
critical infrastructures based on multi-agent reinforcement learning,” in
2018 26th Mediterranean Conference on Control and Automation (MED).
IEEE, 2018, pp. 460–465. [Online]. Available: https://ieeexplore.ieee.org/
document/8442695

[49] M. Basnet and M. H. Ali, “Deep reinforcement learning-driven mitigation
of adverse effects of cyber-attacks on electric vehicle charging station,”
Energies, vol. 16, no. 21, p. 7296, 2023. [Online]. Available: https:
//www.mdpi.com/1996-1073/16/21/7296

[50] G. Shi and G. He, “Collaborative multi-agent reinforcement learning for
intrusion detection,” in 2021 7th IEEE International Conference on Network
Intelligence and Digital Content (IC-NIDC), 2021, pp. 245–249. [Online].
Available: https://ieeexplore.ieee.org/document/9660402

[51] H. Van Hasselt, A. Guez, and D. Silver, “Deep reinforcement
learning with double q-learning,” in Proceedings of the AAAI conference
on artificial intelligence, vol. 30, no. 1, 2016. [Online]. Available:
https://ojs.aaai.org/index.php/AAAI/article/view/10295

79

https://ieeexplore.ieee.org/document/1004377
https://pdfs.semanticscholar.org/4f3c/53bba5acfa7507c4c487c71eaf74771dc382.pdf
https://pdfs.semanticscholar.org/4f3c/53bba5acfa7507c4c487c71eaf74771dc382.pdf
https://arxiv.org/pdf/2309.07388
https://arxiv.org/pdf/2302.01595
https://arxiv.org/pdf/2304.11084
https://arxiv.org/pdf/2110.15779
https://ieeexplore.ieee.org/document/8442695
https://ieeexplore.ieee.org/document/8442695
https://www.mdpi.com/1996-1073/16/21/7296
https://www.mdpi.com/1996-1073/16/21/7296
https://ieeexplore.ieee.org/document/9660402
https://ojs.aaai.org/index.php/AAAI/article/view/10295

References

[52] G. McDonald et al., “Competitive reinforcement learning for autonomous
cyber operations,” 2023. [Online]. Available: https://espace.rmc.ca/jspui/
bitstream/11264/1227/1/Competitive RL for ACO.pdf

[53] G. W. Brown, “Iterative solution of games by fictitious play,” Act.
Anal. Prod Allocation, vol. 13, no. 1, p. 374, 1951. [Online]. Available:
https://www.math.ucla.edu/∼tom/stat596/fictitious.pdf

[54] T. Yu and H. Zhu, “Hyper-parameter optimization: A review of
algorithms and applications,” arXiv preprint arXiv:2003.05689, 2020.
[Online]. Available: https://arxiv.org/pdf/2003.05689.pdf

[55] M. H. Bhuyan, D. K. Bhattacharyya, and J. K. Kalita,
“Surveying port scans and their detection methodologies,”
The Computer Journal, vol. 54, no. 10, pp. 1565–1581,
2011. [Online]. Available: https://www.researchgate.net/profile/
Dhruba-K-Bhattacharyya/publication/262321316 Surveying Port Scans
and Their Detection Methodologies/links/56e2541608aebc9edb19d3ed/
Surveying-Port-Scans-and-Their-Detection-Methodologies.pdf

[56] O. Vinyals, T. Ewalds, S. Bartunov, P. Georgiev, A. S. Vezhnevets, M. Yeo,
A. Makhzani, H. Küttler, J. Agapiou, J. Schrittwieser, J. Quan, S. Gaffney,
S. Petersen, K. Simonyan, T. Schaul, H. van Hasselt, D. Silver, T. Lillicrap,
K. Calderone, P. Keet, A. Brunasso, D. Lawrence, A. Ekermo, J. Repp, and
R. Tsing, “StarCraft II: A New Challenge for Reinforcement Learning,”
2017. [Online]. Available: https://arxiv.org/abs/1708.04782

[57] S. Huang and S. Ontañón, “A closer look at invalid action masking
in policy gradient algorithms,” arXiv preprint arXiv:2006.14171, 2020.
[Online]. Available: https://arxiv.org/pdf/2006.14171.pdf

