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Abstract

Mutual coupling in antenna arrays has been a problem in the development and
operation of electromagnetic systems. The increasing demand of integrating
more radiating systems in small packages has motivated researchers to inves-
tigate advanced means to mitigate the effect of mutual coupling by inspecting
the primary cause of this phenomenon. It was observed that the recently
developed formalism of the antenna current Green’s function (ACGF) can
provide a characterization of the electromagnetic radiation and the system’s
physical dimensions. It represents radiators using a spatial transfer function
due to a spatial impulse excitation. The ACGF is being used in this thesis
to model radiating structures namely antennas in order to form their transfer
function either as a single radiator or in array configurations. Moreover, a new
mutual coupling interaction function MC-ACGF is developed to characterize
mutual coupling.

A natural extension of the approach is to extend it to radar target iden-
tification, which is important for military and remote sensing applications.
The challenge is in obtaining the unique features of specific targets. Although
many solutions were suggested for target identification, they still exhibit some
limitations that are affecting the performance of radars. Therefore, this moti-
vated us to use the above modeling approach and to establish a novel method
to deal with a newly obtained RCS data of given objects. That is, the field
data of an object are formulated in terms of its physical spatial features. This
is done by expressing the spatial properties of targets via a newly derived
spatial singularity expansion method (S-SEM), in which the surface current
of radiators is going to be represented using spatial SEM data. Moreover,
it turns out that the spatial-SEM leads naturally to the discovery of a new
set of far field basis functions, which we call here the spatial-SEM radiation
modes. Explicit expressions for these modes are derived for the case of wire
antennas with arbitrary length and orientation. The summation of the S-SEM
modes appearing on an antenna surface results in forming the overall transfer
function of the antenna due to a special impulse response.

iv



In the above described investigations, a machine learning solution is de-
vised to enhance the performance of compensation systems in mutual coupling
problems and in predicting target features in radar target identification. A
multilayer perceptron artificial neural network (MLP-ANN) has been carried
out to form an intelligent mitigation system for antenna arrays. On the other
hand, an electromagnetic based genetic algorithm (EM-GA) is developed to
search for targets’ singularities to identify their physical geometry.

The developed methodology on mutual coupling is verified by application
to estimating the direction of arrival (DoA) of signals impinging on an an-
tenna array. The evaluation is based on extracting the frequency content of
the incoming signal using multiple signal classification method (MUSIC) and
detects the power of the signal at a desired direction.

In inverse problems, a verification of a radar scenario is simulated and an
experiment is conducted in an anechoic chamber and a good agreement with
simulation is obtained.

The newly developed methodology will be useful in developing and im-
proving future designs of antenna systems, MIMO, target identification for
radars and remote sensing applications.
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Résumé

Le couplage mutuel dans les réseaux d’antennes a été un problème dans le
développement et le fonctionnement des systèmes électromagnétiques. La de-
mande croissante d’intégrer davantage de systèmes rayonnants dans de petits
ensembles a incité les chercheurs à rechercher des moyens avancés d’atténuer
les effets du couplage mutuel en recherchant la cause principale de ce phénomène.
Il a été observé que le formalisme récemment développé de la fonction de
Green (ACGF) du courant d’antenne peut fournir une caractérisation du
rayonnement électromagnétique et des dimensions physiques du système. Il
représente les radiateurs utilisant une fonction de transfert spatial due à une
excitation d’impulsion spatiale. L’ACGF est utilisé dans cette thèse pour mod-
éliser des structures rayonnantes, à savoir des antennes, afin de transformer
leur fonction de transfert en radiateurs uniques ou dans des configurations en
réseaux. De plus, une nouvelle fonction d’interaction de couplage mutuel MC-
ACGF est développée pour caractériser le couplage mutuel. Une extension
naturelle de l’approche consiste à l’étendre à l’identification des cibles radar ;
ce qui est important pour les applications militaires et de télédétection. Le défi
repose sur l’obtention de caractéristiques uniques de cibles spécifiques. Bien
que de nombreuses solutions aient été suggérées pour l’identification des cibles,
elles présentent néanmoins certaines limites qui affectent les performances des
radars. Par conséquent, cela nous a motivés à utiliser l’approche de modélisa-
tion ci-dessus et à établir une nouvelle méthode pour traiter les données RCS
nouvellement obtenues d’objets donnés. C’est-à-dire que les données de champ
d’un objet sont formulées en termes de caractéristiques spatiales physiques.
Pour ce faire, les propriétés spatiales des cibles sont exprimées via une nou-
velle méthode d’expansion de la singularité spatiale (S-SEM), dans laquelle
le courant de surface des radiateurs va être représenté à l’aide de données
spatiales SEM. De plus, il s’avère que le SEM spatial mène naturellement à
la découverte d’un nouvel ensemble de fonctions de base de champ lointain,
que nous appelons ici les modes de rayonnement du SEM spatial. Des expres-
sions explicites pour ces modes sont dérivées, dans le cas d’antennes filaires,
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de longueur et d’orientation arbitraires. La somme des modes S-SEM appa-
raissant à la surface de l’antenne permet de former la fonction de transfert
globale de l’antenne en raison d’une réponse impulsionnelle particulière.

Dans les investigations décrites ci-dessus, une solution d’apprentissage au-
tomatique est conçue pour améliorer les performances des systèmes de com-
pensation dans les problèmes de couplage mutuel et dans la prédiction des
caractéristiques de cibles dans l’identification de cibles radar. Un réseau de
neurones artificielles à perceptron multicouches (MLP-ANN) a été mis au
point pour former un système d’atténuation intelligent des réseaux d’antennes.
D’autre part, un algorithme génétique à base électromagnétique (EM-GA)
est développé pour rechercher les singularités des cibles afin d’identifier leur
géométrie physique.

La méthodologie développée sur le couplage mutuel est vérifiée par appli-
cation de l’estimation de la direction d’arrivée (DoA) des signaux frappant un
réseau d’antennes. L’évaluation est basée sur l’évulsion du contenu fréquentiel
du signal entrant à l’aide de la méthode de classification de signal multiple
(MUSIC) et détecte la puissance du signal dans une direction souhaitée. Dans
les problèmes inverses, une vérification d’un scénario radar est simulée et une
expérience est effectuée en chambre anéchoïde et un bon accord avec la simula-
tion est obtenu. La méthodologie récemment mise au point, dans le cadre des
travaux de cette thèse, sera utile pour développer et améliorer les futurs mod-
èles de systèmes d’antenne, MIMO, l’identification de cibles pour les radars
et les applications de télédétection.
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1 Introduction

1.1 Background
Antennas play an important role in most recent technologies of wireless sys-
tems. The performance of these systems is measured according to their an-
tenna characteristics, i.e., radiation pattern, directivity, efficiency, etc. In
some recent applications, the single antenna element does not satisfy the re-
quired radiation characteristics such as high gain, beam steering, diversity, etc.
Alternatively, multiple antenna solutions such as multiple input multiple out-
put (MIMO) or antenna array configurations have been used as techniques to
enhance the system performance by improving the system’s channel capacity
and spectral efficiency as required in many current and emerging applications.
Their advantages are in optimizing the radiation characteristics electronically
by modifying the elements’ voltages or loads to acquire a desired response.
Therefore, beam tilting can be done with phasing of the array without me-
chanically tilting the actual elements, increasing the overall gain, providing
diversity reception, cancelling out interference from a particular set of direc-
tions, steering the array electronically so that it is most sensitive in a particular
direction, determining the direction of arrival of the incoming signals, and in
maximizing the signal to interference plus Noise Ratio (SINR).

However, placing array elements in close proximity causes some serious
problems that will degrade their radiation performance. When the elements
are relatively close to each other, specially if the inter-element spacing reaches
fractions of a wavelength, the energy between the elements starts to bounce
around causing mutual interactions known as mutual coupling. Mutual cou-
pling has been a problem in antenna arrays for a long time and many solutions
were sought to mitigate its effect. In the beginning, a circuit model approach
was assumed that identifies the mutual interactions of elements as additional
circuit impedances. There are some disadvantages of this method, since it
simplifies mutual coupling as ports’ interactions rather than a complex infi-
nite interactions of radiated fields. In the presence of scatterers or barriers
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entering into the system, the circuit assumption cannot be valid because it
does not consider the effect of these objects. Most importantly, the circuit
model assumption defines mutual coupling interactions as linear phenomena
of circuit impedances, while the fields surrounding the system are complex
and nonlinear.

There have been numerous numerical methods to model mutual coupling
in antenna arrays. Frequency domain solvers such as the method of moments
(MoM) were found to be one of the most accurate approaches. It works
by meshing the radiating element into small segments such that the solver
assumes super position solutions of each segment on the element taking into
account the interaction with other nearby elements. The process, however,
is tedious and takes a very long time to be calculated. On the other hand,
a modification of the method was proposed by [8] to define mutual coupling
between elements and scatterers in an efficient and simple way by modifying
the basis functions of the MoM. Although the mitigation of mutual coupling
effects was done by means of extensive numerical calculations to capture any
variations affecting an element of interest, yet it does not present a general
solution of electromagnetic mutual coupling as it does not take into account
variations in the surrounding systems such as movable objects or the presence
of noise. A different approach was also proposed to mitigate the effect of
mutual coupling by calculating the surface current of radiating elements and
capturing the coupling effects as additional perturbations [4]. However, the
limitation of the reported approach in [4] is in defining coupling coefficients
that do not change when experiencing entering objects as scatterers or clutters
in the vicinity of an array.

In this thesis, the problem is treated using a combination of the recently de-
veloped electromagnetic approach antenna current Green’s function (ACGF)
[9–11] with machine learning (ML). The approach models radiating elements
using a spatial transfer function extended on the elements’ surface besides
predicting any sudden variations such as random field sources or the presence
of scatterers that have an impact on the system under investigation. Also,
this approach will provide the full characteristics of elements regardless of the
excitation type, noise or any changes in the surrounding environment. This
also allows a new approach for mutual coupling estimation to model the field
interactions in antenna arrays as virtual elements that hold a spatial transfer
function that describes mutual coupling effects. Furthermore, based on the
ACGF, it allows more advanced EM characterization of scatterers (antennas)
leading to new considerations, e.g. looking at inverse scattering problems.
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1.2 Motivation: Thesis Statement and
Methodology

The thesis investigates and proposes new solutions for mutual coupling effects
in arbitrary antenna arrays and estimates target’s features in inverse scattering
problems through the use of a novel electromagnetic-machine learning (EM-
ML) approach. The EM-ML is developed by applying machine learning on the
electromagnetic function that describes the behavior of a system and by using
EM features rather than normal features such as spectral or fiducial ones [12].
This will allow in effectively enhance the mitigation process in array systems
and in determining targets in inverse modeling as will be shown in the thesis.
The aim of the thesis is to replace classical EM solutions with more reliable
ones that fit for practical applications.

It was recently observed in [13] and [14] that the use of the ACGF is more
practical in modeling radiators in real EM environments as it considers the
effects caused by surrounding systems and random field interactions. In the
thesis, the proposed EM-ML system will be applied on two EM problems that
require a complete description of field interactions and geometrical details of
objects. First, the EM-ML approach will be used in mitigating mutual cou-
pling effects in antenna arrays that will be interpreted as a nonlinear operator
to decouple coupling effects within antenna array configurations. That is, the
EM modeling of an array system will result in forming a set of ACGFs that
define the elements’ EM characteristics and the mutual coupling interactions.
On the other hand, a novel target identification application is proposed by
injecting the EM-ML system as an intelligent search processor to find the geo-
metrical properties of an object and most importantly its current distribution.
Here, the EM model of the EM-ML will be a newly developed spatial function,
defined as the spatial-singularity expansion method (S-SEM) that holds the
surface current signature and the geometrical details of the investigated sys-
tem. At the end, simulations of proposed systems with different configurations
will be analyzed and validated.

In order to validate the proposed EM-ML approach, systematic procedures
are sought. The first step is going to be a comparison between the ACGF
approach with traditional methods in modeling radiators in complex EM en-
vironments. Also, the mutual coupling mitigation process using the EM-ML
will be evaluated and compared to theoretical assumptions. MATLAB and
WIPL-D, a method of moments (MoM) software, are used to simulate a mu-
tual coupling compensation (MCC) system in reference to a virtual array that
enforces a no-coupling scenario.
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On the other hand, for the second application, an introduction of the S-
SEM approach in detecting targets and analyzing their far field data is shown.
A possible inter-relation between S-SEM and time domain-SEM (T-SEM) is
going to be discussed, where both methods are fundamentally defined as the
radiator’s response due to an impulse excitation that manifests a form of a
spatial transfer function.

In addition, the thesis is going to propose an EM-ML system capable of
solving critical EM situations. As for MIMO and inverse problems, the pres-
ence of noise and other objects in real environments will degrade the results
and hence, a feasible method is required to capture any dynamic variations
in the system and predict its optimum state. As a result, in both mentioned
problems, a machine learning system is devised to preserve the system in its
desired response regardless of any changes in the surrounding subsystems.

Finally, a front-end MCC system is suggested with demonstration on its
operation, while an experiment of inverse problems is conducted in an anechoic
chamber to validate the proposed S-SEM approach and to demonstrate its
ability in identifying targets.

1.3 Thesis Organization
Chapter two provides a focused overview on some recently proposed methods
on mitigating the effects of mutual coupling in antenna arrays and in esti-
mating target’s parameters in inverse scattering problems. It also presents an
introduction to basic topics such as the ACGF, SEM, theory of characteristic
modes and infinitesimal dipole model. It also presents the definition of mutual
coupling from different perspectives as was given in literature in comparison
to other proposed methods. Also, a general outlook on some published works
on inverse problems in electromagnetic is shown. The chapter sheds light on
how mutual coupling was represented for arbitrary radiators either by a cir-
cuit consideration or proposing a transformation matrix that transfers ports’
voltages to desired values. On the other hand, it discusses the general def-
inition of inverse problems with some related examples to estimate targets’
parameters.

Chapter three discusses the mutual coupling compensation problem when
proposing the ACGF as the element’s transfer function to determine the cou-
pling effects. Details of extracting the ACGF of an antenna array are provided
through a ready-made MoM solver as well as the processing of the elements’
terminal voltages using the ACGF reciprocity property. The mitigation pro-
cess is performed and compared to different machine-learning processors. Re-
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sults from various ML processors and different array scenarios are presented.
The simulated results are also validated and plotted in comparison to theo-
retical assumptions for different array scenarios.

Chapter four presents the inverse scattering problems to estimate physical
parameters of targets and its current distribution by using the newly devel-
oped S-SEM approach. A derivation of a new radiation field expressions is
presented in terms of S-SEM poles and residues. The generation of the ACGF
is carried out in WIPL-D MoM solver and then a MATLAB script is used in
developing the S-SEM representation. Different wire systems are assigned in
the estimation process including single and multiple-element configurations.
The reconstruction of the parameters is performed using Genetic algorithm
(machine learning core). The results of the estimated parameters of given
targets are shown under both free space and noisy environments. The vali-
dation of the method is done by comparing the reconstructed field data with
the simulated results from the EM solver. A measurement apparatus is also
presented to validate the proposed approach.

Chapter five concludes the thesis and addresses areas of future work for
mutual coupling compensation of 2-D structures and also for target detection
using higher intelligent systems such as neural networks and support vector
machines (SVM).

1.4 Outline of the Proposed Approach and the
Applications in the Thesis

The thesis focuses on developing new solutions to common EM problems
in modern applications that involve near- and far-field interactions. The moti-
vation here is to adopt a precise measure of these EM interactions in the most
simple and efficient manner. Thus, we found that the recently developed ap-
proach the ACGF transfer function is our desired approach in modelling EM
systems. In fact, this function has the power to sense any EM changes in the
primary system or any subsystems, in which these changes are automatically
captured as spatial perturbations on the inspected system. Most importantly,
the ACGF does not show a hypothetical representation of the system but
rather a field-current interaction in its full sense. So, instead of representing
radiators by a trivial hypothetical circuit model, we used the ACGF transfer
function that shows the complete EM behavior of systems. We found that
circuit consideration of individual radiators do not involve the presence of
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scatterers or clutter as in practice and hence cannot be used in high dense
EM environments.

Accordingly, there are many applications that still bear major EM prob-
lems and require accurate justifications. For example, there is a need to mit-
igate the effect of mutual coupling in antenna array configurations that goes
beyond a simple circuit representation. Although this can be accomplished
by expanding the array’s area as a simple solution, it might be incompatible
with the constraints of system packaging and design aspects. Also, what if an
object occurred in as a sub domain in the system’s near field?, in that case we
are in need to find a proper modelling scheme to count the effect of entering
objects. That is, the ACGF serves here to model individual’s EM behavior
with respect to any surrounding interactions.

Moreover, in inverse scattering problems one pursues a method on how
to retrieve certain parameters of an object. Typically, we only focus on the
scattered field out of this object and perform some analysis in order to decom-
pose the desired data. Despite many research progresses performed towards
establishing an estimation of the system’s parameters, to our knowledge none
of these approaches could retrieve the system’s surface current. Hence, we
propose a new ACGF field representation combined with a spatial singularity
expansion method (S-SEM) to produce fields in terms of the system’s geomet-
rical properties and surface current. This will in turn lead to reforming these
parameters from a given field data through this new ACGF-SEM function in
inverse problem scenario.

In both mutual coupling compensation and inverse scattering problems,
the newly proposed EM-ML solution that is going to be presented is not only
concerning a particular situation, i.e. specific plane cuts or array separation,
but a general methodology capable of recovering the desired output of the
system under test.
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2 Literature Survey

2.1 Introduction
In recent years, the demand for new applications and services for modern
devices have seen a great increase. These new applications need a bigger bit
rate to work properly [15, 16], however, not only the bit rate is important,
designs and services that one device can provide to users are also important
[17]. Nowadays, it is normal to see mobile phones with the possibility of
multiple services as GPS, WiFi, blacktooth, and more [18]. All these services
need antennas to transmit and receive data. In the current industry, the
antenna requirements for a handset device have evolved from a single main
antenna to multi-antenna solutions, known as Multiple-Input Multiple-Output
systems (MIMO) [19, 20]. In MIMO systems, multiple antennas are utilized
in the system to take advantage of the diversity that these systems provide.
Array gain, diversity reception, spatial multiplexing gain, and interference
reduction are some of their advantages.

Although array radiating systems provide multitasking operations for mo-
bile devices, medical applications and other new technologies, they still suffer
from serious electromagnetic challenges that are going to degrade the system’s
overall performance. These challenges arise when placing microwave compo-
nents in close proximity causing serious near field interactions in the region
enclosing the radio system. This interaction phenomenon is also well known
as mutual coupling effect that influences system components by changing their
EM response [21]. In general, the presence of such effect yields a design fail-
ure of the operating system and enforces researchers to enlarge the system’s
physical area to avoid major radiation problems. For example, in telecom-
munications, mutual coupling is interpreted as an undesired signal (noise)
that contaminants the communication link in radio frequency systems [22].
In antenna array configuration with tight spacing, the system suffers due to
mutual coupling, in which it distorts the array’s radiation pattern and the
input impedance of elements [23]. From that perspective, mutual coupling is
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found to be a critical concern in antenna arrays and dense electromagnetic
environments that requires deep investigation in order to be solved and elim-
inated.

In literature, it was found that in order to deal with mutual coupling in
antenna arrays, it is compelling to investigate the major definitions of coupling.
In fact, from [21], the treatment of the problem was tackled by describing
mutual coupling in terms of additional circuit elements, in which the method
presumes a circuit model to every antenna. In the scenario of two-element
wire antenna array as shown in Fig. 2.1, each antenna can be theoretically
represented as a circuit model, where they have source generators Vs1 and
Vs2 for the first and second antenna, respectively. Moreover, each antenna’s
input impedance is connected through the terminals a and b to the generator.
Here, the mutual interactions are modelled as controlled voltage sources V12
and V21 in both antennas’ circuit models. This summarizes the array’s port
representation to a [Z] matrix with additional impedances Z12 and Z21. So,
in order to maintain a low coupling situation, it is desired to eliminate these
additional impedances by optimizing the circuit model for each individual
element.

Figure 2.1: Mutual coupling: circuit consideration
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Another attempt to study mutual coupling in antenna arrays is to in-
troduce an object (scatterer) in the vicinity of an array or to experience an
unknown field illumination to the system as was discussed in [8]. In this case,
mutual coupling cannot be evaluated using the circuit model approach as it
only considers existing known ports. This consideration, however, applies in
practical systems design especially when operating in dense EM environments.

In summary, we found that previous work on mutual coupling can be
categorized into two major components. The first defines the coupling as ad-
ditional impedance at the port, which is called port coupling that does not
suppose any presence of unknown objects nearby the system. The second
approach, however, presumes a presence of any object or unknown field illu-
minations. It is observed based on these two assumptions that in practical
electromagnetic environment, it is evident to infer random variation to array
systems by including objects or noise signals that can perturb the array man-
ifold and characteristics rather than testing the array system in free space
condition.

2.2 Overview on Mutual Coupling Compensation
There have been numerous techniques to mitigate the effect of mutual coupling
in antenna arrays with many and diverse theoretical implications [2, 3, 8, 21].
Although many of them considered the circuit model approach to apply their
algorithm, yet they do not show a general solution that can be utilized for
practical environments. In this section, we are going to present some recently
proposed solutions from literature by showing the basic idea of each technique.
These solutions proposed different coupling scenarios such as:

1. Antenna to antenna coupling in antenna array configurations,
2. Antenna to scatterer coupling when experiencing an object in the vicin-

ity of an array system,
3. Unknown field illumination that will impinge the elements.
In [2], the authors proposed two possible coupling scenarios such as antenna-

antenna coupling and antenna-scatterer coupling, as depicted in Fig. 2.2.
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Figure 2.2: Mutual coupling configurations in the presence of a scatterer in
(b) or an antenna as in (c). [2]

The idea in [2] was to mitigate the effect of scatterers through a modified
version of MoM [24] by modelling the coupling interactions on the terminals
of each antenna in the array. This resulted in capturing mutual coupling
effect in the antenna’s impedance matrix. The method introduced in the
paper is known as array scanning method-macro basis function (ASM-MBF)
[25] to illustrate the fast numerical calculation and analysis of wire antenna
arrays. Open-source codes in the MATLAB language for both finite and
infinite arrays were described and their use was demonstrated through different
examples. That work provided a simple outlook for the general understanding
of the mutual coupling phenomenon in antenna arrays using the circuit model
consideration. Fig. 2.3 shows a comparison between the proposed ASM-
MBF approach and different simulated results for a given dipole antenna with
length/diameter ratio L/d of 74.2 in the presence of a scatterer. In both cases,
41 basis functions (triangular basis functions) were selected. A comparison of
the terminal admittance values of a center-fed single element dipole antenna
with and without a scatterer is shown in Fig. 2.3. A good agreement of the
conductance values G in both cases (black lines) is obtained, while a slight
discrepancy is observed for the susceptance values (green lines) of the terminal
admittance. Also, the method was verified on a four-element array of dipole
antennas operating at 1 GHz such that their length L and spacing d is λ/2.
The results obtained in Fig. 2.4 showed the ports currents when varying the
index of the triangular basis functions of one element of the array. The plot
showed a good agreement of the current values at the port between the NEC2
method [26] and the proposed ASM-MBF.

