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Abstract 

The power generated by the movement of the Earth’s atmosphere is estimated to be 

hundreds of terrawatts. As a result, there has been particular interest in wind power generation. 

The high cost-factor, requirement for large towers, noise concerns, threat to birds of horizontal-

axis wind turbines, along with basic engineering curiosity, have motivated the development of 

flapping (reciprocating) mechanisms to extract energy from the wind. The focus of this research 

is on alternative sustainable energy extraction from reciprocating oscillating airfoils, since there 

is energy available to be extracted from the flow through flutter induced Limit Cycle Oscillations 

(LCOs). Flutter is an aeroelastic dynamic phenomenon generally resulting from the loss of 

stability about an equilibrium point. The amount of energy extractable by a reciprocating device 

depends on its aeroelastic response, and on the underlying physical tenets of the flutter.  

Indeed different flutter types exist, specifically coupled and stall. The difference in 

behaviour between both types of flutter is still not well understood, specifically in the non-linear 

regime. Due to the non-linear behaviour of stall flutter, and LCOs in general, analytical solutions 

are limited. Therefore, studies exploring LCO behaviour due to flutter are for the most part 

limited to experimental investigations. The study in this thesis investigates the energy extraction 

potential and aeroelastic response of stall flutter and coupled flutter induced LCOs. Experiments 

were conducted using the aeroelastic rig located at the large recirculating wind tunnel at RMC. 

The responses from two different elastic axis locations were recorded, with varying frequency 

ratios and increasing Reynolds numbers for each. The steady state LCO responses in pitch and 

heave were recorded using rotary potentiometers.  

 The highest efficiency values were found to be produced by coupled flutter induced 

LCOs. Although further investigation is required, the results suggest that the degree of structural 

coupling between two degrees of freedom influences the aerodynamic efficiency of a 

reciprocating device. Both types of flutter produced LCO trends that varied with frequency ratio. 

Both types of flutter induced LCOs also produced well-behaved oscillations for certain 

configurations which resembled Simple Harmonic Motion (SHM). For frequency ratios away 

from one, the two-degree-of-freedom stall flutter induced LCO response closely follows the one-

degree-of-freedom case. For these cases, the pitch motion drives the heave motion. Stall flutter 

LCO responses for frequency ratios close to one experienced a resonance-like phenomenon 

resembling lock-in phenomenon.  
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Résumé  

L’énergie générée par le mouvement de l'atmosphère terrestre est estimée d’être en 

centaines de terrawatts. En conséquence, la production d'énergie éolienne a suscité un intérêt 

particulier. Le facteur de coût élevé, la nécessité de hautes tours, les problèmes de bruit, la 

menace pour les oiseaux des éoliennes à axe horizontal, ainsi qu’une curiosité en ingénierie, ont 

motivé le développement des éoliennes alternatives. Cette recherche se concentre sur l'extraction 

d'énergie à partir de profils aérodynamiques en mouvement oscillants alternatifs, car il y a de 

l’énergie disponible pour être extraite de l’écoulement à travers les oscillations à cycle limite 

(LCO) induits par le flottement. Le flottement est un phénomène aéroélastique résultant 

généralement de la perte de stabilité autour d’un point d’équilibre. La quantité d’énergie 

extractible par une éolienne alternative dépend de sa réponse aéroélastique, et sur les principes 

physiques sous-jacents du flottement.  

Deux types de flottement existent, précisément le flottement par couplage et le flottement 

de décrochage. La différence entre les deux types de flottement n’est pas encore bien comprise, 

particulièrement dans le régime non linéaire. Les solutions analytiques pour les LCO induits par 

le flottement sont limitées, en raison du comportement non-linéaire inhérent. Par conséquent, les 

études explorant le comportement des LCO dues au flottement sont limitées à des investigations 

expérimentales pour la plupart. L’investigation menée dans cette thèse entrevoit le potentiel 

d’extraction d’énergie et le comportement aéroélastique des LCO induites par le flottement par 

couplage et le flottement de décrochage. Des expériences ont été menées dans la grande 

soufflerie à recirculation du CMR. Les réponses provenant de deux emplacements d’axes 

élastiques différents ont été notées, avec des rapports de fréquence et des nombres de Reynolds 

variables pour chacun. Les réponses du tangage et du pilonnement de LCO ont été enregistrées à 

l’aide de potentiomètres rotatifs. 

Les valeurs d’efficacité les plus élevées se sont révélées être produites par des LCO 

induites par flottement couplés. Plus d’études sont nécessaires, mais les résultats préliminaires 

suggèrent que le degré de couplage structural entre deux degrés de liberté influence l’efficacité 

aérodynamique d’une éolienne alternative. Les deux types de flottement ont produit des 

tendances de LCO variant avec le rapport de fréquence. Les deux types de LCO induits par le 

flottement produisaient également des oscillations qui se comportaient bien pour certaines 

configurations qui ressemblaient des oscillations harmoniques. Pour les rapports de fréquence 

qui n’égalent pas un, la réponse LCO de flottement de décrochage à deux degrés de liberté 

ressemble au comportement produit par un degré de liberté. Pour ces cas, le mouvement de 

tangage entraîne le mouvement de pilonnement. Les réponses LCO du flottement de décrochage 

pour des rapports de fréquence proches d’un ont présenté un phénomène de résonance 

ressemblant à un phénomène d’accrochage.  
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Chapter 1 – Introduction and Background  

1.1 Introduction 

 As the world population continues to grow exponentially, so does the demand for energy. 

The need to develop alternative, clean, sustainable, environmentally benign, and efficient forms 

of energy generation becomes increasingly imperative. In hopes of replacing environmentally 

costly fossil fuel generation, and moving toward more distributable energy resources, much 

effort has been undertaken to advance renewable energy technology. More specifically, since the 

power generated by the movement of the Earth’s atmosphere is estimated to be hundreds of 

terrawatts, there has been particular interest in wind power generation. The high cost-factor, 

requirement for large towers, noise concerns, and threat to birds of horizontal-axis wind turbines 

has motivated the development of alternative methods to extract energy from the wind. Of these 

alternative methods are flapping, or reciprocating wind-turbines. These devices may have 

potential to operate efficiently in low flow-speeds and small scales, as well as maintaining a 

small profile compared to rotary mechanisms [1]. Although energy extraction from bluff bodies 

and flow induced vibration (FIV) are related flapping mechanisms, the focus of this research is 

on reciprocating airfoils. 

Several numerical and experimental studies have investigated the aerodynamics and 

efficiency of reciprocating devices. The most notable of these investigations are reviewed in 

section 1.2. Qualitatively, the response of these reciprocating wing generators resembles flutter 

phenomenon [1]. The oscillatory motion of flutter is seemingly similar to the flapping of animals 

which propel themselves in fluid mediums. One crucial difference lies in the transfer of energy, 

where thrust-producing flapping transfers energy to the flow, whereas energy is transferred to a 

structure and its wake, from the flow in a flutter oscillatory mode [2]. If the work done by the 

non-conservative aerodynamic loads over one cycle is greater than the work done by the 

structural loads, then the oscillations are self-sustaining [3]. An interpretation of the difference in 

energy transfer between flutter (drag) and propulsive (thrust) modes is presented in Figure 1.1. 

The middle panel represents a system where the energy from excitations is shed into the wake 

and subsequent oscillations are damped out. Since there is energy available to be extracted from 

the flow by the structure through flutter, the potential for an alternative sustainable energy 

extraction mechanism exists through reciprocating motion based on aeroelastic phenomena.  

Flutter is an aeroelastic dynamic phenomenon generally resulting from the loss of 

stability about an equilibrium point. Several types of aeroelastic dynamic phenomenon exist, 

including coupled (classical) flutter and stall flutter. Instabilities will arise at any airspeed above 

the critical flutter speed, when the overall damping of the system is less than or equal to zero [3]. 

If the critical flutter speed is reached, the aeroelastic system, a simple cantilever wing for 

example, will begin to initially oscillate with exponentially growing amplitude. Eventually, the 

oscillation of the wing will either reach a dynamic stable state, or it will break. This non-linear 
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dynamic stable state is defined as a Limit Cycle Oscillation (LCO), where the wing is predicted 

to oscillate at a constant amplitude resembling simple harmonic motion (SHM). Two general 

behaviours of LCO amplitude response with airspeed are presented by Dowell et al. [4]. These 

include the typical increase in LCO amplitude with increasing airspeed, the trend being affected 

by the degree of non-linearity. Another response includes the existence of LCOs below the 

flutter boundary if the disturbances are sufficiently large. The response for the second behaviour, 

presented on the right graph in Figure 1.2, shows a hysteresis where the appearance of LCO is 

path dependant and occurs for decreasing airspeeds below the flutter speed. In non-linear 

dynamics terminology, the flutter speed of the left-hand diagram is associated with a 

supercritical Hopf bifurcation, whereas the right-hand diagram contains a subcritical Hopf 

bifurcation.  

 

Figure 1.2: Theoretical perspective of energy transfer mechanisms in aeroelasticity and flapping flight. 

Taken from [2]. 

 

Figure 1.2: Schematic of different types of LCO responses. Taken from [2] 

The non-linear effects that may influence an LCO response due to flutter may be either 

structural or aerodynamic. Structural non-linearities include spring hardening systems, large 
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deflection geometries and freeplay. Previous investigations have observed systems which 

stiffened in a cubic manner showed an increase in LCO amplitude with airspeed [4]. 

Aerodynamic non-linearities include shock motions at transonic airspeeds as well as separated 

flows. The non-linear effects of separated flow associated with the leading-edge vortex (LEV) 

becomes important at large oscillation amplitudes for all Reynolds numbers. Instantaneous 

enhanced lift can also occur as a result of complex non-linear viscous phenomena which have a 

significant impact on elastic airfoil behaviour [5]. Transitional Reynolds number effects, which 

occur for flows between 104 ≤ Rec ≤ 106, can become important for oscillations encompassing 

moderate angles of attack (AoAs). Within the transitional regime, strong variations in 

aerodynamic properties occur, as sometimes exemplified by a sharp increase in the lift-to-drag 

ratio with Reynolds number. Therefore, for large amplitude LCOs occurring within the 

transitional Reynolds number regime, both the shed LEV and sharp variations in aerodynamic 

properties will affect the aeroelastic response. 

 

1.2 Review of Reciprocating Renewable Energy Devices 

Conventional turbines based on rotational motion are designed to operate at high 

efficiencies while the flow remains attached to the blades. In contrast, flapping flight in nature 

has been observed to generate significantly higher instantaneous forces than can be achieved 

with attached flow. This occurs when the flow separates near the nose of the foil in the form of 

an LEV, thus exploiting the attending low pressure vortex core [1]. Subsequent attention has 

been given to alternative reciprocating wind turbines which mimic nature-inspired motion. The 

two types of reciprocating energy extraction devices defined in the most developed literature are 

based on prescribed motion in pitch. They are “kinematically-constrained” and “kinematically-

passive” mechanisms, as listed by Kinsey and Dumas [6]. Kinematically-constrained systems 

comprise of a mechanical coupling mechanism between the pitch and heave motions. The 

prescribed oscillating pitch motion creates an oscillating fluid dynamic force on a foil which 

heaves in response. A kinematically-passive system is free to oscillate in two degrees-of-freedom 

(2DOF), and is dictated by the system’s inherent structural and aerodynamic properties.  

The first most notable development on reciprocating designs for energy extraction from a 

flow occurred in 1981 by McKinney and DeLaurier [7]. Their creation, the Wingmill, was an 

“oscillating-wing windmill” which used prescribed SHM in pitch and heave to extract energy 

from the airflow. Figure 1.3 includes a picture of their prototype. The purpose of their work was 

to determine the feasibility and efficiency of an oscillating kinematically-constrained 

reciprocating device, as opposed to a traditional rotary wind turbine. The whole wing-span 

oscillated in coupled pitch and heave, with a constrained phasing between the pitch and heave 

oscillations. While it is not entirely clear whether the pitch oscillations are imposed, a small 

electric DC motor is used to change the relative angle between portions of the horizontal shaft 

controlling the phase angle. The experimental apparatus consisted of a NACA 0012 wing with 
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constant profile, where heaving motion was translated into rotational motion. The pivot point 

was located at the mid-chord, rigidly attached to the vertical support shaft. Wind tunnel tests 

were conducted between 4.34×105 < Rec < 5.6×105 (6.2 m/s < U∞ < 8 m/s). The heave amplitude 

was held constant, while the pitch amplitude and phase angles could be varied.  

The aerodynamic forces measured from their experiment were compared to those 

estimated using linear equations for incompressible and non-separated flow. Relative angles of 

attack during oscillations were found to exceed predicted static stall angles. Hysteresis effects 

were observed to occur in the obtained mechanical power for increasing and decreasing phase 

angles, and were attributed to dynamic stall effects. The theoretical calculated power values were 

seen to be consistently greater than experimental ones for smaller phase angles. From their tests, 

the maximum aerodynamic efficiency was found to be 16.8%, for a pitching amplitude of 30° 

and a Reynolds number of 5.6×105 (U∞ = 8 m/s). The study demonstrated that the concept of a 

reciprocating motion wind turbine was physically realizable at producing efficiencies 

comparable to conventional wind-turbines at the time.  

 

Figure 1.3: Photo of complete Wingmill experimental model. Taken from [7] 

In 2008, Kinsey and Dumas numerically simulated the energy extraction capabilities of a 

two-dimensional NACA 0015 airfoil in laminar flow. The simulations used a viscous Navier-

Stokes solver for a Reynolds number of 1.1×103, with prescribed sinusoidal motion in pitch and 

heave [8]. The authors defined two operating regimes based on the SHM quasi-steady flow 

assumptions. The derived expression differentiates between the two modes of energy transfer, 
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whether power is expended or extracted from the flow. Based on the timing, or phase, between 

the pitch and heave motions, the resultant force is either thrust or drag based. This is illustrated 

in Figure 1.4, where the direction of the horizontal force X dictates energy extraction or 

expenditure. The direction of X depends on the timing and direction of the AoA α, the 

aerodynamic lift L and drag D and the resultant force R. This expression, presented in Equation 

1.1, defines a ‘feathering parameter’ χ. If χ > 1, it can be inferred that the vertical component of 

force Y would typically be in the same direction as the vertical displacement of the airfoil, and 

power can be extracted from the flow. The symbols used for SHM in their study are shown in 

Figure 1.5, where 𝜃0 represents the pitching amplitude, 𝐻0 the heaving amplitude, and 𝜔 the 

circular frequency of oscillation.  

𝜒 =
𝜃0

tan−1(𝐻0𝜔 𝑈∞⁄ )
     [1.1] 

While various definitions for the aerodynamic efficiency of a flapping mechanism exist 

in literature, the definition used by Kinsey and Dumas calculates the power available through the 

flux of kinetic energy flowing through the total swept area by any part of the airfoil motion [6], 

as illustrated in Figure 1.5. The aerodynamic efficiency is thus calculated as the ratio of the 

cycle-averaged power with reference to the power available in the flow. The phase between the 

pitch and heave was kept at a constant 90° for the Navier-Stokes solver simulations, to ensure a 

feathering parameter above 1 and extraction of energy from the flow. A maximum efficiency of 

34% was found to occur at non-dimensional frequencies of 0.13 - 0.17 (𝑓∗ = 𝑓 𝑐 𝑈∞⁄ ), for pitch 

amplitudes above 75° and heave amplitudes of one chord-length, where the elastic axis is located 

at one-third the chord length. The visualizations obtained from the simulations indicated that the 

vortices produced from leading-edge separation, due to large oscillation amplitudes, had a strong 

influence on efficiency [8].  

An experimental set-up based on the parameters which produced the maximum efficiency 

obtained of 34% was designed and built by the authors in subsequent investigations. The 

mechanism was capable of being driven by one or two airfoils, where the pitch motion was 

connected to a four-link mechanism. This reciprocating mechanism was translated into rotational 

motion, connected to a driving rotating shaft which turned a speed-controlled electric generator. 

The generator imposed a frequency 𝑓 through a proportional-integral-derivative (PID) controller. 

The generator ran as a motor for the parts of the cycle where power was not extracted from the 

flow. Imposing the frequency of oscillation, the heave (𝐻0) and pitching (𝜃0) amplitudes were 

prescribed through the mechanism. A first prototype of this design was built and tested at the 

Laval University wind-tunnel, as shown in Figure 1.6 [9]. A second prototype was mounted 

underneath a pontoon boat driven by an outboard motor, and tested in a local lake. The 

maximum aerodynamic efficiency was found to be 30% for one airfoil, and 40% for two airfoils 

in tandem.  
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Figure 1.4: Resultant forces of oscillations, energy extracting or drag (top), and thrust mode (bottom). 

Taken from [8]. 

 

Figure 1.5: Schematic taken from in Kinsey and Dumas, 2014 for the definition of total swept area, with a 

phase lag in pitch of 90°. 
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Figure 1.6: The reciprocating tandem-wing experimental prototype in the wind-tunnel at Laval 

University. Taken from [9]. 

In 2010, Platzer et al. a study at the Naval Postgraduate School in Monterey California, 

on flapping wing energy extraction technology [10]. Similar to the studies done at Laval 

University, simulations were performed for prescribed sinusoidal motion of single and tandem 

NACA 0014 airfoils at a Reynolds number of 2.0×104, with a pitch amplitude of 73°, and a 

heave amplitude of 1.05 chord-lengths. The Computational Fluid Dynamics (CFD) package 

Fluent was used, with an unsteady incompressible solver. The simulations were comparable with 

the numerical results presented by Kinsey and Dumas, where the peak simulated efficiency was 

calculated to be 34%, for a single airfoil configuration with phase angles from 90° to 110° 

between the pitch and heave motions. It was discussed that if the heaving motion is always in the 

same direction as the aerodynamic lift, which implies a phase angle ∈(0°, 180°) between the 

pitch and heave motions. Work is then done by the air on the airfoil throughout one cycle [3].  