80

https://espace.rmc.ca/jspui/bitstream/11264/1227/1/Competitive_RL_for_ACO.pdf
https://espace.rmc.ca/jspui/bitstream/11264/1227/1/Competitive_RL_for_ACO.pdf
https://www.math.ucla.edu/~tom/stat596/fictitious.pdf
https://arxiv.org/pdf/2003.05689.pdf
https://www.researchgate.net/profile/Dhruba-K-Bhattacharyya/publication/262321316_Surveying_Port_Scans_and_Their_Detection_Methodologies/links/56e2541608aebc9edb19d3ed/Surveying-Port-Scans-and-Their-Detection-Methodologies.pdf
https://www.researchgate.net/profile/Dhruba-K-Bhattacharyya/publication/262321316_Surveying_Port_Scans_and_Their_Detection_Methodologies/links/56e2541608aebc9edb19d3ed/Surveying-Port-Scans-and-Their-Detection-Methodologies.pdf
https://www.researchgate.net/profile/Dhruba-K-Bhattacharyya/publication/262321316_Surveying_Port_Scans_and_Their_Detection_Methodologies/links/56e2541608aebc9edb19d3ed/Surveying-Port-Scans-and-Their-Detection-Methodologies.pdf
https://www.researchgate.net/profile/Dhruba-K-Bhattacharyya/publication/262321316_Surveying_Port_Scans_and_Their_Detection_Methodologies/links/56e2541608aebc9edb19d3ed/Surveying-Port-Scans-and-Their-Detection-Methodologies.pdf
https://arxiv.org/abs/1708.04782
https://arxiv.org/pdf/2006.14171.pdf

A DIAL Algorithm

Following is the algorithm for DIAL as detailed in [25]:

Algorithm 4 Differentiable Inter-Agent Learning (DIAL)

1: Initialise θ1 and θ−1
2: for each episode e do
3: s1 = initial state, t = 0, ha0 = 0 for each agent a
4: while st ̸= terminal and t < T do
5: t = t+ 1
6: for each agent a do
7: Get messages m̂a′

t−1 of previous time-steps from agents m′ and eval-
uate C-Net:

8: Q(·),ma
t = C-Net

(
oat , m̂

a′
t−1, h

a
t−1, u

a
t−1, a; θi

)
9: With probability ϵ pick random uat , else uat =

maxaQ
(
oat , m̂

a′
t−1, h

a
t−1, u

a
t−1, a, u; θi

)
10: Set message m̂a

t = DRU(m), where DRU(m) ={
Logistic(N (ma

t , σ)), if training, else
1{ma

t > 0}
11: end for
12: Get reward rt and next state st+1

13: end while
14: Reset gradients ∇θ = 0
15: for t = T to 1, −1 do
16: for each agent a do
17: yat = if st terminal then
18: rt
19: else
20: rt + γmaxuQ

(
oat+1, m̂

a′
t , h

a
t , u

a
t , a, u; θ−i

)
21: Accumulate gradients for action:

22: ∆Qa
t = yat −Q

(
oaj , h

a
t−1, m̂

a′
t−1, u

a
t−1, a, u

a
t ; θi

)
23: ∇θ = ∇θ + ∂

∂θ (∆Qa
t)

2

24: Update gradient chain for differentiable communication:

25: µa
j = 1{t < T − 1}

∑
m′ ̸=m

∂
∂m̂a

t

(
∆Qa′

t+1

)2
+ µa′

t+1
∂m̂a′

t+1

∂m̂a
t

26: Accumulate gradients for differentiable communication:
27: ∇θ = ∇θ + µa

t
∂

∂ma
t
DRU(ma

t)
∂ma

t
∂θ

28: end for
29: end for
30: θi+1 = θi + α∇θ
31: Every C steps reset θ−i = θi
32: end for

81

B Sample Games

B.1 Game play for policy analysis in Phase 2 - Scenario 2: ’Block’

Turn 0

Red Action None
Defender Actions None

State

Hostname Activity Compromised

User1 None No
User2 None No

Op Host0 None No
Op Server0 None No

Reward 0.0

Turn 1

Red Action DiscoverRemoteSystems UserSubnet

Defender Actions

Agent Actions Comms

User Agent Sleep 0
Op Agent Sleep 0

State

Hostname Activity Compromised

User1 None No
User2 None No

Op Host0 None No
Op Server0 None No

Reward 0.0

Turn 2

Red Action DiscoverNetworkServices User1

Defender Actions

Agent Actions Comms

User Agent Sleep 0
Op Agent Sleep 0

State

Hostname Activity Compromised

User1 Scan No
User2 None No

Op Host0 None No
Op Server0 None No

Reward 0.0

82

B.1 Game play for policy analysis in Phase 2 - Scenario 2: ’Block’