In fact, the proposed solution for mutual coupling problem in [2] was
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Figure 2.3: Comparison between admittance values obtained with the pro-
posed code (thick lines) and those obtained with NEC2 (thin lines). [2]

Figure 2.4: Currents on four parallel dipoles. Solid: our code. Dotted: NEC2
[2]

merely a circuit consideration that presented a non-dynamic solution to mu-
tual coupling effects, i.e. considering only known fixed objects in the vicinity
of the array. While in practical situations, it is possible to experience unknown
and movable scatterers.

A different approach was also discussed in [3] to deal with arbitrary an-
tenna array configurations, i.e. unequal lengths and spacing, as in Fig. 2.5.
The idea of the method was to develop a transformation matrix as in Eq.
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Figure 2.5: An antenna array consisting of elements of unequal lengths which
are also unequally spaced [3]

(2.1), such that it can null out mutual coupling or any redundant effects from
multiple directions. As shown in Eq. 2.1, the desired array manifold Av(φ)
can be achieved by multiplying the altered array steering vector by the trans-
formation vector τ .

[τ ][A(φ)] = [Av(φ)] (2.1)

where τ is the obtained transformation vector, A(φ) is the perturbed array
manifold and Av(φ) is a virtual array vector that does not include any unde-
sired effects such as mutual coupling or noise. The parameters of the trans-
formation matrix were taken as weighting coefficients to be linearly multiplied
by a received signal vector of a desired array. The validation of their proposed
approach was applied to an antenna array consisting of elements of unequal
lengths and nonuniform spacing. The practical manifold matrix of the array
was calculated using an analysis of wire antennas and scatterers (AWAS) [27].
In Fig. 2.6 (left column), a comparison between the theoretical and the prac-
tical illumination vectors for the array is shown by using the AWAS program,
while the figures on the right column show the theoretical illumination vector
(red line) in comparison with the compensated illumination vector (black line)
using an optimization model.
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Figure 2.6: Comparison between the theoretical (in red) and the practical
(left) and compensated (right) (in black) of the steering vector [3]

Since the altered voltage vector of the array is optimized using a transfor-
mation matrix, it is expected to observe a slight deviation of the decoupled
voltages because of a computational error when dealing with arbitrary array
configurations. However, their study did not involve the presence of such an
error in which their mitigation method might be considered for a single snap-
shot of an array operating at free space, i.e. capturing the array voltages
at fixed inter-element separations, orientations and a single angle of incident.
Although the treatment of the problem did not show a classical circuit con-
sideration, it identified mutual coupling effects as linear interactions that can
be mitigated using linear compensation filters, i.e. weighting vectors.

In [4], the authors evaluated mutual coupling effects in antenna arrays by
investigating the primary substance in furnishing the near field interactions
that cause the problem. They succeeded to analyze any surrounding field
interactions by investigating the surface current distribution in cases with and
without a scatterer. More specifically, they showed the difference of surface
current values in the situation of a single patch antenna and an array of
patches, where the antennas shown in Fig. 2.7 (a) and (c) were simulated
using EM software simulation package. In order to simplify the EM modelling
process of the antennas, an approximation was made to extract the surface
currents at a single operating mode by slicing the antenna into uniform cells
as shown in Fig. 2.7 (b) and (d). In this case, mutual coupling is characterized
as an additional surface current that is added to every array element. The
theoretical implication of the proposed method shows that the antenna surface
current is highly sensitive to any variations in the EM environment that can
be interpreted as coupling effects.
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Figure 2.7: Modeled single patch antenna and two patches on a 2λ × 2λ
ground plane. The full MoM mesh is shown in (a) and (c) while the coarser
discretization scheme is shown in the inset (b) and (d). [4]

To validate their method, a fabrication process was conducted to decouple
and compensate the effect of mutual coupling between antenna array con-
figurations. As depicted in Fig. 2.8, a fabricated two-element rectangular
microstrip patch antenna array is presented with an inter-element spacing of
45 mm at 2.5 GHz operating frequency. The testing process also includes
a 2λ0 × 2λ0 ground plane to be attached to the ports as was shown in the
previous figure.

Figure 2.8: Two-element patch array operating at 2.5 GHz. [4]

The simulated and measured results are presented and compared as shown
in Fig. 2.9, where the terminal’s voltage ratio defined as |v1/v2| and the phase
difference Φv1 − Φv2 were both plotted with respect to the azimuth angle
variation that ranges between −90° and 90°. A good agreement was observed
in both Azimuth and Elevation directions.
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(a) First comparison (b) Second comparison

Figure 2.9: Relative terminal voltages defining the coupling ratio for the two-
element patch array at 2.5 GHz at both vertical and horizontal polarization.
[4]

The complex voltages at port 1 and 2 define the receiving mode function-
ality (voltage vector) of the left and right patch elements presented in Fig.
2.8 where the predicted values of both voltage and phase ratios are in good
agreement to simulated ones for different coupling matrix dimensions.

Another approach was adopted in [5], where the authors provided a uni-
fied theory of mutual coupling compensation to calibrate Tx and Rx systems
of general antenna arrays with arbitrary geometry. Their proposed approach
was mainly focused on analyzing the near field components in order to find
the electric and magnetic currents given their field interactions. Therefore,
through the reciprocity theorem as described in [28] and via the circuit rep-
resentation of TX and Rx modes as in Fig. 2.10, the authors succeeded in
formulating the coupling factors in the two modes of operation as shown in
Table 2.1.
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Figure 2.10: Equivalent circuits of (a) transmitting and (b) receiving antenna
system [5].

In Fig. 2.10, the circuit model representation of the Tx and Rx antenna
array systems are presented. The elements are defined as terminal impedances
which are concentrated in a matrix Z, while each antenna port is connected
to a source generator V and an input impedance ZG in Tx mode and ZL in
Rx mode.

Table 2.1: Summary of the analytical formulations for evaluating mutual cou-
pling in receive and transmit array system [1]

Mode Loading
Condition

Impedance Form Admittance Form

Rx

All elements
loaded ex-
cept excited
one

C̄rx = −ZL(ZL + Z−1
ANT

)ZANT IT C̄rx = −(YL + YANT )−1IT

All elements
loaded

C̄rx = −ZLITL C̄rx = −Y −1
L

ITL

All ele-
ments short-
circuited

C̄rx = −ZL(ZL + Z)−1ZITsc C̄rx = −(YL + Y )−1ITsc

Tx

All elements
loaded ex-
cept excited
one

C̄tx = − jωµ
4πR (ZG + ZANT )−1ZANT IT C̄tx = − jωµ

4πRYG(YG + YANT )−1IT

All elements
loaded

C̄tx = − jωµ
4πR ITL C̄tx = − jωµ

4πR ITL

All ele-
ments short-
circuited

C̄tx = − jωµ
4πR (ZG + Z)−1ZITsc C̄tx = − jωµ

4πRYG(YG + Y )−1ITsc
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Table 2.1 showed the coupling coefficients Ctx and Crx for a Tx and Rx
antenna array, respectively. It also represented the coefficients in either an
impedance form Z or an admittance form Y at different array loading con-
ditions. The notation L, G, and ANT are referring to load, generator and
antenna, respectively. Where I is the current appearing on the elements’
ports.

For the validation of their proposed approach, a Direction-of-Arrival (DoA)
estimation [29] technique was considered for a nonuniform linear array of seven
non-uniformly loaded vertical dipole antennas as in Fig. 2.11. This array
configuration is useful in the applications of retrodirective array systems [30]
such that incident signals are re-transmitted in the same directions that they
are received from without sophisticated signal processing equipment in the
front-end. The DoA results that estimate a 2D multiple signal classification
method (MUSIC) spectrum [31] are presented in Fig. 2.12. The DoA-MUSIC
provided the received signal power at multiple angles of incident (θ and φ) in
which the required performance is to focus the power at the desired angles.

Figure 2.11: Nonuniform linear array of seven non-uniformly loaded vertical
dipoles. Each dipole has a different length and is terminated with a load
impedance equal to the complex conjugate of its self-impedance [1].
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Figure 2.12: DoA-MUSIC estimation using eight-dipole linear array at (φ, θ) =
(−30°, 60°) and (0°, 45°) as in (a), (c) and (b), (d), respectively. (a) and (b) are
the DoA spectra without the compensation, (c) and (d) are the compensated
DoA results [5].

In [5], the authors proposed both theoretical and experimental techniques
that can be used to evaluate mutual coupling in general antenna arrays through
a reciprocity relationship. Despite that the DoA results obtained are per-
fectly estimating the angles of arrival, the problem was salvaged by forming
deterministic functions (coupling factors) for known antenna systems and by
considering a noise free environment. So, it is possible to alter these results
by introducing an unknown EM subsystem that introduces unexpected radi-
ating fields to the desired system. In this case, it is required to recalculate
the coupling factors to take into account the presence of entering objects to
the system under study. In addition, their proposed solution for mutual cou-
pling was considered for linear wire antenna systems only but not for arbitrary
radiators with 2D surfaces or complex structures.

In summary, we found, based on the previously reviewed approaches, that
in order to measure and mitigate mutual coupling effects, it is required to
study the system in practical EM environment as well as to find a rigorous
EM representation of the system capable of capturing any surrounding effects.
As a result, a new mutual coupling compensation system is proposed to assist
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in expressing field interactions rather than conventional circuit parameters.
Moreover, such system is capable of treating near field coupling as a nonlinear
phenomenon that goes beyond a circuit representation.

2.3 The ACGF Formalism and the Need for New
Approach to Applied EM

System’s transfer functions have been widely used in communications and
automatic control systems to characterize devices by showing their output
response given a special input excitation. For example, it is being used in
telecommunications and signal processing to explore the frequency response
of a system under a condition of a delta source excitation. Hence, the term
transfer function is a mathematical terminology that aims in converting time
domain signals into frequency domain in order to describe the characteristics
of any system that can be salvaged using general transformation methods such
as Laplace or Fourier transforms.

On one hand, it is not yet evident how to apply this previously presented
concept on electromagnetic radiators such as antennas. The reason is that
electromagnetic structures possess not only a frequency behavior to a certain
excitation, but rather a spatial response that has characteristics to its geomet-
rical properties. Here, the problem arises from being a direct transformation
from time domain to frequency domain to a more complex representation that
involves spatial properties of systems with operating frequency.

On the other hand, there is a possibility to obtain the output response of
radiators by injecting a Green’s function solution. That is, Green’s function
is essentially a spatial impulse response to a Dirac delta excitation on the
antenna surface S [32]. This function serves as a transformation of the surface
current density on the antenna to electric and magnetic radiation fields in
space.

Consequently, there are two essential substances required to get the output
response of an antenna such that the first is the current formed on its surface,
while the second is the Green’s function. We found that the use of the newly
developed antenna current Green’s function (ACGF) in [9] and [10] forms the
complete representation of electromagnetic structures. Basically, it provides
a spatial-frequency transfer function of the antenna that is used to solve the
field’s integral equation when multiplied by the free space Green’s function.
See appendix A for more details on the ACGF approach. As illustrated in
Fig. 2.13, by finding the ACGF of a desired system, the full EM response
can be easily obtained in both transmitting and receiving modes of operation.
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Therefore, in receiving mode, the system experiences an incoming field E(r)
as shown on left side of the figure, where the terminal current/voltage J(r) can
be calculated by solving the integral equation when multiplying the incoming
field by the ACGF as in Eq. 2.2.

Jrx(r) =
∫
S

F̄(r, r′) ·E(r′)ds′. (2.2)

where E is an incident plane wave applied towards the system and multiplied
by its ACGF F̄. The response is given as the terminal current Jrx when
evaluating the integral along the surface S of the radiator.

The use of the ACGF helps in tackling many electromagnetic problems
concerning antenna arrays as well as target characterization for detection pur-
poses. In the process of mitigating the effect of coupling, the ACGF serves
as an accurate electromagnetic representation of radiators that also helps in
resembling mutual coupling interactions to act as virtual elements appear
between actual elements. The use of the ACGF also benefits to radiators
to capture any surrounding effects that originate in either near or far fields’
zones.

Figure 2.13: Combined general description of Tx and Rx processes of an an-
tenna system.

Although the use of ACGF offers remarkable advantages in comparison to
classical approaches, it still exhibits some limitations. Till now, there is no
numerical technique that provides the exact ACGF, however, it is still possible
to obtain an approximated description by acquiring a single solution from
the method of moments’ (MoM) transfer matrix. That requires enhancing
the meshing process on an antenna surface such that it generates a sort of
continuation of surface current on the antenna, besides confirming a special
excitation (spatial delta) to the simulated system.

For example, In MoM, after exciting an antenna (thin-wire) with a unit-
pulse, the solution is represented as an admittance matrix in which each row is
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a result of exciting the wire at a different segment (super position excitation)
[33]. Also, each row vector in the matrix can be defined as the surface current
with reference to an excitation point. Here, the idea of the MoM is known
to be a discrete solution of the system performed by meshing the surface into
a uniform set of infinitesimal dipoles arranged to form the complete surface
current. The field’s integral equation, however, can be realized by multiplying
the sampled current by free space Green’s function.

Experimentally, the ACGF is obtained by exciting the antenna with a
unit-impulse voltage source, V = 1 Volt, at a feed point r on the antenna
surface S. The EM solver is then responsible in forming a meshing grid that
segments the surface into N samples. Each sample is defined as a circuit
element as in [34] that forms continues circuits along the wire. As a result, it
is observed from the EM solver that the system transfer function is given by
equation (2.3)

[I] = [Y ], (2.3)

Where [I] is the surface current represented on the antenna and [Y ] is the
admittance vector. This simple relation agrees to both Harrington’s and
Schelkunoff’s system representations [33–35], in which the former defines the
segments as infinitesimal sources while the latter treats them as circuit impedances.

2.3.1 The ACGF and The Singularity Expansion Method
(SEM)

The traditional Singularity Expansion Method (SEM) has been known as a
powerful method for analyzing target back radiation and scattering [36], where
the main focus is laid on analyzing the response of scattering objects mainly in
the time domain. By isolating certain fundamental resonances (known as the
SEM data, i.e., poles and residues), it has been often possible to obtain deeper
insight into the time-domain behavior of various Radar Cross Section (RCS)
data. The idea, however, was merely a frequency domain transformation
through Laplace integral equation but with some modifications. As will be
illustrated later in Sec. 4.2, the purpose of the method was to capture a late
time response of an object when illuminated by a plane wave which can be
defined as an indirect excitation to the target. Since there are two defined
intervals of the back scattered field, namely early and late time fields, we
are also going to investigate the latter that is inter-related to the object’s
geometry. That is, when illuminating a target by an incident plane wave, part
of the signal reflects back while another part is coupled to the object causing
a surface current to flow on its surface. With a focus on the developed surface
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current, a relation to the ACGF was observed in [37] to distinguish spatial
properties of targets.

In T-SEM, the calculation techniques for finding the natural frequencies
and modes from the late time response were presented as Prony’s method
discussed in [38] and matrix pencil (MP) [39] that replace the infinite Laplace
integral with a series of finite polynomial of damped sinusoids. These meth-
ods, however, approximate the desired field response such that each target
can be characterized by the maximum polynomial order and the values of its
poles. For example, in [40] and [41], the authors showed the characterization
of antennas using T-SEM through the MP method in comparison to other
methods to analyze the field data. They also studied the impact of noise in
generating the T-SEM poles for transmitting and scattering systems. Despite
the fact that T-SEM has showed the capability of decomposing time domain
signals into finite frequency representation, it remains challenging in practise
to discriminate between early and late time intervals. However, in the pre-
viously presented papers the treatment of that problem was carried out by
establishing a prior knowledge of the incident signal applied to targets and
thus its time response can be estimated in the back scattered signal. Hence,
in order to determine the late time field response in general, a proposed ap-
proach was developed as in [42] that applies a time window function to a
desired interval and studies the response of T-SEM poles accordingly.

It was recently observed that the time window technique still suffers from
poor fundamental groundings and cannot be ensured in sensitive data acqui-
sition because of many factors. As for remote targets, the time the incident
signal travels from the system and captured back at a terminal cannot be
easily estimated while also, that by nature implies a high free space noise that
distorts the field signal. Therefore, there is a need to develop a technique to
discriminate between early and late time periods of the scattered field or even
to propose a method that can only restrict the appearance of the late time
response.

2.3.2 The ACGF and The Infinitesimal Dipole Model (IDM)

Infinitesimal dipoles (IDs) are a hypothetical representation of electromagnetic
structures that are utilized as building blocks of complex geometries [21] as
shown in Fig. 2.14. They are modeled as electrically small wires (l � λ)
where l is the wire length and a very thin radius a (a� λ).

The spatial variation of the induced current on an IDM is assumed constant
or nearly uniform where the current distribution on each ID can be expressed
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Figure 2.14: (a) Arbitrary antenna, (b) An IDM of the antenna in (a).

as follows,

Jd(r) =
N∑
n=1

Mnδ(r− r′)[x̂ cosαn + ŷ cosβn + ẑ cos γn], (2.4)

where Mn is the complex dipole moment of the nth IDM, δ is the Dirac
function and αn, βn, and γn are the orientation directions in x, y, and z of
the nth IDM, respectively. Therefore, the radiated fields from a given set of
IDMs can be computed as follows

Ed(r) = −jωµ(r)
∫
V

Ḡd(r, r′) · Jd(r)dV, (2.5)

where Ḡd(r, r′) is the dyadic Green’s function.
In antenna modeling, IDMs can be seen as a technique to reform the

radiation characteristics of complex radiators in terms of a distribution of
infinitesimal dipole sources within a specific volume in space as was observed
in [43]. The advantages of using IDMs are to perform accurate characterization
of EM devices and to model the interactions between radiating structures, e.g.
mutual coupling and scatterer effect [43]. Despite that the MoM computation
technique is being used to analyze field interactions of radiating structures, it
still suffers from different factors such as the computation time and memory
usage for large number of data in comparison to the IDM method. On the
other hand, in this thesis, the ACGF method is carried out to characterize
antennas and to capture the interactions occur in array systems by modeling
the elements/interactions via a spatial transfer function. That brings up a
question on how to extract the ACGF of antenna elements?. Two known
methods are being used to obtain the ACGF, The first one is to calculate
the ACGF using a mathematical solution. The most accurate but practical
antennas are not perfectly fabricated and deriving the ACGF in an analytical
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form is difficult. Hence, the most often used technique is to extract the ACGF
using a numerical solver, MoM-ACGF, as illustrated in [13]. Through a proper
model design of the antenna, an accurate ACGF can be obtained, however,
this requires a huge memory and time to calculate the solution. Therefore,
a recently suggested research is proposed in [44] to obtain the ACGF based
on IDMs, IDM-ACGF, in which the proposed method requires less modelling
data in reference to the MoM-ACGF.

2.3.3 ACGF formalism advantages

Here, we list the main advantages of using the ACGF approach through
the work presented in this thesis and the future work.

1. It provides a way to characterize antennas in terms of characteristic
modes [35].

2. These are physically meaningful basic solutions that shed light on the
behavior and performance of antenna systems in general.

3. We were able to show that all antennas exhibit a phenomenon of spatial
bandwidth similar to the familiar temporal bandwidth in EM theory.

4. It is possible to use the ACGF to synthesis special antenna systems ca-
pable of performing complex spatial filtering functions needed for spatial
diversity applications such as mobile, and Direction of Arrival (DoA).

5. The ACGF may join with traditional EM solvers and measurements as a
one basic method used in EM to obtain accurate quantitative description
of systems and devices.

6. It provides through the most general description of EM mutual coupling,
methods to compute a new mutual coupling ACGF using perturbation
series not involving inverting the full wave operator.

2.4 Inverse Scattering Problems
Inverse scattering problems are receiving a substantial recognition nowadays in
many and diverse branches of electromagnetic engineering [45]. As in inverse
problems, the idea is the situation concerning the estimation of input or source
given an output or response that is in comparison to direct problems where the
idea is to find the output response given an input source. For example, from
a given measured field, a developed approaches as in microwave imaging, and
radar remote sensing can be seen as that of retrieving geometrical properties
as shape of radiating system, dielectric profile of a device under test, starting
from either measured or desired field data. This principle was pertained as
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in [46] to develop a microwave bio-medical imaging in order to detect sev-
eral abnormalities in human’s biological tissues such as tumors, bleeds and
other symptoms. Moreover, a more specific electromagnetic application was
also developed in order to retrieve geometrical properties of a metamaterial
structure that was proposed in [47], in which the author assigned a systematic
optimization tool [48] in order to enhance the data retrieval. Consequently, in
order to search for a desired data in general inverse modelling problems, it is
crucial to apply a powerful tool to estimate the perfect resolution to the prob-
lem, where the author in [46] emphasized this point by proposing a machine
learning tool to overcome retrieval difficulties.

Inverse problems are commonly referring to the problem of retrieving phys-
ical properties of a target when illuminated by a plane wave. The idea is to
analyze scattered fields out of an object that will result in estimating the
source of these fields in contrary to direct problems that produce fields given
a source of radiation. Inverse problems have important applications in radar
systems, sonar, medical imaging and more in which targets cannot be observed
through direct excitation methods.

In electromagnetic, the causes (responses) are given as field data and possi-
ble causes are sought in which for example are the system’s physical properties
and surface current.

2.5 Machine Learning Techniques in
Electromagnetic Systems

2.5.1 The General Scheme of Electromagnetic Machine
Learning

Machine learning is simply the process of making a machine that automatically
learns and improves with a prior experience. The main elements in machine
learning are

1. Hypothesis: a function similar to the true function or response of a
desired system, also is known as classifiers

2. Training sample: a data point in an available set of solutions,
3. Target function: the true desired function or output of the machine

learning system,
Indeed, for different types of machine learning algorithms, these elements re-
main the same while the major distinguish remark comes from how the algo-
rithm is being constructed to perform a specific operation.

The strategy that will be adopted here is mainly that of supervised learn-
ing, where known data (training set) will be fed into the learning algorithm
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in order to obtain a set of internal variables called learning parameters. The
latter, a tuning of the hypothesis, will then be applied to the model in order
to predict new outcomes to be then compared with test data. Optimization
will be used mainly in step 2, i.e., the search for the learning parameters that
will allow the model to provide the best fit of the training data. However, suc-
cess of the optimization process, mainly by attaining low training error, does
not necessarily imply that the machine learning process is over. In fact, the
main difference between optimization and machine learning resides in step 3,
prediction, where the model thus obtained via optimization is now subjected
to extensive test and verification by comparing its predictions with another
dataset, the test data.

To be more precise, let us redevelop the above framework mathematically.
In general, the goal of machine learning is to find a function y = f(x; p)
that can best estimate a given dataset. Here, x is the input variables (data
inputs), while y are the features to be estimated. We assume for the sake of
concreteness that both x and y are complex random variables. The vector p
is a (possibly complex) array of internal model parameters distinguishing one
model within the family (hypothesis space) f from another.