An experimental analysis was conducted, where several prototypes were investigated. 

One notable prototype involved a swinging arm supported by a bearing, with restricted heave 

displacement. An L-shaped moment arm was used to reverse the pitch angle when it touched the 

stoppers. No motor was involved, the mechanism is totally free to oscillate, yet mechanically 

constrained. The pitching axis was located aft of the mid-chord, ensuring the foil to be statically 

unstable so that it would deflect to an increasing pitch angle until it was stopped by a mechanical 

restraint. As observed in Figure 1.7, a stroke-reversal is induced as the airfoil starts to rotate in 

the counter-clockwise direction.  As a result, the lift is generated in the opposite direction, and 

the airfoil starts to slide. A square-wave type oscillation is thus generated. This prototype was 

designed to operate in water, and was tested in a water tunnel with flow speeds (𝑈∞) ranging 

from 0.2 to 0.5 m/s, and up to 1 m/s in a towing tank.  
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Figure 1.7: Schematic of prototype tested by Platzer et al., adapted  from [10] 

The numerical study by Kinsey and Dumas was repeated in 2014 for a Reynolds number 

of 5.0×105 using a two-dimensional Unsteady Reynolds Averaged Navier-Stokes (URANS) 

solver [6]. The maximum efficiency calculated was 43%. No correlation between LEVs and 

efficiency was found for the transitional Reynolds number case. In 2017, a similar study was 

conducted by the same group. The parameters of a fully-passive flapping NACA 0015 airfoil, 

with an elastic axis at a third the chord length, were varied in order to increase its aerodynamic 

efficiency at a Reynolds number of 5.0×105 [11]. The structural model was defined by an elastic 

airfoil in 2DOF, inspired by the aeroelastic rig used at the Royal Military College of Canada 

(RMC). Both pitch and heave motions are defined by the fluid-structure interaction between the 

structure and the aerodynamic loads. The fluid dynamics is simulated using a Boussinesq eddy-

viscosity approximation in a Spalart-Allmaras URANS model, performed in the open-source 

CFD program OpenFOAM-2.1x. The parameters were varied until the values for oscillation 

amplitude, frequency, and aerodynamic efficiency matched their kinematically-constrained 

device. The maximum efficiency value obtained from simulations was 33.6%, indicated by the 

authors to show good potential for the use of fully-passive airfoils for energy extraction. From 

the simulated flow visualizations, it was inferred that the moments associated with airfoil-vortex 

interaction limited the oscillation amplitude, as well as improved power extraction from the flow. 

It was argued that the physical mechanism driving the LCOs was stall flutter due to the 

importance of large leading-edge stall vortices during periodic oscillations. Further discussion on 

the dynamics of the system to support this claim was not included.  

While the oscillations produced by simulated prototype reciprocating energy devices are 

SHM, kinematically resembling flutter induced LCOs, the underlying aeroelastic nature of each 

study remains unclear. Much of the reciprocating device studies have focussed on simulating the 

resulting unsteady viscous flow, rather than on the overall dynamics of the fluid structure 
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interaction. Effort has been taken by previous numerical studies to understand the timing and 

influence of these shed leading-edge vortices on the aerodynamic efficiency. Different 

aeroelastic phenomenon may resemble each other qualitatively, however may have 

fundamentally different underlying physics that are defined by the properties of the structure. 

While Veilleux and Dumas argue that the vortical structures occurring from large amplitude 

LCOs are due to stall flutter, the same type of leading-edge separation behaviour may occur in 

large amplitude LCOs induced by coupled flutter [11]. Further analysis of the overall dynamics 

of the structure is required in order to understand the entire aeroelastic system. Since 

kinematically-passive devices are dependent on aeroelastic phenomena in order to extract energy 

from the flow, it stands to reason that a more thorough understanding of the overall dynamics 

may potentially lead to energy extracting devices with higher aerodynamic efficiencies.  

 

1.3 Objectives 

Since there is energy available to be extracted from the flow through dynamic aeroelastic 

instability, the potential for an alternative renewable energy extraction mechanism exists. 

Previous studies of reciprocating wind turbine devices have observed overall efficiencies to be 

up to 40%, which is comparable to traditional horizontal axis wind-turbines (HAWTs) [9]. 

Although the simulated and experimental studies for kinematically-constrained and 

kinematically-passive reciprocating wind turbines show promising results, a proper 

understanding of the underlying dynamics in these studies is missing. While the underlying 

physics for prescribed systems using SHM are different than an airfoil undergoing LCOs, a 

comparison of these aeroelastic systems remains to be explored. Gaining a more complete 

comprehension of how the energy transfer differs between aeroelastic phenomenon may improve 

the potential for increased energy extraction from a fluid flow. Due to the inherently non-linear 

nature of both coupled flutter and stall flutter induced LCOs, analytical solutions describing their 

response do not exist. Therefore, investigations exploring the difference in the energy extraction 

potential between different types of flutter induced LCOs are reliant on experiment.  

 In comparison to coupled flutter, there are a limited amount of studies investigating the 

behaviour of stall flutter. Therefore, it is of interest to further investigate how the physical 

behaviour of stall-flutter-induced large amplitude LCOs differs from other aeroelastic 

phenomena, specifically coupled flutter induced LCOs. Aeroelastic measurements within the 

transitional Reynolds number range at RMC to date have focussed on SAOs due to LSB 

behaviour [12-16]. Poirel and Mendes observed large amplitude LCOs due to coupled flutter, 

and 2DOF SAOs coexisting for the same flow conditions, for a NACA 0012 oscillating about an 

elastic axis set at 18.6% of the chord-length. While large amplitude symmetric LCOs in 1DOF 

were experimentally observed at RMC by Harris in 2007, and Mendes in 2016 for a NACA 0012 

airfoil pitching about 35% the chord-length, the study conducted by Peristy et al. focussed on 

1DOF LCOs due to stall flutter. The current investigation follows the work of Mendes, Peristy et 
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al., and expands on the work by the author (Goyaniuk et. al), who noted symmetric 1DOF SAOs 

and 1DOF LCOs due to stall-flutter coexisting as competing stable attractors [16-18].  

 

Therefore, one objective of this thesis is to deepen the understanding of the differences in 

the physics between coupled flutter and stall flutter LCOs, the analysis will involve observing 

the sensitivity of the response to varying frequency ratios about one, and increasing Reynolds 

numbers. While deepening the physical understanding of different aeroelastic phenomena, one 

can determine the energy extraction potential of each. Another main objective is comparing 

which aeroelastic instability, stall flutter or coupled flutter, is more aeroelastically efficient in 

terms of energy extraction. Finally, it is the hope of the author that the results from this study 

may assist in determining the optimal configuration for a passive reciprocating device. The thesis 

is organized as follows. The remainder of Chapter 1 will present related analytical models, as 

well as relevant aeroelastic phenomena in more detail. The LCOs induced by coupled flutter are 

presented in Chapter 3, while Chapter 4 discusses stall flutter. Chapter 5 compares both types of 

flutter LCOs. 

 

1.4 Linear Aeroelastic Systems 

1.4.1 Two-Degree-of-Freedom Equations of Motion 

  An elastically mounted, 2DOF kinematically passive airfoil is described by structural 

damping and stiffness terms acting at the elastic-axis (EA). In the context of linear 

aerodynamics, the system can respond in pitch and heave to aerodynamic loads acting at the 

aerodynamic centre (AC). For a thin, symmetrical airfoil with span l and constant chord, thin 

airfoil theory is assumed such that the aerodynamic centre is estimated to be located at the 

quarter-chord point assuming small displacements. The inertially coupled linear equations of 

motion derived from Lagrange’s method are shown in Equations 1.2 and 1.3, modelled as a 

mass-spring-damper system. The free-body diagram with geometric and structural parameters is 

shown in Figure 1.8 with the coordinate system used in this study indicated. The structural mass, 

damping and stiffness terms are constants, while the pitch and heave position, velocity an 

acceleration terms are variable in time. For steady models, the lift and moment do not vary in 

time. Linear quasi-steady and unsteady model the lift as time dependant variables.  

𝑀ℎℎ̈ −
𝑀𝜃𝑐𝑥𝜃

2
𝜃̈ + 𝐷ℎℎ̇ + 𝐾ℎℎ =  𝐿             [1.2] 

𝐼𝐸𝐴𝜃̈ −
𝑀𝜃𝑐𝑥𝜃

2
ℎ̈ + 𝐷𝜃𝜃̇ + 𝐾𝜃𝜃 = 𝑀𝐸𝐴           [1.3] 
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Figure 1.8: A schematic of a two-dimensional, thin, symmetrical airfoil with degrees of freedom in 

bending and torsion. 

 

1.4.2 Steady One-Degree-of-Freedom Aerodynamic Moment 

  The steady aerodynamic loads on an airfoil are treated as constant for a given angle of 

attack subject to incompressible and attached flow. Considering only the steady aerodynamics in 

one-degree-of-freedom (1DOF), the representation of an airfoil with torsional stiffness 𝐾𝜃 about 

the EA is reduced to the schematic shown in Figure 1.9. The aerodynamic moment about the EA 

can be related to the lift and moment at the AC based on Equation 1.4. The aerodynamic centre, 

the location where the aerodynamic moment is independent of the angle of attack (AoA), is 

assumed to be at the quarter-chord point. Equation 1.4 is derived assuming small angles, thin-

airfoil theory, incompressible attached flow, and a symmetrical airfoil.  

𝑀𝐸𝐴 = 𝑒𝐿 + 𝑀𝐴𝐶                     [1.4] 

where e can also be represented in Equation 1.5, with c being the chord length and ah the non-

dimensional distance between the EA and the mid-chord: 

𝑒 =  
𝑐

2
(

1

2
+ 𝑎ℎ)             [1.5] 

Given that the aerodynamic moment 𝑀𝐴𝐶 about the AC is zero for a symmetrical airfoil, the 

equation for the moment about the elastic axis of an airfoil can be reduced to:  

𝑀𝐸𝐴 = 𝑒𝐿 = 𝑒
𝐶𝐿

2
𝜌𝑈∞

2𝑐𝑙 =  [𝑒𝜌𝑈∞
2𝑏𝑙2𝜋]𝜃          [1.6] 

where 𝑏 = 𝑐 2⁄  and 𝐶𝑙 = 2𝜋𝜃, and the AoA and pitch values are assumed to be equal to each 

other. Considering only the static terms in the equation of motion 1.3, the total static aeroelastic 
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stiffness can be expressed in Equation 1.7. One can see that if the location of the elastic axis is 

aft of the AC, its value being positive, the total aeroelastic stiffness decreases with increasing 

airspeed. The stability of the static term is discussed more thoroughly in section 1.5.1.  

[𝐾𝜃 − 𝑒𝜌𝑈∞
2𝑏𝑙2𝜋]𝜃 = 0          [1.7] 

 

Figure 1.9: Representation of a symmetrical elastic airfoil free to rotate in torsion  

 

1.4.3 Quasi-Steady Aerodynamics in Two Degrees-of-Freedom 

Quasi-steady aerodynamics build on the classic steady model. The quasi-steady 

assumption dictates that at any instant in time, the steady aerodynamic loads occurring at a 

constant velocity in pitch and heave apply to the instantaneous values on an airfoil undergoing 

unsteady motions [3]. It is important to note, that the aerodynamic model is linear, and that there 

is no time lag between the airfoil motion and the associated loads. The aerodynamics are 

assumed to adjust to the airfoil motion instantaneously.  

The instantaneous lift L can be accounted for from the steady equation from thin-airfoil 

theory approximations in two dimensions, with span l:  

𝐿 =  𝜌𝑈∞
2 𝑐𝑙𝜋𝛼3𝑐 4⁄                [1.8] 

The local AoA at 3𝑐 4⁄  is used in this model, to represent the effective AoA experienced by the 

heaving and pitching airfoil. This effective AoA takes into account the resultant velocity due to 

translation ℎ̇ and rotation 
1

2
𝑐(

1

2
− 𝑎ℎ)𝜃̇ 2⁄ , and is expressed in Equation 1.9 [3].  

𝛼3𝑐 4⁄ =  𝜃 −
ℎ̇

𝑈∞
+

𝑐(
1

2
−𝑎ℎ)

2𝑈∞
𝜃̇              [1.9] 
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The quasi-steady lift is thus represented as: 

𝐿 =  𝜌𝑈∞
2𝑐𝑙𝜋 [𝜃 −

ℎ̇

𝑈∞
+

𝑐(
1

2
−𝑎ℎ)

2𝑈∞
𝜃̇]                     [1.10] 

In addition to an induced AoA, the pitching motion induces a non-zero moment coefficient about 

the aerodynamic centre 𝐶𝑀𝐴𝐶 . This is represented by a damping couple proportional to the 

angular velocity [3].  

𝐶𝑀𝐴𝐶 =  −
𝜋𝑐 

8𝑈∞
𝜃̇               [1.11] 

Where,  

𝑀𝐴𝐶 =  
𝜌𝑈∞

2

2
𝑐2𝑙𝐶𝑀𝐴𝐶                 [1.12] 

Substituting the terms in equations 1.10 and 1.13 into equation 1.4 defined earlier, the quasi-

steady moment can be defined as:  

𝑀𝐸𝐴 =  𝑒𝜌𝑈∞
2𝑐𝑙𝜋 [𝜃 −

ℎ̇

𝑈∞
+

𝑐(
1

2
−𝑎ℎ)

2𝑈∞
𝜃̇] −

𝜌𝑈∞

16
𝑐3𝑙𝜋𝜃̇            [1.13] 

 

1.4.4 Unsteady Aerodynamics 

While computationally simple, the quasi-steady model fails to take the fluid inertia 

(added mass) as well as circulation history into account. The added mass terms represent the 

force that acts opposite to the acceleration of the airfoil. This term is considered the non-

circulatory contribution to the unsteady aerodynamic loads, since it is independent of the viscous 

effects embodied by circulation. The nc subscripts in Equations 1.14 and 1.15 indicate the non-

circulatory components of the aerodynamic lift and moment. For an airfoil undergoing pitch and 

heave motions in 2DOF, the added mass contributions in unsteady lift and moment are expressed 

as [3]:  

𝐿𝑛𝑐 = 𝑏2𝑙𝜌𝜋[−ℎ̈ + 𝑈∞𝜃̇ − 𝑏𝑎ℎ𝜃̈]            [1.14] 

𝑀𝐸𝐴,𝑛𝑐 = 𝑏2𝑙𝜌𝜋 [−𝑏𝑎ℎℎ̈ − 𝑈∞𝑏 (
1

2
− 𝑎ℎ) 𝜃̇ − 𝑏2 (

1

8
+ 𝑎ℎ

2) 𝜃̈]          [1.15] 

 Modelling the circulatory unsteady forces acting on an airfoil undergoing periodic 

oscillations (or arbitrary motions) in non-separated and incompressible flow has been 

investigated by Wagner, Theodorsen, Küssner, von Kármán, Sears, and others [3]. The analysis 

of these forces is based on conceptualizing a continuous sheet of vorticity that is convected from 
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the trailing edge into the wake. In Wagner’s problem, this vorticity arises from the growth of 

circulation when an airfoil undergoes an impulsive start from rest to a uniform velocity U. A 

vortex is shed from the trailing edge, and induces a vertical component of velocity in the flow. 

This induced velocity is known as downwash, and it is known to diminish the AoA of the airfoil, 

hence lift. The effect of the shed vortex is strongest when the vortex is at the trailing edge of the 

airfoil, its influence diminishing as it moves further downstream with velocity U. 

The effects of aerodynamic lag and unsteadiness become more significant when the 

airfoil oscillates at high frequencies. The importance of unsteady effects can thus be evaluated 

from the reduced frequency, expressed in Equation 1.16. The oscillation frequency is represented 

by 𝜔. It is generally understood that unsteady effects become important for 𝑘 > 0.05. For 𝑘 < 

0.05, unsteady effects are much less prevalent, and the flow can be modelled with a quasi-steady 

model.  

𝑘 =
𝜔𝑏

𝑈∞
                                                                   [1.16] 

 The time-dependant effect of the shed trailing edge vortex on the lift can be described by 

Wagner’s function 𝜑(𝜏) [3]. The value of the function is represented in Figure 1.10 as an 

aerodynamic lag. Wagner’s function quantifies the build-up of circulation resulting from an 

instantaneous finite change in freestream airspeed, and subsequent diminished lift. As can be 

observed in Figure 1.10, the amount by which the circulation reduces the overall lift decreases 

with time, as the airfoil moves upstream from the shed trailing edge vortex. The circulatory 

component of unsteady lift can therefore be represented by including Wagner’s function with 

steady lift from thin-airfoil theory.  

𝐿𝑐 =  
𝜌𝑈∞

2

2
 𝑐𝑙2𝜋𝜃𝜑(𝜏)        [1.17] 

𝜏 = 𝑈∞𝑡 𝑏⁄            [1.18] 

An approximate expression for Wagner’s function was developed by R.T. Jones, represented 

below, where the constant A1 and A2 are equal to 0.165 and 0.335, and B1 and B2 are equal to 

0.0455 and 0.3 respectively [3].    