Turn 3

Red Action DiscoverNetworkServices User2

Defender Actions

Agent Actions Comms

User Agent Sleep 0
Op Agent Sleep 0

State

Hostname Activity Compromised

User1 None No
User2 Scan No

Op Host0 None No
Op Server0 None No

Reward 0.0

Turn 4

Red Action ExploitRemoteService User2

Defender Actions

Agent Actions Comms

User Agent Sleep 0
Op Agent Sleep 0

State

Hostname Activity Compromised

User1 None No
User2 Exploit User shell

Op Host0 None No
Op Server0 None No

Reward 0.0

Turn 5

Red Action ExploitRemoteService User1

Defender Actions

Agent Actions Comms

User Agent Remove User2 1
Op Agent Sleep 0

State

Hostname Activity Compromised

User1 Exploit User shell
User2 None No

Op Host0 None No
Op Server0 None No

Reward 0.0

83

B.1 Game play for policy analysis in Phase 2 - Scenario 2: ’Block’

Turn 6

Red Action Sleep

Defender Actions

Agent Actions Comms

User Agent Remove User1 1
Op Agent Sleep 0

State

Hostname Activity Compromised

User1 None No
User2 None No

Op Host0 None No
Op Server0 None No

Reward 0.0

Turn 7

Red Action PrivilegeEscalate User2

Defender Actions

Agent Actions Comms

User Agent Sleep 0
Op Agent Sleep 0

State

Hostname Activity Compromised

User1 None No
User2 None No

Op Host0 None No
Op Server0 None No

Reward 0.0

Turn 8

Red Action PrivilegeEscalate User1

Defender Actions

Agent Actions Comms

User Agent Sleep 0
Op Agent Sleep 0

State

Hostname Activity Compromised

User1 None No
User2 None No

Op Host0 None No
Op Server0 None No

Reward 0.0

84

B.1 Game play for policy analysis in Phase 2 - Scenario 2: ’Block’

Turn 9

Red Action ExploitRemoteService User2

Defender Actions

Agent Actions Comms

User Agent Sleep 0
Op Agent Sleep 0

State

Hostname Activity Compromised

User1 None No
User2 Exploit User shell

Op Host0 None No
Op Server0 None No

Reward 0.0

Turn 10

Red Action ExploitRemoteService User1

Defender Actions

Agent Actions Comms

User Agent Remove User2 1
Op Agent Sleep 0

State

Hostname Activity Compromised

User1 Exploit User shell
User2 None No

Op Host0 None No
Op Server0 None No

Reward 0.0

Turn 11

Red Action PrivilegeEscalate User2

Defender Actions

Agent Actions Comms

User Agent Remove User1 1
Op Agent Sleep 0

State

Hostname Activity Compromised

User1 None No
User2 None No

Op Host0 None No
Op Server0 None No

Reward 0.0

85

B.1 Game play for policy analysis in Phase 2 - Scenario 2: ’Block’

Turn 12

Red Action PrivilegeEscalate User1

Defender Actions

Agent Actions Comms

User Agent Sleep 0
Op Agent Sleep 0

State

Hostname Activity Compromised

User1 None No
User2 None No

Op Host0 None No
Op Server0 None No

Reward 0.0

Turn 13

Red Action ExploitRemoteService User2

Defender Actions

Agent Actions Comms

User Agent Sleep 0
Op Agent Sleep 0

State

Hostname Activity Compromised

User1 None No
User2 Exploit User shell

Op Host0 None No
Op Server0 None No

Reward 0.0

Turn 14

Red Action ExploitRemoteService User1

Defender Actions

Agent Actions Comms

User Agent Remove User2 1
Op Agent Sleep 0

State

Hostname Activity Compromised

User1 Exploit User shell
User2 None No

Op Host0 None No
Op Server0 None No

Reward 0.0

86

B.1 Game play for policy analysis in Phase 2 - Scenario 2: ’Block’