We partition the total data into training and test datasets

Xtraining := {xi|i ∈ Tr} , Xtest := {xi|i ∈ Tt} , (2.6)

where Tr and Tt are the training and test dataset indices, respectively. In
order to perform the training process, we first compute the estimations of
the desired features by means of the model f(x; p). Each such computation
is called trial. In general, the optimization or search algorithm in machine
learning is assigned the task of finding a “good” set of internal parameters p
(how “good” will be explained shortly). We write the trial dataset as

Ytrial (p) := {yi = f (xi; p) |i ∈ Tr} , (2.7)

where its dependence on the learning parameters p is explicitly stated.
Next, we need a suitable error criterion or a cost measure to estimate

how close the predictions of the model, the trial dataset Ytrial, to the training
data set Xtraining. The general form of this measure, the training criterion
e : p→ R, is

e (p) = C [Xtraining, Ytrial (p)] , (2.8)

where C stands for cost function. The error e(p) can be interpreted as a
measure of the “distance” between the training and trial data sets Xtraining
and Ytrial(p). The optimization algorithm will search for a good set of model
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parameters p∗ defined by

p∗ = max
p

C [Xtraining, Ytrial (p)] . (2.9)

From this optimization process, we end up with the training error, which is
defined as

etraining := C [Xtraining, Ytrial (p∗)] , (2.10)

that is, the minimum possible error obtained via the optimization process.
After obtaining p∗, the training stage of the machine leaning process (Step

2 above) is finished. What remains is using the model f(x,p) to predict new
data not seen before. This is done by applying the training dataset Xtraining
and evaluating the test error

etest(Xtest,p∗) := C [Xtest, Ytest (p∗)] , (2.11)

where
Ytest(p) := {yi = f (xi; p) |i ∈ Tt} . (2.12)

The test error (2.11) clearly depends on the optimum model parameters p∗
and the particular test dataset Xtest chosen for performing this task. In order
to make the definition independent of this choice of data, we can replace the
definition (2.11) by the following

etest(p∗) := EXtestC [Xtest, Ytest (p∗)], (2.13)

where the statistical expected-value operator E is performed over all possible
test datasets Xtest [49].

The fundamental goal of machine learning is to bring down the test er-
ror (2.13) as close as possible to the training error (2.10), in which was not
generally possible in practice. To mitigate the problem, a special procedure,
regularization, is usually invoked either before or after training (usually a com-
bination of both) in order to enrich the ability of the model f(x; p) to predict
as many new datasets as possible. This will allow a robust and rigorous anal-
ysis of the problem being investigated and to elevate the capability of machine
learning algorithms by improving their features extraction and performance
function. In addition, the paradigm proposed here, electromagnetic machine
learning, is able to attain good test error, sometime very close to the training
error, without the need to perform any additional regularization. In Table
2.2, a comparison between statistical and electromagnetic machine learning is
presented be comparing the feature extraction, hypothesis, learning, training
and testing setups.
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In this work, an electromagnetic machine learning system is designed to
elevate the performance of EM systems by reducing the effect of random noise
that takes place in the communication channel or that caused due to near
field interactions. Moreover, it promotes a new level of intelligent to systems
by providing a prediction mechanism to sudden situations that can affect
the system such as the presence of scatterers. In EM-ML, EM features of a
desired problem are selected in which they have a significant impact on the
EM behavior of the system such as the inter-element spacing of an antenna
array or the ACGF data of a radiator as in inverse problems.
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Statistical Machine
Learning

Electromagnetic
Machine Learning

Features
Could be any data
that identifies major
elements in the
experiment

The EM signature of
the system, e.g. the
ACGF transfer
function

Hypothesis
Not necessarily
important to follow
the features
distribution

The EM behavior of
the system such as the
field behavior or the
surface current
distribution

Learning and Training 1. Inject different
data to the ML
system to
initiate weights
and biases.

2. Training error is
obtained with
reference to
known target
data.

1. Inject different
data to the ML
system to
initiate weights
and biases.

2. Training error is
obtained with
reference to
known target
data.

Testing
The testing error is
relatively higher than
the training error

The testing error is
almost equal to the
training error since the
hypothesis is chosen to
be the exact EM
model of the system

Table 2.2: A comparison between statistical and electromagnetic machine
learning
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2.6 The EM Machine Learning Solution to the
Problem of EM Mutual Coupling and inverse
problems

2.6.1 Introduction

Despite the fact that users might be aware of the theoretical implication of
the problem, it could be tedious to obtain a mathematical formulation that
designates a desired phenomenon. As for EM mutual coupling, it is evident
to assert that the nature of EM interactions between proximity elements are
indeed nonlinear, in which the interchanging of coupled energy is mathemat-
ically sophisticated to represent. Also, in inverse scattering problems, since
the idea is to re-establish the system’s function in terms of its response, it
is compelling to assume nonlinear behaviors of the designated system that
can be interpreted while analyzing its response. Consequently, a development
has been carried out to increase our ability to control and predict physical
phenomena through computer machine processors in the form of computer
programs. Machine learning goes as a starting point that enables computer
software to learn and predict future situations, in which it mimics human’s
brain. There are many classes of machine learning with different layout archi-
tectures, however, they all hold the same concept of artificial intelligence.

2.6.2 Genetic Algorithm (GA)

Genetic algorithm is a class of optimization algorithms, in which it is used
to find the optimal solution for a given mathematical computational problem
that maximizes or minimizes a particular cost function [50]. It imitates the
biological processes of breeding and natural determination to solve for a de-
sired solution that resembles a form of the evolutionary development. Like
in evolution, many of genetic algorithm’s processes are random, however this
optimization technique allows one to set the level of randomization and the
level of control [51]. These algorithms are far more powerful and efficient than
random search and exhaustive search algorithms [52], yet require no extra in-
formation about the given problem. This feature allows them to find solutions
to problems that other optimization methods cannot handle due to a lack of
continuity, derivatives, linearity, or other features. This method is being used
in this work without any kind of special manipulation to its core programs,
however, it is carried out as a formal optimization-kind algorithm. For ex-
ample, in inverse scattering problems, GA was used to extract time domain
features of targets for recognition purposes as in [53].
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2.6.3 Artificial Neural Networks (ANN)

Artificial neural network is a form of information-processing system that has
certain performance characteristics in common with biological neural networks
[54]. ANNs have been developed as a generalization of mathematical models
of human cognition or neural biology, based on the assumptions that:

1. Information processing occurs at many simple elements called neurons.
2. Signals are passed between neurons over connection links.
3. Each connection link has an associated weight, which, in a typical ANN,

multiplies the signal transmitted.
4. Each neuron applies an activation function (usually nonlinear) to its

network input to determine its output signal.
Neural networks are becoming an essential stage in performing a real time
machine learning solutions for recent electromagnetic problems. The purpose
of the method is to introduce an efficient system optimization in real time and
to predict sudden variations that can affect the system performance. The ANN
architecture is a combination of various blocks that work together to optimize
an input data to achieve a target/desired data. Generally, the system consists
of three consecutive blocks (input layer, output layer and hidden layers) in
which the hidden layers hold the ANN’s activation function and the biasing
as shown in Fig. 2.15. The activation functions f , also known as classifiers,
are chosen to classify and distinguish some features from the input data and
supply the user with a proper decision based on the desired response [55]. The
classifiers can be seen as decision making blocks that follow the distribution
of data within a defined space.
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Figure 2.15: ANN system architecture composed of xN input data where
N denoted the number of connected terminals and multiplied by weighting
coefficients w linked together through neurons (sketched in circles). Each
neuron is biased with a coefficient b and behaves according to the desired
activation function f .
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3 Mutual Coupling
Compensation: A Machine
Learning Approach, Theory
and Application

3.1 Introduction
In this chapter, the theory required for the accurate evaluation of electromag-
netic mutual coupling is established based on the recently developed approach
the ACGF. The basic definition of antenna to antenna coupling based on the
circuit model assumption is first reviewed in Sections 3.1.1, 3.1.2 and 3.1.3,
this will allow a proper understanding of the newly proposed method that will
follow. As it is the intent of the thesis to use a new approach, the ACGF, to
characterize antenna array elements by using their spatial transfer function,
the analysis of a two-element array using the ACGF is shown in Sec. 3.3.
The general mathematical formulation of the ACGF is given for a receiving
antenna system by showing the EM transfer function of the elements and
mutual coupling interactions. In Sec. 3.4, the mutual coupling interaction be-
tween array elements is analyzed and represented as a new coupling function,
MC-ACGF, that defines the interaction between the elements’ ACGFs for an
arbitrary excitation. A proposed mutual coupling compensation (MCC) sys-
tem is shown in Sec. 3.5 via a machine learning setup using genetic algorithm
(GA) and artificial neural network (ANN). The differences between mitigating
mutual coupling effects using GA and ANN based systems are compared. At
the end, the validation of the proposed compensation systems in comparison
to simulated results is covered in Sec. 3.6 for thin-wire antenna array system
at different inter-element separations and different angles of incident.
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3.1.1 Definition of Coupling

It is essential to the character of antennas that when two antennas are in
close proximity where at least one element is transmitting, the second element
will receive some of the transmitted energy, with the amount reliant on the
inter-element spacing, radiation characteristics and their orientation. In the
scenario where both antennas are transmitting, they will concurrently receive
part of each other’s transmitted energy as the energy bounces back and forth
between the elements. Furthermore, in a dense electromagnetic environment,
microwave components can also repulse a portion of any projected waves com-
ing from nearby elements and hence act like modest transmitters even when
they are not technically radiating. The result is that energy exchange between
a particular element of an array and another spatially separated element oc-
curs not only by the direct path, but also indirectly via scattering from other
nearby components. All these incidents are a manifestation of mutual coupling
that exists between electromagnetic components placed in close proximity. It
is not usually an insignificant influence in the EM designing process but also
encounters serious challenges to the design of antennas or microwave systems.
Basically, to better understand and model electromagnetic mutual coupling,
we begin by examining a simple array formation with two elements in both
transmitting and receiving modes of operation as will be shown in the following
sections.

3.1.2 Transmitting two-element Array

Consider an electromagnetic system composed of two-element array typically
identical as shown in Fig. 3.1. The synopsis of operation is described in [21] as
the source attached to the primary antenna generates a surface current along
the antenna’s physical dimension. Part of the produced energy is radiated
directly into space, while a part is coupled to the other antenna in the array.

The field illuminating on the secondary antenna causes an induced current
to flow on that antenna, which causes the antenna to re-radiate some of the
received energy and also to introduce a wave towards the generator of the
primary antenna. Regarding the re-scattered energy, some is re-radiated di-
rectly into space and some in turn is coupled back to the other element, and so
forth. Now, if the secondary antenna is also being excited by its own source,
the re-scattered energy from this antenna, due to the source of the primary
antenna, incorporates to the energy from the primary generator and alters the
amplitude and phase of elements’ terminal voltages and radiation characteris-
tics. As a result, the formulation of the array’s far field is not only dependent
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3.1. Introduction

Figure 3.1: Coupling paths between two-element array in transmitting mode.

on the excitation on individual elements by their own generators but also on
the total array excitation that involves the coupling from other elements. The
coupling factor between elements can be derived from the fact of generator’s
mismatch in amplitude and phase with the antenna itself that creates inter-
nal reflections. However, this particular definition coincides with the antenna
circuit model as in [21], in which for an arbitrary element, the circuit model
involves a radiation resistance as well as a reactive part for phase control. So,
that is, in order to maximize the radiated power, a matched impedance has to
be connected to the terminal of the antenna that will force the reflected wave
to be numerically equal to the back-scattered induced wave because of the
coupling. Thus, in this case the system achieves a maximum power transfer,
however, it is only for single antenna without looking into other proximity
antennas. As coupling depends on various factors, the matching impedance
is only optimum under set of conditions. As a result, it is clear to state that
the coupling impedance varies according to the elements excitation leading to
a dynamic matching system.

3.1.3 Receiving two-element Array

In receiving mode, the elements are represented as passive loads as shown in
Fig. 3.2, in which a plane wave illumination is assumed towards an array of
two-element. As the field strikes the first element at the origin, it launches
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Figure 3.2: Coupling paths between two-element array in receiving mode.

an induced current on its surface that also causes a scattered energy that
splits in space and into nearby element. The subsequent secondary element
experiences the same situation, where the re-scattered energy adds to the
primary element and so forth. As a consequence, the fields entering each
element are interpreted as the sum of the direct applied incident wave and also
the coupled fields from proximity elements, in which it depends on the inter-
element spacing. Therefore, the amount of energy absorbed by each individual
radiator should be maximized in contrast to the re-scattered energy. As a
result, it is required to design a mismatched terminal impedance appended
to the antenna in order to diminish the amount of energy back-scattered into
space. In fact, the coupling impedance determination relays on the location
and excitation of nearby elements. Eventually, it was observed that the best
possible receiver input impedance is quite equal to the transmitter impedance
of the same array configuration [56], in which this fact stacks to the principle
of reciprocity.

It is now clear that mutual coupling has a significant influence on the
performance of microwave systems that requires deep investigations in both
transmitting and receiving arrays.
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3.2 Electromagnetic Mutual Coupling
A more precise measure of mutual coupling effect is carried out by carefully
performing an extensive inspection of field interactions between proximity el-
ements. It is well-known that coupling phenomenon arises between microwave
components or array elements once the inter-element spacing reaches fractions
of wavelength, in which the elements interact with each other in theirs near
zone. Also, the presence of undesired objects within the examined system will
alter the EM performance of elements in the system as these scatterers add
more complex field interactions. So, the major problem exists when experienc-
ing a significant near field interactions in compact environments. In ordinary
electromagnetic systems, field regions are divided into two major parts, near
and far fields, in which the latter is always been used to express the radiation
characteristics of RF systems. Despite depicting the system by its far field
data, it is not rich with unique signatures and information concerning the
system. Whilst, near field delineation has most of the remarkable field vari-
ations as explained in [57]. Also, The concentration of energy that plays an
important role in port mutual coupling [21] takes place in the near field zone
of radiators. The assumption in defining mutual as port coupling pertain with
no association to any undergoing radiation from a subsystem surrounding the
main system, as well as interpreting mutual coupling effects as merely near
field interrelation of known radiators. Nevertheless, it is not easy to dictate
the near field variance due to its indiscriminate nature in which it is desired
to recognize mutual coupling from an electromagnetic aspect. One way to dis-
cover the overall field variation is done by finding and analyzing the primary
substance in furnishing the surrounding fields that is defined as the transfer
function of the system. Whereas, any variations in the electromagnetic en-
vironment surrounding the primary system can be captured indisputably by
solely perceiving the transfer function in the ideal state, i.e. perfectly isolated,
and subtract it from the altered one.

In contrast, let us consider a simple array configuration composed of two
antennas, where one is transmitting while the other is receiving. If the dis-
tance between the elements is considerably large, outside the near field zone,
the coupling factor relating both elements will theoretically approach zero.
Though, fundamentally speaking, part of the radiated field surrounding the
transmitting antenna disperses and strikes the receiving element, in which is
the situation when illuminating scatterers by a plane wave. Although the
elements are distant from each other, there is still a possible coupling be-
tween them due to far field illumination. In reference to this view point, it is
conceivable to divide the mutual coupling phenomenon into the following
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1. Field Coupling: In which the physical feature is the presence of scatter-
ers in an antenna’s near field region or to experience an indirect incident
wave.

2. Port Coupling: Where the only criterion is the presence of appreciable
value for energy transfer coefficients, near field interaction, in the form
Snm, in which case we say port m is coupled with port n.

What is important to notice here is that Port-MC does not necessarily
involve change in the electromagnetic behavior of the subsystems entering into
interactions. More precisely, if there is indeed a significant Port-MC between
two parts P1 and P2, say two antennas separated in space, then there may
or may not be electromagnetic mutual coupling (EM-MC) between the two
antennas. If there is EM-MC, then the electromagnetic behavior of the two
antennas must change after the coupling; for example, the radiation directivity
or input impedance of each antenna measured in isolated environments will no
longer measure to the same values in the coupled environments. On the other
hand, if there is no EM-MC but only Port-MC, then one can assume that the
coupled devices are exchanging energy by mechanisms that have nothing to
do with change in the individual antennas’ behavior (because in this second
case of Port-MC such antenna behavior remains the same before and after
interaction). Waveguides represent the most common types of establishing
such non-EM-MC mechanism of energy coupling. Surface waves in planner
antenna arrays are another.

3.3 Analysis of Antenna Arrays Using the ACGF
Formalism

In this section, we continue on working on the ACGF presented in Sec. 2.3 and
expand its formula to represent antenna array configurations. By using Eq.
3.1 we can inspect the rule of ACGF in calculating the antenna’s terminal
current when assuming a plane wave excitation towards an antenna in the
receiving mode. Also, this process can be reversed to produce the radiated
fields given a special excitation source on the system by multiplying the ACGF
by the free space Green’s function.

JRx (r) =
∫
S

F̄
(
r, r′

)
·E
(
r′
)
ds′, (3.1)

where E(r’) is the illumination field, F̄(r, r′) is the element’s ACGF and JRx
is the port current. Both the ACGF and the antenna geometry have similar
spatial dimensions. Consequently, this equation is analyzed along the entire
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antenna surface S that corresponds to an ACGF of 2D surfaces, however, for
one dimensional structures the expression can be easily modified to contain
the integral along the 1D length of the element. The ACGF in the ideal state
describes the spatial transfer function of the element in lossless environments,
i.e. free space, noise free and no other elements in close proximity. Hence, in
the situation of antenna array configuration, it is required to formulate the
ACGF of each element and also to model additional EM interactions caused
by nearby elements. Now, let us consider an array composed of two identi-
cal dipole antennas placed in free space (we only examine wire antennas for
simplicity). If the two elements are spatially placed close to each other, typi-
cally less than half-wavelength distance, then a considerable amount of energy
will bounce back and forth between them causing a strong mutual coupling.
Therefore, the ACGF representation of the array is going to recognize each
element’s ACGF as F̄Antn , where n denotes the number of elements. So, the
array-ACGF can be written as follows,[

F̄Array
(
r′
)]

:=
[
F̄Ant1

(
r1, r′

)
F̄Ant2

(
r2, r′

)]
(3.2)

An illustration of the EM interactions of the two-element antenna array
is depicted in Fig. 3.3. The modeling procedure starts by applying a unit
impulse plane wave towards the array elements that contributes to form the
complete array ACGF (F̄Array). For each element there are two essential
transfer functions that will be generated; the first is the self-interaction ACGF
that has no relation to other nearby systems (No MC-ACGF), while the second
is the mutual coupling ACGF (MC-ACGF), which defines the interaction with
other elements or scatterers.

Therefore, The components F̄Ant in Eq. 3.2 are the overall responses of the
elements that contain the self-interaction ACGF of each element and also the
cross interaction MC-ACGF. Accordingly, we can expand the ACGF (F̄Antn)
on each antenna to be as follows,

F̄Antn
(
r, r′

)
= F̄nn

(
r, r′

)︸ ︷︷ ︸
Self-Interaction ACGF

+ F̄nm
(
r, r′

)︸ ︷︷ ︸
MC-ACGF

. (3.3)

where m is the number of array elements interacting with a reference n an-
tenna under a condition of m 6= n. From the prescribed relation of the array
ACGF given in Eq. 3.3 one can assume the MC-ACGF terms as additional
radiators with properties similar to actual elements in the system. Also, these
terms change according to any variations occurring in the system, such as
changing the inter-element spacing, element’s orientation or type of excita-
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Figure 3.3: The full EM interactions of two-element antenna array showing
the self- and MC- ACGFs. [6]

tion. In general, we can rewrite Eq 3.3 for several number of elements as
follows,

F̄n
(
r, r′

)
=

N∑
m=1

F̄nm
(
r, r′

)
= F̄nn

(
r, r′

)︸ ︷︷ ︸
Self-Interaction ACGF

+
N∑

m=1,m 6=n
F̄nm

(
r, r′

)
︸ ︷︷ ︸

MC-ACGF

.
(3.4)

where a summation is inserted to count the number of m interactions to a
reference n antenna.

The use of ACGF in the transmitting mode has extended to receiving
arrays as shown in Eq. 3.5, in which the first term in (3.5) defines the actual
port currents while the latter shows the MC interactions. So, in receiving
arrays, one can express the received port currents JRx of elements with respect
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to the array-ACGF .

JRx (rn) =
∫
Sn
ds′ F̄nn

(
rn, r′

)
·E
(
r′
)

︸ ︷︷ ︸
Antenna Self-Interaction

+
N∑

m=1,m 6=n

∫
Sm

ds′ F̄nm
(
rn, r′

)
·E
(
r′
)

︸ ︷︷ ︸
Antenna MC-ACGF

,
(3.5)

where JRx is the received current on each antenna terminal, E(r′) is the in-
cident plane wave and F̄nn & F̄nm are the self and MC-ACGFs, respectively.
It can be observed from the previous expressions that the use of ACGF is
indeed efficient in performing EM simulations in receiving mode of antenna
arrays without resolving Maxwell’s equations, and also it interprets EM-MC
as spatial transfer functions associated to the actual properties of the EM
system.

3.4 The Mutual-Coupling ACGF (MC-ACGF)
In this section, we are going to develop a method to mitigate mutual coupling
effects by suppressing the coupling terms from the array-ACGF defined pre-
viously in Eq. 3.4. To clarify this point, let us assume N antennas forming
an array where the array-ACGF can be expressed in a matrix representation
as follows,

[
F̄Array

(
r′
)]

:=


F̄1,1 (r1, r′) ... F̄1,N (r1, r′)

:
:

:
:

:
:

F̄N,1 (rN , r′) ... F̄N,N (rN , r′)

 , (3.6)

where the terms F̄n,n (rn, r′) are the self-interaction ACGFs of the nth element,
while the other elements are the MC-ACGF. Now, For ideal (theoretical) array
situation where no mutual coupling presents, these MC-ACGFs will no longer
exist in the mathematical model in Eq. 3.6 and hence, the remaining terms
are the self-interaction ACGFs as shown in Eq. 3.7. Indeed, this scenario
is going to be an essential step in starting the mitigation process to relate
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the actual array response, i.e. presence of considerable coupling, to a desired
no-coupling case with a similar array configuration.

[
F̄0

Array
(
r′
)]

:=


F̄0

1,1 (r1, r′) ... 0
:
:

:
:

:
:

0 ... F̄0
N,N (rN , r′)

 , (3.7)

The desired (mitigated) array-ACGF is calculated by subtracting the cou-
pling situation in Eq. 3.6 from the ideal state in Eq. 3.7, where the final
relation can be expressed as[

F̄Array(decoupled)
(
r′
)]

=
[
F̄Array

(
r′
)]
−
[
F̄0

Array
(
r′
)]
. (3.8)

In the receiving mode, the array’s port currents can be calculated using
Eq. 3.1, in which we can obtain the decoupled port currents as follows,

[JRx] =
∫
S
ds′
[
F̄Array(decoupled)

(
r′
)]
· [E(r′)] (3.9)

Here, the expression developed in 3.9 plays an important role in performing
the proposed machine-learning process that will be presented in the following
section. The purpose of the AI system is to retrieve the original (decoupled)
ports’ current from the coupled ones by applying different optimization ap-
proaches to effectively reduce the mutual coupling terms.