𝜑(𝜏) = 1 − 𝐴1𝑒−𝐵1𝜏 − 𝐴2𝑒−𝐵2𝜏             [1.19] 

Expanding on this model, one considers the infinitesimal discrete vortices in a conceptual 

vorticity sheet. If the change in angle of attack is infinitesimal, the shed vortex is infinitesimally 

small and the subsequent influence on the circulatory lift infinitesimal as well. A small increment 

in circulation will result in an incremental change in the downwash at the three-quarter-chord 

point d𝑤3𝑐 4⁄ , and subsequent increment in lift d𝐿𝑐. Downwash is created when a vortex leaves 

the trailing edge, it induces a downwards component of velocity on the flow, and diminishes the 

lift created, and therefore the AoA of the airfoil.  
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Figure 1.10: Wagner’s function for an incompressible fluid, adapted from [3] 

Wagner’s function can thus be generalized into arbitrary airfoil motion by using the 

superposition principle (in the form of Duhamel’s integral). The summation is represented 

below, and is valid for a linear aerodynamic model.  

d𝐿𝑐 =  
𝜌𝑈∞

2

2
 𝑐𝑙2𝜋𝜑(𝑡 − 𝑡0)d𝑤3𝑐 4⁄ (𝑡0)       [1.20] 

𝐿𝑐 =  
𝜌𝑈∞

2

2
 𝑐𝑙2𝜋 [𝑤3𝑐 4⁄ (0)𝜑(𝑡) + ∫ 𝜑(𝑡 − 𝑡0)

d𝑤3𝑐 4⁄ (𝑡0)

𝑑𝑡0

𝑡

0
d𝑡0]       [1.21] 

Determining the stability of a dynamic aeroelastic system involves solving for the 

complete set of differential equations of motion. In order to solve for the aerodynamic lag, a third 

degree of freedom can be introduced for use in a given aeroelastic model. This third degree of 

freedom is aerodynamic rather than structural, and considers unsteady effects. Developed by 

Poirel in 2001 [19], the downwash at the three-quarter-chord point can be represented by the 

aerodynamic states 𝑧 and 𝑧̇.  

𝑧̈ + (𝑏1 + 𝑏2)𝑧̇ + 𝑏1𝑏2𝑧 =  𝑤3𝑐 4⁄             [1.22] 

where 𝑏1 and 𝑏2 are represented by 𝑏1 = 𝐵1𝑈 𝑏⁄  and 𝑏2 = 𝐵2𝑈 𝑏⁄ . Implementing this third-

degree of freedom into the derived Equation 1.21, the unsteady lift and moment due to the 

circulatory terms can be represented by the Equations 1.23 and 1.24.  

𝐿𝑐 = 𝜌𝑈∞𝑏𝑙2𝜋[(1 − 𝐴1 − 𝐴2)𝑤3𝑐 4⁄ + 𝑧̇(𝐴1𝑏1 + 𝐴2𝑏2) + 𝑧𝑏1𝑏2(𝐴1 + 𝐴2)]   [1.23] 

𝑀𝐸𝐴𝑐
= 𝜌𝑈∞𝑏2𝑙2𝜋(𝑎ℎ + 0.5)[(1 − 𝐴1 − 𝐴2)𝑤3𝑐 4⁄ + 𝑧̇(𝐴1𝑏1 + 𝐴2𝑏2) + 𝑧𝑏1𝑏2(𝐴1 + 𝐴2)]  [1.24] 

where the downwash term is defined in [3] as:  

𝑤3𝑐 4⁄ = 𝑈∞𝜃 − ℎ̇ + 𝜃̇𝑏 (
1

2
− 𝑎ℎ)               [1.25] 
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Adding both added mass and circulatory terms, the total unsteady lift and moments are 

represented as follows.  

𝐿 = 𝑏2𝑙𝜌𝜋[−ℎ̈ + 𝑈∞𝜃̇ − 𝑏𝑎ℎ𝜃̈] + 

𝜌𝑈∞𝑏𝑙2𝜋[(1 − 𝐴1 − 𝐴2)𝑤3𝑐 4⁄ + 𝑧̇(𝐴1𝑏1 + 𝐴2𝑏2) + 𝑧𝑏1𝑏2(𝐴1 + 𝐴2)]                  [1.26] 

𝑀𝐸𝐴 = 𝑏2𝑙𝜌𝜋 [−𝑏𝑎ℎℎ̈ − 𝑈∞𝑏 (
1

2
− 𝑎ℎ) 𝜃̇ − 𝑏2 (

1

8
+ 𝑎ℎ

2

) 𝜃̈] + 

𝜌𝑈∞𝑏2𝑙2𝜋 (𝑎ℎ +
1

2
) [(1 − 𝐴1 − 𝐴2)𝑤3𝑐 4⁄ + 𝑧̇(𝐴1𝑏1 + 𝐴2𝑏2) + 𝑧𝑏1𝑏2(𝐴1 + 𝐴2)]            [1.27]        

An alternative unsteady model which takes also into account the added mass and 

circulatory terms is Theodorsen’s function, which models the frequency domain rather than the 

time domain [3]. Theodorsen’s function can be decomposed into real and imaginary functions of 

the reduced frequency.  

𝐶(𝑘) = 𝐹(𝑘) + 𝑖𝐺(𝑘)      [1.28] 

The overall function can be approximated as,  

𝐶(𝑘) = 1 −
𝐴1𝑖𝑘

𝑖𝑘+𝐵1
−

𝐴2𝑖𝑘

𝑖𝑘+𝐵2
             [1.29] 

For a wing undergoing SHM in pitch and heave, the lift and moment can be represented linearly 

by both the added mass and Theodorsen’s function for the circulation term. Equation 1.25 is used 

for the downwash term. 

𝐿 =  𝑏2𝑙𝜌𝜋[−ℎ̈ + 𝑈∞𝜃̇ − 𝑏𝑎ℎ𝜃̈] + 𝜌𝑈∞𝑏𝑙2𝜋𝑤3𝑐 4⁄ 𝐶(𝑘)    [1.30] 

𝑀𝐸𝐴 = 𝑏2𝑙𝜌𝜋[−𝑏𝑎ℎℎ̈ − 𝑈∞𝑏(0.5 − 𝑎ℎ)𝜃̇ − 𝑏2(1 8⁄ + 𝑎ℎ
2)𝜃̈] + 

𝜌𝑈∞𝑏2𝑙2𝜋(𝑎ℎ + 0.5)𝑤3𝑐 4⁄ 𝐶(𝑘)                                            [1.31] 

These two equations are not mathematically consistent since C(k) is in the frequency domain, 

and h and θ are expressed in the time domain. However, it is implicit that the motion is 

harmonic.  

 

1.5 Aeroelastic Phenomenon  

Several types of aeroelastic phenomena exist, including static and dynamic instabilities. 

Each have fundamentally differing underlying physics. Of the dynamic instabilities for example, 

there are two important different types of flutter. These are coupled (classical or coalescence) 

flutter, and stall flutter. Coupled flutter occurs as a result of the coupling of two degrees of 
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freedom (e.g. heave and pitch), and is inherently a linear problem. In contrast, stall flutter may 

occur in one degree of freedom (e.g. pitch) and is a non-linear phenomenon. Stall flutter occurs 

as a result of the negative aerodynamic damping associated with large leading-edge separation in 

the stall regime. In both cases however, the growing oscillation can become limited by the 

aerodynamics to a dynamic stable state. LCOs are fundamentally non-linear and, in the context 

of this thesis, occur as the wing pitches in and out of leading-edge separation conditions at large 

pitch amplitudes. The following sections outline the theory surrounding different aeroelastic 

phenomena.  

1.5.1 Divergence 

 The most basic aeroelastic problem is the static elastic deformation of a wing due to a 

steady lifting force and an aerodynamic moment. At relatively low airspeeds, the elastic 

deformation due to the aerodynamic moment is sufficiently small [3]. After a certain airspeed 

however, the aerodynamic moment can be sufficiently large to cause the wing to become 

statically unstable, and break. This static aeroelastic instability is known as divergence.  

 One can estimate the divergence speed from Equation 1.7 for a wing of constant chord, 

with a thin-symmetrical airfoil as its profile. If the location of the EA is ahead of the AC, based 

on the coordinate system in Figure 1.9, the value for e will be negative and the total aeroelastic 

stiffness will always be positive. The system will be stable and divergence will not occur for this 

case. For the case where the EA is aft of the aerodynamic centre, the aeroelastic stiffness 

becomes zero at a certain airspeed. The theoretical airspeed for a wing of constant chord and 

finite span can be estimated by rearranging Equation 1.7 into Equation 1.32 for when the total 

aeroelastic stiffness becomes zero: 

𝑈𝑑𝑖𝑣 = [
𝐾𝜃 

𝑒𝜌𝑏𝑙2𝜋
]

1

2
      [1.32] 

 If non-linear effects are considered in the static aerodynamic moment however, non-zero 

static equilibrium points may exist past the divergence speed. If the moment is modelled as a 

cubic hardening spring with a coefficient 𝑘3, the static equilibrium in pitch may follow a 

supercritical pitchfork bifurcation for airspeeds above the analytical divergence speed. This is 

shown in Equations 1.34-1.36, where 𝐾𝑡𝑜𝑡 is the total linear aeroelastic stiffness.  

𝐾𝜃𝜃 + 𝑘3𝜃3 = [𝑒𝜌𝑈∞
2𝑏𝑙2𝜋]𝜃              [1.34] 

(𝐾𝑡𝑜𝑡 + 𝑘3𝜃2)𝜃 = 0                   [1.35] 

Where, 

𝐾𝑡𝑜𝑡 =  𝐾𝜃 − 𝑒𝜌𝑈∞
2𝑏𝑙2𝜋         [1.36] 
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The solutions of which are given in Equation 1.37, where 𝜃𝑒𝑞 is the static equilibrium point. There 

is the trivial case of the equilibrium point at zero. The second set of solutions only exists past 

𝑈𝑑𝑖𝑣, and only when 𝐾𝑡𝑜𝑡< 0, which occurs when the EA is negative and aft of the aerodynamic 

centre. The two sets of solutions are schematized in Figure 1.11. The solid lines indicate a stable 

state, while the dotted lines indicate an unstable state.  

𝜃𝑒𝑞 = 0, 𝜃𝑒𝑞 = ±√
−𝐾𝑡𝑜𝑡

𝑘3
     [1.37] 

 

Figure 1.11: Schematic of supercritical pitchfork bifurcation for non-linear analytical solutions to 

divergence.  

1.5.2 Coupled Flutter 

 Coupled flutter, or coalescence flutter, is the most studied type of flutter to date. It occurs 

as a result of a coupling of two degrees of freedom, where a dynamic aeroelastic instability arises 

at a critical speed termed the “critical flutter speed” [3]. At speeds above the critical flutter 

speed, energy is transferred to the structure as a wing begins to oscillate. The total aeroelastic 

damping of the system at this point also decreases below zero. The oscillations either become 

more violent and cause the wing to break, or are limited by the aerodynamics and enter an LCO 

regime. When the system is below the critical flutter airspeed, all perturbations settle since the 

overall damping remains positive.  

The coupling between two degrees of freedom, most commonly pitch and heave, permits 

the transfer of energy from the flow to the airfoil. Positive work done by the flow on the airfoil 

indicates that the oscillations are not forced, and are self-sustained. The phase angle between the 

pitch and heave degrees of freedom is an important consideration in relation to the system’s 

coupling behaviour. Assuming SHM and integrating the work, it was presented in Fung that for 

the overall work on the airfoil to remain positive, the lift and heave velocity be in opposite 
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directions for a large part of the cycle [3]. The phase difference between the two motions is 

therefore crucial to produce flutter. 

 When a 2DOF aeroelastic system approaches the critical flutter speed, the modal 

frequencies of each coalesce towards each other. As the resulting modal frequencies coalesce 

(coalescence of the modal frequencies is close but never exact), the decay rate of one of the 

modes becomes negative, inducing instability. The nature of these modes is illustrated by the 

results of linear modelling in Figure 1.12. Re-plotting the modal frequencies with decay rate in 

the Argand plane, the algebraic relation between the roots becomes more obvious. Here it can be 

observed that as the modal frequencies move towards each other, the decay rate of one branch 

becomes negative.  

It can be inferred that the closer the structural natural frequencies are to each other, the 

sooner coalescence will occur and the lower the critical flutter speed will be [20]. The general 

trend of the frequency ratio (𝜔̅ = √𝐾ℎ 𝑀ℎ⁄ √𝐾𝜃 𝐼𝐸𝐴⁄⁄  ) with critical flutter speed is illustrated in 

Figure 1.14, where a ‘dip’ occurs around a frequency ratio of 1. The behaviour of coupled flutter 

for a particular aerodynamic system can therefore be controlled by the stiffness characteristics of 

the airfoil. 

 

Figure 1.12: Schematic of coupled and damping-airspeed (top), frequency-airspeed (bottom), curves.  
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Figure 1.13: Schematic of coupled frequency-damping curves in the Argand plane. 

 

Figure 1.14: Theoretical and experimental curves for flutter speed with varying frequency ratio, for a 

2DOF system in bending and torsion. Taken from [20] 

Linear models covered in sections 1.4.3 and 1.4.4 can be used to predict the flutter 

behaviour until the flutter speed. Generally, an estimated reduced frequency value from the 

experimental flutter induced LCO is used to determine whether to use a quasi-steady versus 

unsteady model. Assuming quasi-steady flow for the purposes of this example, Equations 1.10 

and 1.13, outlined in section 1.4.3, can be used to estimate the aerodynamic lift and moment 

about the quarter-chord point. Combining all terms and rearranging, the overall equation can be 

compactly simplified in matrix form.  

[𝑀] {ℎ̈
𝜃̈

} + [𝐷] {ℎ̇
𝜃̇

} + [𝐾] {
ℎ
𝜃

} = {
0
0

}      [1.38] 
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In order to solve the system’s equation of motion and determine the eigenvalues for a range of 

airspeeds, the equations are translated into the Laplace domain.  

[𝑠2[𝑀] + 𝑠[𝐷] + [𝐾]] {
𝐻(𝑠)
𝜃(𝑠)

} = {0}     [1.39] 

Where s is the complex variable in the Laplace domain, and the matrices M, D and K are 2×2 for 

this case. Calculating the determinant of the above matrix will produce the characteristic 

polynomial shown in Equation 1.40. The roots of which give the eigenvalues, with Pn being 

arbitrary real coefficients of the polynomial.  

|[𝐴]| = 𝑃4𝑠4 + 𝑃3𝑠3 + 𝑃2𝑠2 + 𝑃1𝑠 + 𝑃0 = 0           [1.40] 

The fourth order polynomial will have two conjugate pairs of complex roots, which are a 

function of airspeed. Each pair corresponds to a particular mode: two complex conjugate pairs 

for two modes. The complex solution is of the type presented in Equation 1.41, where j is a 

number from 1 to 4. While this case is applied to quasi-steady models, the same process is used 

for different models. Unsteady models, such as Wagner’s, produce two additional roots. From 

two equations of motion, the quasi-steady model produces four complex roots, while two real 

roots result from the third equation of motion associated with the unsteady aerodynamics.     

𝑠𝑗 = −𝛽𝑗 ± 𝑖𝜔𝑑𝑗                    [1.41] 

The coupled decay rate β will be a positive number when the system is stable and the 

oscillations due to a perturbation are damped out. Once the decay rate reaches zero for one mode, 

there is zero damping and the system is said to have reached the critical flutter speed. The 

coupled eigen-frequency for each mode is represented by ωdj. Representative of coalescence 

flutter is the nature of the coalescence of the eigen-frequencies towards each other as the flutter 

speed is approached. The nature of the decay rate, as well as the coupled eigen-frequencies can 

be determined by plotting their values at varying airspeeds. The nature of the modal branch 

associated with the decay rate crossing the x-axis may dictate the occurrence and strength of the 

flutter [13]. Therefore there are two forms of coalescence flutter: hard and soft. A steeper branch 

slope may predict more explosive and energetic flutter. These linear models however fall short in 

predicting aeroelastic behaviour if oscillations stabilize to an LCO due to the non-linear 

dynamics. A comprehensive understanding of coupled flutter post-critical responses has not been 

achieved yet. In most cases, the studies refer to systems with mechanical non-linearities which 

blend with the aerodynamic non-linearities associated with leading-edge separation [21].  

A notable study conducted by Pigolotti et al. investigate the influence of the position of 

the centre of mass, as well as the effect of varying frequency ratios and heave damping on the 

coupled flutter induced LCO response of a pitching flat plate [21]. It was found that a small static 

imbalance introduces an inertial coupling which enhances the vibration intensity, and energy 

extraction from the flow. The influence of frequency ratio was also found to be apparent, where 
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all configurations for a frequency ratio close to one show a similar response in the post-critical 

regime. At a frequency ratio close to one, both DOFs experience large oscillation amplitudes. 

Greater heave oscillation amplitudes were observed for frequency ratios below one, while the 

pitching amplitude was reduced. For a frequency ratio above one, the oscillations were in-phase, 

and reduced for both degrees of freedom. For all configurations other than for a frequency ratio 

of 1.24, an increase in the heave damping reduces the oscillation amplitudes. For a frequency 

ratio of 1.24 however, the oscillation amplitude in pitch is enhanced with increased structural 

damping in heave, while the heave response remains mostly unchanged. It was observed that the 

amplitude-velocity curves of all tested configurations originated from a common point, and 

resembled a supercritical Hopf bifurcation trend in the LCO amplitude with airspeed, as 

described by Dowell et al. [4].     