Turn 15

Red Action Sleep

Defender Actions

Agent Actions Comms

User Agent Remove User1 1
Op Agent Sleep 0

State

Hostname Activity Compromised

User1 None No
User2 None No

Op Host0 None No
Op Server0 None No

Reward 0.0

Turn 16

Red Action PrivilegeEscalate User2

Defender Actions

Agent Actions Comms

User Agent Sleep 0
Op Agent Sleep 0

State

Hostname Activity Compromised

User1 None No
User2 None No

Op Host0 None No
Op Server0 None No

Reward 0.0

Turn 17

Red Action PrivilegeEscalate User1

Defender Actions

Agent Actions Comms

User Agent Sleep 0
Op Agent Sleep 0

State

Hostname Activity Compromised

User1 None No
User2 None No

Op Host0 None No
Op Server0 None No

Reward 0.0

87

B.1 Game play for policy analysis in Phase 2 - Scenario 2: ’Block’

Turn 18

Red Action ExploitRemoteService User2

Defender Actions

Agent Actions Comms

User Agent Sleep 0
Op Agent Sleep 0

State

Hostname Activity Compromised

User1 None No
User2 None No

Op Host0 None No
Op Server0 None No

Reward 0.0

Turn 19

Red Action ExploitRemoteService User1

Defender Actions

Agent Actions Comms

User Agent Sleep 0
Op Agent Sleep 0

State

Hostname Activity Compromised

User1 Exploit User shell
User2 None No

Op Host0 None No
Op Server0 None No

Reward 0.0

Turn 20

Red Action PrivilegeEscalate User2

Defender Actions

Agent Actions Comms

User Agent Remove User1 1
Op Agent Sleep 0

State

Hostname Activity Compromised

User1 None No
User2 None No

Op Host0 None No
Op Server0 None No

Reward -0.1

88

B.1 Game play for policy analysis in Phase 2 - Scenario 2: ’Block’

Turn 21

Red Action DiscoverRemoteSystems OpSubnet

Defender Actions

Agent Actions Comms

User Agent Sleep 0
Op Agent Sleep 0

State

Hostname Activity Compromised

User1 None No
User2 None No

Op Host0 None No
Op Server0 None No

Reward -0.1

Turn 22

Red Action DiscoverNetworkServices Op Server0

Defender Actions

Agent Actions Comms

User Agent Sleep 0
Op Agent Sleep 0

State

Hostname Activity Compromised

User1 None No
User2 None No

Op Host0 None No
Op Server0 Scan No

Reward -0.1

Turn 23

Red Action DiscoverNetworkServices Op Host0

Defender Actions

Agent Actions Comms

User Agent Sleep 0
Op Agent Sleep 1

State

Hostname Activity Compromised

User1 None No
User2 None No

Op Host0 Scan No
Op Server0 None No

Reward -0.1

89

B.1 Game play for policy analysis in Phase 2 - Scenario 2: ’Block’

Turn 24

Red Action PrivilegeEscalate User1

Defender Actions

Agent Actions Comms

User Agent Analyse User2 0
Op Agent Block UserSubnet 1

State

Hostname Activity Compromised

User1 None No
User2 None Privileged shell

Op Host0 None No
Op Server0 None No

Reward -1.1

Turn 25

Red Action ExploitRemoteService Op Host0

Defender Actions

Agent Actions Comms

User Agent Restore User2 1
Op Agent Sleep 0

State

Hostname Activity Compromised

User1 None No
User2 None No

Op Host0 None No
Op Server0 None No

Reward -0.1

Turn 26

Red Action ExploitRemoteService Op Server0

Defender Actions

Agent Actions Comms

User Agent Sleep 0
Op Agent Sleep 0

State

Hostname Activity Compromised

User1 None No
User2 None No

Op Host0 None No
Op Server0 None No

Reward 0.0

90

B.1 Game play for policy analysis in Phase 2 - Scenario 2: ’Block’

Turn 27

Red Action ExploitRemoteService User1

Defender Actions

Agent Actions Comms

User Agent Sleep 0
Op Agent Sleep 0

State

Hostname Activity Compromised

User1 Exploit User shell
User2 None No

Op Host0 None No
Op Server0 None No

Reward 0.0

Turn 28

Red Action ExploitRemoteService User2

Defender Actions

Agent Actions Comms

User Agent Remove User1 1
Op Agent Sleep 0

State

Hostname Activity Compromised

User1 None No
User2 None No

Op Host0 None No
Op Server0 None No

Reward 0.0

Turn 29

Red Action Sleep

Defender Actions

Agent Actions Comms

User Agent Sleep 0
Op Agent Sleep 0

State

Hostname Activity Compromised

User1 None No
User2 None No

Op Host0 None No
Op Server0 None No

Reward 0.0

91

B.1 Game play for policy analysis in Phase 2 - Scenario 2: ’Block’