3.5 Concrete Implementation of GA- and ANN-
based ML solution to EM-MCC for thin-wire
antenna arrays

3.5.1 Array processing

As per the mutual coupling compensation methods proposed in literature, it
is obvious that the treatment of the problem was achieved by finding some
known coupling coefficients (S-parameters) on each element that are captured
as terminal reflections. However, in practice, it is expected to have a more
complex situation such that the system experiences unexpected EM fields from
intermediate systems or scatterers that cannot be determined using traditional
methods. As a result, we showed in Sec. 3.4 the merit of characterizing EM
interactions as definite quantities on array elements that also coincides to el-
ements’ transfer function. By involving this former fact, we showed that EM-
MC problem can be hypothetically modelled as spatial transfer functions that
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appear with actual array elements. Suppose an array composed of N identical
thin-wire antennas uniformly distributed, i.e. having an equal inter-element
spacing, orientation, and uniform excitation. Free space condition with a rel-
ative permittivity of air is also considered. The array transfer function, F̄Array
defined in Eq. 3.6, is produced by applying a superposition excitation to array
elements. This creates an array transfer matrix composed of N ×N ACGFs,
where each row in the matrix represents a single excited element and the
MC-ACGF interactions of other passive elements. Such process is a requisite
before assembling the array in the receiving mode to calculate the ports’ cur-
rents. Afterwards, the mitigation process will start by correcting the terminal
currents/voltages to the desired ones. The validation of the mitigation pro-
cess is assisted by applying a direction of arrival (DoA) estimation at different
angles of incidents. In the receiving mode, the terminal currents/voltages
are calculated given the formula in Eq. 3.10, where the terminal voltage’s
representation for a single element is as follows,

v(ψ, θ, φ) = − ZLZANT
ZL + ZANT

N∑
n=1

F̄n(r, r′).E(θ, φ)∆sn (3.10)

where ψ = k0(cosφ sin θâx+sinφ sin θây+cos θâz)·d. The voltage representa-
tion of each element depends on the angles of incident θ and φ, the generator
load impedance ZL, antenna impedance ZANT , and the ACGF of the nth
element F̄(r, r′). In order to expand this equation into antenna arrays, that
terminal voltage of each element can be described as shown in Eq. 3.11


v1

v2
...
vN

 =



− ZL1ZANT1
ZL1+ZANT1

N∑
n=1

F̄n1(r, r′).E(θ, φ)∆s1n

− ZL2ZANT2
ZL2+ZANT2

N∑
n=1

F̄n2(r, r′).E(θ, φ)∆s2n

...

− ZLNZANTN
ZLN+ZANTN

N∑
n=1

F̄nN(r, r′).E(θ, φ)∆sNn


(3.11)

For a precise measure of how mutual coupling affects the ports, we only
select the diagonal transfer functions F̄nn(r, r′) defined in Eq. 3.6 that describe
the actual elements’ transfer function, in which it is the situation in feasible
array processing. In order to distinguish the amount of deviation on each port
due to EM-MC, it is compelling to use the ideal array model that mimics the
actual array configuration. Here, the ideal setup assumes an array similar to
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the actual one despite of a complete isolation of each element (no EM-MC).
At the end, by using Eq. 3.8 in the receiving mode, a cost function (MMSE)
is developed to calculate the difference between the terminal voltages of the
actual array and the ideal isolated array.

MMSE = ( 1
NPiPj

)
Pi∑
i=1

Pj∑
j=1

∣∣∣v0n(θiinc, φ
j
inc)− vn(θiinc, φ

j
inc)

∣∣∣2 (3.12)

In Eq. 3.12, the minimum mean squared error (MMSE) is averaged over the
number of incident angles Pi & Pj and the number of ports N , where the
ideal desired voltages are defined as v0n while vn are the altered voltages.

In summary, a methodology to mitigate the effect of coupling in antenna
arrays through the ACGF approach in the receiving mode was shown. The
ACGF of antenna arrays was obtained by defining the array-ACGF that con-
tains the elements’ self-interaction ACGF and the mutual coupling interac-
tions MC-ACGF. In order to decouple the ports, it is required to formulate
reference desired values that assume a no-coupling case, which was defined as
the ideal array situation. That is, the following phase in mitigating the effect
of coupling is to inject the developed cost function to a processing unit that
will null out any unwanted effects.

3.5.2 Mutual Coupling Compensation Filter

We continue working on the cost function deployed in Eq. 3.12, in which the
objective is to minimize it by probing the optimization methods proposed in
Sec. 2.6 in the direction of decoupling the actual array terminals. The op-
timization mechanism plays an important role in converting the actual array
voltages into desired values through multiplying the former by a transforma-
tion matrix inferred as a filter (machine learning unit). The demonstration of
the proposed system architecture is as follows,

The system illustrated in Fig. 3.4 manifests the transformation operator
developed by the optimizer as a core processing unit (MCC filter) that asso-
ciates the voltage terminals of the receiving elements to the measuring module
for the final detection stage. The aim in this process is to achieve a preem-
inent ML method in terms of execution time, cost and efficiency but most
importantly a nonlinear response in comparison to other methods in litera-
ture. Therefore, it is crucial to select a proper method that fits to the nature
of the problem.

The AI agent transfer function (hypothesis) varies according to the com-
plexity of the proposed problem. In this work, we are going to solve this
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Figure 3.4: Mutual coupling compensation block diagram; It consists of a
decoupling unit (filter) that holds a nonlinear operator for the final mitigation
process.

empirical problem using two forms of AI methods; first, we propose GA based
filter with equipped properties as in Table 3.1,

Table 3.1: GA properties

Crossover Constraint dependant (linear)
Mutation Uniform

Constraint parameters Augmented Lagrangian
Selection Stochastic uniform

The optimization function is designed in MATLAB [58] such that the op-
timization variables are the MCC filter’s coefficients that form a matrix of
dimensions (N × N). Also, it is presumed that the coefficients are complex
that analogous to accustomed load impedances. The optimization output,
however, is the desired cost function presented in Eq. 3.12. Since the array
is adjusted to work in receiving mode, the terminal voltages vary according
to the angles of incident. That is, the optimization apparatus is modified to
take into account the effect of revolving the incoming signal in both θ and φ
directions. The optimized terminal voltages are mathematically represented
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as follows,
vopt.n(ψ, θiinc, φ

j
inc) = MCC× vn(ψ, θiinc, φ

j
inc) (3.13)

where MCC is the assigned compensation operator, vn are the altered voltages
and vopt.n are the optimized decoupled voltages.

The second optimization approach treats the proposed MC problem as
nonlinear field interactions that require a high degree of machine learning
intelligence. As a result, the ANN offers a wide variety of classifiers (activation
functions) that classify the input data to a desired output data. The proposed
networks consist of either two layers as in Fig. 3.5 or three layers as in Fig.
3.6, where each network consists of input, hidden and output layers, where
the hidden layer contains neurons that explicitly hold the chosen activation
function. In this regard, we only use in this work PURELIN and TANSIG
activation functions as classes of linear and nonlinear functions, respectively,
in order to examine the effect of each function on the system’s performance.

...
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Figure 3.5: Single layer ANN using PURELIN activation function
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Figure 3.6: Multilayer perceptron ANN using TANSIG activation function

Fig. 3.7 describes the hardware implementation of an AI receiver composed
of a set of organized modules that interact together for a specific operation.
The main purpose of the presented system is to mitigate the effect of mutual
coupling arises between proximity elements, strictly speaking, antennas. It
consists of three parts: EM interface, processing unit and cloud-computing
unit. The prospective system performs as follows; first, at the EM interface
side, an incident wave is applied towards the antenna array with specified
azimuth and elevation directions, such that a determined voltage is being
collected on each antenna terminal. Apparently, the terminal voltages are al-
tered as a consequence of a certain coupling capacity, whereabouts, we start
the mitigation process. The terminals are plugged into a digital signal pro-
cessing (DSP) unit that converts the analog signals to digital data streams
that will sequentially be connected to the input of an ANN unit. This ANN
unit is connected internally to a user-defined interface to initiate or update
weights and biases on each neuron for a specific input data. Moreover, through
the cloud-computing unit, the ANN can be utilized to reform and re-initiate
these weights by remote users in order to adapt any unusual changes in the
surrounding environment in the EM communication channel.

3.6 Numerical results, Verification, and Design
Aspects of the ML-MCC System

In this section we are going to detail and demonstrate the previously pre-
sented EM formulation (ACGF) through some empirical examples. Further,
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Figure 3.7: ANN processing system module; it lays between the RF termi-
nals (antenna ports) and the data processor. Also, it is connected through a
computer interface to a cloud-computing unit in order to train the network to
various situations defined by remote users.

optimization methods are applied to decouple the elements’ ports as per the
methods proposed in Sec. 3.5. To start the process, Let us consider a uni-
form linear array composed of identical six-element thin-wire perfect electric
conductor (PEC) dipole antennas placed on the x-axis as shown in Fig. 3.8.
The elements are centrally loaded by an impedance ZLN , where N specifies
the number of elements while the inter-element spacing d varies between 0.1λ
to 0.7λ. By modifying the array separation, it is adequate to investigate the
optimizer capability to decouple the antenna array terminals with respect to
different coupling strengths. The array is designed in WIPL-D, MoM solver
[59], in which the full EM simulation in transmitting mode setup is established
and the array ACGF (F̄Array) is exported to be processed in MATLAB.

Now, let us look into the testing procedures as illustrated in Fig. 3.9.
First, we start by pursuing the right column, which represents the actual array
operation; here, after constructing the desired array configuration in the EM
solver, we start by debugging the correspondent array-ACGF using MATLAB
to obtain the terminal voltages vrx in the receiving mode at different elevation
angles and a fixed azimuth. This results in forming a matrix of coupled six
terminal voltages at each incident angle L. In our experiment, we appointed a
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Figure 3.8: A schematic of ULA of half-wavelength dipole antennas located
on the x-axis where each element is centrally loaded.

100 elevation angle samples that range from 0° to 90°. On the other hand, the
left column represents the ideal array setup (desired goal); here, we start by
constructing a single element model in the EM solver, in which the element
is a duplication of any element in the actual array setup. Afterwards, we
process the single element ACGF in MATLAB in order to obtain the terminal
voltage in receiving mode. Again, the received voltage is acquired at a window
of elevation angle samples. The outcome at this point is a matrix of one
terminal voltage at different elevation angles L. The final step in the current
ideal array setup is essential for assembling and preparing the data for the
optimization stage, in which this operation forms the isolated array paradigm
by multiplying the terminal voltage of the single element by a virtual array of
point sources with inter-element spacing equal to the actual array setup. This
emerges in a matrix of six isolated (decoupled) terminals at each elevation
angle L. Both presented matrices, given from each column, are handled by
the machine learning module in order to mitigate the effect of coupling and
noise.
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Figure 3.9: Flowchart of the proposed approach in mitigating mutual coupling
effect in antenna array configuration.

The machine learning stage is essential in this work in order to generate
the best MCC operator capable of decoupling mutual coupling effects in real-
time applications. From the previous chart, it is required to minimize the
difference between a two sets of data such that the two sides of the equation
are the ideal and actual terminal voltages. As a result, the outcome of the
ML process will be the MCC matrix coefficients. In the following sections we
are going to propose two techniques to obtain a proper MCC filter using GA
and ANN algorithms.

To setup the EM-ML system, there are two operations that have to be pre-
pared before testing the capability of the algorithm to perform a specific task.
The first is to introduce the training parameters in which are the possible fea-
tures that designate a significant remark/change in the system. For example,
in antenna array processing, changing the inter-element spacing has a huge
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impact on altering the array terminal voltages and changing the array radia-
tion characteristics due to the effect of mutual coupling. Hence, the separation
between elements is considered as a significant feature in training the EM-ML.
Also, the elements’ orientation, loading, etc., can be seen as additional features
that can enhance the EM-ML training phase. However, including multiple fea-
tures can be considered as a deep learning (DL) setup [60] in which will be
examined in our future work. That is, we only focus on studying the impact of
varying the spacing between array elements on the EM-ML system. The sec-
ond operation, however, is the learning phase that involves different situations
of a single feature. For instant, at every inter-element spacing, the learning
phase can be seen as in changing the incident field angles towards the array
and re-establish the EM-ML coefficients to adapt this variation. Finally, a
testing phase is required to evaluate the EM-ML performance by introducing
a new set of data to predict the output/desired data.

3.6.1 Machine Learning Using GA

For the proposed array configuration, a MATLAB program is used to process
the terminal voltages of six-element half-wavelength dipole antennas by first
establishing the ACGF of each element using WIPL-D, MoM solver, and then
injecting the EM properties of the array into the code to mimic a receiving
array scenario. That is, a plane wave excitation is assumed with different
elevation angles and an azimuth of 0°. In GA program, a desired fitness
function is modelled with 72 optimization variables as described in Eq. 3.14
to imitate the coupling filter’s coefficient. Here we define x as the MCC matrix
with 36 elements (number of array elements squared) where each element has
two coefficients to represent a complex variable to form the total number of
optimization parameters to be 2×number of elements2. Through Eq. 3.13,
one can acquire decoupling of array ports upon a wide window of elevation
angles, in which the decoupling MCC matrix is adapted to this change. The
obtained optimization output from the GA is assessed through DoA estimation
technique MUSIC at different elevation angles with an injected additive white
Gaussian noise (AWGN) with a noise variance of 0.01 (-20 dB).

First, a preliminary study was made on a previously proposed mutual cou-
pling compensation method to detect the angles of arrival of an antenna array
system. The purpose of this study is to gain knowledge on how to perform a
validation of the new EM-ML proposed approach. In [7], the authors proposed
a solution for mutual coupling effects for a seven-element monopole array with
a length of 0.24λ each. The separation of the elements was considered for a
high coupling strength in which is 0.2λ as shown in Fig. 3.10 The DoA-MUSIC
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Figure 3.10: A seven-element monopole antenna array placed on a ground
plane. The operating frequency of the system is 2.4 GHz where the element’s
length is 0.24λ and the inter-element separation is 0.2λ. [7]

results were obtained for the monopole antenna array at a single and multiple
angles of arrival as in Fig. 3.11

It can be observed from the previous figure that in the single angle of
arrival case, mutual coupling does not have a significant effect on the DoA
estimation. However, their proposed approach has shown a slight deviation
on detecting the exact angle. In fact, the performance evaluation of the DoA is
often acquired by observing the concentration of the power at the desired angle
P (θ) in which in their example was quite poor when using the conventional
mutual impedance method (CMIM) [61] but much better when using the
receiving mutual impedance method (RMIM) [62]. In the two angles of arrival
in Fig. 3.11(b), the situation was more complex where the CMIM failed to
estimate the angles while the RMIM results indicate a better performance.
As a result, a good mutual coupling mitigation system means obtaining the
DoA at the desired angles and also to focus the MUSIC power spectra P (θ)
at the desired angles. Based on this former observation of the DoA-MUSIC
results with details in [7], the validation of the new EM-ML system will be
carried out by showing the DoA estimation at many angles of arrival using
MUSIC algorithm. The evaluation of the results will be made on the accuracy
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(a) The MUSIC spectra for the esti-
mation of a single source at φ = 75°
with the mutual coupling effect be-
ing compensated by different meth-
ods: (i) with: no compensation (NC),
(ii) using the conventional mutual
impedance method (CMIM), and (iii)
using the receiving mutual impedance
method (RMIM). The averaged SNR
of the received voltages is 52.9 dB

(b) The MUSIC spectra for the esti-
mation of two sources at φ1 = 62.4°
and φ2 = 111.9°. The spectra were
obtained with the mutual coupling ef-
fect being compensated by different
methods: (i) with: no compensa-
tion (NC), (ii) using the conventional
mutual impedance method (CMIM),
and (iii) using the receiving mutual
impedance method (RMIM). The av-
eraged SNR of the received voltages is
39.1 dB

Figure 3.11: DoA estimation using MUSIC algorithm at (a) single angle and
(b) two angles. [7]

of obtaining the exact angle with high power factor.
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(3.14)

The validation of the method is obtained as in Fig. 3.12 where we studied
the ML-GA performance in mitigating the effect of coupling of an antenna
array with element spacing of 0.2λ. The DoA-MUSIC spectrum is showing
a poor angle detection at the desired angle of 60° where the system before
applying the ML-GA does not have any response at this angle.
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Figure 3.12: Performance evaluation of the results obtained from GA in com-
parison with the actual array before compensation & ideal point sources at
60° and element spacing of 0.2λ.

Although the GA-MCC has improved the terminal voltages of the array in
comparison to the actual ones before optimization, it did not totally minimize
the coupling between the elements to the level of the ideal array case. The
reason is that the devised MCC filter is acting as a linear compensation filter
or a linear classifier that does not follow the behavior of the EM system and
hence cannot distinguish the deviation caused by mutual coupling. As a result,
we are enforced to enhance the filter’s capability to reduce the coupling factor
by acquiring a better optimization algorithm as will be shown in the following
section.
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3.6.2 Machine Learning Using a nonlinear ANN

In this section, we are going to obtain the prescribed MCC filter coefficients
through the ANN system. As mentioned in Sec. 3.5.2, the mitigation process
goes through two distinct forms of data classification, where in the beginning
we start by applying a linear ANN response by equipping each neuron with
PURELIN function. Besides, in this case, the network consists of only two lay-
ers as in Fig. 3.5. On the other hand, the objective of the second network is to
bring a higher order of intelligence by supplying each neuron with a nonlinear
classifier using TANSIG activation function, where in this case the network
consists of three layers as shown in Fig. 3.6. Finally, the performance of each
proposed ANN system in evaluated using DoA-MUSIC at single and multiple
angles of arrival. The study of ANN systems also involves the variation of the
inter-element spacing between 0.1λ to 0.7λ in which for each configuration,
we observe the DoA at a single elevation direction of 50° and two elevation
directions of 30° and 70° and a fixed azimuth of 0°.

In Fig. 3.13 and 3.14, we show the performance of the proposed ANN non-
linear system in reconstructing the port currents of an array with 0.1λ spacing
in comparison to the ideal array behavior (point sources) and the actual array
in the state prior to the optimization setup. An excellent estimation is ob-
served at a single direction with a negligible error while a shifted angle at 65°
and poor MUSIC power -12 dB are captured at the two angles case because
of the extensive coupling barrier. In fact, the ideal behavior of the system is
also showing a low MUSIC power at 70° that also manifests a strong coupling
effect. In both examples, the system has no response before applying the ANN
algorithm in which the coupling effect is significant.
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Figure 3.13: Performance evaluation between the results obtained from ANN
in comparison with the actual array before compensation and ideal point
sources at 50° and array spacing of 0.1λ.

Figure 3.14: Performance evaluation between the results obtained from ANN
in comparison with the actual array before compensation and ideal point
sources at 30° & 70° and array spacing of 0.1λ.
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In Fig. 3.15 and 3.16, we show the case of 0.2λ spacing in which a perfect
estimation is observed for the single and multiple DoA cases. For the single
angle case, both the estimation of the incoming angle and the focus of MUSIC
power are in agreement with the ideal system behavior where the P (θ) is
stable in the range between 0 to -12 dB. For the two angles case, the P (θ) is
partially stable where at 30° the power spreads out of the peak value (-2 dB)
at -4 dB while it shows a good performance of -10 dB at 60°. Due to strong
coupling, yet the system has no response before performing the ANN.

Figure 3.15: Performance evaluation between the results obtained from ANN
in comparison with the actual array before compensation and ideal point
sources at 50° and array spacing of 0.2λ.
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Figure 3.16: Performance evaluation between the results obtained from ANN
in comparison with the actual array before compensation and ideal point
sources at 30° & 60° and array spacing of 0.2λ.

By increasing the separation between the elements to 0.3λ, we are expe-
riencing a better situation in terms of coupling in which the system response
has slightly improved before injecting the ANN algorithm. However, it is still
not perfectly detecting the angles of arrival. Hence, the ANN algorithm has
been applied successfully at the single and two DoAs with good estimation as
in Fig.3.17 and 3.18, respectively. The single angle case has a good estimation
of the angle with P (θ) of -3 dB while at the two angles situation the angles
were captured at 31° with an excellent P (θ) of 0 dB and 58° with P (θ) of -10
dB.
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Figure 3.17: Performance evaluation between the results obtained from ANN
in comparison with the actual array before compensation and ideal point
sources at 50° and array spacing of 0.3λ.
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Figure 3.18: Performance evaluation between the results obtained from ANN
in comparison with the actual array before compensation and ideal point
sources at 30° & 60° and array spacing of 0.3λ.

In the following example, it is evident to assert the improvement of the
system before performing the optimization when stretching the spacing of the
array. Here, Fig. 3.19 and 3.20 are showing the performance evaluation of the
array when increasing the separation between the elements to 0.4λ, while in
Fig. 3.21 and 3.22 are for an array with spacing of 0.45λ. Again, the ANN
performance is incomparable to the actual array in the presence of coupling
at a single and two angles of arrivals. The DoA-MUSIC results are perfectly
estimating the desired angles with an optimal MUSIC power P (θ).

60



3.6. Numerical results, Verification, and Design Aspects of the ML-MCC
System

Figure 3.19: Performance evaluation between the results obtained from ANN
in comparison with the actual array before compensation and ideal point
sources at 50° and array spacing of 0.4λ.

Figure 3.20: Performance evaluation between the results obtained from ANN
in comparison with the actual array before compensation and ideal point
sources at 30° & 60° and array spacing of 0.4λ.
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Figure 3.21: Performance evaluation between the results obtained from ANN
in comparison with the actual array before compensation and ideal point
sources at 50° and array spacing of 0.45λ.

Figure 3.22: Performance evaluation between the results obtained from ANN
in comparison with the actual array before compensation and ideal point
sources at 30° & 60° and array spacing of 0.45λ.

Fig. 3.23 to 3.26 show an array of inter-element spacing of 0.5λ and 0.7λ
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where mutual coupling does not theoretically exist. Here, we can notice that
the performance of the system after and before the ANN optimizer is consid-
erably equal in which the presence of appreciable coupling does not appear in
these examples. However, it is compelling to examine various array separa-
tions in order to insure the ANN stability in weak mutual coupling situations.

Figure 3.23: Performance evaluation between the results obtained from ANN
in comparison with the actual array before compensation and ideal point
sources at 50° and array spacing of 0.5λ.
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Figure 3.24: Performance evaluation between the results obtained from ANN
in comparison with the actual array before compensation and ideal point
sources at 30° & 60° and array spacing of 0.5λ.

Figure 3.25: Performance evaluation between the results obtained from ANN
in comparison with the actual array before compensation and ideal point
sources at 50° and array spacing of 0.7λ.
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Figure 3.26: Performance evaluation between the results obtained from ANN
in comparison with the actual array before compensation and ideal point
sources at 30° & 60° and array spacing of 0.7λ.

3.6.3 Testing scenario

In the previous examples, we showed the ANN’s learning and training phases
in which the learning process helps in establishing the proper network and
to initiate the weights on each neuron via a supervised learning method. As
a result, a testing scenario is conducted to inspect the predictability of the
proposed ANN in mitigating mutual coupling effect. In order to do that, let
us consider a testing data, terminal currents, captured in the receiving mode
at a window of elevation angles between 60° to 90° instead of a full window
between 0° to 90° as shown in the training phase. The DoA results in Fig.
3.27 show a perfect mitigation of MC at a separation distance of 0.2λ and
insures the efficiency of the ANN algorithm in estimating the correct angle of
arrival at 70°.
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Figure 3.27: A performance evaluation of DoA using MUSIC algorithm power
in dB for testing data in reference to full elevation range simulation & ideal
point sources.