1.5.3 Stall Flutter 

Stall flutter is an aeroelastic phenomenon associated with dynamic stall as a wing pitches 

in and out of leading-edge separation conditions at large pitch amplitudes, thus inducing negative 

aerodynamic damping for part of the cycle [3, 22]. It is fundamentally a non-linear problem, and 

is triggered by a large amplitude disturbance if the wing is initially resting at a small AoA 

equilibrium. Because it is inherently non-linear, analytical linear models fall short on estimating 

its onset and behaviour. Unlike coupled (classic) flutter which requires two 2DOF, stall flutter 

may occur in 1DOF pitching motion. When instability is induced, the oscillation grows until it 

becomes limited by the flow. At this point the airfoil motion reaches an LCO.  

While stall flutter is an aeroelastic occurrence, dynamic stall is an unsteady aerodynamic 

phenomenon. Characteristic of dynamic stall is an induced hysteresis in the aerodynamic loads of 

an airfoil undergoing forced SHM. The predominant feature of dynamic stall is the formation, 

shedding and convection over the surface of the airfoil of an energetic vortex-like disturbance. 

This convection induces a non-linearly fluctuating pressure field, and produces transient 

variations in forces and moments that are fundamentally different from steady-state 

aerodynamics [23]. Figure 1.15 presents a schematic of static aerodynamic moment coefficients 

with increasing AoA, along with superimposed moment coefficients for an airfoil undergoing 

forced SHM inside and outside the stall regime. As can be observed, a hysteresis loop in the 

aerodynamic moment for an airfoil with an elastic axis aft of the aerodynamic centre occurs 

when the wing pitches in and out of the stall regime, indicating non-linear behaviour.  

A clockwise loop, and subsequent negative aerodynamic damping occurs in the stall 

region, where energy is transferred to the structure. In this region, positive work is done by 

aerodynamic forces, and acts in the direction of the airfoil motion. Positive aerodynamic 

damping, and negative work occurs when the airfoil motion exits the stall region. Counter-

clockwise elliptical loops occur for linear and stable behaviour outside the stall region, while the 

flow is attached. As pointed out by Dimitriadis and Li, while an extensive amount of literature 

exploring the behaviour of dynamic stall exists, there remains much to be understood about the 
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aeroelastic response of stall flutter [24]. Due to the highly non-linear nature of stall flutter, its 

behaviour is difficult to model and as a result, previous work has been primarily experimental. 

Related studies investigated LCOs of NACA 0012 airfoils within the transitional Reynolds 

number (104≤ Rec ≤ 106) regime, and for elastic axis locations at or aft of the aerodynamic centre 

(EA≥ 0.25c). Since stall-flutter is known to be associated with dynamic stall, cited studies have 

analyzed oscillations about a large non-zero AoA (asymmetric) [24-25]. Reports on oscillations 

about a zero AoA (symmetric) on the other hand, have been sparse. Of the most relevant studies, 

Dimitriadis and Li investigated 2DOF stall flutter induced LCOs, where the relative stiffness in 

heave was much higher than in pitch (𝜔̅ = 6.94).  

 
Figure 1.15: Aerodynamic moment coefficient with AoA. Included are loops associated with the unsteady 

forced SHM in the laminar and stall regimes. Adapted from [22] 
  

The experimental set-up of the study conducted by Dimitriadis and Li in 2009 comprised 

of a rigid NACA 0012 with an elastic axis located at 38.3% of the chord length. The theoretical 

divergence airspeed was determined to be 17.9 m/s, which fell within the range of airspeeds 

tested 12 m/s ≤ U∞ ≤ 27 m/s (2.4×105 ≤ Rec ≤ 5.4×105) [24]. Symmetric LCOs occurred until 18 

m/s, after which asymmetric LCOs were observed. The asymmetric oscillations were theorized 

by the authors to be associated with the onset of divergence, since they occurred just past the 

theoretical divergence airspeed. Within this region, both symmetric and asymmetric oscillation 

coexisted, however the asymmetric LCOs acted as the stronger attractor. The amplitude and 

frequency of the symmetric oscillations increased in value until about 15 m/s, after which a 

constant amplitude plateau of 40° was reached. The unsteady aerodynamic moment was plotted 

with AoA at 16.8 m/s (Rec = 3.4×105) revealing stable and unstable regions: an inner loop 

enclosed by two outer loops. The lift with AoA was also plotted, and revealed a ‘bow-tie’ shape 

with oscillations. Asymmetry in the outer loops of the graph is thought to be attributed to the bias 

in the flow. Although the tests were conducted in the transitional region, no SAOs were observed 

in this study. The static lift and pitching moment coefficient measurements did not reveal any 

non-linearities, indicating the possibility of high free-stream turbulence in the experimental set-
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up. Other studies include Bhat and Govardhan in 2013, where only asymmetric oscillation 

amplitudes of 2°, 4°, 6°, about a mean AoA of 15° were observed [25]. Measurements were 

conducted at Reynolds numbers on the order of 3×104, with a NACA 0012 airfoil oscillating 

about the quarter-chord. The net energy transferred to the airfoil was found to be positive when 

the AoA about which the LCOs occurred was greater than the airfoil stall angle. Particle Image 

Velocimetry (PIV) was also conducted to visualize the leading-edge vortex.  

1.5.4 Lock – in  

Lock-in is another aeroelastic phenomenon, usually occurring over elastically mounted 

bluff-bodies interacting with shed vortices. The resulting resonant vibration of a cylinder with 

diameter D is induced through the aeroelastic interaction with its own shed vortices into the 

wake of frequency fs. The shed vortices of alternating sign in the wake of a static cylinder is 

known as a von Kármán vortex street. The behaviour follows the Strouhal law (St = 𝑓𝑠𝐷 𝑈∞⁄ ) at 

subcritical Reynolds numbers or shear-layer transition regime [26-27]. A typical value is St = 

0.2.  

 

The cylinder vibrates at a frequency f when the vortices act as a forcing mechanism. For a 

cylinder elastically restrained with a restoring force, resonance occurs when the shedding 

frequency is close to the structural natural frequency fn. As a result, a coupling occurs between 

the heave oscillation and the shedding frequency, a schematic for which is presented in Figure 

1.16 below. The large amplitude response of the cylinder affects the behaviour of the vortex 

shedding, such that the shedding frequency becomes locked into the natural frequency of the 

cylinder. This is the point at which lock-in occurs. The oscillation amplitude and frequency 

behaviour are schematized below in Figure 1.17 The left graph shows the plateau in the ratio of 

the oscillation frequency over the natural structural frequency, characteristic of lock-in. The right 

graph represents the resonance peak in the non-dimensional heave amplitude at lock-in.  

 

 

Figure 1.16: Cylinder interacting in a feedback relationship with Kármán vortex shedding during lock-in. 

Taken from [28] 
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Figure 1.17: Characteristic behaviour of an oscillating cylinder in and out of the lock-in region. Adapted 

from [28] 

1.5.5 Laminar Separation Flutter 

Low to transitional Reynolds number effects have been shown to have a significant 

influence on an elastic airfoil. In flows with low free-stream turbulence, laminar boundary-layer 

separation can occur at AoAs below stall angles. Transition of the laminar shear layer, and 

subsequent turbulent reattachment leads to the formation of a laminar separation bubble (LSB) at 

small AoA [29-31]. A schematic of the LSB is shown in Figure 1.18. The resulting non-linear 

variation of the static aerodynamic lift and moment, due to the formation of an LSB at small 

AoA, is shown below in Figure 1.19. As previously investigated, small constant amplitude LCOs 

(SAOs), in either 1DOF or 2DOF, occur as a result of feedback coupling mechanism between the 

LSB behaviour and the structural response. Much of the previous work done was conducted at 

RMC, or collectively at University of Laval, Carleton, and NRC [32-33]. The resulting negative 

aerodynamic damping occurs in the static non-linear region at low AoA. It was found that adding 

roughness to an airfoil or increasing the free-steam turbulence levels repressed the existence of 

SAOs. From experimental results conducted at RMC, the amplitude and frequency of the SAOs 

do not differ much between 1DOF and 2DOF cases [13]. However, the introduction of the heave 

degree of freedom significantly increases the energy transfer from the flow to the structure, even 

though SAOs have been shown to be fundamentally a 1DOF problem.  

In a 2010 study by Poirel and Yuan, the aerodynamic moment of a NACA 0012 airfoil 

undergoing 1DOF small amplitude LCOs was investigated at a Reynolds number of 7.7×104, 

with the EA set to 18.6% of the chord length [33]. The moment is calculated from experiment, as 

well as fitted empirically as a Duffing-van-der-Pol nonlinearity. Large eddy simulations (LES) of 

the flow about the airfoil undergoing prescribed SHM using the amplitude and frequency from 

experiment were also performed. The characteristics of the aeroelastic LCO are reminiscent of 

stall flutter, except that they occur at moderate AoAs, and show a strong sensitivity to Reynolds 

number. It was determined from the results that the aerodynamic stiffness is highly non-linear 

and behaves as a softening spring within the tested AoAs considered. Although the pitch motion 
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resembles SHM, the plotted aerodynamic moment, as shown in Figure 1.20, contains hysteresis 

effects associated with nonlinear content in the response. The contrast between linear and non-

linear models can be seen by comparing the defined elliptical shape for the linear case, as well as 

the counter-clockwise direction of the loop indicating negative work done by the flow. Similar to 

stall-flutter, classical unsteady linear models fall short in predicting SAO behaviour, indicating a 

non-linear influence of the LSB.  

 

 
Figure 1.18: Schematic of the Laminar Separation Bubble (adapted from [34]) 

 

 
 

Figure 1.19: Experimentally obtained aerodynamic coefficients for symmetrical airfoils and low free-

stream turbulence (taken from [13]) 
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Figure 1.20: Aerodynamic moment coefficient as a function of pitch angle during one cycle for linear and 

non-linear analytical models of laminar separation flutter (taken from [33]). 

 

1.6 Aerodynamic Work and Energy 

For a 2DOF airfoil free to oscillate in pitch and heave, as defined in section 1.4.1, the 

work done by the aerodynamic loads can be calculated using Equation 1.42 below. Knowing the 

structural parameters of the system, as well as differentiating the position data to obtain the 

velocity and acceleration, the aerodynamic moment and lift can be calculated using the equations 

of motion 1.2 and 1.3. The aerodynamic loads can then be calculated at each time step. If the 

airfoil is undergoing nonstationary periodic motion, the calculated work is averaged to obtain the 

value done per cycle.  

 

𝑊̅ =  ∮ 𝑀𝐸𝐴 d𝜃 + ∮ 𝐿dℎ                         [1.42] 

 

Assuming SHM in pitch and heave, the subsequent linear aerodynamic moment and lift 

distributions with the pitch and heave follow elliptical distributions. These ellipses are visualized 

as schematics in Figure 1.21, where the total amount of work per cycle represents the area 

enclosed within the ellipse. The work calculation can be decomposed into the following integrals 

based on this concept.  
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Figure 1.21: Schematic of moment response with pitch and lift response with heave for a 2DOF 

aerodynamic system undergoing SHM. Both cases are counter-clockwise and therefore represent the 

structure expending energy into the flow. 

 

𝑊̅ = [∫ 𝑀𝐸𝐴 d𝜃 + ∫ 𝑀𝐸𝐴 d𝜃
1

2

1

0
] + [∫ 𝐿 dℎ + ∫ 𝐿 dℎ

1

2

1

0
]                   [1.43] 

 

The calculation for work is path dependant. In Figure 1.21 the negative work done from t1 to t2 

exceeds the positive work done from t0 to t1. The resulting loop is counter-clockwise, and the 

overall calculated work done by the aerodynamics from Equation 1.43 becomes negative, 

indicating a stable system. A clockwise loop would indicate instability, where positive overall 

work is transferred to the structure. Since the inertia and stiffness terms are conservative and do 

not contribute to the net-work per cycle, the analytical equation can be derived for SHM motion, 

as presented in Equations 1.44 and 1.45 [13]. Here, the pitch amplitude of the SHM is 

represented by 𝜃0, the heave amplitude by ℎ0, while the circular frequency is 𝜔 and the phase 𝜑. 

 

      𝜃 = 𝜃0 sin 𝜔𝑡                                                        [1.44] 

ℎ = ℎ0 sin(𝜔𝑡 − 𝜑)                                                   [1.45] 

 

𝑊̅ =  𝐷𝜃𝜃0
2𝜔𝜋 + 𝐷ℎℎ0

2𝜔𝜋            [1.46] 

 

The cycle-averaged power can be determined from the loads, as well as from the cycle-averaged 

work. It can also be expressed analytically in Equation 1.48.  

 

𝑃̅ =  
1

𝑇
∫ [𝑀𝐸𝐴𝜃̇ + 𝐿ℎ̇]d𝑡

𝑡+𝑇

𝑡
=  

𝑊̅

𝑇
                      [1.47] 

𝑃̅ =
𝐷𝜃𝜃0

2𝜔2

2
 +  

𝐷ℎℎ0
2𝜔2

2
                [1.48] 

Despite several definitions for aerodynamic efficiency found in literature, the one used in this 

study corresponds to the analysis performed by Kinsey and Dumas in 2014 [6]. This definition of 
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efficiency 𝜂 is calculated by finding the percent of extracted power from the power available in 

the stream, and is expressed in Equation 1.49. The power available 𝑃𝑎 is defined as the flux of 

the kinetic energy flowing through the overall swept area. The span is 𝑙, and 𝑑 is the total length 

traversed by the oscillation, which includes the additional distance projected by the pitch motion 

as illustrated in Figure 1.5 in Section 1.2.  

𝜂 =  
𝑃̅

𝑃𝑎
                              [1.49] 

𝑃𝑎 =
1

2
𝜌𝑈∞

3𝑙𝑑       [1.50] 

An alternative definition uses the heave amplitude rather than the overall swept area. Others 

express the efficiency as a percentage of the Betz limit (𝜂𝑚𝑎𝑥 = 16/27). The Betz limit is known 

as the theoretical maximum percent of extracted power from a flow, and is derived analytically 

assuming steady and inviscid flow through an actuator disk in a stream tube. 

The averaged kinetic energy per oscillation cycle can also be calculated numerically with 

reference to the centre of gravity.  

𝐾𝐸̅̅ ̅̅ =  
1

𝑇
∫

𝑀ℎℎ̇𝐶𝐺
2

2

𝑇

0
d𝑡 +

1

𝑇
∫

𝐼𝐶𝐺𝜃̇2

2

𝑇

0
d𝑡             [1.51] 

where,  

𝐼𝐶𝐺 = 𝐼𝐸𝐴 − 𝑀𝜃 (
𝑥𝜃𝑐

2
)

2
           [1.52] 

ℎ𝐶𝐺 = ℎ − 𝑀𝜃
𝑥𝜃𝑐

2
𝜃           [1.53] 

For SHM, and by considering the phase angle between h and θ, the equation below can be 

derived [13], where ℎ0𝐶𝐺
 is the heave amplitude about the CG.  

𝐾𝐸̅̅ ̅̅ =
𝑀ℎℎ0𝐶𝐺

2𝜔2

4
+

𝐼𝐶𝐺𝜃0
2𝜔2

4
                              [1.54] 
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Chapter 2 – Experimental Methods  

2.1 Experimental Test Rig 

Experiments were conducted in the large recirculating wind tunnel at the Royal Military 

College of Canada, illustrated in Figure 2.1. The test section has cross sectional dimensions of 

0.76 m x 1.08 m, and a maximum turbulence intensity level of 0.2%. Compressibility effects 

were not considered since the Mach numbers of the experiments did not exceed 0.05. As 

depicted in Figure 2.1, the test-section is located just after the contraction. The experimental 

apparatus of the test-section is composed of a rigid NACA 0012 wing of constant chord length, 

and smooth surface. Schematics of the aeroelastic test-section used are included below in Figures 

2.2 and 2.3. The apparatus is capable of exhibiting fundamental linear and nonlinear aeroelastic 

phenomena, such as flutter and LCOs.  

 

Figure 2.1: Schematic of the Closed Circuit Wind Tunnel, taken from [14]. 

 As presented in Figure 2.2, the airfoil is mounted vertically in the test-section. The 

orientation of coordinate systems is included. A side view of the test section is presented in 

Figure 2.3, illustrating the location of the Pitot-static tube and thermocouple in relation to the 

direction of the airflow and aeroelastic set-up. Endplates are located above and below the wing to 

minimize three-dimensional effects. The airfoil is free to oscillate in 2DOF: pitch and heave. For 

stall-flutter induced LCOs in 1DOF, the airfoil was free to oscillate in pitch and constrained in 

heave. The motion is directed through pulley-spring assemblies in both pitch and heave degrees 

of freedom.  
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Figure 2.2: Schematic of experimental set-up used for this study Schematic adapted [14]. 

 

Figure 2.3: Side-view of aeroelastic test-section 

Further details of the experimental system are illustrated from Figures 2.4 to 2.6. The 

wing is attached to two rods, one on each end, and connects to the test section through rotational 

bearings which permit movement in pitch. These rods pass through oblong openings cut into the 

endplates, and upper and lower sides of the test section. The ends of the rods are connected to 

mirrored pulley-spring assemblies on the bottom and top of the section, which themselves are 

attached to plates that translate the entire wing in heave. A set of rails permits the motion in 
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heave through roller bearing assemblies which are screwed into the plates. Like the pulley-spring 

assembly in pitch, the movement in heave is defined by a set of pulleys on the top and bottom of 

the test section, and are connected to each other through an external rod. 

Each set of pulleys are connected to pairs of coplanar springs through the use of 1/32 inch 

wire rope. The springs provide an elastic restoring force, as well as the overall structural stiffness 

in both degrees of freedom. Spring extensions were added in order to ensure that the springs 

remain in tension during any experiment. The motion of the airfoil was recorded using rotary 

potentiometers in both pitch and heave. These potentiometers are attached to the bottom pitch 

and heave pulleys. A linear calibration curve was used in order to determine the position from a 

given voltage output.  