Turn 30

Red Action PrivilegeEscalate User1

Defender Actions

Agent Actions Comms

User Agent Sleep 0
Op Agent Sleep 0

State

Hostname Activity Compromised

User1 None No
User2 None No

Op Host0 None No
Op Server0 None No

Reward 0.0

Total Reward: -1.6

92

B.2 Game play for policy analysis in Phase 3 - Scenario 1: Green Agent

B.2 Game play for policy analysis in Phase 3 - Scenario 1: Green
Agent

Turn 0

Red Action None
Green Action None

Defender Actions None

State

Hostname Activity Compromised

User1 None No
User2 None No

Op Host0 None No
Op Server0 None No

Reward 0.0

Turn 1

Red Action DiscoverRemoteSystems UserSubnet
Green Action Sleep

Defender Actions

Agent Actions Comms

User Agent Sleep 0
Op Agent Sleep 0

State

Hostname Activity Compromised

User1 None No
User2 None No

Op Host0 None No
Op Server0 None No

Reward 0.0

Turn 2

Red Action DiscoverNetworkServices User2
Green Action Sleep

Defender Actions

Agent Actions Comms

User Agent Sleep 0
Op Agent Sleep 0

State

Hostname Activity Compromised

User1 None No
User2 Scan No

Op Host0 None No
Op Server0 None No

Reward 0.0

93

B.2 Game play for policy analysis in Phase 3 - Scenario 1: Green Agent

Turn 3

Red Action DiscoverNetworkServices User1
Green Action GreenPortScan Op Host0

Defender Actions

Agent Actions Comms

User Agent Sleep 0
Op Agent Sleep 0

State

Hostname Activity Compromised

User1 Scan No
User2 None No

Op Host0 Scan No
Op Server0 None No

Reward 0.0

Turn 4

Red Action ExploitRemoteService User1
Green Action Sleep

Defender Actions

Agent Actions Comms

User Agent Sleep 0
Op Agent Sleep 0

State

Hostname Activity Compromised

User1 Exploit User shell
User2 None No

Op Host0 None No
Op Server0 None No

Reward 0.0

Turn 5

Red Action ExploitRemoteService User2
Green Action GreenProcess User2

Defender Actions

Agent Actions Comms

User Agent Remove User1 0
Op Agent Sleep 0

State

Hostname Activity Compromised

User1 None No
User2 Exploit No

Op Host0 None No
Op Server0 None No

Reward 0.0

94

B.2 Game play for policy analysis in Phase 3 - Scenario 1: Green Agent

Turn 6

Red Action Sleep
Green Action GreenPortScan User1

Defender Actions

Agent Actions Comms

User Agent Sleep 1
Op Agent Sleep 0

State

Hostname Activity Compromised

User1 Scan No
User2 None No

Op Host0 None No
Op Server0 None No

Reward 0.0

Turn 7

Red Action PrivilegeEscalate User2
Green Action Sleep

Defender Actions

Agent Actions Comms

User Agent Sleep 0
Op Agent Analyse Op Server 0

State

Hostname Activity Compromised

User1 None No
User2 None No

Op Host0 None No
Op Server0 None No

Reward -0.6

Turn 8

Red Action DiscoverRemoteSystems OpSubnet
Green Action Sleep

Defender Actions

Agent Actions Comms

User Agent Sleep 0
Op Agent Sleep 0

State

Hostname Activity Compromised

User1 None No
User2 None No

Op Host0 None No
Op Server0 None No

Reward -0.1

95

B.2 Game play for policy analysis in Phase 3 - Scenario 1: Green Agent

Turn 9

Red Action DiscoverNetworkServices Op Host0
Green Action Sleep

Defender Actions

Agent Actions Comms

User Agent Sleep 0
Op Agent Sleep 0

State

Hostname Activity Compromised

User1 None No
User2 None No

Op Host0 Scan No
Op Server0 None No

Reward -0.1

Turn 10

Red Action DiscoverNetworkServices Op Server0
Green Action GreenPortScan User1

Defender Actions

Agent Actions Comms

User Agent Sleep 0
Op Agent Sleep 1

State

Hostname Activity Compromised

User1 Scan No
User2 None No

Op Host0 None No
Op Server0 Scan No

Reward -0.1

Turn 11

Red Action PrivilegeEscalate User1
Green Action Sleep

Defender Actions

Agent Actions Comms

User Agent Analyse User2 0
Op Agent Block UserSubnet 1

State

Hostname Activity Compromised