3.7 Conclusion
In this chapter, we proposed a practical method to compensate mutual cou-
pling effects in antenna arrays through the newly developed approach ACGF
supported by a systematic EM-ML algorithm. The system works by prop-
erly define the ACGF on each dipole antenna that forms a 1D transfer func-
tion that extends spatially on each element. Moreover, the new MC-ACGF
transfer function has the ability to represent mutual coupling effects among
elements in which it manifests the exchanging of electromagnetic energy in
the form of spatial functions. The proposed work involved a major improve-
ment to the mutual coupling mitigation process by introducing a nonlinear
classifier (filter) to array terminals that provides an efficient decoupling capa-
bility in comparison to classical linear filters proposed in literature. Finally,
we demonstrated the proposed EM-ML filter’s ability in mitigating mutual
coupling effects by performing a DoA estimation at different elevation angles
through MUSIC algorithm, where a comparison is attained between the pre-
ferred ANN method in ideal and actual array arrangement where an excellent

66



3.7. Conclusion

agreement at different inter-element array spacing was achieved. Nevertheless,
the proposed EM-ML system can be effectively applied to MIMO systems to
enhance the communication channel’s capacity and to mitigate the effects of
cross-correlation between array elements as described in [63].
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4 The ACGF-SEM Algorithm
and Applications to Inverse
Modeling

Antennas can be characterized using various parameters such as gain, radia-
tion pattern and the cross sectional area [21]. These parameters can be ex-
pressed in frequency domain in order to observe a single mode response, which
is created by probing the antenna with a definite voltage signal as in MoM.
On the other hand, they can also be obtained by a time domain approach
that shows a wide spectral data, which requires a short impulse to be injected
to the antenna. Time domain approaches are preferred for ultra-wide band
and high speed applications, however, this imposes a difficulty in determining
the antenna’s characteristics due to the random perturbations of time domain
signals and noise. In contrary, frequency domain approaches are preferred in
high power systems such as X-ray generators and radar systems because of
the possibility of suppressing the noise without affecting the primary signal.
Therefore, the process of detecting objects, as in radar systems, requires lower-
ing the noise effect that occurs within the radar range to enhance the detection
process which leads to setup a frequency domain operation. In addition, it
is also required to retrieve some geometrical information of targets that can
be determined using spatial functions that carry the details of these targets
such as the length and orientation. As a result, in this work we are going to
solve a synthesis antenna problem on different radiating structures through a
spatial-frequency domain approach by working on far field radiation patterns
of targets and RCS properties to obtain the spatial properties of these targets.
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4.1 Electromagnetic and Machine Learning in
Inverse Problems

In Sec. 2.5.1, we showed the merit of EM-ML algorithms in recognizing sys-
tems and predicting sudden variations that can occur to recent EM problems.
For example, in inverse scattering problems there are certain parameters that
are used to retrieve the details of targets such as length, position, orientation
and excitation [64]. The use of ML in this case is to clearly estimate these pa-
rameters to reconstruct a specific response from a given hypothesis. Although
the use of standard ML in typical inverse problems was to estimate the internal
parameters given in the hypothesis from the backscattered field for instance,
it does not count as a prediction process as it only estimates a single response
of the system from a single direction within the radar zone. In addition, the
classical approaches on this subject were merely on performing an extensive
operations on the responses of targets (scattered fields, RCS) through image
processing algorithms as in [65] instead of extracting and optimizing the EM
properties of targets. Therefore, a new EM-ML setup is proposed, in which
one can use the EM properties of a system from a single response to predict
new feasible solutions (different scenarios and other responses) as for example
varying the position or the orientation and preserve the excitation.

Through a proper ML algorithm, one can obtain system’s parameters that
can produce all possible existing responses of a desired system , i.e., different
directions of the backscattered fields and varying the target orientation. This
guided us to establish a new formulation for the improvement of inverse and
radar problems that will be discussed in this chapter. Therefore, a special
method is going to be presented to improve the estimation of target’s proper-
ties (geometrical shape, orientation) and most importantly current distribu-
tion from a given measured field. The main objective of the new method is to
reconstruct a designated target’s geometrical data by looking only into its field
response. The advantage of the new method compared to previously proposed
ones in literature [65] is that it shows a complete electromagnetic representa-
tion of targets in direct modelling or in searching for an optimum resolution of
targets in the inverse process. Also, it shows a spatial-frequency response of
targets that is founded by developing a spatial-SEM (S-SEM) representation
(by combining the ACGF with SEM). The mathematical formulation of the
method with verification on specific targets (antennas or scatterers) will be
presented. The main purpose of the method will be to identify a scatterer
or an antenna based on its response to certain field excitation. The starting
point of this experiment is to capture the radiated fields of these systems and
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to decompose them using the new S-SEM approach. The recognition process
involves a machine learning based processor using genetic algorithm (GA), to
search for the internal parameters of the S-SEM functions to reconstruct the
captured field. In this work, the examples considered are on wire antennas
with different geometrical details such as straight wires, L-shape wire with dif-
ferent inclination angles and array configurations with different inter-element
spacing. We propose the S-SEM ML system as depicted in Fig. 4.1, in which
the implemented algorithm is formed on the Front-end processor linked to a
network cloud for machine learning purposes and also for data storage. Fur-
ther, the ML processor is connected to an EM interface for target detection
process where the backscattered signal from the target is sampled by a digital
signal processor (DSP) unit and the field data are decomposed to estimate the
parameters of a specific target.

Figure 4.1: A simple network diagram of the proposed system for RCS mea-
surements; the system consists of a transceiver modeled as follows; A user
monitor linked to a station tower, radio channel for detection process that
collects the back scattered signal and finally a processing unit that collects
the field data and links it to a network server for machine-learning purposes.
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4.2 The Singularity Expansion Method in
Electromagnetics

In this part, we are going to revisit the T-SEM presented in Sec. 2.3.1 but
with more illustration on how it can be measured in practical environments.
First, we start by highlighting some important points and remarks of the clas-
sical time domain SEM. The T-SEM was first introduced as a new technique
for solving transient electromagnetic scattering from a wide variety of targets
of finite extent. The usefulness of the method originates from analyzing a
temporal signal (target’s echo) and decomposing its spectral information in a
form of complex finite poles and residues. In other words, SEM can be math-
ematically expressed as a Laplace transformation that follows the procedure
of a unit impulse excitation in time domain. As for target detection and radar
systems, the SEM can be considered as an efficient approach to deal with
targets in time domain due to some important factors listed as follows;

1. Incident wave angle independent
2. Excitation signal independent
3. Polarization independent

In order to discern this approach, we follow the demonstration in Figure
4.2 to show how the system works. Basically, after processing the returned
field (echo signal) from an object, the detection unit splits the incoming time
domain signal into two prominent time intervals; the first is called the early
time response, which appears as a result of impinging an incident signal on the
target and capture it back (direct reflection), while the latter is the late time
response (desired field) that represents the target unique reaction that comes
after the early time interval. Both early and late times are an estimation of the
time that the incident signal forms a complete transceiver cycle, i.e. starting
from Tx antenna and reflecting back from a target to reach an Rx terminal.
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Figure 4.2: Target detection scenario using time domain SEM (T-SEM) clas-
sical approach. An impulse signal is injected to a Tx/Rx antenna system in
which a radiated field is applied towards the target. Two backscattered signals
are captured back (direct and indirect reflections) that show the time domain
field signal. By estimating the time the signal will travel from and back to
the antenna terminal, it is possible to observe two field intervals, early time
and late time.

It was shown in [36] that time domain SEM only deals with an invariant
quantity that represents the target response regardless of any changes in the
environment. From a different perspective, T-SEM is interpreted as the target
response due to an impulse excitation, where an incident signal hits the target
causing a surface current to flow. That also results in a late time radiation (not
an ordinary scattered field) that corresponds to this current. To investigate
this point, it is required to study the incident signal reaction when reaching
a target. Like in scattering problems, when a wave reaches the boundary
between two media, a portion of the wave undergoes reflection and another
portion undergoes transmission across the boundary. That, however, involves
a critical concern regarding the transmitted part in the second medium, which
in our case is an antenna or scatterer. As for T-SEM, the reflected wave out
of a target is categorized in two components, early and late time fields. It is
apparent to relate each radiation part to a distinct source of excitation, such
that the desired late time field is indirectly caused by the induced surface cur-

72



4.3. Transient SEM Versus Spatial SEM

rent, while early time response is the direct reflection of the incident signal.
This leads to form system’s transfer functions that represent system’s spatial
properties. To explain this point, let us assume a time-domain delta source
excitation towards a thin-wire antenna or scatterer, where a surface current
will be formed on the antenna length with restrictions to the antenna’s elec-
trical dimensions. This, in fact, also agrees with the circuit model assumption
of the antenna as it filters out frequencies from the incoming impulse signal to
a single frequency that fits its spatial properties (spatial filters). As a result,
it is required to restrict SEM to only model the target’s late time response
that represents the antenna impulse response (AIR) in time domain. In order
to track this method, there was an urgent need to look into how to distinguish
between the different time intervals (late and early responses) to effectively
find the late time SEM poles. Although, to our best knowledge, many exten-
sive efforts were done toward this work to split these time intervals [66–68],
it is still fuzzy to find a proper tool to perform this operation to detect the
beginning of the late time period. As a result, we follow the interest of re-
searchers to find an optimum method to better model scatterers and antennas
with benefits of proposed methods as SEM and other approaches. Here, we
look forward to establishing a connection between the indirect relation of time
domain electromagnetic signal and the geometrical structure of targets. The
proposed approach in this thesis introduces a spatial-SEM representation that
shares the simplicity of time domain SEM with a more precise measure of tar-
gets through a spatial function. Such an idea leads to the newly developed
approach ACGF that provides exact EM description of targets.

4.3 Transient SEM Versus Spatial SEM
As for time domain SEM, the main idea was to transform time domain field
to frequency representation through a modified Laplace transformation that
results in representing the selected field signal by complex poles as shown in
Eq. 4.1

L [f(t)] = F(s) =
∫ ∞

0
f(t)e−stdt, (4.1)

where s denotes the complex frequency representation defined as s = σ + iω.
Here, the lower limit in the integral is going to be modified to Tlate that defines
the beginning of the late time period. It was also advised by Baum [36] that
fitting the late time field f(t) with a series of polynomial functions can lead
to the desired answer where Prony’s and Matrix Pencil (MP) methods were
used to perform this task. On the other hand, the S-SEM approach does
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not represent radiating systems by their fields data, instead, it focuses on the
cause of these radiations in which is the induced surface current formed on the
radiating object. Hence, if it is possible to obtain this induced surface current
of the system under test, we will be able to use the surface current to produce
the captured field data that restricts the presence of the target response but in
frequency domain. Therefore, the S-SEM approach will replace the classical
T-SEM such that there will be no longer a need to estimate the early or the
late time intervals as in T-SEM.

In T-SEM, the late time representation is formulated using Prony’s method
in the following fashion,

F(r, t) =
N∑
n=1

cne
pnt + eN (r, t), (4.2)

where pn and cn are the SEM poles and their residues, respectively, while
the summation over N satisfies the complete reconstruction of the late time
signal. Also, the second term eN is an error function that serves to display
the deviation in estimating the beginning of the late time period. Indeed, for
an accurate modelling, it is compelling to optimize this error in which, as we
discussed earlier, is quite challenging due to the uncertainty of the late time
transition. On the contrary, spatial SEM does not suffer from such presence
error since the spatial representation is bounded by the geometrical properties
of the target. As a result, the spatial SEM (S-SEM) can be expressed as
follows,

F(r, k) =
N∑
n=1

αne
snl, (4.3)

where here sn and αn serve as S-SEM poles and their residues, respectively,
and k is the wavenumber k = ω/c where ω is the angular frequency and c is
the speed of light. In Eq. 4.3, the summation is performed over the quantity
N that defines the number of poles required to assure the restoration of the
spatial transfer function along the entire system’s length l, while also the error
term is naturally negligible. As a result, by carefully examining both time and
spatial domain representations, we may conclude the following:

1. T-SEM is a decomposition of a time domain signal realized by perform-
ing an analytical continuation of poles and residues in frequency domain,

2. T-SEM is fundamentally similar to Laplace transformation in generating
complex frequency representation of time domain field,

3. S-SEM is based on the ACGF of the system, which is dependent on the
port location and the electrical length of the system,
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4. S-SEM is a spatial domain approach that expresses the natural current
(resonance current) mode on a system.

4.4 Spatial SEM: The Key Ideas

4.4.1 The S-SEM Green’s function

In order to better understand the spatial-time relation of the proposed S-SEM
algorithm, it is crucial to start by looking into establishing a Green’s function
with relation to the system’s spatial properties. That is, the spatial Green’s
function Ḡ

(
r− r′;−s2) is found to be considerably more complex than time

domain case [57] where only a single Green’s function exists in the former. In
S-SEM approach, there exist two Green’s functions, such that the first is the
basic Green’s function of free space defined here Ḡrad(r, r′), where we have

Ψ (r) =
∫
V

Ḡrad
(
r, r′

)
· J
(
r′
)
dV , (4.4)

While the second Green’s function is the ACGF that satisfies

J (r) =
∫
S

F̄
(
r, r′

)
·E
(
r′
)
dS, (4.5)

which associates the excitation field E(r;ω) with the input current J(r;ω) on
the antenna/scatterer. Here, S is the antenna’s or scatterer’s surface.

4.4.2 Direct Construction of the Spatial SEM: An Initial
Generic Approach

In Eq. 4.3, we showed the S-SEM formula by representing the ACGF or more
specifically the surface current generated on the system by a series of finite
exponential polynomials under a condition of a unit-impulse excitation. To
emphasize the physical meaning behind this, it is obvious to model the region
over which the ACGF or the surface current is defined into non-overlapping
areas Um,m = 1, 2, ..,M , where the integration of these parts will restore
the full ACGF on the entire system. These patches have similarity to the
coordinate patches presented in the construction of the ACGF found in [11],
which in turns was ultimately found on the fact that ∂S is a 2-dimensional
Euclidean manifold. Despite this similarity, it is essential to choose patches
with specific geometrical boundaries, i.e. sharp edge at one end at least, such
that the current fades accordingly. This condition is indeed critical to ensure
that the S-SEM will always converge with minimal error value.

75



4.5. Field Formulation of the Spatial-SEM Method for Linear Wire
Structures

Figure 4.3: An example of a division of an arbitrary antenna surface into a
collection of nonoverlapping patches, each including one edge.

In Fig. 4.3, consider an antenna with arbitrary number of divisions Um,m =
1, ..,M, such that each patch has an edge. Hence, the S-SEM exponentials will
therefore be properly defined on every patch leading to representing each divi-
sion as a single radiator with its own edge. Apparently, the S-SEM approach
resorts to the perception of superposition principle to simplify the geometri-
cal structure of a desired system. For each patch Um, there are two current
modes occurring in terms of raising and decaying exponentials. That is, if we
started from an edge, it is well known that the current value is approaching
zero towards this point while it is increasing as we move to the middle of the
patch and afterwards decreasing again to reach another edge.

4.5 Field Formulation of the Spatial-SEM Method
for Linear Wire Structures

4.5.1 The ACGF Singularity Expansion Method (Spatial
SEM)

In sec. 4.3, we showed the first outlook to S-SEM by modifying the T-SEM to
describe electromagnetic variation of the function F on the physical features of
antennas instead of a standard temporal response. This conversion, however,
is done under some critical conditions in which they satisfy the generation of
the ACGF. For instance, Eq. 4.3 can be written as follows,

F̄
(
r, r′

)
= L̂L̂ F

(
r, r′

)
= L̂L̂

N∑
n=1

αne
snl+eN , (4.6)
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where L̂ is the element orientation and eN is the error between the exact
surface current F̄ and the reconstructed S-SEM current. Note here that we
restrict the S-SEM to a unit impulse excitation, otherwise it cannot be recog-
nized as the system’s transfer function. Expression 4.6 shows Prony’s or MP
expansion of a 1D ACGF where the dimensionality property is disclosed by
the number of summation/integral operators. Therefore, this expression can
be mathematically expanded to a double summation to model a 2D surface
as for patch antennas or complex geometrical integration. For now, we only
consider thin-wire antennas for simplicity.

4.5.2 The spatial-SEM Fundamental Currents

We now provide a new interpretation of the spatial SEM. In contrast to the
classical time-domain SEM, the spatial-SEM method is completely a spatial-
frequency-domain approach that expands the Green’s function of an antenna
(ACGF) into fundamental spatial current modes αn exp (snl). Indeed, by
substituting Eq. (4.6) into Eq. (4.5), we find

J (l) =
N∑
n=1

Jn (l) , (4.7)

such that
Jn (l) := L̂

∫
L
αn
(
l′
)
· Eex

(
l′
)
esn(l′)ldl′, (4.8)

are the spatial-SEM characteristic currents. Therefore, under any excitation
field Eex, the current induced on the wire can always be written as a super-
position of fundamental current modes Jn(l) given by Eq. (4.8). The same
expression in Eq. (4.8) also suggests that only knowledge of the SEM data,
poles and residues, are needed in order to evaluate those currents for a given
excitation field Eex. In other words, the spatial-SEM holds the considerable
advantage over the temporal SEM in being not tied into the type of the exci-
tation field. Regardless to the details of how the antenna is excited, i.e., for
any functional form Eex(l′) whatsoever, the induced current can be written
in terms of modes Jn(l) that are computable by Eq. (4.8) via only one set of
measured SEM data, the functions αn(l′) and sn(l′).

4.5.3 The S-SEM Radiation Modes and Machine Learning

The next major step in the spatial SEM is to show how the SEM data formed
from the current distribution are connected with their corresponding radiation
fields. It will be shown here that the far field can be expressed analytically

77



4.5. Field Formulation of the Spatial-SEM Method for Linear Wire
Structures

in terms of the S-SEM data. Moreover, it turns out that the spatial-SEM
leads naturally to the discovery of a new set of far-field basis functions, what
we call here the spatial SEM radiation modes. Explicit expressions for these
modes will be derived below for the case of wire antennas with arbitrary
length and orientation. From that radiation function, it is possible to obtain
important features of targets such as length, position, orientation and surface
current. In comparison to the field integral equation used in [33], we replace
the conventional surface current with an ACGF-SEM expression that holds
the antenna features.

In the inverse process, where we sought these features given an incoming
radiation field, a machine learning process is going to handle this task. The
machine learning approach to target identification and inverse modeling based
on the spatial SEM depends crucially on the connection between field and
current distribution, since we can easily measure the field or RCS via the new
function. The training data set for the ML algorithm will be then based on the
incoming field, while the analytical relation between this field and the SEM
data to be given below will form the basis of the construction of the algorithm
predicting the geometry of the target from measured field data.

4.5.4 Derivation of the Radiation Modes: Single Antenna
Case

For simplicity, we develop the SEM radiation field theory in terms of the cur-
rent distribution instead of the ACGF. However, to make later the connection
with the previous formulation in terms of the ACGF, we consider here only
currents excited by the delta-gap source excitation

Etan (r) = L[δ (r − rp)], (4.9)

where the port location rp = L̂lp is a function of the orientation vector L̂
and the element’s length lp. Those are very close to the exact ACGF of wire
antennas. Eq. (4.7) can then be rewritten as follows

J (r) = L̂
N∑
n=1

αn (rp) esn(rp)l. (4.10)

We then deploy the (normalized) far-field radiation formula [69], [11]

Erad (r̂) =
∫
L

J
(
r′
)
·
[̄
I− r̂r̂

]
eikr̂·r

′
dr, (4.11)

where the expression

r̂ (θ, ϕ) := x̂ cosϕ sin θ + ŷ sinϕ sin θ + ẑ cos θ (4.12)
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is the radial unit vector r/‖r‖, Ī is the unit dyad, and k = ω/c, where c is the
speed of light.

The goal now is to establish a deeper insight into the nature of the radiation
field by adopting the viewpoint of the spatial-SEM current. Use of the current
from Eq. (4.10) in Eq. (4.11) leads to

Erad (r̂) = L̂ ·
[̄
I− r̂r̂

] N∑
n=1

∫ ′
L
αne

ikr̂·r′esnl
′
dl, (4.13)

which after inserting r′ = L̂l′ reduces to

Erad (r̂) = L̂ ·
[̄
I− r̂r̂

] N∑
n=1

αnfn (θ, φ; L, sn), (4.14)

where

fn (θ, φ; L, rp; sn) := e(ikr̂·L̂+sn)L/2 − e(−ikr̂·L̂−sn)L/2(
ikr̂ · L̂+ sn

) . (4.15)

In writing Eq. (4.15), we assume that the entire range of l in the local
parametrization of the antenna vector L is the interval −L/2 < l < L/2.
Note also that the SEM poles locations sn and their coefficients αn are both
functions of rp, which explains the explicit mention of rp in the LHS of (4.15).
Such dependence in the RHS was dropped for simplicity but it must always be
recalled: the SEM data and the far-field SEM radiation modes are all strongly
dependent on the location of the antenna excitation.

4.5.5 Derivation of the Radiation Modes: Multiple Antenna
Case

In this part, it is required to generalize the expressions Eq. (4.14) and Eq.
(4.15) to handle a comprehensive scenario when multiple wire elements are
present. This is essential for the transition to the machine learning approach
based on the spatial SEM formalism since the geometrical information of the
target will be captured by finding the best wire grid that fits the geometrical
form of the target through field training data.

Fig. 4.4 shows the basic model we use. An arbitrary distribution of M
thin wires is assumed, where for the mth wire the edge position is given by
r0
m, while the orientation is along the unit vector L̂m. On each wire, a local
position vector is given by lm := L̂ml, where l plays the role of a local length
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parameter on the wire. An arbitrary position on the mth wire can then be
given by

r′ = r0
m + lm = r0

m + L̂ml. (4.16)

y

x

z

mr ml

r
m m

  r r l

. . . . . . . . . . . . . 
. . . . . . . . . . . . .   

Figure 4.4: The geometrical model of an array of wires each locally traced by
a position vector lm.

Based on this model, the total current on the wire grid can be expanded
as

J
(
r′
)

=
M∑
m=1

L̂m

N∑
n=1

αmn (rp,m) esmn(lp,m)l, (4.17)

where the spatial SEM data smn and αmn belong to the nth SEM pole of the
current on the mth wire, while rp,m is the position where the delta source
excitation is applied on the mth antenna.

The current in Eq. (4.17) is now inserted into the radiation field formula
Eq. (4.11), resulting in

Erad (r̂) =
M∑
m=1

L̂m ·
[̄
I− r̂r̂

] N∑
n=1

∫
Lm

αmne
ikr̂·r′esmnl

′
dr′ (4.18)

By performing a change of variables using (4.16), the integrals in (4.18) can
be transformed into

Erad (r̂) =
M∑
m=1

L̂m ·
[̄
I− r̂r̂

]
eikr̂·r

0
m

×
N∑
n=1

∫
Lm

αmne
ikr̂·l′esmnl

′
dl′.

(4.19)
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We now note that the integrals in (4.19) possess the same structure as (4.13),
i.e., an integration performed locally on each wire. Therefore, we can imme-
diately use the evaluations (4.14) and (4.15) to compute (4.19) as

Erad (r̂) =
M∑
m=1

L̂m ·
[̄
I− r̂r̂

]
eikr̂·rm

×
N∑
n=1

αmnfmn (θ, ϕ; Lm; smn) ,
(4.20)

where
fmn (θ, ϕ; Lm, rp; smn)

:= e(ikr̂·L̂m+smn)Lm/2 − e(−ikr̂·L̂m−smn)Lm/2(
ikr̂ · L̂m + smn

) (4.21)

The expressions (4.20) and (4.15) provide the most general form of the radi-
ation field induced by a grid or array of radiating wires.

The expansion (4.14) shows that the radiation field of a wire antenna can
be always approximated by a superposition of basic radiation modes fn where
the expansion coefficients are precisely the spatial-SEM pole coefficients αn.
Each radiation mode fn (θ, φ; L) depends on the excitation port location lp,
although we omitted this explicit dependence here for simplicity.

More remarkable is the manner in which each radiation mode’s shape is
controlled by the pole’s location sn. Indeed, the radiation mode is a kind of
“two-dimensional sinc” filter centered at the Re {sn} and Im {sn}.

The spatial-SEM characteristic radiation modes (4.15) are not always or-
thogonal. By defining the intermodal correlation coefficient bnm as

bnm (rp,L) :=
∫

4π
fn (θ, φ; L) fm (θ, φ; L) dΩ, (4.22)

In general, it turns out that bnm 6= 0, although the modes tend to become
orthogonal when |sn − sm| is large enough. This is an important distinc-
tion between the spatial-SEM modes introduced in this work and the familiar
eigenmode expansion method discussed in [70].