 

Figure 2.4: External rod on side of test section connecting heave spring/pulley systems 
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Figure 2.5: Bottom side of test section, illustrating heave and pitch spring/pulley mechanisms 

2.2 Physical Parameters 

2.2.1 Geometric and Structural Parameters 

 The equations of motion for the system analyzed in this study are derived for a two-

dimensional thin, symmetrical airfoil with degrees of freedom in bending and torsion, as outlined 

in section 1.4.1. The Equations 1.2 and 1.3 in section 1.4.1 are thus obtained for the same 

coordinate system, and used in subsequent analysis. The frequency ratio of the system is defined 

as the ratio of the uncoupled structural natural frequency in the heave degree of freedom, over 

the pitch. For this system, it is defined by Equations 2.1-2.3.  

𝜔ℎ = √
𝐾ℎ

𝑀ℎ
                              [ 2.1 ]                              𝜔𝜃 = √

𝐾𝜃

𝐼𝐸𝐴
                           [2.2] 

𝜔̅ =  
𝜔ℎ

𝜔𝜃
                                                                                [2.3] 
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Several parameters of the system remained unchanged for each experiment. These 

include the geometry of the wing, nominal spring stiffness in pitch, the mass of the heaving 

parts, mass of the pitching parts, and pitch pulley radius (rθ). Table 2.1 below presents a 

summary of constant structural values.  

Experimental Parameter Value 

c (m) 0.156 

l (m) 0.61  

rθ (m) 0.035 

K
θ  

(N·m/rad) 0.3 

Mh (kg) 2.5 

Mθ (kg) 0.77 

Table 2.1: Constant structural parameters for the aeroelastic system 

 

Figure 2.6: Airfoil assembly with pitch pulley connection 
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2.2.2 Uncoupled No-Flow Structural Constants 

 Using the no-flow dynamic response data, the structural parameters of the system can be 

estimated. The total stiffness in pitch and heave are calculated directly from the individual spring 

stiffness, for four springs in total, where Kθ = 4rθ
2kθ and Kh = 4kh. The individual linear spring 

stiffness coefficients were determined by measuring the linear extension of the springs, by 

hanging a certain amount of applied weight from one end. The following equations are used for 

each no-flow case, where the pitch and heave degrees of freedom were isolated resulting in two 

uncoupled equations of motion. For the each set of experiments in 2DOF, the stiffness in pitch 

was kept a constant 0.3 Nm/rad, whereas the springs in heave were varied to observe behaviours 

for a range of frequency ratios. Configurations tested varied overall heave stiffness from 

approximately 307.1 N/m to 1533.2 N/m. Experiments exploring 1DOF oscillations explored 

pitch stiffness values of 0.15 Nm/rad, 0.2 Nm/rad, 0.3 Nm/rad and 0.35 Nm/rad. 

𝐼𝐸𝐴𝜃̈ + 𝐷𝜃𝜃̇ + 𝐾𝜃𝜃 = 0                                                                 [2.4] 

𝑀ℎℎ̈ + 𝐷ℎℎ̇ + 𝐾ℎℎ = 0                                                                 [2.5] 

Knowing both pitch and heave structural stiffness, the moment of inertia, mass of the heave 

components, as well as the structural damping in pitch and heave can be calculated from the 

above equations of motion, by assuming the characteristic Equation 2.6. The structural damping 

coefficients for each degree of freedom are assumed to be constant, the analysis is elaborated on 

in the following section. These can be determined from the equations of motion described above, 

where each term can be defined below.  

𝑥̈ + 2𝜁𝜔𝑛𝑥̇ + 𝜔𝑛
2𝑥 = 0                                                                    [2.6] 

𝐼𝐸𝐴 =
𝐾𝜃

𝜔𝜃
2

                        [2.7]                                 𝑀ℎ =
𝐾ℎ

𝜔ℎ
2

                                  [2.8] 

𝐷𝜃 = 2𝜁𝜃𝜔𝜃𝐼𝐸𝐴                   [2.9]                             𝐷ℎ = 2𝜁ℎ𝜔ℎ𝑀ℎ                           [2.10] 

 

2.2.3 Free-Decay Procedure and Analysis 

  Three free-decay tests were carried out before and after each test in order to determine 

the structural parameters of the system, as well as to ensure that no changes to the system 

occurred. This process involved constraining one degree of freedom while recording the no-flow 

response in the other. Wooden blocks were used in order to prevent the roller bearings from 

sliding, constraining any motion in heave. The pitch pulleys were constrained by using a set-

screw to prevent pulley rotation.  

 A perturbation was induced in either heave or pitch, during which data of the response 

was recorded. A linear oscillatory decay was observed, as can be seen in the example in Figure 
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2.7. The data was filtered using a second-order low-pass filter algorithm in MATLAB, with a 

cut-off frequency just above the estimated natural frequency in either pitch or heave. A peak-to-

peak analysis was conducted, where the peaks of the local oscillation amplitude were located 

using an in-built function in MATLAB.  

The natural and damped frequencies, as well as the damping ratios are determined 

experimentally by performing a peak-to-peak analysis of the no-flow free decay response. The 

damped natural frequency of either pitch or heave was calculated by determining the period of 

oscillation between the two peaks. The logarithmic decrement between peaks was used in order 

to calculate the damping ratio. The equations for the 1DOF pitch-only case are outlined below. 

Values where the damping ratio was observed to remain approximately constant were used to 

calculate the overall damping ratio and damping coefficient. An average of the values was taken 

in order to determine a constant value for the structural damping coefficient. A constant damping 

ratio indicates exponential decay and linear behaviour. The damping ratio was observed to vary 

inside the region where small amplitudes of the oscillation, in both pitch and heave, occurred. 

The varying damping ratio is theorized to be a result of dry-friction.  

𝜔𝑑𝜃 =
2𝜋

𝜏𝑑𝜃
                       [2.11]                           𝛿𝜃 =  ln

𝜃1

𝜃2
                                    [2.12] 

𝜁𝜃 =  
𝛿𝜃

√(2𝜋)2+𝛿𝜃
2

                 [2.13]                             𝜔𝜃 =
𝜔𝑑𝜃

√1−𝜁𝜃
2

                               [2.14] 

 

Figure 2.7: Example of free-decay response of pitch only case (left), and local natural frequencies and 

damping ratios used to calculate structural coefficient values (right), for September 18thtest. 
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Figure 2.8: Close up of peaks used in free-decay analysis for pitch only example case.  

2.2.4 Elastic Axis Location 

Two sets of experiments, both with differing responses, were performed for elastic axis 

locations at 27% and 35% of the chord length from the leading edge. A schematic of the airfoil 

with the different elastic axis locations used in the study is included in Figure 2.9. A table with 

structural values corresponding to each elastic axis value is shown in Table 2.2. The values for 

static imbalance were taken from previous studies using the same set-up.  

 

Figure 2.9: Schematic of airfoil and relative positions of elastic axis tested. Not to scale. 
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 Elastic Axis 

Location 
IEA (kg·m2) xθ ah 

EA0 
27% chord 

length 
0.0011 0.093 -0.46 

EA1 
35% chord 

length 
0.0010 0.004 -0.3 

Table 2.2: Calculated structural values for each elastic axis location tested.  

 

2.3 Experimental Procedure  

The springs were adjusted for each test in order to maintain extension during an 

experiment. This was ensured to avoid the motion of the airfoil to enter the compression region 

of the springs, which are associated with additional non-linearity of the system. Extra care was 

taken in order to align the wing in both pitch and heave, to minimize any additional biases. 

LCOs were induced with an initial manual excitation in heave for 2DOF experiments. 

Manual excitations in pitch were performed for 1DOF stall flutter LCO experiments. Once the 

LCO amplitude and free-stream velocity reached steady state, data was recorded for at least 30 

seconds using a sampling rate of 1 kHz. The voltage output from the rotary potentiometers were 

recorded by a NI PCI-6034E A/D card, using a Lab-View program. The maximum duration of 

data collected was 80 seconds, which corresponds to approximately 200 LCO cycles. These 

values were determined through a convergence study, elaborated in Appendix A. The RPM of 

the wind tunnel, thus airspeed, was subsequently increased, and the process repeated.  

2.3.1 Temperature Measurement 

 The temperature inside the test section was measured using a thermocouple attached to a 

digital thermometer. The thermocouple was attached to the side opening of the test section, the 

probe was extended into the middle of the test section behind the trailing edge of the airfoil. The 

set-up is represented in the previous section (Figure 2.3). The ambient pressure was determined 

from a barometer located in the laboratory area. The density of the air was then calculated using 

Equation 2.15. The error in the atmospheric pressure was estimated to be about ±50 Pa from the 

barometer measurements, while the ambient temperature varied within ±0.1°K. The error in the 

density was estimated to be ±0.001 kg/m3. 

𝜌 =
𝑃𝑎𝑡𝑚

𝑅𝑎𝑖𝑟𝑇∞
                                                                         [2.15] 
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2.3.2 Airspeed 

The airspeed was determined by using a pitot-static tube located at the inlet of the test-

section, and was connected to a pressure transducer connected to a digital voltmeter. The output 

voltage from the pressure transducer was calibrated to give the dynamic pressure (pressure 

difference between the ambient pressure and the stagnation pressure in the pitot tube), from 

which the free-stream velocity in the wind tunnel can be calculated. The free-stream velocity was 

calculated once the oscillation of the airfoil reached steady-state, since there was a decrease in 

voltage while the wing was undergoing LCOs. This artefact is a result of kinetic energy being 

extracted from the flow. The following equations were used to calculate airspeed:  

𝑃𝑑𝑦𝑛 = 673.7(𝑉 − 𝑉0)                                                                [2.16]   

𝑈∞ = √
2𝑃𝑑𝑦𝑛

𝜌
                                                                         [2.17] 

where V is the measured voltage at a non-zero airspeed, and V0 is the recorded no-flow voltage 

corresponding to the ambient pressure. The error in V0 was estimated from the voltmeter to be 

±0.001 V, while the error in V was calculated to be ±0.01 V. The corresponding error in the 

dynamic pressure was determined to be approximately ±7 Pa, while the error in the airspeed was 

estimated to be ±0.7 m/s.    
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Chapter 3 – Coupled Flutter 

 For the case where the elastic axis is located at 0.27c, both SAOs and large amplitude 

LCOs coexist. For instance, Mendes focussed on the behaviour of 1DOF and 2DOF SAOs for 

similar stiffness configurations [14]. While SAOs have been observed in this current study, the 

results and analysis in this chapter focus on the nature of the sustained large amplitude 

oscillations occurring when the EA is set at 27% of the chord length. These LCOs are due to 

coupled flutter rather than stall flutter, as will be discussed in the following sections. Note that 

the occurrence of SAOs indicate potential Reynolds number effects on the coupled flutter LCO 

behaviour.  

3.1 Experimental Results for Coupled Flutter Limit Cycle 

Oscillations 

Experiments were conducted for 3.65 m/s ≤ U∞ ≤ 14.0 m/s (3.7×104 ≤ Rec ≤ 1.45×105). 

Error in the airspeed measurements was determined to be ±0.7 m/s. The analytical divergence 

speed for this configuration was calculated to be 16.37 m/s using Equation 1.32 for a pitch 

stiffness of 0.3 Nm/rad, and did not fall within the airspeeds tested. The pitch stiffness was kept 

constant for each test in this configuration. Frequency ratios tested included 0.67 ≤ 𝜔̅ ≤ 1.34 for 

a range of heave springs. The static imbalance of this configuration is xθ = 0.093, indicating a 

larger degree of inertial coupling in the structural system compared to the case where the EA is 

set at 0.35c. 

 It will be shown in section 3.2 that the similarity in flutter speeds between model and 

experiment supports the assumption that the phenomenon observed is coupled flutter. In 

addition, no 1DOF oscillations were observed within the airspeeds tested as oscillations died out 

when blocked in either degree-of-freedom. On the other hand, while a linear model is used to 

determine the approximate airspeed at which flutter will occur, no analytical solution exists to 

predict the nature of the LCO response due to its non-linear nature. 

All LCOs were induced with a perturbation from rest, except for the cases where 𝜔̅ = 

0.67 and 𝜔̅ = 0.71. For these two configurations, the first couple of test points were obtained 

while the airspeed of the wind tunnel was decreased from the maximum. Whether this 

corresponds to a subcritical Hopf bifurcation as presented by Dowell et al remains unclear [4]. 

Data was collected until the intensity of the oscillations was deemed to approach the limits of the 

experimental rig. The behaviour of the oscillations for almost all configurations resembled well-

behaved SHM about a near zero AoA. The offset in the oscillations for coupled flutter induced 

LCOs was found to fall at or below error, where the maximum offset was calculated to be about 

1.3 degrees in pitch, and -0.049 cm in heave for frequency ratios below 1.34. The error in pitch 

and heave was found to be ±1.4 degrees and ±0.42 cm respectively. In addition, the standard 

deviation in pitch and heave was calculated to be 0.36 degrees and 0.05 cm respectively.  
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The most violent oscillations were observed for 𝜔̅ = 1.34, where the springs themselves 

shook so much that it became necessary to use extra securing mechanisms. The error for this 

case was found to be increased in heave rather than pitch. The values were calculated to be ±0.85 

degrees in pitch, and ±1.7 cm in heave (50%). The standard deviation was also increased in 

heave, where it was determined to be 0.76 cm (25 %), while 0.34 degrees was calculated for 

pitch. The oscillation offset was calculated to be -4.2 cm in heave. Data recorded at the highest 

frequency ratio is therefore considered to be the least accurate. 

3.1.1 Limit Cycle Oscillation Response  

Typical results from a coupled flutter induced LCO response are included in Figures 3.1 

to 3.5. The configuration presented is for a frequency ratio of 1.01, at an airspeed of 6.95 m/s 

(Rec ~ 7.2×104). Figure 3.1 shows the time history for both pitch and heave. The time response is 

filtered with a cut-off frequency set at 30 Hz. One can observe well-behaved periodic motion, 

with constant amplitude oscillation for both pitch and heave. Regarding the spectra (Figures 3.2 

and 3.3), the first 216 points were used to perform the FFT algorithm, which produced a 

frequency resolution of 0.0153 Hz.  

The most prominent peak in both the pitch and heave power spectral densities (PSDs) 

correspond to the fundamental frequency of oscillation. The peaks of the super-harmonics are 

less prominent, as they are a full two decades lower than the fundamental peak. Even super-

harmonics indicate asymmetry, while odd super-harmonics indicate non-linear content in the 

response. Compared to the heave PSD, the pitch frequency spectra contains much more 

pronounced peaks for super-harmonics beyond 3f. This indicates that more non-linear content 

exists in the pitch degree of freedom than in heave. Stronger higher-order peaks were observed in 

the frequency content of the pitch response, across frequency ratios at similar airspeeds. The 

histograms of the pitch and heave data indicate clean data, with little asymmetry, indicating 

SHM-like behaviour. All configurations tested exhibited similar well-behaved response in the 

histograms. 
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Figure 3.1: Time-history response of both pitch and heave degrees-of-freedom, for U∞ = 6.95 m/s 

& 𝜔̅ = 1.01 (Rec = 7.16x104) 

 

Figure 3.2: Frequency content for pitch response, for U∞ = 6.95 m/s & 𝜔̅ = 1.01 (Rec = 7.16x104) 
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Figure 3.3: Frequency content for heave response, for U∞ = 6.95 m/s & 𝜔̅ = 1.01 (Rec = 7.16x104) 

 

Figure 3.4: Histogram for pitch data, for U∞ = 6.95 m/s & 𝜔̅ = 1.01 (Rec = 7.16x104) 
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Figure 3.5: Histogram for heave data, for U∞ = 6.95 m/s & 𝜔̅ = 1.01 (Rec = 7.16x104) 

3.1.2 Limit Cycle Oscillation Behaviour Sensitivity to Reynolds Number  

The pitch amplitude, phase angle, heave amplitude RMS, LCO frequency and reduced 

frequency (defined in Equation 1.16) values for each frequency ratio are all plotted for the range 

of Reynolds numbers tested, included in Figures 3.6 to 3.10 respectively. The amplitudes were 

calculated from the peaks of the calculated histograms from each set of experiments by taking an 

average of the positive and negative amplitudes. The phase angle was determined from the time 

difference between the peaks of successive pitch and heave oscillations, with pitch leading. The 

root-mean-square (RMS) was calculated using heave position data. This was done in order to 

properly compare with other aeroelastic behaviour, where modulatory responses were observed 

in the heave response (discussed in Chapter 4). The frequency values were obtained from the 

dominant peaks in the PSDs for each degree-of-freedom. The phase was determined by finding 

the average difference between the pitch and heave peaks, with pitch leading as defined in 

Equations 1.44 and 1.45.  

The pitch amplitudes increase with a shallow slope with increasing Reynolds number for 

coupled flutter induced LCOs occurring at frequency ratios below one. For frequency ratios 

above one, the pitch amplitude decreases with increasing Reynolds number. It can be inferred 

that for the majority of the frequency ratios tested, the pitch amplitudes begin to converge to a 

single value at higher Reynolds numbers, which appears to be around 27°. The phase angle 

between the degrees of freedom also seems to converge to a value of approximately 160° with 

increasing Reynolds number, across all frequency ratios. The LCO heave RMS amplitude values 
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however, increase with Reynolds number for all frequency ratios. Since a 180° phase angle 

between pitch and heave indicates a forced system, the phase angles may tend towards this stable 

region with increasing Reynolds number.  