User1 None No
User2 None Privileged shell

Op Host0 None No
Op Server0 None No

Reward -1.1

96

B.2 Game play for policy analysis in Phase 3 - Scenario 1: Green Agent

Turn 12

Red Action ExploitRemoteService Op Host0
Green Action GreenPortScan Op Server0

Defender Actions

Agent Actions Comms

User Agent Restore User2 0
Op Agent Block UserSubnet 0

State

Hostname Activity Compromised

User1 None No
User2 None No

Op Host0 None No
Op Server0 Scan No

Reward -1.1

Turn 13

Red Action ExploitRemoteService User1
Green Action Sleep

Defender Actions

Agent Actions Comms

User Agent Sleep 0
Op Agent Sleep 1

State

Hostname Activity Compromised

User1 Exploit User shell
User2 None No

Op Host0 None No
Op Server0 None No

Reward 0.0

Turn 14

Red Action ExploitRemoteService User2
Green Action GreenProcess Op Host0

Defender Actions

Agent Actions Comms

User Agent Analyse User2 0
Op Agent Block UserSubnet 0

State

Hostname Activity Compromised

User1 None User shell
User2 None No

Op Host0 Exploit No
Op Server0 None No

Reward -1.5

97

B.2 Game play for policy analysis in Phase 3 - Scenario 1: Green Agent

Turn 15

Red Action ExploitRemoteService User2
Green Action Sleep

Defender Actions

Agent Actions Comms

User Agent Remove User1 0
Op Agent Sleep 1

State

Hostname Activity Compromised

User1 None No
User2 None No

Op Host0 None No
Op Server0 None No

Reward 0.0

Turn 16

Red Action PrivilegeEscalate User1
Green Action Sleep

Defender Actions

Agent Actions Comms

User Agent Analyse User2 0
Op Agent Block UserSubnet 0

State

Hostname Activity Compromised

User1 None No
User2 None User shell

Op Host0 None No
Op Server0 None No

Reward -1.5

Turn 17

Red Action Sleep
Green Action GreenPortScan User1

Defender Actions

Agent Actions Comms

User Agent Remove User2 0
Op Agent Block UserSubnet 0

State

Hostname Activity Compromised

User1 Scan No
User2 None No

Op Host0 None No
Op Server0 None No

Reward -1.0

98

B.2 Game play for policy analysis in Phase 3 - Scenario 1: Green Agent

Turn 18

Red Action PrivilegeEscalate User2
Green Action GreenPortScan Op Server0

Defender Actions

Agent Actions Comms

User Agent Sleep 0
Op Agent Sleep 0

State

Hostname Activity Compromised

User1 None No
User2 None No

Op Host0 None No
Op Server0 Scan No

Reward 0.0

Turn 19

Red Action ExploitRemoteService User2
Green Action Sleep

Defender Actions

Agent Actions Comms

User Agent Sleep 0
Op Agent Sleep 1

State

Hostname Activity Compromised

User1 None No
User2 Exploit User shell

Op Host0 None No
Op Server0 None No

Reward 0.0

Turn 20

Red Action ExploitRemoteService User1
Green Action Sleep

Defender Actions

Agent Actions Comms

User Agent Remove User2 0
Op Agent Block UserSubnet 0

State

Hostname Activity Compromised

User1 Exploit User shell
User2 None No

Op Host0 None No
Op Server0 None No

Reward 0.0

99

B.2 Game play for policy analysis in Phase 3 - Scenario 1: Green Agent

Turn 21

Red Action Sleep
Green Action GreenProcess User1

Defender Actions

Agent Actions Comms

User Agent Remove User1 0
Op Agent Block UserSubnet 0

State

Hostname Activity Compromised

User1 Exploit No
User2 None No

Op Host0 None No
Op Server0 None No

Reward -1.0

Turn 22

Red Action PrivilegeEscalate User1
Green Action Sleep

Defender Actions

Agent Actions Comms

User Agent Sleep 0
Op Agent Sleep 0

State

Hostname Activity Compromised

User1 None No
User2 None No

Op Host0 None No
Op Server0 None No

Reward 0.0

Turn 23

Red Action PrivilegeEscalate User2
Green Action Sleep

Defender Actions

Agent Actions Comms

User Agent Sleep 0
Op Agent Sleep 0

State

Hostname Activity Compromised

User1 None No
User2 None No

Op Host0 None No