4.6 Validation of the Direct Spatial SEM
Algorithm

In this section, we will provide a validation of the proposed S-SEM for 1D
structures. For simplicity, the ACGF is replaced with the surface current gen-
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erated on thin wires caused by a unit impulse excitation. For our present pur-
poses, this current is treated as the wire’s ACGF under this specific excitation
condition. The S-SEM analytical expressions derived above were verified by
direct comparison with full-wave simulation using the commercially-available
Method of Moment (MoM) code WIPL-D [59].

Direct verification of the S-SEM algorithm will be given for five types of
wire antennas; the first example shows a form of a symmetric antenna in
which the excitation is applied at the middle of the thin-wire antenna system,
while the second is energized by a source located off the midpoint. Both
antennas are shown in Fig. 4.5 where each thin-wire antenna system has a
total length of 0.5λ. In the symmetric case (on the left) the two 0.25λ-half-
wires are connected through a load or a voltage source, while the asymmetric
case (on the right) shows a 0.45λ-wire connected to another 0.05λ-wire also
through a load or a voltage source. The third example is a form of L-shaped
antennas as shown in Fig. 4.6, where the antenna is composed of two wires
and centrally attached through a source. However, one wire is tilted (bent)
with respect to the other. In this example, we introduce more complexity to
the system due to the estimable amount of coupling between the two wires.
That naturally enforces us to examine antenna arrays where mutual coupling
emerges as an essential factor in forming the system’s field. As a result, in the
fourth and fifth examples, we study the S-SEM performance in analyzing the
array systems, in which we look into two-element identical antennas with inter
element spacing of 0.5λ as in Fig. 4.7 and a three-element array of identical
elements with inter-element spacing of 0.25λ to form a Yagi-Uda-alike antenna
as in Fig. 4.8. The operating frequency of the designated systems is 1 GHz,
which lies within a typical radar frequency range. In conformity with the thin-
wire approximation, the radius of the wire is very small compared to their
electrical length, which allows us to ignore the circumferential component of
the current distribution. As each antenna is defined by two connected wires,
the spatial SEM expansion will be devoted for each wire individually. The
SEM surface partition Um in our case consists then of two patches only for each
antenna: one for wire#1 and another for wire#2. The current distribution
will consequently always approach zero as we go toward the wire’s edge in
order to adhere to the boundary condition. In case multiple wires are used to
build a more complex wire antenna structure, then there will be SEM patches
Um as many as there are wires. Each wire/patch will be joined to another
through a junction consisting of either a source or load (we consider point
junctions a special type of loads).
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Figure 4.5: A schematic plot of two thin-wire antennas; it shows symmetric
and asymmetric excitation of the wire.

Figure 4.6: A schematic plot of an L-shape antenna

Figure 4.7: A schematic plot of a two-element antenna array with inter-element
spacing of 0.5λ.
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Figure 4.8: A schematic plot of a three-element antenna array with inter-
element spacing of 0.25λ to act as a Yagi-Uda antenna

The S-SEM modelling of the presented systems are obtained in the follow-
ing tables, where the formed surface current on each wire is analyzed using
Prony’s method to get its poles and residues. Tables 4.1, 4.2, 4.3, 4.4 and 4.5
are for the symmetric, asymmetric, L-shape, two-element and three-element
array cases, respectively. In order to test the S-SEM accuracy, we calculated
the minimum mean-square error (MMSE) between the fields calculated from
S-SEM and the actual (MoM). Besides, the two forms of currents, S-SEM and
MoM, in symmetric and asymmetric wires are shown in Fig. 4.9, where an
excellent agreement is observed.

Table 4.1: Direct modeling S-SEM data for symmetric wire

Wire Poles Residues

1
-4.384 + 15.3267i 0.8338 - 8.0136i
-6.4365 - 15.0244i 6.416+ 3.7994i

2
6.4365 + 15.0244i 6.4161 + 3.7994i
4.384 - 15.32671i 0.8338 - 8.0136i

MSE 2.897× 10−09
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Table 4.2: Direct modeling S-SEM data for asymmetric wire

Wire Poles Residues
0.3181-2.8225i 189.61-196.12i

1 -2.6681+1.2487i -228.38-79.434i
2.3259+1.6317i 53.06+267.95i

2
0.0037-0.0053i 20323+13472i
-0.0037+0.0053i -20323-13472i

MSE 2.736× 10−09

Table 4.3: Direct modeling S-SEM data for L-shape wire

Wire Poles Residues

1
-4.6262+15.1132i 5.9893 - 15.377i
-6.1254-14.8853i 10.6519 + 11.635i

2
6.1254+14.8853i 10.6519 + 11.635i
4.6262-15.1132i 5.9893 - 15.377i

MSE 7.214× 10−09

Table 4.4: Direct modeling S-SEM data for two-element array

Wire Poles Residues

1
-4.4878+14.8977i 4.4111 - 10.2636i
-6.1912-14.6286i 6.7716 + 7.994i

2
6.1912+14.6286i 6.7716 + 7.994i
4.4878-14.8977i 4.4111 - 10.2636i

3
-4.4878+14.8977i 4.4111 - 10.2636i
-6.1912-14.6286i 6.7716 + 7.994i

4
6.1912+14.6286i 6.7716 + 7.994i
4.4878-14.8977i 4.4111 - 10.2636i

MSE 8.257× 10−07
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Table 4.5: Direct modeling S-SEM data for three-element array

Wire Poles Residues

1
-3.8989+15.097i 2.9407-5.7930i
-6.8535-14.6382i 3.5025+4.6380i

2
6.8579+14.6474i 3.5027+4.6349i
3.8978-15.1065i 2.9421-5.7908i

3
-3.7388+14.0213i 5.8736-2.5082i
-6.6165-13.4926i -0.7675+5.6792i

4
6.6234+13.4947i -0.7677+5.6768i
3.7336-14.0255i 5.8747-2.5065i

5
-3.8989+15.0971i 2.9407-5.7930i
-6.8535-14.6382i 3.5025+4.6380i

6
6.8579+14.6474i 3.5027+4.6349i
3.8978-15.1065i 2.9421-5.7908i

MSE 2.356× 10−08

Figure 4.9: The plot shows a comparison between the MoM and S-SEM cur-
rents given in 4.10. The comparison is made for the symmetric and the asym-
metric wire, where each antenna is assumed to be formed using two-wires
linked through the excitation source.

The S-SEM data of the symmetric and asymmetric antennas are in good
agreement with the MoM currents as shown in Fig. 4.9. The estimation of
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the MoM current was done by applying the S-SEM exponentials on each wire
section, i.e, we assume that the antenna is composed of two wires. This will
allow to properly reform the surface current obtained from the MoM using the
S-SEM exponentials where at least one wire’s edge has a zero current value.

(a) Symmetric wire

(b) Asymmetric wire
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(c) L-shaped wire

(d) Two-element array
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(e) Three-element array

Figure 4.10: A comparison of far field polar plot in transmitting mode setup
with respect to elevation angle θ between WIPL-D EM solver and S-SEM
approach.

The polar far field plots of the presented systems are confirming the validity
of the S-SEM currents to form the MoM fields in which the MSE field errors
are quite negligible. Indeed, at this stage, it is the desire to insure the accuracy
of the S-SEM to reconstruct the MoM currents by replacing the discrete MoM
elements with continuous functions and regenerate the far field using the new
functions.

4.7 A Spatial-SEM Machine-Learning Approach
to Radar Target detection

4.7.1 Introduction

In the previous part, we confirmed the capability of the S-SEM field represen-
tation in generating a desired field of multiple wire structures in reference to
MoM’s field, where an excellent agreement was obtained. In inverse problems,
the problem is reversed where the task is to estimate the system’s features
used in the analytical field expression by assuming a single far field data is
given. This part, however, requires an intelligent system to predict the true
values/features used in developing the processed field. It was found that ma-
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chine learning algorithms are the perfect candidates in performing this crucial
task due to its powerful statistical techniques in tackling problems with the
ability of learning, training and testing.

4.7.2 Fundamental Data Types in the Spatial-SEM Machine
Learning Scheme

Let us consider the system composed of M thin-wires shown in Fig. 4.4. The
illustration represents any form of wires in which they can be free (detached)
or linked together through a load. The geometrical information gathered from
that system can be expressed as follows

Gwire array = {(rm, L̂m, Lm)|m = 1, 2, ...,M} (4.23)

This formula describes the major properties of the system such as position,
orientation, and length. However, the primary unique feature of the system
is the ACGF or the current distribution that is captured by the S-SEM poles
and their residues. In general, for eachM wire, the SEM data will be different,
as a result we may write the number of SEM data for each wire as Nm where
N is the number of poles and residues for the m wire. The S-SEM data can
be expressed as follows,

[s] =

 s11 .. s1N
: : :

sM1 .. sMN

 , [α] =

 α11 .. α1N
: : :

αM1 .. αMN

 , (4.24)

where
N = max

m=1,2,..,M
Nm. (4.25)

If N > Nm for some m, then all smn and αmn for Nm < n ≤ N are set to
zero. Ultimately, the S-SEM ML algorithm will work on decomposing a far
field data Emeasured

rad (θ, ϕ;ω) in which a single plane cut is going to be used.
As a result, the field data are going to be described as follows,

Fdata =
{
Emeasured

rad (θ, ϕ) |θ, ϕ ∈ Ωdata
}
, (4.26)

where here Ωdata = {θx, ϕx|x is the measurement index} is set of the angles
where the field measurements have been collected.

To sum up, all the possible S-SEM ML data can be categorized to the
following

1. Geometric data: Here captured by the object Gwire array defined by
(4.23).
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2. Electromagnetic wire data: Here encapsulated by the spatial-SEM data
represented by the matrices [s] and [α] defined by (4.24).

3. Electromagnetic field data: Collectively grouped in Fdata and Ωdata de-
fined by (4.26).

4.7.3 The S-SEM ML algorithm

For now, we have formulated an electromagnetic S-SEM field representation as
shown in Eq. 4.20 that carries the identity of the system (Length, orientation
and SEM data). This field can be realized as the machine learning model, i.e.
hypothesis function, which in this situation serves to classify targets based on
the function’s parameters p, where

p = ([s] , [α] , Gwire array) . (4.27)

Here, the SEM data [s], [α] and geometrical properties of the target
Gwire array are the prominent classification features of the machine learning
system. In the machine learning process introduced in sec. 2.5.1, the process
goes through multiple stages in order to acquire a proper machine, in which
we are going to emphasize. To begin, the proposed model function exhibits
a far field angular component given the system’s parameters p, that is, our
desired target response (true function) appears when injecting the hypothesis
with a precise input. Hence, the training process carries out this crucial task
in order to develop the target data that appear at a single or multiple plane
cuts. The training function Fdata contains different solutions according to the
factor Ω, where

Ωdata = {(θ, ϕ) |θ ∈ [0, π] , ϕm ∈ {ϕ1, ϕ2, ..., ϕV }} , (4.28)

the plane cuts are labeled by V cuts according to ϕ1, ϕ2, ..., ϕV . Next, we
examine the output of the training process by calculating the minimum mean
squared error (MMSE) as advised earlier with the obtained MoM field as
shown in Eq. 4.29.

e (Fdata; p) = 1
γ

∫
Ωdata

∥∥∥ES-SEM
rad (Ω; p)−Emeasured

rad (Ω; p)
∥∥∥2
dΩ, (4.29)

Here, the norm ‖.‖ is defined as

‖A‖2 =
∑

n
|An|2, (4.30)
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where An are the components of the complex vector quantity A and |·| is
the normal complex amplitude operation. The real number γ is a normaliza-
tion factor chosen based on the dataset size, e.g., the total number of points
in the dataset or other data size measures.

In the learning process, in which this task requires the search of the best
parameters to reform the true function given a trained data, we propose Ge-
netic Algorithm (GA) to look for the optimal possible solution, where its
variables are as follow,

p∗ =
(
[s]∗ , [α]∗ , G∗wire array

)
= arg min

[s],[α],Gwire array

e (Fdata; [s] , [α] , Gwire array) . (4.31)

Here, we are going to supply the GA with a trained data Fdata after which it
will provide the estimated input parameters. This will result in achieving the
lowest training error. We may write this error in the following format

eFtraining := e(Ftraining,p∗). (4.32)
On the other hand, as we mentioned before, the data are split into training
and testing sets in which the testing scenario introduces an untrained sample
to the hypothesis, where Ftraining /∈ Ftest. This process is also known as the
prediction (final operation). Ultimately, the averaged test error is defined as
follows,

etest := EFteste(Ftest,p∗). (4.33)
We note that averaged test error does not depend on the measured field data,
while the training error does in general depend on the choice of Ftraining.

4.7.4 First Inverse Modeling Example: Single Wire Antenna
with Known Geometry but Unknown Current

In this part, we investigate the S-SEM ML algorithm in estimating the spatial
current of a half-wavelength dipole antenna with a realization of other param-
eters (geometrical properties), where the simulated radiated field Esimulated

rad is
obtained by exciting the antenna by a unit impulse at the middle. The half-
wavelength long wire is placed along the z-axis with a radius of 0.003369λ
while the operating frequency is 30 GHz. WIPL-D (MoM) and S-SEM anal-
ysis both lead to develop two S-SEM poles to represent the current. The
S-SEM ML algorithm was able to reconstruct the measured field after con-
verging into the S-SEM data s1 = 13.09− j2.928, s2 = −13.105− j1.213 and
α1 = 11.32+ j5.923, α2 = 11.588+ j1.691, where the Genetic Algorithm (GA)
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was used as a learning method. The spatial-SEM ML error function (4.29) is
plotted versus the GA iterations count as in Fig. 4.11, while the S-SEM field
is computed via (4.14). The result obtained informs an excellent comparison
between the two fields that confirms the validity of the S-SEM ML algorithm.

Figure 4.11: The S-SEM ML results applied to a λ/2-dipole with known size
and orientation but unknown current.

4.7.5 Second Example: Full Reconstruction (Geometry +
Current) for multiple wire antennas

Here, we introduce more challenging problems in which we start by examining
the proposed S-SEM ML algorithm in reconstructing the full parameters p
including S-SEM current and geometrical properties of the antennas given in
sec 4.6. In this setup, the ML mission is to find the nearest possible set of
data to these parameters by only analyzing a single far field cut. In case
of symmetric, asymmetric and L-shape wires, the geometrical data are given
as the length and orientation Gwire array = (L̂, L) since the position of the
elements is irrelevant in these cases, whilst, it will be considered in array
configurations to model the inter-element spacing between antennas. As for
the orientation, each wire is tagged by an orientation vector L̂ with local
azimuth and elevation directions, θd and φd

L̂ = x̂ cosφd sin θd + ŷ sinφd sin θd + ẑ cos θd. (4.34)
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Here, in the ML process, the two orientation directions are going to be used
to search for the optimal solution given in the hypothesis. By looking into the
primary features required in building up the ML model, we found that the
total number of learning variables assigned for M wires are shown in Table
4.6 for each model feature.

Table 4.6: Breakdown of the total number of learning parameters in the S-
SEM ML algorithm for an array of M wires with maximum number of poles
of each wire given by N .

Learning Parameter Search Space Dimension
smn (pole location) 2NM
αmn (pole coefficient) 2NM
Lm (wire length) M

L̂m (wire orientation) 2M
rm (wire position) 3M

Full Search Problem 2M(2N + 3)

There is definitely a need to guide the ML algorithm to obtain the true
parameters’ values through a proper search space for each parameter that one
may successfully retrieve the desired answer. For example, in each radiator,
the primary factor in establishing the far field component is the surface current
distribution, which is represented here as S-SEM poles and their residues. This
feature is indeed unique for every antenna, however, the generated field is not
and can be comparable to other radiators with different surface current. That
is, by working with a well-trained search window, one can effectively reveal
the unique features associated with each radiator. Now, in order to acquire a
well-trained search space, it is compelling to inject multiple plane cuts as well
as many other features in the learning phase of the S-SEM ML algorithm.
This will result in shrinking down the search space and also the detection
time of the ML system. For the time being, as we are examining the systems
with only a single plane cut, we considered the accepted S-SEM data to be
10% off the true values while the geometrical properties (length, position and
orientation) can be effectively reconstructed using a wider range of 50% off
the true values.

94



4.8. Results and discussion

Table 4.7: Search space size for the various inverse problems considered above.

Inverse Problem Search Space (SEM) length and
orientation

Center-fed Wire +10%,-10% +50%,-50%
Asymmetric Wire +10%,-10% +50%,-50%
L-shaped wire +10%,-10% +50%,-50%
Two-wire array +10%,-10% +50%,-50%
Three-wire array +10%,-10% +50%,-50%

4.8 Results and discussion
In this section, we will show the successful estimation of the parameters of
the previously presented systems. The evaluation of the realized data is done
by comparing the actual (true) data that was developed in the learning pro-
cess with the results estimated from the GA process. In addition, a training
and a testing error have been carried out to measure the degree of deviation
of each individual parameter. Moreover, another factor has been given to
measure the reconstruction performance that is done by probing the S-SEM
field expression in (4.20) with the estimated parameters to reform the actual
field representation. Therefore, the difference between the actual and recon-
structed fields is calculated by the MMSE in (4.29). In the following tables, an
investigation of the S-SEM ML algorithm is presented by showing the training
and testing phases. First, we start by looking into Table 4.8 where a complete
reconstruction is performed for the symmetric wire case. The reconstructed
parameters are found to be remarkably close to the actual values, in which the
testing accuracy is given in Table 4.9. Here, the orientation vector for each
wire M is represented as unit vectors such that L̂ = [ax ay az].
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Table 4.8: Full reconstruction of SEM data, length and orientation of sym-
metric wire

p∗ Actual Reconstructed
-4.384 + 15.3267i -4.7443+16.3043i

Poles sn -6.4365 - 15.0244i -6.0023-14.4966i
6.4365 + 15.0244i 6.0023+14.4966i
4.384 - 15.32671i 4.7443-16.3043i
0.8338 - 8.0136i 0.7607-8.3631i

Residues αn 6.416+ 3.7993i 6.8757+3.8155i
6.4161 + 3.7993i 6.8757+3.8155i
0.8338 - 8.0136i 0.7607-8.3631i

Length L 150 mm 149.716 mm
Orientation L̂ 0, 0, 1 3× 10−6, 1× 10−6, 1

0, 0, 1 3× 10−6, 1× 10−6, 1

Table 4.9: etraining- symmetric wire

Accuracy
eLtraining 99.81%
eL̂training 100%

In the symmetric wire example the surface current distribution has a uni-
form distribution that enforces an equal S-SEM representation on the two
wires sections forming the antenna. That yields to enhance the reconstruc-
tion operation and hence obtaining an excellent training error as shown in the
previous table.

In Table 4.10, we show the case of asymmetric wire where the number
of S-SEM data increased accordingly. It is observed from the results that
the reconstructed length is higher that the true value with a testing error of
88.91%. The reason of that deviation emerged from increasing the S-SEM
data for each wire that magnified the GA complexity.
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Table 4.10: Full reconstruction of SEM data, length and orientation of asym-
metric wire

p∗ Actual Reconstructed
0.3181-2.8225i 0.3191-2.6725i
-2.6681+1.2487i -2.5976+1.2670i

Poles sn 2.3259+1.6317i 2.3305+1.4961i
0.0037-0.0053i 0.0034-0.0053i
-0.0037+0.0053i -0.0034+0.0053
189.61-196.12i 189.8-207.43i
-228.38-79.434i -237.85-80.044i

Residues αn 53.06+267.95i 57.77+267.14i
20323+13472i 18921+12976i
-20323-13472i -1.8921-12976i

Length L 150 mm 158 mm
Orientation L̂ 0, 0, 1 5× 10−4, 5× 10−4, 1

0, 0, 1 5× 10−4, 5× 10−4, 1

Table 4.11: etraining- asymmetric wire

Accuracy
eLtraining 88.91%
eL̂training 99%

The asymmetric wire case, however, has a nonuniform current distribution
in which the reconstruction process of the S-SEM data becomes complicated.
That results in affecting the training phase of the system and degrading the
S-SEM ML performance in comparison to the symmetric wire case as was
observed in Table 4.11.

In Table 4.12, we show the case of L-shape wire with an inclination angle
of 90° in which an excellent reconstruction has been made for the S-SEM data,
length and orientation. Moreover, in this particular example, we introduced
the inclination angle of one wire as an additional evaluation parameter in
which the MMSE is calculated as in Table 4.14 at different angles.

97



4.8. Results and discussion

Table 4.12: Full reconstruction of SEM data, length and orientation of L-shape
wire

p∗ Actual Reconstructed
-4.6262+15.1132i -4.3264+15.123i

Poles sn -6.1254-14.8853i -5.7861-13.646i
6.1254+14.8853i 5.7861+13.646i
4.6262-15.1132i 4.3264-15.123i
5.9893 - 15.377i 5.1074 - 14.8254i

Residues αn 10.6519 + 11.635i 11.1974+10.0708i
10.6519 + 11.635i 11.1974+10.0708i
5.9893 - 15.377i 5.1074 - 14.8254i

Length 150 mm 151.6 mm
Orientation 1, 0, 0 0.9, 0.07, 0.008

0, 0, 1 0.01, 0, 1

Table 4.13: etraining- L-shape wire

Accuracy
eLtraining 98.8%
eL̂training 91.55%

An essential observation of the S-SEM ML system capability was observed
by inclining one section of the symmetric wire antenna to form an L-shape.
Here, the relative orientation of one section is studied and a training error
was calculated when the wires are orthogonal to each other. Despite that the
surface currents on each wire section are similar, the effect of orienting one
wire can be determined as deteriorating the training error in reference to the
symmetric wire case. Hence, the S-SEM ML apparatus is going to conducted
at different inclination angles and measures the MSE of the generated fields
for both the direct and the estimated parameters.

Table 4.14: Inclination angle variation for L-shape wire

Angle (degree) MSE (Direct) MSE (Reconstructed)
30 4.8348× 10−06 5.1984× 10−05

60 7.3487× 10−07 3.465× 10−06

90 7.214× 10−09 6.0427× 10−09

120 2.1772× 10−07 1.9814× 10−06
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In the following tables, the estimation parameters of array elements is
shown, such that Table 4.15 serves as the reconstruction of two-element array
with a spacing of 0.5λ while Table 4.17 shows the three-element case. The
S-SEM data for both cases were successfully estimated with an accuracy of
99%. Here, in the three-element configuration, we introduced a significant
coupling between the elements by dropping down the inter-element spacing to
0.25λ, so that the GA experiences a complex situation to retrieve the original
data. Furthermore, this mutual coupling effect can also be noticed in the
length reconstruction through the two examples, where the estimated length
in the two-element array has an accuracy of 97.02% while it is 85.85% for the
three-element case.