 

Figure 3.6: Pitch amplitude for each frequency ratio over increasing Reynolds Numbers. 

 

Figure 3.7: Phase angle between pitch and heave oscillations over Reynolds Number  
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Figure 3.8: Heave RMS for each frequency ratio over increasing Reynolds Numbers. 

 

Figure 3.9: LCO frequency for each frequency ratio over increasing Reynolds Numbers. 
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Figure 3.10: Reduced frequency for each frequency ratio over increasing Reynolds Numbers.  

The observations in our study stand in contrast to the coupled flutter induced LCO 

response observed by Pigolotti et al. [21]. They observed the heave and pitch amplitude value 

branches increasing with airspeed and originating from a common point, that one may determine 

by extrapolating the sub-critical branches down to a null-amplitude. This behaviour was not seen 

in our study. The behaviour of LCO pitch amplitude with Reynolds number dos not follow the 

supercritical Hopf bifurcation trend described by Dowell et al., where in Figure 3.6 branches are 

seen to decrease with increasing Reynolds number for configurations with frequency ratios 

above one, and seem to converge to a common value [4]. It is unclear whether the heave RMS 

amplitude branches in Figure 3.8 originate from a null-amplitude common Reynolds number, 

without data points at lower airspeeds. Also unlike the study conducted by Pigolotti, oscillations 

did not become in-phase for oscillations above a frequency ratio of one.   

Similar to the behaviour for the heave RMS, the LCO frequency also increases with 

increasing Reynolds number. Unlike the heave RMS behaviour, the LCO frequency values tend 

to converge to a single value with increasing Reynolds number. The behaviour for the reduced 

frequency also tend towards a constant value with increasing Reynolds number. Moreover all 

reduced frequency values collapse across all frequency ratios. The values decrease with 

increasing Reynolds number, and tend to a value of about 0.1. The reduced frequency values are 

well above 0.05, indicating a high level of unsteadiness in the LCO response.  
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3.2 Analytical Results  

The analytical flutter speeds for the experimental configurations tested were calculated 

using a 3DOF linear aeroelastic model, the third degree-of-freedom representing unsteady 

aerodynamics. The unsteady model uses Wagner’s function for aerodynamic lag, as defined in 

section 1.4.4. The justification for using the unsteady model is based on the experimental 

reduced frequency values for each test case, all of which are well above 0.05 and indicate a high 

level of unsteadiness. In order to maintain consistency between results, uniform structural 

damping constants were assumed, where 𝐷ℎ = 2 Ns/m and 𝐷𝜃 = 0.0011 Nms/rad taken as 

averages from each test case. This was done because analytical flutter results were sensitive to 

varying the structural damping values.  

As shown in Figure 3.11 the calculated flutter speeds are plotted against the first 

appearance of the experimental LCO for varying frequency ratios. The characteristic reduction in 

the flutter speed at a frequency ratio close to one as described by Theodorsen can be observed in 

both the experimental and analytical results [20]. It can be seen that there is some correlation 

between prediction and experiment. For frequency ratios below one, analytical predictions 

underestimate the experimental flutter speed. On the other hand, the experimental flutter speed is 

advanced for frequency ratios above one. This is consistent with the non-linear torsional 

stiffening effect of laminar separation flutter, as described by Poirel and Mendes for transitional 

Reynolds numbers [13]. The effects of torsional stiffening are not included in this analysis. For 

frequency ratios below one, torsional stiffening due to laminar separation increases the stiffness 

in pitch, therefore increasing the apparent frequency ratio and postponing the onset of flutter. A 

stiffening in pitch for frequency ratios above one decreases the apparent frequency ratio, and 

flutter occurs at airspeeds lower than predicted. Discrepancies between trends may also arise due 

to the variation in the true structural damping constants between configurations, as well as error 

associated with the frequency ratio for each spring set. The lowest calculated flutter speed occurs 

at a frequency ratio of 1.01, whereas experimentally this occurred at a slightly higher frequency 

ratio of 1.14. 

Plots of the eigenvalues versus airspeed from the linear analysis for frequency ratios of 

0.67, 1.01 and 1.14 are included in Figures 3.12 to 3.14. The graphs presenting the 

eigenfrequencies show the heave and pitch dominated branches, where the pitch-dominated 

branch crosses the x-axis close to the analytical divergence speed. The experimental LCO 

frequencies are also included in the eigenfrequency plots. The experimental frequencies do not 

correspond to linear predictions in the post-flutter region, indicating a high degree of non-

linearity in the experimental LCO responses, and probable influence of large leading-edge 

separation on limiting LCO amplitudes.  

The decay-rate includes five branches. The branch that first crosses the x-axis for each 

frequency ratio is the heave dominated branch, as such the calculated unstable mode for each 

frequency ratio is the heave dominated one. The slope of the negative decay-rate branch 
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associated with the heave-dominated mode does not vary much between configurations and is 

observed to be shallow for all cases. It is thus observed that the predicted nature of the flutter is 

soft, rather than explosive.  

 

Figure 3.11: Numerically predicted and experimental onset of coupled flutter induced LCOs. 

 

Figure 3.12A: Calculated decay rate eigenvalues for a range of airspeeds, 𝜔̅ = 0.67. 
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Figure 3.12B: Calculated frequency eigenvalues for a range of airspeeds, 𝜔̅ = 0.67. 

 

Figure 3.13A: Calculated decay rate eigenvalues for a range of airspeeds, 𝜔̅ = 1.01. 
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Figure 3.13B: Calculated frequency eigenvalues for a range of airspeeds, 𝜔̅ = 1.01. 

 

Figure 3.14A: Calculated decay rate eigenvalues for a range of airspeeds, 𝜔̅ = 1.14. 
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Figure 3.14B: Calculated frequency eigenvalues for a range of airspeeds, 𝜔̅ = 1.14. 

The Eigenfrequency at the analytical flutter speed was taken from the heave-dominated 

branch for each frequency ratio. These were plotted with the experimental LCO frequencies in 

Figure 3.15. As can be observed, some correlation occurs, indicating the heave-dominated mode 

as being the unstable mode. Some discrepancies occur, most notably at a frequency ratio of 0.71. 

This point may not correspond to the analytical onset of LCO at this frequency ratio due to the 

delay in the experimental flutter speed associated with the stiffening effect of the LSB. The 

decay rate of the pitch-dominated branch also becomes negative at the analytical divergence 

speed. The two upper decay-rate branches in the results correspond to the aerodynamic degrees-

of-freedom. 
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Figure 3.15: Analytical and Experimental LCO frequency at onset of coupled flutter induced LCOs. 

 

3.3 Aerodynamic Load Analysis 

 The aerodynamic moment and lift coefficients were calculated for frequency ratios of 

0.86. 1.01 and 1.14, at similar airspeeds (Rec ~ 7.2×104, U∞ ~ 6.9 m/s). From the filtered position 

data, the velocity and acceleration for both the pitch and heave degrees of freedom were 

determined by using a five-point differentiation scheme [35]. In order to remove unwanted noise 

from high frequency content, the position data was filtered just above the 7f super-harmonic. 

Lower cut-off frequencies seemed to omit important information in the responses. At the same 

time, the behaviour of the calculated moment did not change significantly if higher frequency 

content was included.  

Knowing the moment of inertia, mass, structural damping and stiffness terms for each 

test case, the lift and moment is evaluated at each time-step using equations 1.2 and 1.3 defined 

in section 1.4.1. These equations of motion are re-stated below for reference. The calculated 

aerodynamic moment and lift were phase-averaged for at least 60 cycles, to produce more 

interpretable plots. Moment coefficient results are thus plotted with pitch position, and the lift 

coefficient with heave in Figures 3.16 to 3.18. The average work over each cycle was determined 

for each aerodynamic load calculated from experiment, and included in each plot. In addition, 

SHM equations based on the amplitude and frequency results were used in Theodorsen’s 

equations to obtain the analytical linear behaviour. The static linear moment curve is also 

included in the moment plots for reference.  
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𝑀ℎℎ̈ −
𝑀𝜃𝑐𝑥𝜃

2
𝜃̈ + 𝐷ℎℎ̇ + 𝐾ℎℎ =  𝐿     [1.2] 

𝐼𝐸𝐴𝜃̈ −
𝑀𝜃𝑐𝑥𝜃

2
ℎ̈ + 𝐷𝜃𝜃̇ + 𝐾𝜃𝜃 = 𝑀𝐸𝐴     [1.3] 

A high degree of variation exists between the moment coefficient curves for different 

frequency ratios. Hysteresis effects associated with non-linear dynamics can be observed, where 

clockwise and counter-clockwise regions both exist in the moment curves. As discussed in 

Chapter 1, the clockwise regions in both moment and lift curves indicate instability, and positive 

work (+W) being done on the structure. Counter-clockwise loops indicate stable regions (-W). 

While linear models can give an indication of the onset of flutter, the importance of non-linear 

dynamics on the subsequent LCO response becomes apparent when comparing the behavior of 

these curves with those predicted using linear assumptions. While regions of positive work exist 

in the aerodynamic moment, the majority of the LCO cycle seems to be comprised of stable 

regions of negative work. This is confirmed when calculating the contribution of work due to the 

aerodynamic moment, where the total work done by the aerodynamic moment is negative.  

The lift in heave is also influenced by non-linear effects, as the curves do not follow 

regular elliptical shapes. However, the lift response is not as strongly non-linear as the moment 

with pitch. This corresponds to the reduced odd super-harmonic content found in the frequency 

content in heave. All lift responses follow the same clockwise direction as the predicted 

behaviour from Theodorsen’s equations. While the moment curves comprise of mostly stable 

regions, the clockwise loops of positive work indicate that the majority of the work is done by 

the aerodynamic lift in heave. A similar observation was noted by Poirel and Mendes regarding 

2DOF SAOs in pitch and heave [13]. The overall work done by the aerodynamic loads is 

positive, indicating that the flow feeds the LCO.  
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Figure 3.16A: Aerodynamic moment coefficient over pitch response, for U∞ = 7.17 m/s & 𝜔̅ = 0.86. 

 

Figure 3.16B: Aerodynamic lift coefficient over heave response, for U∞ = 7.17 m/s & 𝜔̅ = 0.86. 
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Figure 3.17A: Aerodynamic moment coefficient over pitch response, for U∞ = 6.95 m/s & 𝜔̅ = 1.01. 

 

Figure 3.17B: Aerodynamic lift coefficient over heave response, for U∞ = 6.95 m/s & 𝜔̅ = 1.01. 
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Figure 3.18A: Aerodynamic moment coefficient over pitch response, for U∞ = 7.08 m/s & 𝜔̅ = 1.14. 

 

Figure 3.18B: Aerodynamic lift coefficient over heave response, for U∞ = 7.08 m/s & 𝜔̅ = 1.14. 



58 
 

3.4 Energy Calculations 

The cycle averaged work and power, as well as kinetic energy were calculated using the 

analytical methods outlined in section 1.6. The experimental moment and lift at each time step 

were used in Equation 1.47, the power being averaged over a number of cycles. Calculations 

were performed for at least 120 cycles. The efficiency was calculated using the definition 

outlined by Kinsey and Dumas in section 1.6. The equations are re-stated below for reference. As 

can be observed in Figure 3.19, the behaviour of the kinetic energy follows the trend of the heave 

RMS in Figure 3.8. As the majority of the work is done by the aerodynamic lift in heave, the 

heave kinetic energy constitutes the majority of the energy of the LCO. The aerodynamic 

efficiency follows a trend similar to the pitch amplitude, with all values decreasing and 

converging with increasing Reynolds number. The energy extracted by the system may also 

decrease as it approaches a forced, or stable regime. This correlates with the trend of phase angle 

between the 2DOFs with increasing Reynolds number, as it tends to converge towards 180°. 

The highest values in aerodynamic efficiency were found to occur at the lowest airspeeds 

tested for frequency ratios just above one, at the onset of coupled flutter induced LCOs. 

Efficiency values close to 45% at an airspeed of about 4.0 m/s (Rec ~ 4.0×104) were observed. 

These values exceed those found in literature for a single wing experimental configuration, the 

most noted being 34% by Kinsey and Dumas [8]. The rapid drop in efficiency may be due to the 

fact that the oscillation frequency does not increase as quickly as the heave amplitude which 

influences the projected swept area. Therefore, the power extracted which is analytically 

dependant on the frequency squared, does not increase as quickly as the power available in the 

flow of the projected area.  

 

𝑃̅ =  
1

𝑇
∫ [𝑀𝐸𝐴𝜃̇ + 𝐿ℎ̇]𝑑𝑡

𝑡+𝑇

𝑡
            [1.47] 

𝑃𝑎 =
1

2
𝜌𝑈∞

3𝑙𝑑       [1.50] 

𝜂 =  
𝑃̅

𝑃𝑎
               [1.49] 

𝐾𝐸̅̅ ̅̅ =  
1

𝑇
∫

𝑀ℎℎ̇𝐶𝐺
2

2

𝑇

0
𝑑𝑡 +

1

𝑇
∫

𝐼𝐶𝐺𝜃̇2

2

𝑇

0
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Figure 3.19: Kinetic energy sum of pitch and heave oscillations for each frequency ratio tested, 

for increasing Reynolds Numbers 

 

Figure 3.20: Aerodynamic efficiency of each frequency ratio tested, for increasing Reynolds 

Numbers 
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Chapter 4 – Stall Flutter 

When the elastic axis is moved aft to 0.35c, pitch driven large amplitude LCOs due to 

stall flutter appear. This is the focus of this chapter. In addition, other aeroelastic phenomena 

including SAOs, occur within the airspeeds tested for this configuration. Section 4.1 in this 

chapter includes an overview of the various 1DOF aeroelastic phenomenon observed within this 

transitional Reynolds numbers regime, where the heave was constrained. For the remaining 

sections the emphasis of the analysis is on both the 1DOF and 2DOF large amplitude LCOs.  It is 

important to note that the center of mass is almost coincident with the EA, giving a very small 

value for the static imbalance, where xθ = 0.004. This indicates that the structural system is 

essentially uncoupled, and that any coupling occurs from the aerodynamics.  

4.1 Multiple Stable Attractors in One-Degree-of-Freedom   

Experiments were conducted for 5.4 m/s ≤ U∞ ≤ 12 m/s (5.7×104 ≤ Rec ≤ 1.3×105) in 

1DOF in pitch. The error in the airspeed was estimated to be ±0.7 m/s. Note that the analytical 

divergence speed of the airfoil using a pitch spring stiffness set at 0.3 Nm/rad was calculated to 

be 7.3 m/s, using Equation 1.32. Similar to the study conducted by Dimitriadis and Li, but unlike 

the experiments conducted for Chapter 3 for coupled flutter, the predicted divergence speed fell 

within the range of airspeeds tested [24]. Note as well that no coupled flutter is predicted 

(analytically) for this configuration. 

Similar to previous studies investigating stall flutter, multiple attractors coexist in 1DOF 

within the range of airspeeds tested for the constant pitch stiffness mentioned. For airspeeds 

below approximately the divergence airspeed, all perturbations would decay to a static 

equilibrium at zero AoA. After 7.3 m/s however, both static and dynamic aeroelastic phenomena 

appeared. Small amplitude oscillations associated with low-Reynolds number effects, occurred 

with small perturbations (~5°) for 7.8 m/s ≤ U∞ ≤ 9.3 m/s. No clear signs of divergence were 

observed, however non-zero equilibrium positions were seen to follow the static bifurcation 

behaviour occurring from the effects of non-linear static aerodynamics past the divergence 

airspeed. The main reason was theorized to be a result of the non-linear static stiffening in pitch 

due to the appearance of an LSB at these Reynolds numbers, as indicated previously by Poirel 

and Mendes [13]. This stands in contrast to the results obtained by Dimitriadis and Li [24], 

where SAOs were not observed, and static non-linear behaviour associated with the LSB was not 

present. The absence of low-Reynolds number effects in their study is thought to be related to 

higher turbulence levels in the free-stream airflow [24]. Also unlike the aforementioned study, 

no asymmetric oscillations were observed past the theoretical divergence speed. It is thus 

theorized that the absence of asymmetric LCOs could be related to the stiffening in pitch as a 

result of low-Reynolds number effects.  
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Specifically, four stable attractors were observed within a range close to 8 m/s.  A 

qualitative schematic of the aeroelastic behaviour observed within the airspeeds tested is 

included in Figure 4.1. A time-history plot at 8 m/s is included in Figure 4.2, showing multiple 

aeroelastic phenomenon for the same airspeed tested. Large amplitude LCOs were observed for 

very large perturbations after 7.3 m/s. The perturbation in pitch required to induce large 

amplitude LCOs decreased in value with increasing airspeed, on the order of ~20°, until about 

11.7 m/s. For airspeeds beyond 11.7 m/s, no perturbation was needed to induce large amplitude 

LCOs.  

 

 

Figure 4.1: Schematic of attractors observed within each sub-range of airspeeds tested. Taken from [18].  
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Figure 4.2: Time history plot of multiple aeroelastic phenomena, U∞ = 8 m/s (Rec = 8.3x104)  

 

4.2 One-Degree-of-Freedom Limit Cycle Oscillations 

4.2.1 1DOF Limit Cycle Oscillation Response  

For experiments conducted at 0.35c, it is concluded that the sustained 1DOF LCOs are 

due to stall flutter. This is based on two arguments. First, the LCOs needed only one DOF, which 

discards the possibility of coupled flutter. Second, no coupled flutter is predicted from the 

analytical results of a linear aeroelastic model with unsteady aerodynamics, for the 

configurations tested in this study.  