Op Server0 None No

Reward 0.0

100

B.2 Game play for policy analysis in Phase 3 - Scenario 1: Green Agent

Turn 24

Red Action ExploitRemoteService User1
Green Action GreenProcess Op Host0

Defender Actions

Agent Actions Comms

User Agent Sleep 0
Op Agent Sleep 0

State

Hostname Activity Compromised

User1 Exploit User shell
User2 None No

Op Host0 Exploit No
Op Server0 None No

Reward 0.0

Turn 25

Red Action ExploitRemoteService User2
Green Action Sleep

Defender Actions

Agent Actions Comms

User Agent Remove User1 0
Op Agent Sleep 1

State

Hostname Activity Compromised

User1 None No
User2 Exploit User shell

Op Host0 None No
Op Server0 None No

Reward 0.0

Turn 26

Red Action Sleep
Green Action GreenProcess User1

Defender Actions

Agent Actions Comms

User Agent Remove User2 0
Op Agent Block UserSubnet 0

State

Hostname Activity Compromised

User1 Exploit No
User2 None No

Op Host0 None No
Op Server0 None No

Reward -1.0

101

B.2 Game play for policy analysis in Phase 3 - Scenario 1: Green Agent

Turn 27

Red Action PrivilegeEscalate User2
Green Action GreenProcess User1

Defender Actions

Agent Actions Comms

User Agent Sleep 1
Op Agent Block UserSubnet 0

State

Hostname Activity Compromised

User1 Exploit No
User2 None No

Op Host0 None No
Op Server0 None No

Reward -1.0

Turn 28

Red Action PrivilegeEscalate User1
Green Action Sleep

Defender Actions

Agent Actions Comms

User Agent Sleep 0
Op Agent Analyse Op Server0 0

State

Hostname Activity Compromised

User1 None No
User2 None No

Op Host0 None No
Op Server0 None No

Reward 0.0

Turn 29

Red Action ExploitRemoteService User2
Green Action GreenPortScan Op Host0

Defender Actions

Agent Actions Comms

User Agent Sleep 0
Op Agent Sleep 0

State

Hostname Activity Compromised

User1 None No
User2 None No

Op Host0 Scan No
Op Server0 None No

Reward 0.0

102

B.2 Game play for policy analysis in Phase 3 - Scenario 1: Green Agent

Turn 30

Red Action ExploitRemoteService User1
Green Action Sleep

Defender Actions

Agent Actions Comms

User Agent Sleep 0
Op Agent Sleep 1

State

Hostname Activity Compromised

User1 Exploit User shell
User2 None No

Op Host0 None No
Op Server0 None No

Reward -0.5

Total Reward: -10.8

103

B.3 Partial Game play for policy analysis in Phase 3 Scenario 3: Large
Network

B.3 Partial Game play for policy analysis in Phase 3 Scenario 3:
Large Network

Turn 12

Red Action PrivilegeEscalate User3

Defender Actions

Agent Actions Comms

User Agent Sleep 0
Enterprise Agent Sleep 0

Op Agent Sleep 0

State

Hostname Activity Compromised

User1 None No
User2 None No
User3 None No
User4 None No

Enterprise1 None No
Enterprise2 None No
Enterprise3 None No
Enterprise4 None No

Op Host0 None No
Op Host1 None No
Op Host2 None No
Op Server0 None No

Reward -0.2

Turn 13

Red Action DiscoverRemoteSystems EnterpriseSubnet

Defender Actions

Agent Actions Comms

User Agent Sleep 0
Enterprise Agent Sleep 0

Op Agent Sleep 0

State

Hostname Activity Compromised

User1 None No
User2 None No
User3 None No
User4 None No

Enterprise1 None No
Enterprise2 None No
Enterprise3 None No
Enterprise4 None No

Op Host0 None No
Op Host1 None No
Op Host2 None No
Op Server0 None No

Reward -0.2

104

B.3 Partial Game play for policy analysis in Phase 3 Scenario 3: Large
Network

Turn 14

Red Action DiscoverNetworkServices Enterprise3

Defender Actions

Agent Actions Comms

User Agent Sleep 0
Enterprise Agent Sleep 0

Op Agent Sleep 0

State

Hostname Activity Compromised

User1 None No
User2 None No
User3 None No
User4 None No

Enterprise1 None No
Enterprise2 None No
Enterprise3 Scan No
Enterprise4 None No

Op Host0 None No
Op Host1 None No
Op Host2 None No