Table 4.15: Full reconstruction of SEM data, length and orientation of two-
element array antenna

p∗ Actual Reconstructed
-4.4878+14.8977i -4.041+16.3319i
-6.1912-14.6286i -6.4390-15.0348i
6.1912+14.6286i 6.4390+15.0348i
4.4878-14.8977i 4.041-16.3319i

Poles sn -4.4878+14.8977i -4.1722+16.3814i
-6.1912-14.6286i -5.6301-14.7248i
6.1912+14.6286i 5.6301+14.7248i
4.4878-14.8977i 4.1722-16.3814i
4.4111 - 10.2636i 4.4046-9.4392i
6.7716 + 7.994i 6.5803+7.2536i
6.7716 + 7.994i 6.5803+7.2536i
4.4111 - 10.2636i 4.4046-9.4392i

Residues αn 4.4111 - 10.2636i 4.0248-9.5682i
6.7716 + 7.994i 6.9001+7.4088i
6.7716 + 7.994i 6.9001+7.4088i
4.4111 - 10.2636i 4.0248-9.5682i

Length 150 mm 154.4 mm
Orientation 0, 0, 1 1× 10−4, 0.07, 1

0, 0, 1 8× 10−5, 0.01, 1
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Table 4.16: etraining- two-element array

Accuracy
Antenna #1 Antenna #2

eLtraining 97.02% 97.02%
eL̂training 93.29% 99%
er

training 99.96% 99.96%
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Table 4.17: Full reconstruction of SEM data, length and orientation of three-
element array antenna

p∗ Actual Reconstructed
-3.8989+15.097i -3.6769+16.4015i
-6.8535-14.6382i -6.5078-13.1968i
6.8579+14.6474i 6.2456+15.6053i
3.8978-15.1065i 4.2422-15.1611i

Poles sn -3.7388+14.0213i -3.8428+15.0682i
-6.6165-13.4926i -6.1391-12.5860i
6.6234+13.4947i 6.8657+13.1452i
3.7336-14.0255i 3.8963-14.5202i
-3.8989+15.0971i -4.1598+15.9511i
-6.8535-14.6382i -6.3002-14.44i
6.8579+14.6474i 7.526+13.8807i
3.8978-15.1065i 3.8465-14.762i
2.9407-5.7930i 3.0565-5.929i
3.5025+4.6380i 3.1773+5i
3.5027+4.6349i 3.5628+4.5575i
2.9421-5.7908i 3.08-5.495i

Residues αn 5.8736-2.5082i 5.8245-2.4717i
-0.7675+5.6792i -0.7161+5.7102i
-0.7677+5.6768i -0.7662+5.8245i
5.8747-2.5065i 6.0743-2.4494i
2.9407-5.7930i 2.651-5.5081i
3.5025+4.6380i 3.666+4.6273i
3.5027+4.6349i 3.6859+5.0861i
2.9421-5.7908i 3.0512-6.0038i

Length 150 mm 128.8 mm
0, 0, 1 0.001, 0.01, 1
0, 0, 1 0.001, 0.01, 1

Orientation 0, 0, 1 0.002, 0.059, 1
0, 0, 1 0.002, 0.059, 1
0, 0, 1 0, 0, 1
0, 0, 1 0, 0, 1
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Table 4.18: etraining- three-element array

Accuracy
Antenna #1 Antenna #2 Antenna #3

eLtraining 85.85% 85.85% 85.85%
eL̂training 98.42% 94.04% 100%
er

training 98.43% 98.43% 98.43%

In antenna array configurations, the reconstruction of the S-SEM param-
eters is more challenging due to the presence of EM mutual coupling in the
elements’ near zone. Therefore, two antenna array setups are studied with
different inter-element separations to study the impact of EM-MC on the
proposed S-SEM ML approach. The training errors of both systems were
obtained where MC effects is translated to a degradation of the accuracy in
reconstructing the elements’ length.
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(a) Symmetric wire

(b) Asymmetric wire
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(c) L-shaped wire

(d) Two-element array
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(e) Three-element array

Figure 4.12: A comparison plot of the far field data in the training process
between S-SEM ML algorithm and MoM results.

In the process of validating the S-SEM ML approach, a testing scenario is
conducted to estimate an untrained situation in which is known as the predic-
tion process. Here, we supply the ML algorithm with the learning parameters
while changing the nature of the problem by either rotating the elements or
observing other plane cuts instead of the ones used in the learning phase. To
emphasize this part, Table 4.19 displays the testing error defined in Eq. 4.33
at different orientation angles for the symmetric, asymmetric and L-shape
wires, while we inspect the error of the two-element and three-element arrays
by looking at various azimuth angles. The results are indicating a perfect re-
construction of the field with an excellent accuracy in comparison to the field
generated by the MoM solver.
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In order to summarize this part, Fig. 4.13 shows a comparison between the
S-SEM complex poles developed in the learning process (direct modelling) and
the S-SEM estimated by the GA. Overall, the estimation performance along
all the given examples is in good agreement with the reference results to which
a successful reconstruction of the actual current is made.
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(a) Symmetric wire

(b) Asymmetric wire
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(c) L-shaped wire

(d) Two-element array
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(e) Three-element array

Figure 4.13: A comparison plot between S-SEM complex poles in direct mod-
eling and developed S-SEM data from the GA.

4.9 Noise analysis
In this section, we are going to test the GA performance in reconstructing
the systems’ parameters p in the presence of a tractable random noise. Here,
we define the noise as an independent additive white Gaussian noise (AWGN)
with a noise variance σ2 that ranges from 0.001 to 0.1. That is, this random
component is linearly added to the field of individual elements in which it is
represented as follows,

n(θ, ϕ) =

√
σ2

2 [nr(θ, ϕ) + jni(θ, ϕ)] , (4.35)

The components nr and ni are the complex representation of the AWGN
noise that are added to every Azimuth and Elevation direction of the field
data in the form of real and imaginary variables, respectively. Besides, the
noise equation is also varying with respect to the far field directions θ and φ
in which we may break down the field-noise relation as in Eq. 4.36

Eθ(θ, ϕ) = EθMoM + nEθ(θ, ϕ),
Eϕ(θ, ϕ) = EφMoM + nEϕ(θ, ϕ),

(4.36)
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where Eθ(θ, ϕ), Eϕ(θ, ϕ) are the electric field components in both Elevation
and Azimuth directions, respectively. Also, the total field in every direction
is represented by the ideal field from the MoM solver, EθMoM , in addition to
the noise effects nEθ and nEϕ . Now, for the presented systems in this chapter,
we examine each system with two classes of noises where the first has a noise
variance of 0.01 (-20dB) while the latter suspects a better situation with an
imposed noise of 0.001 (-30dB). In the following figures, we show a comparison
of different far field representations of each system in three different stats.
As in Fig. 4.14 for both symmetric and asymmetric wires, we obtained the
far field with an added noise level of 0.01 and 0.001 as in Fig. 4.14(a) and
(b), respectively. In addition, the MoM field representation is introduced
in order to maintain a reference threshold where the reconstructed field is
also presented. The polar plot of the estimated field using the GA shows an
excellent estimation performance at a noise level of -30dB in both examples
while it is typically unstable when increasing the noise factor.
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(a) Symmetric wire σ2=0.01

(b) Symmetric wire σ2=0.001
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(c) Asymmetric wire σ2=0.01

(d) Asymmetric wire σ2=0.001

Figure 4.14: A comparison of far field polar plot with respect to elevation
angle θ between the MoM EM solver and S-SEM approach when imposing
system noise. The figure shows the field of symmetric and asymmetric wires
when the σ2 is 0.01 and 0.001, respectively.
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In Figure 4.15, we continue on investigating the impact of noise in esti-
mating the far field representation of the L-shape, two-element array configu-
rations. Where the GA can effectively reconstruct the field at a noise level of
0.001 while it is still challenging for the algorithm to fully decouple the noise
at a level of 0.01.

(a) L-shape wire σ2=0.01

(b) L-shape wire σ2=0.001
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(c) 2-element array σ2=0.01

(d) 2-element array σ2=0.001

Figure 4.15: A comparison of far field polar plot with respect to elevation
angle θ between MoM EM solver and S-SEM approach when imposing system
noise. The figure shows the field of L-shape wire and two-element array when
the σ2 is 0.01 and 0.001, respectively.
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In the three-element array configuration and due to the significant coupling
between the elements, it can be observed from the polar field plots in Fig. 4.16,
in comparison to previous examples, that the GA can barely estimate the field
at a noise level of 0.001, while it is poor at a higher noise order.

Fig. 4.18 shows the S-SEM complex poles plot of the presented systems
in which the poles are addressing the estimation of the fields in the existence
of noise levels of 0.01 and 0.001 in comparison to the case of a noise free
environment. In summary, a performance evaluation of the GA-ML in the
presence of noise has been conducted for the presented antenna systems, in
which a good estimation is obtained. In Fig. 4.17, we arranged a comparison
of the far field’s MMSE between the altered and optimized fields within a
window of multiple noise levels. It is clear that when increasing the noise
variance the GA becomes unstable, yet it is still showing a better performance
in comparison to the altered ones.
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(a) Symmetric wire

(b) Asymmetric wire
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(c) L-shape wire

(d) Two-element array
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(e) Three-element array

Figure 4.17: Noise analysis showing the noise variance with respect to the
field error of symmetric and asymmetric wires before performing ML-SEM.
The plot shows the impact of noise on the reconstructed field of the systems
under investigation.
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(a) Symmetric wire

(b) Asymmetric wire
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4.9. Noise analysis

(c) L-shape wire

(d) Two-element array
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(e) Three-element array

Figure 4.18: A complex plot of SEM poles that shows a comparison between
Direct modeling SEM poles and reconstructed optimized poles using GA in
the presence of noise. The first figure is for the symmetric wire representation,
while the latter shows the asymmetric case when the σ is 0.01 and 0.001.

4.10 Real-time field measurement
In this section, an experimental verification of the proposed S-SEM-ML system
is conducted for the symmetric single wire case. The validation process is
basically on capturing the backscattered field of an object (usually unknown
in typical radar systems but it is defined here for the sake of simplicity and
validation). By decomposing the incoming field using the S-SEM formula, an
estimation of the system’s parameters is performed using a DSP-ML setup.
Following are the measurement procedures of the suggested experiment with
the S-SEM-ML obtained results. The fabrication process shows the case of
symmetric wire antenna by soldering two-piece of identical copper rods with
equal lengths as shown in Fig. 4.19. The end of each wire is connected to an
SMA-50 Ω connector, where one wire is connected to the inner connector of
the SMA and the other is soldered to the SMA ground. The measurements
took place in anechoic chamber with dimensions as shown in Fig. 4.21. The
antenna under test is mounted on a rotated foam platform (pedestal) with a
relative permittivity close to air and elevated in order to maintain a line-of-
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sight (LoS) with transmitting antenna, in which here are two horn antennas.
The following operation is to process the measured antenna field to the ML
module to decouple any noise and to predict the features of the antenna under
test.

Figure 4.19: Fabricated half-wavelength dipole antenna operating at 1 GHz
using copper rods with diameter of 1 mm where the total antenna length is
152 mm. The wires are both linked through an SMA-50 Ω connector.

Figure 4.20: A comparison far field plot with respect to elevation angle θ
variation between simulated field using MoM and measured field in anechoic
chamber.
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Figure 4.21: Anechoic chamber layout diagram at the Royal Military College
of Canada (RMCC)

Table 4.20: Measured parameters of a symmetric wire antenna from far field
data at a single direction where θ = 0°

Reconstructed Actual
Poles -4.8+13.794i -4.384 + 15.3267i

-7.071-13.522i -6.4365 - 15.0244i
7.072+13.522i 6.4365 + 15.0244i
4.8-13.794i 4.384 - 15.32671i

Residues 0.9161-7.2123i 0.8338 - 8.0136i
7.0544+3.4194i 6.416+ 3.7993i
7.0544+3.4194i 6.4161 + 3.7993i
0.9161-7.2123i 0.8338 - 8.0136i

Length 120 mm 150 mm
Orientation 0 0 1 0 0 1
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4.10. Real-time field measurement

(a) 3-element array σ2=0.01

(b) 3-element array σ2=-0.001

Figure 4.16: A comparison of far field polar plot with respect to elevation
angle θ between MoM EM solver and spatial-SEM approach when imposing
system noise. The figure shows the field of three-element array when the σ2

is 0.01 and 0.001, respectively.
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4.11 Conclusion
In this chapter, we reformulated the classical time domain singularity ex-
pansion method (T-SEM) to characterize spatial geometrical properties of a
system through the use of the antenna current Green’s function (ACGF). The
existent S-SEM theory works on developing an exact far field representation
in terms of spatial poles and their residues. While also this current/ field an-
alytical relation recently developed in [71] leads to a discovery of new S-SEM
characteristic modes. We demonstrated the method in establishing the far field
patterns of various thin-wire systems in which an excellent representation was
observed. On the other hand, a proposed S-SEM machine learning algorithm
was proposed in order to retrieve the geometrical data and the surface current
of the system through analyzing the far field data in a single direction. The
algorithm is applied successfully to the designated examples involving single
elements and different array configurations. In addition, the study also in-
volves the presence of appreciable amount of additive white Gaussian noise
linearly added to the far field data in order to examine the performance of ML
algorithm. Moreover, a successful experimental verification of the proposed
approach was also obtained for the single antenna case. Finally, the new
approach can be used for future target identification where unique features,
S-SEM data, can be retrieved besides the system’s geometrical information.
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5 Conclusion and Future Work

5.1 summary
Chapter two introduced a focused overview on recent EM problems such
as mutual coupling and inverse scattering problems. Most importantly, it
brought a new outlook to EM-ML systems by introducing ML concepts within
an EM principle. It also highlighted the definitions of system’s transfer func-
tions such as ACGF and SEM that was used in forming the complete EM
behavior of systems under test.

As discussed in Chapter three, an MC compensation system was proposed
via the ACGF approach combined with a machine learning processor attached
to array elements. Defining elements by their spatial transfer functions, shown
as ACGF and MC-ACGF, led to accurately define near field interactions sur-
rounding the system rather than a conventional circuit consideration for each
element that does not contain any near field data. Also, this brought a novel
representation of MC as virtual elements specified by hypothetical transfer
functions occurring in the array system. As a result, to mitigate the effects of
MC, it is desired to eliminate the MC-ACGF terms from an array of ACGFs
that describes the full EM behavior of the system. This was done by develop-
ing a machine learning processor, GA and ANN based, to perform two crucial
operations. The first was to minimize these coupling interaction terms, while
its second task was to correct the actual elements’ responses to a desired goal.
Therefore, the major step in developing the EM response of an array was to
properly define its array-ACGF that contains the self- and MC-interactions.
This was insured by applying a special delta excitation to the system at a fixed
point. Traditional processing techniques were used to validate the mitigation
process such as DoA-MUSIC to detect the angles of arrival.

Chapter four focused on developing a new method of inverse scattering
problems in electromagnetic. By looking into the integral field equation, there
are two essential components that form the EM representation of a system.
The first is the surface current defined as the spatial transfer function (ACGF),
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while the second is the radiated field. As a result, the objective of the new
method was to decompose field data, as it is the situation in inverse problems,
to find certain parameters of the system under test. Through some analysis,
a modified field integral equation was used in terms of system’s parameters
such as length, polarization and most importantly its current distribution.
The accomplishment of the new field representation depends originally on
combining the ACGF to SEM approach in which a new spatial-SEM (S-SEM)
is developed. The recently developed approach was applied to various wire
systems in Tx mode of operation to validate the far field representation of
each system in comparison to simulated ones using MoM solver. In inverse
modelling, the systems were modelled in Rx modes and the assigned task was
to estimate their features. The estimation of targets was done by probing a
machine learning system, GA based, that worked to search for the optimum
parameters to reconstruct a desired field. Different systems were examined
including single and multiple elements. The study also involved the presence
of AWGN in order to investigate the ML performance in decoupling undesired
effects. Validation of the results was done by comparing simulated results
with measured ones and theory, where an excellent agreement was obtained.

5.2 Conclusion
In preparing and investigating this thesis, it is evident that there are critical
concerns in solving EM problems in antenna arrays or in reconstructing tar-
get’s features in inverse problems. These concerns arise when inspecting the
theoretical implications of those problems and their causes, which lead to a
possible theoretical development. As for mutual coupling effects in antenna
arrays, near field interactions plays an essential role in forming the energy ex-
change between proximity elements that degrades the system’s performance.
In inverse problems, far fields data are to be considered for the estimation
of targets such that the process was to decompose a backscattered field that
contains targets’ features.

The research papers reviewed in this thesis focused on solving these pre-
sented problems using traditional methods, where mutual coupling in antenna
arrays was considered as a terminal effect modelled as an impedance. Though,
this assumption can stand firm under some conditions, however, it cannot be
considered in practical situations such as the existence of undesired objects
(scatterers) in the vicinity of the system. Also, other methods were also
proposed but with some limitations that cannot be used in practical envi-
ronments, where it is possible to experience random movable objects around
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the system or the presence of appreciable amount of noise. As a result, it is
evident that the theoretical definition of mutual coupling has to describe this
phenomenon as nonlinear field interactions that cannot be salvaged using cir-
cuit consideration. The research papers sought in studying inverse problems
were mainly on retrieving some parameters of targets under optimal condi-
tions. However, in practical radar systems, noise and obstacles are counted
and estimated. Therefore, it is compelling to propose a radar system that is
capable of sensing targets in a real environment.

The aim of the thesis was to apply recently developed EM approaches,
which accurately characterize field interactions, in modern applications. The
use of the ACGF formalism assisted in forming the complete EM description
of array elements to show both near and far field interactions via spatial-
frequency representation. It accelerated the formation of receiving arrays
through its reciprocity property that did not require resolving of Maxwell’s
equations. Also, in inverse problems, combining the ACGF with SEM formed
a new radiation function that is useful in developing target’s field representa-
tion in terms of its spatial properties. For the appointed problems, multiple
scenarios were considered to validate the proposed approach. In mutual cou-
pling compensation, an array of six-element dipole antennas was examined
with inter-element uniform spacing that varies between 0.1λ to 0.7λ. The
array was studied in receiving mode at different elements’ separation in order
to examine the impact of coupling on the array response. The array perfor-
mance was evaluated by applying a DoA estimation technique using MUSIC
algorithm. In inverse problems, various wire targets were studied with differ-
ent configurations. The targets has an equal length of λ/2 to ensure a single
operating mode, while their geometry differs as straight wires, bended wires,
stretched and tightened spaced arrays. The estimation parameters for all cases
were SEM data, length, position and orientation.

In the process of proposing a dynamic solution to current EM problems,
an EM machine learning (EM-ML) system was proposed. The objective of
the proposed approach was to classify certain EM responses through deter-
ministic EM functions that define the exact system’s behavior rather than
non-deterministic functions. In this thesis, two classes of ML systems were
used, such that in mutual coupling compensation, the problem was tackled
by introducing a nonlinear ANN that carries TANSIG activation functions to
optimize the array ports. It showed an excellent preformance in comparison
to theoretical and simulated results at different inter-element array spacing.
Also, the aim of EM-ML was to predict unknown situation that could oc-
cur in real-time measurements such as a deviation of one element (different
polarization) or a matching problem in the elements terminals.
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In inverse problems, however, the EM-ML objective was to classify tar-
gets based on a given field formula that contains the estimated parameters.
Through GA, a perfect estimation was observed in comparison to theoretical
and simulated results. EM-ML has also shown the ability of the system to
decouple any presence of noise that could alter the detected field, where a
noise variance was imposed with values between -10 dB to -30 dB.

Although EM-ML offered remarkable advantages in mitigating the effect
of coupling and in reconstructing targets’ features, it also requires a prior
knowledge of the system under test in different situations in order to be able
to predict and optimize untrained situations. As a result, the ANNs are our
future candidate in predicting and mitigating sudden variations that impact
the system.

However, maintaining real-time measurements of targets or operating mas-
sive MIMOs require a reliable machine that can handle big data and performs
parallel processing where graphics processing units (GPUs) offers high speed
computations in comparison to traditional central processing units (CPUs).
Moreover, improving the optimization systems by injecting the desired EM
response to their internal processor led to accelerate the process and improve
their data classification efficiency.

In conclusion, the ACGF-ML and S-SEM-ML systems were proposed to
solve common EM concerns as in MIMO and radar systems. A complete
apparatus was shown on how to mitigate mutual coupling effects in antenna
arrays and on retrieving target’s parameters in inverse problems. With a full
demonstration of the methods, it is possible to examine them by implementing
their algorithms on a system-on-ship technology or ready-made processors
with RF terminals.

5.3 Contributions of the Thesis
The work presented in this thesis has contributed to several research areas in
applied electromagnetics. The contributions are listed as follows,

1. The recently developed approach, the ACGF, was used to model wire
antenna systems with finite length and was then applied on antenna
arrays to model the interactions between the elements

2. In the array scenario, it showed a novel modeling of mutual coupling
effects by developing a spatial mutual coupling ACGF (MC-ACGF)

3. This allowed in conveniently formulating the electromagnetic behavior of
array systems in a matrix representation. The derived matrix is simple
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to express and uses array systems in transmitting and receiving modes
without the need of recalculating Maxwell’s equations

4. It showed a simple representation of the interaction phenomenon be-
tween radiators in comparison to nowadays methods

5. A novel radar target identification method, the spatial singularity ex-
pansion method (S-SEM), was proposed that departs from traditional
methods found in literature.

6. A novel mathematical method is utilized to analyze the backscattered
field of radiators in order to detect their unique features. It showed an
excellent estimation of targets and was studied on different configura-
tions such as different wire systems and array configurations

7. A new method to applied electromagnetics (EM) was proposed by inte-
grating machine learning (ML) with electromagnetics (EM-ML)

8. Machine learning methods, such as multilayer neural networks (MLP-
ANN) and genetic algorithm (GA), were structured based on the elec-
tromagnetic problem that designates a desired phenomenon

9. These EM-ML techniques were proposed to mitigate the effects of mutual
coupling in complex antenna arrays and in searching for targets’ features
in noisy environments

10. These proposed methods can also be used in mitigating and predicting
untrained situations that could alter array terminals and in recognizing
new objects in radar systems

11. In the estimation of the direction of arrival (DoA), the elimination of
channel noise was carried out through the use of MUSIC algorithm to
estimate the angles of arrival

12. A radar cross section (RCS) measurement setup in anechoic chamber
was established to apply the proposed technique for target identification
on a wire system

5.4 Future work
We showed in the previous chapters the use of the ACGF formalism in devel-
oping the electromagnetic behavior of radiators mainly thin-wire structures by
forming 1D-spatial transfer functions. Also, the proposed approaches sought
in these chapters were essentially in validating the basic concepts in finding
solutions for common EM problems through the use of ACGF for simple wires.
However, In modern applications, it is required to integrate systems in com-
pact and small packages as for mobile handsets and small RF devices. As a
result, antennas have evolved from 1D wire systems with bulk geometries into
low profile planar structures with 2D surfaces. Hence, in order to define the
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ACGF of these antennas, it is required to perform a surface ACGF integral
that can also be presented as a 2D surface current under a condition of a
spatial delta excitation.

5.4.1 2D ACGF of Patch Antennas

At this stage of the proposed work, it is crucial to integrate and use the
ACGF as a simple and accurate EM modelling with more practical antennas
that are commonly used in recent industries. In this part of the thesis, we are
going to highlight some recent development in establishing the 2D ACGF for
conventional rectangular patch antennas by approximating the surface of the
antenna to an array of 1D ACGFs.