Results from a stall flutter induced LCO for different pitch spring stiffness at this elastic 

axis location are presented below. A typical time-history response is included in Figure 4.3. Two 

time-history plots of the oscillation at 8.44 m/s, for a 1DOF LCO response with a pitch stiffness 

of 0.3 Nm/rad, over 30 seconds and 3 seconds are presented. The error was estimated to the ±2.4 

degrees, and the standard deviation to be 0.6 degrees. The raw data was filtered with a cut-off 

frequency of 30 Hz. Well-behaved SHM of constant amplitude about a near-zero AoA can be 

observed. A slight bias of about -5° in the pitch exists. The value is above the calculated error in 

pitch, however it is not considered significant since it is much smaller than the LCO amplitude.  
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Figure 4.3: Time history plots of stall flutter induced LCO, U∞ = 8.44 m/s (Rec = 8.8x104), Kθ =0.3 

Nm/rad 

The power spectral density of this oscillatory response can be observed in Figure 4.4, 

where the dominant peak f represents the oscillation frequency. The first 217 points were used to 

perform the FFT algorithm, which gave a frequency resolution of 0.0076 Hz. Relatively strong 2f 

and 3f peaks are also observed, however they are a full two decades lower than the dominant 

peak. Subsequent super-harmonic peaks are much less prominent. The more prominent even 

super-harmonics indicate an asymmetry in the response, while prominent odd super-harmonics 

reveal non-linearities. The histogram of the pitch data, shown in Figure 4.5, indicates a clean, 

symmetrical and SHM-like response. All pitch springs tested exhibited similar well-behaved 

1DOF responses in the histograms over all airspeeds. No asymmetric oscillations occurred 

within the airspeeds tested, unlike the observations by Dimitriadis and Li in 2009 [24].   
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Figure 4.4: Spectral density of stall flutter induced LCO, U∞ = 8.44 m/s (Rec = 8.8x104), Kθ =0.3 

Nm/rad 

 

Figure 4.5: Histogram of LCO pitch data, U∞ = 8.44 m/s (Rec = 8.8x104), Kθ =0.3 Nm/rad 
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4.2.2 Sensitivity to Reynolds Number and Stiffness 

The 1DOF stall flutter LCO behaviour for increasing Reynolds number was investigated 

for a range of pitch stiffness. A table of each pitch spring stiffness tested, with the corresponding 

analytical divergence speed is shown in Table 4.1. The analytical divergence speed for each 

spring tested fell below or within the range of airspeeds tested. The pitch amplitude and 

frequency values, for various pitch spring stiffness, obtained from experiment are plotted as a 

function of Reynolds number, in Figures 4.6 and 4.7, respectively.  

The pitch amplitude was determined from the peaks of the position data histograms. The 

frequency of oscillation was obtained from the dominant peak of the corresponding PSD. The 

airspeeds at which oscillations start to occur is seen to decrease with decreasing pitch stiffness. 

Similar to the findings of Dimitriadis and Li and Peristy et al., the LCO amplitude values for all 

cases are seen to increase until a constant value [17, 24]. The amplitude values reach a value 

close to 45°. Similar to the trend observed for coupled flutter, the LCO frequency values increase 

for all stiffness values. With increasing stiffness comes an increase in the oscillation frequency. 

Unlike the observations seen in Chapter 3 however, the trends appear linear and do not tend 

towards a certain value.  

Kθ (Nm/rad) Udiv (m/s) 

0.15 5.18 

0.2 6.00 

0.3 7.32 

0.35 7.91 

Table 4.1: List of pitch spring stiffness used for 1DOF Stall Flutter experiments. 

In order to highlight the non-linearity of the total system, the analytical linear static 

frequencies ( 𝑓𝑎𝑒𝑟𝑜 ) are calculated using Equations 4.1 and 4.2, derived from the characteristic 

equation for the total aeroelastic system. The calculated values are presented in Figure 4.8. Since 

the elastic axis is aft of the aerodynamic centre, the theoretical static linear frequency is 

imaginary past the divergence speed. While the static term predicts decreasing and imaginary 

values for frequency, the increasing experimental values indicate a strong presence of non-linear 

behaviour in the aerodynamics. The trend for the reduced frequency is also linear, however are 

decreasing, as seen in Figure 4.9. This trend is similar to that observed in coupled flutter, where 

values are well above 0.05, indicating a high level of aerodynamic unsteadiness in the LCO 

response. Similar to the LCO frequency, higher pitch stiffness values correspond to increased 

reduced frequency at the same airspeed.  

𝜔𝑎𝑒𝑟𝑜 = √
𝐾𝜃−𝑒𝜌𝑈∞

2𝑏𝑙2𝜋

𝐼𝐸𝐴
                   [4.1] 

                𝑓𝑎𝑒𝑟𝑜 =
𝜔𝑎𝑒𝑟𝑜

2𝜋
                                                  [4.2] 
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Figure 4.6: Experimental stall flutter LCO amplitude values with Reynolds Number, for different 

pitch stiffness. 

 

Figure 4.7: Experimental stall flutter LCO frequency values with Reynolds Number, for different pitch 

stiffness. 
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Figure 4.8: Analytical static linear frequency values with Reynolds Number, for different pitch stiffness 

 

Figure 4.9: Experimental reduced frequency values with Reynolds Number, for different pitch stiffness 
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Reynolds number regime [37]. The importance of low Reynolds effects on the 1DOF stall flutter 
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sandpaper attached along its leading-edge. For this case, the width of application is 9 cm, and the 

sandpaper is 80 grit P-grade. The pitch stiffness was kept at 0.3 Nm/rad for both tests. It is 

important to note that only 5 seconds of data was recorded of the LCO response with the tripped 

boundary layer, compared to 80 seconds for the clean–airfoil case.  

 Unlike the 1DOF case investigated with a clean airfoil, the case with the sandpaper did 

not produce any SAOs. The oscillation amplitude and frequency of the large amplitude LCO 

response were calculated using the same methods described in section 4.2.2. Results for both 

cases are plotted in Figures 4.10 and 4.11. As can be observed, there is little difference between 

the behaviour from a clean airfoil and a tripped boundary layer. Both cases are initiated at almost 

the same airspeed. The natural frequency of the airfoil with the tripped boundary layer was 

calculated to be about 17.2 rad/s, slightly lower than the clean airfoil case which was determined 

to be about 17.6 rad/s. Slightly higher amplitudes and lower frequencies occur for LCOs with 

sandpaper on the leading-edge. It can therefore be inferred that low-Reynolds number effects do 

not have a significant effect on the behaviour of stall flutter induced LCOs. This result had been 

suggested by McCroskey [23] from the point of view of dynamic stall.  

 

 

Figure 4.10: 1DOF stall flutter LCO amplitude values for different leading-edge roughness. 
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Figure 4.11: 1DOF stall flutter LCO frequency values for different leading-edge surface 

roughness. 

4.2.4 Aerodynamic Load Analysis 

The experimental phase-averaged stall flutter LCO moment coefficients at 8.44 m/s and 

12 m/s for the nominal clean airfoil case (0.3 Nm/rad) were calculated using the equation of 

motion for the 1DOF case, shown below in Equation 4.3. The same five-point differentiation 

scheme used in Chapter 3 is re-used for this analysis. The calculated aerodynamic moment was 

phase-averaged for at least 60 cycles. The data was filtered with a cut-off frequency just above 

the 5f super-harmonic. The behaviour of the calculated moment did not change significantly if 

higher frequency content was included. However, the higher the filtering cut-off frequency, the 

more high-frequency content introduced noise into the aerodynamic moment response. The 

plotted analytical static linear moment, as well as the analytical unsteady response from 

Theodorsen’s equations is included with the experimental values.  

𝐼𝐸𝐴𝜃̈ + 𝐷𝜃𝜃̇ + 𝐾𝜃𝜃 = 𝑀𝐸𝐴                 [4.3] 

Whereas the analytical unsteady moment predicts negative work for the entire cycle, the 

total cycle averaged experimental work is positive, as indicated in the plots. Stable and unstable 

regions in the experimental LCO cycle can be observed in Figures 4.12 and 4.13. A stable 

counter-clockwise loop exists between two clockwise unstable hysteresis loops in the stall 

region. The non-elliptical hysteresis in the response confirms the inherently non-linear response 

of stall flutter induced LCOs. At 12 m/s, the stable region in the centre is reduced in its range of 
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pitch, and more complex behaviour can be seen with the addition of stable regions in the 

extremities of the loops. The stable region of the moment of the 12 m/s case is also close to the 

slope of the analytical static linear moment. This behaviour does not occur for the moment at an 

airspeed of 8.44 m/s.  

 

 

Figure 4.12: Aerodynamic moment coefficient with pitch position, U∞ = 8.44 m/s (Rec = 8.8x104). 
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Figure 4.13: Aerodynamic moment coefficient with pitch position, U∞ = 12 m/s (Rec = 1.3x105).  

 

4.3 Experimental Results for Two-Degree-of-Freedom Limit Cycle 

Oscillations  

 Sets of experiments were conducted where the heave degree of freedom was also free to 

oscillate. The sensitivity of the 2DOF LCO response to increasing Reynolds number was 

investigated, along with the effect of varying the frequency ratio from below to above one, 0.68 

≤ 𝜔̅ ≤ 1.43. The pitch stiffness was kept at 0.3 Nm/rad for all tests. The experiments were 

performed for the range of airspeeds where 1DOF stall flutter was observed to occur. The 

Reynolds number was increased until the oscillation amplitude and frequency were deemed to 

approach the limits of the experimental set-up. The error in the oscillation amplitudes was 

calculated for responses resembling SHM only. The error and standard deviation in pitch for 

2DOF responses was found to match that for 1DOF. The error and standard deviation in heave 

was calculated to be ±0.51 cm and 0.085 cm respectively. The offset in the heave oscillations 

was determined to be -0.63 cm.  
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4.3.1 2DOF Limit Cycle Oscillation Response  

The behaviour of the oscillations for frequency ratios 0.68, 1.43, and 0.92 can be 

observed in the time histories, for the same Reynolds numbers, in Figures 4.14, 4.17, and 4.19 

respectively. Also included are the PSDs of the two motions for these frequency ratios. As 

observed in the 1DOF case, 2DOF LCOs occur about a near-zero AoA. Plotting the oscillations 

for 2.5 seconds, one can observe SHM behaviour and phase difference for frequency ratios 0.68 

and 1.43. Oscillations across most frequency ratios are well-behaved SHM, apart from a 

frequency ratio close to one, as will be discussed more in section 4.3.4. The pitch and heave 

motions are out of phase by about 150° (pitch leading) in Figure 4.14, while the motions are 

almost in phase in Figure 4.19. Similar to the observations for coupled flutter, one can observe 

more pronounced high frequency content in heave, for frequency ratios 0.68 and 1.43. Like the 

1DOF case however, strong 2f and 3f peaks are observed for the pitch PSD. Super-harmonic 

peaks beyond 3f are much less prominent. 

Plotting data over 30 seconds, one can observe periodic modulations which occur in the 

response for a frequency ratio of 0.92. These modulations are a beating phenomenon: an 

interference pattern resulting from the interaction of two very close fundamental frequencies. 

Similar behaviour was observed at a frequency ratio of 0.96. The presence of two frequencies is 

apparent when plotting the PSD of the oscillation in Figure 4.16. Two peaks, both heave and 

pitch dominated frequencies, are present. The corresponding natural frequency in pitch is 2.8 Hz, 

while the natural frequency in heave is 2.5 Hz. The peak associated with beat frequency (fbeat), 

the difference between the interacting frequencies, also appears in the PSD. This phenomenon is 

discussed in more detail in section 4.3.4, in terms of lock-in.  

 



73 

 

 

  

Figure 4.14: Time history plot (top), frequency content for pitch response (bottom left), and 

frequency content for heave response (bottom right of 2DOF stall flutter, for 𝜔̅ = 0.68 and U∞ = 8.47 m/s 

(Rec = 8.8x104). 



74 

 

 

Figure 4.15: Pitch (top) and heave motion (bottom), for 𝜔̅ = 0.92 and U∞ = 8.47 m/s (Rec = 8.8x104). 

 

Figure 4.16: Spectral density of stall flutter induced LC, in pitch (left) and heave (right), at 𝜔̅ = 0.92 and 

U∞ = of 8.47 m/s (Rec = 8.8x104). 
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Figure 4.17: Time history plot (top), frequency content for pitch response (bottom left), and 

frequency content for heave response (bottom right of 2DOF stall flutter, for 𝜔̅ = 1.43 and U∞ = 8.39 m/s 

(Rec = 8.7x104). 
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4.3.2 Sensitivity to Reynolds Number 

The sensitivity to Reynolds number of stall flutter induced LCOs, free in heave and pitch, 

was investigated. The same methods of analysis used in Chapter 3 for coupled flutter are re-used 

in this section. The pitch amplitude of each 2DOF LCO response is plotted with Reynolds 

number. The values were determined from the histograms of SHM responses at differing 

frequency ratios. The phase was determined by finding the average difference between the pitch 

and heave peaks, with pitch leading as defined in Equations 1.44 and 1.45. It can be seen in 

Figure 4.18 that the inclusion of heave motion does not considerably affect the pitch amplitude 

response. The LCO frequency, determined from the FFT analysis used previously, is also plotted 

as a function of Reynolds number in Figure 4.19; its dependence on Reynolds number is also 

minimal. The behaviour of the frequency with increasing Reynolds number is also similar to the 

1DOF case. In this analysis, 1DOF corresponds to a frequency ratio of infinity, where the heave 

motions are completely constrained. Unlike the coupled flutter case where the pitch and 

frequency tend towards a constant value across frequency ratios, all values for stall flutter 

induced LCO increase with Reynolds number as they closely follow the 1DOF case. Similar to 

the coupled flutter case, are the decreasing values for reduced frequency all close in value over 

Reynolds number. The reduced frequency values for stall flutter induced LCO, however, follow 

a much more linear trend than the exponential behaviour seen in coupled flutter induced LCOs.  

The root-mean-square (RMS) of the heave oscillations was determined, since the 

responses of frequency ratios close to one experience varying degrees of modulation.  These 

cases were not included in the plots for pitch amplitude and oscillation frequency with Reynolds 

number. All values for heave RMS increase with Reynolds number. For frequency ratios close to 

one, the heave amplitude increases sharply with increasing Reynolds number, as can be observed 

in Figure 4.21. The amplitudes themselves are large in value, approaching the physical 

limitations of the experimental rig. This sharp increase in the amplitude values around a 

frequency ratio of one resembles a resonance-like behaviour, and will be further analyzed in 

section 4.3.4. On the other hand, the response in heave appears to settle on relatively small 

amplitudes for frequency ratios away from one. The phase angle between the pitch and heave 

oscillations at each frequency ratio was found to vary insignificantly with increasing Reynolds 

number. However, as observed in Figure 4.22, the phase difference is close to about 150° below 

a frequency ratio of one, becoming in-phase above a frequency ratio of one.  



77 

 

 

Figure 4.18: Pitch amplitude for each frequency ratio over increasing Reynolds numbers. 

 

Figure 4.19: LCO frequency for each frequency ratio over increasing Reynolds numbers. 
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Figure 4.20: Reduced frequency for each frequency ratio over increasing Reynolds numbers. 

 

Figure 4.21: Heave RMS for each frequency ratio over increasing Reynolds numbers. 
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Figure 4.22: Phase angle between pitch and heave oscillations over Reynolds Number 

 

4.3.3 Aerodynamic Load Analysis 

The phase-averaged aerodynamic moment and lift coefficients are calculated for 

frequency ratios 0.68 and 1.43 based on Equations 1.2 and 1.3 (re-stated below), for Reynolds 

numbers close to the 1DOF analysis. The analysis did not include results for frequency ratios 

close to one, because the high degree of modulation in the oscillations at these configurations did 

not produce discernable results. The same filtering conditions, differentiation scheme and 

number of phase-averaged cycles used in the 1DOF case, are used for 2DOF. As in previous 

analysis, the analytical static and unsteady results from Theodorsen’s are included for 

comparison. Plots of the numerical results are included in Figures 4.23 to 4.24.   

𝑀ℎℎ̈ −
𝑀𝜃𝑐𝑥𝜃

2
𝜃̈ + 𝐷ℎℎ̇ + 𝐾ℎℎ =  𝐿     [1.2] 

𝐼𝐸𝐴𝜃̈ −
𝑀𝜃𝑐𝑥𝜃

2
ℎ̈ + 𝐷𝜃𝜃̇ + 𝐾𝜃𝜃 = 𝑀𝐸𝐴     [1.3] 

The aerodynamic moment curves for the response of both frequency ratios are similar in 

shape to the 1DOF (see Figure 4.12), and to each other (Figures 4.23A and 4.24A). As observed 

in the 1DOF case, using Theodorsen’s equations predicts negative work throughout the cycle. 

The total experimental work done by the moment in 2DOF was calculated to be positive 

however, where the values for 0.68 and 1.43 frequency ratios are close in value to the 1DOF 
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case. This observation suggests that for frequency ratios away from one, the behaviour in pitch 

for a 2DOF LCO induced by stall flutter is not strongly influenced by the introduction of heave 

motion. The similarity of the moment curve with the 1DOF case also suggests that the pitch 

drives the motion in heave. For the 0.68 frequency ratio case, the moment curve is qualitatively 

similar to the 1DOF experimental curve.  