Op Server0 None No

Reward -0.2

Turn 15

Red Action DiscoverNetworkServices Enterprise4

Defender Actions

Agent Actions Comms

User Agent Sleep 0
Enterprise Agent Sleep 1

Op Agent Sleep 0

State

Hostname Activity Compromised

User1 None No
User2 None No
User3 None No
User4 None No

Enterprise1 None No
Enterprise2 None No
Enterprise3 None No
Enterprise4 Scan No

Op Host0 None No
Op Host1 None No
Op Host2 None No
Op Server0 None No

Reward -0.2

105

B.3 Partial Game play for policy analysis in Phase 3 Scenario 3: Large
Network

Turn 16

Red Action DiscoverNetworkServices Enterprise2

Defender Actions

Agent Actions Comms

User Agent Analyse User3 0
Enterprise Agent Block UserSubnet 1

Op Agent Analyse Op Server 0

State

Hostname Activity Compromised

User1 None No
User2 None No
User3 None Privileged shell
User4 None No

Enterprise1 None No
Enterprise2 None No
Enterprise3 None No
Enterprise4 None No

Op Host0 None No
Op Host1 None No
Op Host2 None No
Op Server0 None No

Reward -1.7

Turn 17

Red Action DiscoverNetworkServices Enterprise1

Defender Actions

Agent Actions Comms

User Agent Restore User3 1
Enterprise Agent Block UserSubnet 1

Op Agent Block EnterpriseSubnet 0

State

Hostname Activity Compromised

User1 None No
User2 None No
User3 None No
User4 None No

Enterprise1 None No
Enterprise2 None No
Enterprise3 None No
Enterprise4 None No

Op Host0 None No
Op Host1 None No
Op Host2 None No
Op Server0 None No

Reward -2.2

106

B.3 Partial Game play for policy analysis in Phase 3 Scenario 3: Large
Network

Turn 18

Red Action ExploitRemoteService User1

Defender Actions

Agent Actions Comms

User Agent Sleep 0
Enterprise Agent Sleep 0

Op Agent Sleep 0

State

Hostname Activity Compromised

User1 Exploit User shell
User2 None No
User3 None No
User4 None No

Enterprise1 None No
Enterprise2 None No
Enterprise3 None No
Enterprise4 None No

Op Host0 None No
Op Host1 None No
Op Host2 None No
Op Server0 None No

Reward -0.1

107

	List of Figures
	List of Tables
	Introduction
	Motivation
	Statement of Deficiency
	Aim
	Research Activities
	Contributions
	Organization

	Background
	Reinforcement Learning
	Markov Decision Process
	Classification of RL algorithms
	Q-Learning

	Deep Learning
	Deep Q-Networks
	Recurrent Neural Networks
	Deep Recurrent Q-Networks

	Multi Agent Reinforcement Learning
	Advantages and Challenges in MARL
	QMix

	Learning to Communicate
	RIAL and DIAL
	CommNet
	BiCNet
	TarMAC
	IC3Net

	Summary

	Cybersecurity Related Work in Reinforcement Learning
	Autonomous Cyber Operations
	ACO environments

	RL in Cybersecurity
	IDS
	Penetration Testing
	RL Agents in Cyber Defence

	MARL in ACO
	Summary

	Methodology
	Establish the Research Environment
	Cyber Operations Research Gym
	Network Configuration
	Attacker Agent
	Defender Agents

	Algorithm Implementation
	DIAL-CybORG Integration
	DIAL Hyperparameters

	Communication Strategy and Game Design
	Port Scan
	Detection Rate
	Action Masking
	Block Action

	Game Design for Advanced Configurations
	Green Agent
	Scan Detection Rate
	Large Simulated Network

	Methodology Summary

	Evaluation and Results
	Evaluation Criteria
	Benchmarks
	Evaluation Metrics
	Evaluation Process
	Experimental Setup
	Optimal Score

	Results
	Phase 1
	Phase 2
	Phase 3

	Discussion
	Communication
	Monitor action and threat detection
	Green agent
	Large Network

	Evaluation Summary

	Conclusion
	Contributions
	Future Work
	Closing Remarks

	References
	DIAL Algorithm
	Sample Games
	Game play for policy analysis in Phase 2 - Scenario 2: 'Block'
	Game play for policy analysis in Phase 3 - Scenario 1: Green Agent
	Partial Game play for policy analysis in Phase 3 Scenario 3: Large Network