5.4.2 A Proposed 2D ACGF-SEM Model for Patch Antennas

In figure 5.1, a conventional rectangular microstrip patch antenna is shown
with dimensions given in Table 5.1. The antenna is fabricated on RT/Duroid
5880 dielectric substrate with a relative permittivity of 2.2 and a loss tangent
tan δ of 0.0004. The system is simulated using Advanced Design System (ADS)
electromagnetic solver to work at 6 GHz frequency. In both simulation and
measurement setups, the antenna is probe-fed at a single location to ensure
a desired operating mode that will in turn form a specific surface current
that will not change according to this point of excitation. According to the
ACGF-SEM approach, it is required to extract the antenna spatial SEM poles
by looking into the surface currents on the patch. The currents, however,
are presented in two orthogonal directions Jx and Jy that represents the 2D-
ACGF. Therefore, if a TM010 mode is assumed for the antenna, based on the
cavity model interpretation in [21], the ACGF will be presented as a sinusoidal
distribution along the patch length (Lp) and almost a constant uniform current
along its width (Wp) as in Fig. 5.2. As a result, it is possible to model the
significant variation of the current in terms of the ACGF data and ignore the
trivial currents on the surface for simplicity.
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Figure 5.1: Rectangular microstrip patch antenna fed by a prob-feed technique
and matched to 50 Ω input source impedance.

Table 5.1: Dimensions of the rectangular microstrip patch antenna

Lp 15.4846 mm
Wp 19.3746 mm
εr 2.33

h (substrate height) 1.575 mm

5.4.3 Experiment

From the presented antenna, the 2D current distribution along the x-direction
of the first operating mode is shown in figure 5.2. Along the patch length, a
sinusoidal current distribution is observed, while in other direction the current
has almost a constant distribution. Since the patch is meshed by forming a
two dimensional matrix, the ACGF is extracted in both directions separately
by forming stacked 1D ACGFs in the x-axis and y-axis separately, in which
the ACGF-SEM representation shows the poles P for x and Q for y-directions,
respectively.
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Figure 5.2: Patch antenna surface current in the x-direction Jx as extracted
from ADS

For the results shown in figure 5.5, The method sought here is to generate
the ACGF-SEM poles of only the x-axis current out of the Jx surface current.
This is done by hypothetically splitting the patch into multiple cells as shown
in Fig.5.4 where five cells were selected along the patch width, y1 to y5, to
capture the current variations along the patch length. The number of cells
indicates the reconstruction accuracy of the surface current, so it’s required to
increase this number to better model the actual current, however, increasing
this number will also add more ACGF-SEM poles that could complicate the
process. As a result, we only choose the cells that show a significant change
of the current along the patch width. In the future, a different study will be
conducted to find the minimum number of cells required to model the surface
currents without degrading the ACGF-SEM reconstruction.

For simplicity, all the assigned cells are symmetric over the middle cell y3,
where the width of the cell y1 is equal to y5 and y2 is equal to y4

In Table 5.2, the poles required to reconstruct the patch antenna surface
current are shown, where each cell requires two poles to form the sectional 1D
ACGF of the patch in the Jx direction.

Table 5.2: SEM spatial poles representation at each cell for the microstrip
patch antenna

Poles First cell (y1) Second cell (y2) Third cell (y3) Fourth cell (y4) Fifth cell (y5)
s1 −0.00346 + j190.88 0.3180 + j189.904 −3.3804 + j173.945 0.3180 + j189.904 −0.00346 + j190.88
s2 −0.00346− j190.88 0.3180− j189.904 −3.3804− j173.945 0.3180− j189.904 −0.00346− j190.88
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Figure 5.3: Ptach antenna width current

Figure 5.4: Patch antenna surface meshing into five cells along its width.
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Figure 5.5: ACGF-SEM extraction of the meshed patch antenna surface.

5.4.4 A 2D ACGF-SEM Model of Generic Antennas:
Tentative proposal

Another technique to find the ACGF-SEM poles of the patch antenna is to
develop a 2D ACGF that restores the complete surface current of the antenna.
Again the method assumes only a single operating mode at a specific point
of excitation to ensure a single transfer function of the antenna. For any
1D systems from the previous chapters, the ACGF-SEM representation of
the system showed a single summation that defines the S-SEM poles in a
single direction, while for 2D antennas the S-SEM can be defined as a double
summation over the antenna surface as in Eq. 5.1. Each summation is assigned
to a specific direction or more specifically a current direction with a finite
number of poles to satisfy a full reconstruction of the current. As for the
dominant mode of the patch, we look at the surface current generated on the
x-direction Jx, where it spreads on the antenna surface, x and y directions,
forming the current in Fig. 5.2. We note here that the surface current has
three components as in the proposed 2D ACGF-SEM equation, where each
direction has its own poles & residues and also both currents are interrelated
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through Rpq, which is the amplitude for both x- and y-components.

F̄(r, n,m) =
P∑
p=1

Q∑
q=1

Rpqe
xpmeyqn (5.1)

5.4.5 Prospects of Implementation in the Future

In the previous section we studied the ACGF-SEM representation of a patch
antenna by forming stacked 1D ACGFs to model the actual 2D ACGF on the
antenna. For an array of patch antennas as shown in Fig. 5.6, each antenna
surface is simplified to five cells to form the complete surface current. Also, by
shrinking the inter-element separation of the array, it implies a strong mutual
coupling between each antenna’s cells to other antennas, where it is difficult
to model these interactions in a simple fashion. Our future study introduces
a new way to model EM interactions in antenna arrays through the use of a
new 2D ACGF approach to overcome the difficulties of splitting the antenna
surface into cells.

Figure 5.6: Antenna array of u-strip patch antennas where each antenna is
segmented into five cells.

5.4.6 Inverse scattering problems using ANN

We showed in Chapter. 4 a machine learning approach combined with a new
ACGF-SEM field formulation to estimate certain parameters of targets, i.e.,
Length, position, orientation and SEM data. The GA was used in this work
to perform the ML part by decomposing a far field signal (scattered from
targets) to find the target’s parameters. The search of the optimum values to
reconstruct the scattered field was the crucial task of GA-ML system, however,
it was necessarily to bound the search space with possible values of the target’s
parameters. Although the proposed approach ACGF-SEM-ML using GA has
shown a perfect estimation of the parameters for different systems, it remains
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difficult to obtain a real-time prediction of targets because of the processing
time of the GA and the uncertainty of the search space. As a result, we
propose another ML algorithm in order to accelerate the process and also to
predict unusual situations of targets such as noisy field data or any unusual
effects in the detection link. Through ANN, it is possible to enhance the ML
system’s capability to ensure a perfect estimation of target’s features with
respect to GA. The reason is that ANNs have the ability to perform multiple
operations simultaneously and use various activation functions to classify the
desired data. Moreover, they can significantly reduce the time required to
recognize system’s parameters in comparison to different available techniques.

In Fig. 5.7, we propose the ANN-RCS system as shown in the schematic,
where the ANN module processes the incoming scattered signal of a target
and estimates its parameters through the cloud and storage platforms. Also,
by training the ANN to predict various targets as shown in the library section,
it is possible to find the exact features of a measured target by correlating the
incoming field with existed fields found in the ANN training phase.

Figure 5.7: An illustration of the ANN RCS system in detecting arbitrary
objects and processing them in practical environment.
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At this stage, it is known that the ANN has neurons that carry a specific
activation functions, as we described earlier in the thesis, that mimic the
response of the system to obey a desired output. From that perspective, we
suggested a new activation function by injecting the new ACGF-SEM field
representation developed in Eq. 4.21 into each neuron in order to fit the
output response by an exact formula that responds according to the system’s
parameters. In Fig. 5.8, we show the procedure of analyzing any incoming
field signal E(θ, φ) and estimating its SEM poles sn and residues αn through
the new ANN technique. The ANN will work to generate the best parameters
that best fit the incoming signal by correlating the measured field with existed
fields from its library.

Figure 5.8: ANN RCS scenario to estimate the SEM data from a single field
signal.

In order to validate the process, we examined a noisy field of a half-
wavelength dipole antenna as shown in Fig. 5.9, where we showed the polar
representation of the field with respect to the elevation angle variation θ and
a fixed azimuth φ = 0°. Moreover, the original field of the dipole is calculated
from EM-MoM solver, in which the task was to improve the measured field
points to be similar to the MoM field. Through the new ACGF-SEM-ANN
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system, we can successfully reconstruct the actual dipole field and decoupled
any undesired noise data.

Figure 5.9: A comparison polar field plot E(θ, 0°) of a half-wavelength dipole
antenna between MoM, random and optimized field using ANN.

In conclusion, this ANN setup can be seen as a reinforcement learning
where the goal of the ANN is to supply the user with internal parameters
while processing the input data. In our experiment, these internal parameters
are the S-SEM poles and their residues.
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A Antenna Current Green’s
Function (ACGF)

A.1 History
The concept of antenna transfer admittance was first introduced by Schelkunoff
in 1943 [72], where he considered the antenna from being a continuous source
to finite discrete sources. Continuous distribution antennas usually have larger
side lobes, are more difficult to scan, and they are not as versatile as arrays of
discrete elements. The characteristics of continuously distributed sources can
be approximated by discrete-element arrays and vice-versa, and their develop-
ment follows and parallels that of discrete-element arrays that show the same
radiation characteristics. Schelkunoff’s theory is a forerunner of the ACGF
approach [11], where each point on the antenna surface is assumed a circuit
port that can be combined together to form a matrix. Since the Method of
Moment (MoM) [33] already works by approximating the EM operator by a
matrix, both Schelkunoff and MoM converged into the same description of
an antenna as a transfer matrix of a circuit approximation. This concept is
merely based on unproved circuit assumption that by dividing any antenna
into smaller parts, the net contribution of the total parts (superposition) will
converge to the actual observed values. The principle of the ACGF has been
widely used in analyzing radiators as in [6], [73] and [74] in order to take
advantage of its reciprocity.

A.2 Introduction
The ACGF is a transfer function that connects an input field to an output
current that gives the privilege to use the system in both Tx and Rx modes.
In conventional EM radiation problems, the input is always the input volt-
age/current, while the output is field. Therefore, the problem of exciting an
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A.2. Introduction

antenna is the converse of the radiation problem. However, while Green’s
function of radiation has been around since very long time, the Green’s func-
tion of the engineering antenna problem was constructed very recently as the
ACGF. Mathematically, the ACGF is complicated in being a tensor (Dyad)
defined on antenna surface. This makes the mathematical development more
involved in the case of ACGF. The ACGF is the apparatus needed to analyze
the response of EM devices under non-standard excitation (NF excitation and
not just plane wave or wave port). The ACGF is defined as the antenna spa-
tial function that is used to describe the antenna surface current/ admittance,
which makes the ACGF dependent of the system physical dimensions. In order
to generate the ACGF transfer function, the system has to be excited using
a spatial delta source δ(r, r′). It can be calculated numerically using MoM
that provides a uniform segmentation of the discrete values. However, it has
not been verified using other numerical methods. The ACGF has been veri-
fied on thin-wire antennas for simplicity. However, there is no mathematical
expression that forms the 2D-ACGF until now.

We believe that the ACGF formalism is the proper way to develop the
emerging topic to near field engineering from the physical and theoretical
viewpoint, and also possibly the computational and/or experimental sides.
Here, we list the main advantages of the ACGF approach,

1. It provides a way to characterize antennas in terms of characteristic
modes.

2. These are physically meaningful basic solutions that shed light on the
behavior and performance of antenna systems in general.

3. We were able to show that all antennas exhibit a phenomenon of spatial
bandwidth similar to the familiar temporal bandwidth in EM theory.

4. It is possible to use the ACGF to synthesis special antenna systems ca-
pable of performing complex spatial filtering functions needed for spatial
diversity applications such as mobile, Multiple Input Multiple Output
(MIMO), and Direction of Arrival (DoA).

5. The ACGF may join with traditional EM solvers and measurements as
one basic methods used in EM to obtain accurate quantitative descrip-
tion of systems and devices.

6. It provides through the most general description of EM mutual coupling
methods to compute this new ACGF using perturbation series without
involving inverting the full wave operator.
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A.3. A study on the basic understanding of the ACGF formalism

A.3 A study on the basic understanding of the
ACGF formalism

Based on the Space Factor (SF) proposed by Schelkunoff in [34], it could be
valid that the ACGF is the multiplication of the SF by an impedance matrix
generated from the Integral Equation (IE) method that assumes a port on
each segment and generate the impedance values accordingly (superposition).
The impedance matrix can also be generated using MoM, which assigns basis
functions for each discrete source on the surface of the antenna. This basic
concept of the SF allows to establish a mathematical formulation that can help
in generating a 2D-ACGF expression. This can be done by changing the SF
expression to planar array instead of linear array and generate two impedance
matrices on the antenna surface. In both cases 1D and 2D-ACGF, the delta
source location will be defined in the SF expression and hence the ACGF will
vary based on the source location.

A.4 Calculating the ACGF in the EM solver
There are some conditions that should be secured in the EM solver before
declaring a successful calculation of the ACGF of an antenna system. In
this section, we are going to highlight these conditions in order to justify the
EM solver’s results and accuracy in calculating the ACGF. In WIPL-D EM
solver, a MoM core is used that forms a uniform meshing on the antenna
surface. This property is critical in our study as these equally spaced meshes
are showing an accepted approximation of the exact theoretical ACGF. On
the other hand, nonuniform meshes as in time domain solvers (e.g. CST-
MWS [75]) can be seen as a poor representation of the ACGF. The second
condition is the excitation source in which in WIPL-D can be arranged by
acquiring a voltages source of 1 volt. That is, the inserted voltage value is
the magnitude of a time-harmonic signal that is defined with reference to
the operating frequency window (i.e. lower- and higher-frequency). This,
however, is an approximation of the desired excitation signal required for the
ACGF generation. The third condition in forming a good approximation of
the ACGF is the number of MoM points on the antenna surface. In fact,
there is no criterion to our best knowledge on how to initiate this process
except to perform multiple trials of different number of meshes. The stopping
criterion, though, is the saturation level of the results when increasing the
number of points. In the presented experiments, 100 points were assigned for
each wire, i.e. an antenna with two wires has 200 points. After the simulation
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A.4. Calculating the ACGF in the EM solver

is performed, a data table is generated showing the surface current on each
wire in the format of complex data, i.e. real and imaginary. By certifying
the second step, the produced current can be represented as the ACGF of the
antenna system such that the linear relation between an impedance, current
and voltage is downsized by enforcing a value of one volt at the antenna
terminal and hence equating the impedance vector with the surface current
vector.
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B The Extraction of Time
Domain- and Spatial
Domain-SEM Data

In both time and spatial domain SEM representations, Prony’s method was
used to fit the desired systems response. In time domain, the collected data
is the backscattered field in the late time interval defined in the time domain
SEM (T-SEM) section. The question is how it is possible to define this late
time interval within the time domain signal. To answer this question, let us
consider a simulation setup in CST-MWS of a thin wire antenna system as
shown in Fig. B.1. To setup a proper T-SEM simulation, it is required to set

Figure B.1: A simulation of a thin wire antenna operating below 1 GHz.
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Figure B.2: CST-MWS time domain excitation signal required for T-SEM
simulations.

the frequency range from zero to a relatively high frequency in reference to the
resonance frequency of the system. The reason is that the excitation signal is
established based on this frequency range and hence will show a unit impulse
signal. Here, we set the frequency range from 0 to 3 GHz in which the input
signal is shown in Fig. B.2 where the default signal has a Gaussian distribution
while by applying this setting we only consider a positive excitation signal with
no negative values. In addition, it is easy now to determine the early time
interval of the backscattered signal in which here is approximately 1.2 ns. To
determine the backscattered signal in CST-MWS, a field probe is placed very
close to the antenna in which it appears in Fig. B.3 as green arrows.

After starting the simulation, the results are shown by measuring the far
field data and the field probes data in all directions. In this study, we only
look into the probe field data for simplicity and in the direction of the E-field
in which in this experiment is the z-direction. In Fig. B.4, The E-field is
captured and the early time interval is estimated using the input signal. By
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Figure B.3: CST-MWS scattering setup using field probes.

discarding the early time field, it is possible to process the late time data
using Prony’s method to find its deep spectral information. To handle this
step, a MATLAB code was established to detach early and late time intervals
by applying a window function with an interval equal to the input signal. The
resulted data is shown in Fig. B.5 where the estimated T-SEM data were also
plotted to validate the approach. This process can be replicated for different
antenna systems and will always provide an easy way to find the T-SEM data
out of an antenna system.

The spatial domain SEM (S-SEM) is quite different in comparison to the
previous approach where the whole operation takes place in MoM solvers in-
stead of time domain solvers. The data used in this setup is mainly the surface
current generated on the radiating element via the EM solver. The genera-
tion of the S-SEM data is made using Prony’s method in which is performed
using a MATLAB code. To properly define how Prony’s method works, it is
essential to know the independent variables of the experiment and how they
can be inserted in Prony’s code. In Prony’s code, two vectors are required to
simulate the problem where one is the variation of the function in time and
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Figure B.4: CST-MWS E-field data in the z-direction.

Figure B.5: CST-MWS E-field data showing the late time interval.
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the second is the change in the system response. In general, this is valid for
time domain data, however, it can be modified to work for our S-SEM system.
That is, the time vector is replaced by the length of the wire antenna system
while the response is the complex surface current.
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C Machine Learning Setup

Two machine learning setups were conducted in this work where the first is
an electromagnetic artificial neural network (EM-ANN) to compensate for
mutual coupling effects in antenna arrays and the second is an EM genetic
algorithm (EM-GA) to estimate the physical parameters of targets and their
surface current. In this appendix, the structure of these EM-ML systems
will be covered by showing the MATLAB setup of these algorithms and the
preparation of data used in each experiment.

C.1 Artificial Neural Network (ANN)
To setup an ANN system in MATLAB there are two approaches that can
be used. The first is to run the "NNET" toolbox to initiate a ready made
ANN with limited options as shown in Fig. C.1. The toolbox provides a wide
selection of ANN operations that leads to different problem solving such as
curve fitting and pattern recognition.
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C.1. Artificial Neural Network (ANN)

Figure C.1: Neural network toolbox in MATLAB.

As per the problems proposed in the thesis, a supervised ANN is suggested
that involves a desired output data in the training data. This means that for
a learning data set X, the ANN training data is the full data set X. On the
other hand, unsupervised learning is the situation where the training data Y /∈
learning data X. Therefore, for the compensation of mutual coupling effects,
the desired data is known to be the decoupled array voltages that forms a
supervised learning setup. For a better control of the ANN environment, the
(NNtool) in MATLAB provides a useful graphical user interface (GUI) ANN
to customize for the network type, training function, learning function, per-
formance function, number of layers and activation functions on each neuron.
In order to integrate the ANN system with an RF system, it is important to
set the number of input and output nodes to the actual number of RF termi-
nals. In the MCC experiment, six-element dipole antennas are connected to
the ANN system, which makes the choice of six neurons on the input and out-
put layers. However, before connecting the ANN directly to the RF system,
there is a question of how complex data can be processed in the ANN. That
is, At the array terminals, the terminal currents/voltages are complex values.
However, it is not possible for the ANN to deal with complex numbers. As a
result, before processing the currents through the network layers, it is required
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C.1. Artificial Neural Network (ANN)

to preprocess these complex XN data in the following form,

XN =


xreal1 ximag1
...

...
xrealN ximagN

 (C.1)

where X = xreal + jximag and N is the number of array terminals. As was
shown in the MCC experiment, different angles of incident of a receiving array
were considered. Hence, this simple representation has to be made for every
variation of the incoming signal. This results in forming a data set Xθ,φ

N that
has the number of elements N and the incident angles θ and φ. To start
building the ANN network, the input and target data are inserted in which
the input data correspond to the altered values and the target data are the
desired ones. In the MCC experiment, a linear and nonlinear setups for the
selection of the activation function were made. The first showed a PURELIN
activation function with a single layer ANN as shown in Fig. C.2

Figure C.2: NNTool representation of a single feed-forward backpropagation
ANN using PURELIN activation function.

In addition, the selected ANN properties of the previous setup are provided
in Table C.1

Network type Feed-forward backpropagation
Training function TRAINLM

Adaption learning function LEARNGDM
Performance function MSE
Number of layers 1
Number of neurons 6
Activation function PURELIN

Table C.1: ANN properties using a single-layer feed-forward backpropagation.
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The performance of the ANN setup is observed using a regression analysis
[76] to show the performance of the training and testing phases to achieve the
desired target data as shown in Fig. C.3.

Figure C.3: ANN regression analysis of a single layer feed-forward backprop-
agation network.

The second ANN suggested system consisted of two layers with a nonlinear
activation function TANSIG as shown in Fig. C.4. The principle behind
choosing this configuration was to enhance the ANN capability by introducing
multiple layers and to select a proper activation function that imitates the
behavior of the system under test.

161
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Figure C.4: NNTool representation of a two-layer feed-forward backpropaga-
tion ANN using TANSIG activation functions.

The properties of the MLP-ANN is presented in Table C.2

Network type Feed-forward backpropagation
Training function TRAINLM

Adaption learning function LEARNGDM
Performance function MSE
Number of layers 2

Number of neurons in the 1st layer 10
Number of neurons in the 2nd layer 6

Activation function TANSIG

Table C.2: ANN properties using a single-layer feed-forward backpropagation.

where here the network has a hidden layer of ten neurons each with TAN-
SIG function and connected to the output layer that consists of six neurons.
The regression analysis of this ANN configuration is shown in Fig. C.5 where
it is obvious that the data (presented in black circles) are aligned with the
fitting line (FIT ) that indicates an excellent performance of the ANN.
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C.2. Genetic Algorithm (GA)

Figure C.5: ANN regression analysis of a two-layer feed-forward backpropa-
gation network.

C.2 Genetic Algorithm (GA)
The setup of the EM-GA was made mainly in MATLAB using the ready-made
optimization toolbox. However, along with the toolbox simulation, a manual
code was also used where the performance of each code was studied in terms of
the execution time and accuracy. In this appendix, we only focus on the sim-
ulated setup conducted using the GA toolbox in which the representation of
target identification and mutual coupling compensation problems took place.
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Figure C.6: The GA setup in MATLAB optimization toolbox.

In Fig. C.6, the optimization toolbox in MATLAB is shown and the solver is
configured to GA as shown on the top right of the figure. In order to setup an
experiment, a fitness function has to be developed in the MATLAB script and
deployed in the GA toolbox. The fitness function is defined as the objective
function that is required to be minimized or maximized in the problem envi-
ronment. In the work presented in the thesis, the fitness function is shown as
the EM formulation of the system under study. Also, this function will always
remain the same whether we make the use of the GA toolbox or the manual
code. The next step in performing the EM-GA system is to define the number
of variables, which are the number of independent variables in the problem
space. In mutual coupling compensation, these are the MCC coefficients that
resemble complex load impedances attached to the array terminals. In the
MATLAB, these coefficients were multiplied by the received voltage vector at
different angles on incident to form a decoupling matrix. On the other hand,
in inverse problems, the internal parameters of the S-SEM field formula are

164



C.2. Genetic Algorithm (GA)

injected into the GA in order to search for the best values to fit a desired
field response. After inserting the number of variables to the GA tool, the
problem constraints are required as the equalities, inequalities, and the lower
and upper bounds of the independent variables. These options can be ignored
during the simulation, which was the case in the MCC experiment, as they are
not affecting the GA output behavior. However, they are essential in reducing
the complexity of GA algorithm and hence reducing the simulation time as
was the case in inverse problems.

On the right side of the figure, more GA options are listed to modify the
GA solver and specify its behavior. The advantage of using the GA toolbox
can be noticed here by the automated selection of these options to fit the
problem under investigation. Yet, it can be entered manually to adapt the
user-made code in which may be tricky for the selection of some functions.
At the end, the performance of the GA is controlled via the MATLAB script
being optimized. As a result, it is essential to simplify the level of coding by
suppressing searching/data entry loops and condition statements in order to
accelerate the GA solver and enhance its performance.
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