Similar to the results obtained from coupled flutter induced LCOs, the lift curves as a 

function of heave (Figures 4.23B and Figures 4.24B) follow irregular ellipses influenced by non-

linear effects, however not as strongly as the moment curves. This also correlates to the 

observation that the heave PSDs (Figures 4.14 and 4.17) in both stall and coupled flutter induced 

LCOs contain reduced odd-superharmonic content compared to the pitch PSDs, thus a lower 

degree of non-linearity. Also similar to the coupled flutter case, the aerodynamic lift does more 

work throughout the cycle. For a frequency ratio of 0.63, the experimental and analytical curves 

in Figure 4.23B both exhibit a clockwise loop, indicating positive work throughout the cycle. For 

a frequency ratio of 1.43 however, Theodorsen’s equations predict a stable counter-clockwise 

loop, while experiment shows positive work done throughout the cycle in Figure 4.24B. The 

positive slope of the ellipses for the lift at a frequency ratio of 1.43 indicate the oscillations are 

close to being in-phase  

The behaviour is similar to the curves presented by Dimitriadis and Li for symmetric 

LCOs where the frequency ratio is well above one [24]. In their study, the hysteresis loops occur 

in the moment curves, and a ‘bow-tie’ elliptical shape in the aerodynamic lift. The behaviour is 

generally similar to the observations in this study. Since the frequency ratio tested in their study 

is 6.94, and well above one, the behaviour follows 1DOF characteristics and is pitch driven. 

However, the study by Dimitriadis and Li observed extra regions in the moment curve for one 

case. The reason for this is still unclear, and may be the subject of future studies [24]. 
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Figure 4.23A: Aerodynamic moment coefficient for 𝜔̅ = 0.68 and U∞ = 8.47 m/s (Rec = 8.8x104). 

 

 

Figure 4.23B: Aerodynamic lift coefficient for 𝜔̅ = 0.68 and U∞ = 8.47 m/s (Rec = 8.8x104). 
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Figure 4.24A: Aerodynamic moment coefficient for 𝜔̅ = 1.43 and U∞ = 8.39 m/s (Rec = 8.7x104). 

 

 

 
Figure 4.24B: Aerodynamic lift coefficient for 𝜔̅ = 1.43 and U∞ = 8.39 m/s (Rec = 8.7x104). 
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4.3.4 Two Degree-of-Freedom Lock-In 

The resonance-like phenomenon in heave, as well as the beating pattern seen in the 

response for LCOs occurring for frequency ratios close to one is further investigated in this 

section. In order to explore the sensitivity of the response with frequency ratio, the LCO 

response for each configuration was investigated over a common Reynolds number. The pitch 

amplitude, oscillation frequency, heave RMS, as well as phase angle at a Reynolds number of 

approximately 8.7×104 are plotted across frequency ratios, shown in Figure 4.25.  

The resonance effects surrounding a frequency ratio of one in Figure 4.25 can be 

observed through the difference in behaviour across frequency ratios. Close to a frequency ratio 

of one, the pitch amplitude and frequency values experience a slight decrease. The heave 

response reacts more sensitively to changing frequency ratio, where a sharp peak occurs at a 

frequency ratio of one. As discussed previously in section 4.2.2, the phase angle between the 

pitch and heave oscillations is approximately 150° below a frequency ratio of one, becoming in-

phase above one. The phenomenon indicates a change in dynamics in this region, where the 

weak feedback coupling between the degrees of freedom may occur. Further analysis was 

conducted in order to determine whether this coupling is a result of lock-in phenomenon.  

Although a resonance is peak is observed in heave, the determining plot for lock-in 

concerns the frequency, as shown in Figure 1.15 in the Introduction and Background section 

1.5.4. The normalized excitation frequency in the x-axis for a cylinder undergoing von Kármán 

vortex shedding, 𝑈∞ 𝑓𝑛⁄ 𝐷, can be re-defined in terms of the frequency ratio for a 2DOF airfoil 

system, as shown below [28].  

𝑈∞

𝑓𝑛𝐷
=

𝑓𝑠𝐷 𝑆𝑡⁄

𝑓𝑛𝐷
=

1

𝑆𝑡

𝑓𝑠

𝑓𝑛
            [4.3] 

where fn refers to the natural frequency of the structure, and fs refers to the frequency of the shed 

vortices into the wake. For a wing free to oscillate in pitch and heave, the natural frequency in 

heave and shedding frequency correspond to the heave ωh and pitch ωθ natural uncoupled 

frequencies, respectively.   

1

𝑆𝑡

𝑓𝑠

𝑓𝑛
∝

𝜔𝑠

𝜔ℎ
→

𝜔𝜃

𝜔ℎ
=

1

𝜔̅
            [4.4] 

The plot of the LCO frequency divided by the heave natural uncoupled frequency (𝑓ℎ =

1 2𝜋⁄ [𝐾ℎ 𝑀ℎ⁄ ]1/2 ) versus the inverse of the frequency ratio is shown in Figure 4.26. This was 

done for three Reynolds numbers: 8.2×104, 8.7×104, 9.05×104. As can be observed, the 

characteristic lock-in plateau occurs at frequency ratios close to one. Two important frequencies 

for the same frequency ratio can be observed in the plateau region. The beating phenomenon in 

the LCO response at frequency ratios of 0.92 and 0.96 occurs as an interaction between the two 

frequencies located in the lock-in region.  
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Figure 4.25: Pitch amplitude (top-left), LCO frequency (top-right), heave RMS (bottom-left), and phase 

angle (bottom-right) as a function of frequency ratio for Rec ~ 8.7 x 104.   

Therefore, it can be inferred that for a range of frequency ratios close to one, a coupling 

occurs from the heave to the pitch degree of freedom. This is characterized by a significant 

increase in the heave amplitude, and a lock-in of the LCO frequency onto the heave dominated 

frequency.  Away from lock-in, the uncoupled pitch motion drives the heave oscillation. This 

observation is further supported by the fact that the phase angle between the two degrees of 

freedom changes from a value of ~π to ~0 with increasing frequency ratio. The tendency of the 

phase between the 2DOFs to be either approximately 180° or 0° for frequency ratios outside of 

one, further supports the idea that the pitch drives the heave as a forced system in these regimes. 

During lock-in, however, the heave motion couples back to the pitch. As discussed in by Poirel 

et al., this newly discovered phenomenon can be referred to as 2DOF or coupled lock-in, 
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whereas the classic case of the forced oscillation of a bluff-body interacting with its own wake is 

classified as 1DOF or forced lock-in [28].  

 

Figure 4.26: Normalized LCO frequency as a function of the inverse of the frequency ratio for three 

Reynolds numbers. 

 

4.4 Energy Calculations 

As done for coupled flutter induced LCOs, the kinetic energy of the oscillations, as well 

as the experimental efficiency were calculated for the range of frequency ratios tested. The same 

process defined in section 1.6, and used in section 3.4, is used again here in order to compare the 

energy extraction potential of stall flutter induced LCOs. Both the calculated aerodynamic 

efficiency and kinetic energy are plotted as a function of Reynolds number below. Similar to the 

response exhibited by coupled flutter induced LCOs, the trend of the kinetic energy observed in 

Figure 4.27 follows the behaviour of the heave amplitude. Similar observations were made by 

Poirel and Mendes for SAOs. Even though stall flutter is fundamentally a 1DOF problem, and 

the overall cycle averaged work and kinetic energy of the 1DOF case is positive, the introduction 

of the heave degree-of-freedom greatly increases the energy uptake by the structure [13].  
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Figure 4.27: Kinetic energy sum of pitch and heave oscillations for each frequency ratio tested, 

for increasing Reynolds numbers 

 

Figure 4.28: Experimental efficiency of each frequency ratio tested, for increasing Reynolds 

numbers 
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The aerodynamic efficiency follows a different trend from that seen in coupled flutter. 

The aerodynamic efficiency decreases with Reynolds number for cases where the frequency ratio 

is below one. For frequency ratios above one however, the aerodynamic efficiency increases 

with Reynolds number. The rate of change in aerodynamic efficiency, as well as overall 

magnitude decreases as the frequency ratio moves away from one. The highest values in 

aerodynamic efficiency occur close to the lock-in region. The energy extraction of the structure 

thus increases when resonance occurs. This could imply that a higher degree of structural 

coupling increases the aerodynamic efficiency and energy extraction potential from the flow. 

The maximum efficiency recorded for these sets of tests is 10.3%. Compared to the results 

obtained for coupled flutter, the maximum aerodynamic efficiency value for stall flutter is much 

more reduced than the maximum efficiency value for coupled flutter. It is important to note that 

it is difficult to effectively compare the differences in efficiencies between both phenomena 

since they occur within different ranges of Reynolds numbers. In addition, it is not clear if higher 

efficiencies at higher Reynolds numbers could be obtained through stall flutter, had the 

experimental rig been designed to withstand increased amplitudes and frequencies of 

oscillations.  
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Chapter 5 – Discussion and Conclusions 

The need to develop alternative, clean, sustainable, environmentally benign, and efficient 

forms of energy generation becomes increasingly imperative as the world population continues 

to grow exponentially. Since the power generated by the movement of the Earth’s atmosphere is 

estimated to be hundreds of terrawatts, there has been particular interest in wind power 

generation. The high cost-factor, requirement for large towers, noise concerns, and threat to birds 

of horizontal-axis wind turbines (HAWTs) has motivated the development of alternative 

methods to extract energy from the wind [1]. Since there is energy available to be extracted from 

the flow through LCOs, the potential for a sustainable energy extraction mechanism exists 

through reciprocating motion. Due to the inherently non-linear nature of both coupled flutter and 

stall flutter induced LCOs, analytical predictions of their behaviour are limited. The differences 

in the overall behaviour, as well as the potential of energy extraction, between the stall and 

coupled flutter induced LCOs, is still not very well understood.   

In order to understand the difference between stall and coupled flutter, an experimental 

study was conducted at the large re-circulating wind tunnel at RMC. The aeroelastic system 

comprised of a rigid wing with a NACA 0012 profile, free to oscillate in 1DOF pitch and 2DOF 

pitch and heave. The stiffness in pitch and heave were determined through sets of linear springs. 

The overall goal of the thesis was to deepen the understanding of the difference between coupled 

flutter and stall flutter induced LCOs, both in terms of response and energy extraction potential. 

The objectives of this thesis include investigating which aeroelastic behaviours occur for two 

different EA locations: at 27% and 35% of the chord length aft of the leading edge. The 

sensitivity of the pitch and heave amplitude, frequency and phase angle to Reynolds number was 

analyzed. The difference in behaviour over varying frequency ratios for both types of LCOs was 

explored. For stall flutter in particular, the effect of the addition of the heave degree of freedom 

was also explored. The experimental phase-averaged aerodynamic loads per cycle were 

investigated and compared between configurations. Finally, the experimental efficiencies of each 

configuration were plotted and compared.  

 

5.1 Comparison Between Coupled and Stall Flutter Induced Limit 

Cycle Oscillations 

5.1.1 LCO Response Sensitivity to Frequency Ratio and Reynolds Number 

For the two EA locations tested, coupled flutter was tested only for an elastic axis 

location of 27% aft of the leading edge. The oscillations were inferred to be due to coupled 

flutter because any oscillations died out when the heave motion was blocked. In addition, all 

oscillations occurred at airspeeds above those obtained from analytical predictions. The 
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frequency ratios for coupled flutter induced LCOs include 0.67≤ 𝜔̅ ≤ 1.34 for 3.7×104 ≤ Rec ≤ 

1.4×105. Stall flutter occurred for an elastic axis location at 35% aft of the leading edge, since 

1DOF LCOs were recorded in pitch for a range of airspeeds. Four different pitch springs were 

tested for 1DOF oscillations. The range of frequency ratios for 2DOF oscillations tested included 

0.64≤ 𝜔̅ ≤ 1.43, and the range in Reynolds numbers 5.6 ×104 ≤ Rec ≤ 1.3×105.  

Both types of flutter produced LCO trends that varied with frequency ratio. Both 

responses were influenced by non-linear content. Also for both types of flutter, higher non-linear 

content is found in the pitch response rather than the heave response. This is exhibited by the 

prominent odd super-harmonics in the spectral content of the pitch oscillations, as well as the 

additional hysteresis loops in the experimental aerodynamic moment curves. Both types of flutter 

induced LCOs also produced oscillations for certain configurations which resembled SHM 

behaviour. Oscillations at all frequency ratios produced this kind of well-behaved response for 

coupled flutter. Well-behaved oscillations only occurred for stall-flutter induced LCOs where 

𝜔̅ ≠ 1. When the frequency ratio approached one for stall flutter induced LCOs however, a 

periodic interference pattern, or beating phenomenon, occurred as a result of the interaction 

between two frequencies. One of the frequencies was pitch dominated, and the other heave 

dominated.  

The behaviour of the pitching amplitude with increasing Reynolds number differs greatly 

between coupled flutter and stall flutter induced LCOs. For coupled flutter LCOs, the highest 

amplitudes occur for frequency ratios slightly above one, and all frequencies tend to converge 

towards a common value. Pitch amplitudes are seen to increase with increasing Reynolds number 

for frequency ratios below one. On the other hand, pitch responses for frequency ratios above 

one decreased towards a common value with increasing Reynolds number. Conversely for stall 

flutter induced LCOs, the introduction of the heave degree-of-freedom does not significantly 

affect the pitch amplitude. The pitch amplitudes for all frequency ratios are close in value to the 

1DOF case for increasing Reynolds number. Similar to the behaviour observed by Dimitriadis 

and Li, the pitch amplitude for stall flutter LCOs increases with Reynolds number until it reaches 

a plateau of about 45° [24]. For both the stall and coupled flutter LCOs, the heave RMS 

amplitudes increase with Reynolds number. For coupled flutter, the branches may originate from 

a single point, similar to the observations by Pigolotti et al., however it is still unclear [21]. The 

rate of increase of the heave amplitude RMS branches increases for frequency ratios close to one 

for stall flutter LCOs. The phase angle between the 2DOFs increases with Reynolds number 

towards an asymptotic value of approximately 160°. The phase angles may approach 180° with 

increasing Reynolds number, indicating a tend towards a forced system. Comparatively, the 

phase angle between the 2DOFs in stall flutter remains mostly unchanged with increasing 

Reynolds number across frequency ratios for stall flutter LCOs. However, the phase angle 

changes from approximately 150° to in-phase with increasing frequency ratio for a constant 

Reynolds number. This also supports the observation that stall flutter is a forced, pitch-driven 

system for frequency ratios outside of one.  
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All reduced frequency values for both LCO cases are above 0.05, indicating a high level 

of aerodynamic unsteadiness. They vary little across frequency ratios and decrease with 

Reynolds number. However, the coupled flutter case follows a more exponential profile, while 

the trend for stall flutter is more linear. The LCO frequency increases with Reynolds number for 

both cases. The sensitivity of the frequency with Reynolds number differs between coupled and 

stall flutter. Similar to the behaviour of pitch amplitude for coupled flutter induced LCOs, the 

frequency increases with frequency ratio and tends to converge towards a common value. Also 

similar to the pitch amplitude for stall flutter, all values across frequency ratios follow the 1DOF 

case closely, and unlike the coupled flutter case, follow a more linear trend. 

Plotting the experimental unsteady moment curves over pitch angle, the curves for both 

LCO types contain hysteresis loops. The appearance of hysteresis loops indicates non-linearity in 

the response associated with separated flow. The lift curves all follow more elliptical shapes, 

although they are also influenced by non-linear content. For both flutter cases, the majority of the 

positive work is done by the lift. For coupled flutter induced LCOs, the lift does all of the work 

since stabilizing regions make up the majority of the enclosed area of the curves, the resulting 

total work done by the moment being negative. The 2DOF moment curves are similar to the 

1DOF curve for stall flutter where a stabilizing region is enclosed by two destabilizing loops. 

The introduction of the heave degree of freedom was found to have a significant impact 

on the stall flutter LCO response for frequency ratios close to one. Outside a frequency ratio of 

one, 2DOF stall flutter is a forced problem, where the pitch oscillations drive the heave motions. 

This observation is supported by the fact that the pitch amplitude values are very close in value 

to the 1DOF case, and the moment curves also closely resemble the ones produced by 1DOF 

LCOs. At a particular Reynolds number, the phase angle between the 2DOFs switches from 

about 150° to in-phase as the frequency ratio increases, indicating a forced excitation. Behaviour 

around a frequency ratio of one is characterised by a resonance-like effect, where the heave 

amplitude RMS is markedly increased compared to frequency ratios below and above one. 

Further analysis was carried out, where the ratio of the LCO frequency and the natural frequency 

in heave was plotted over the inverse of the frequency ratio. On the subsequent plot, the 

characteristic plateau of a lock-in region appears. Also observed are the two interacting 

frequencies which produce the beating phenomenon in the region where the behaviour changes 

from forced to coupled motion. A weak coupling, or feedback interaction, occurs as the heave 

oscillations lock in to the pitch-driven motions around a frequency ratio of one. The resonant 

heave behaviour, as well as the characteristic plateau which occurs within a lock-in region, 

support the idea that a weak coupling occurs between the pitch and heave DOFs.  

5.1.2 Energy Extraction Behaviour and Potential of Limit Cycle Oscillations 

 Of the two types of flutter induced LCOs, significantly higher efficiencies are achieved 

through coupled flutter. The highest value is close to 45%, for frequency ratios slightly above 

one at the lowest airspeed tested. The efficiency decreases exponentially with increasing 
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Reynolds number. The parameters of the LCO response which govern efficiency are unclear, 

however the configuration which produced the highest efficiency was at a frequency ratio of 

1.14. The pitch amplitude (71.1°), frequency (3.05 Hz), heave amplitude RMS (2.51 cm) were 

the highest, and the phase angle (24.2°) the lowest out of the other configurations at the 

Reynolds number (3.75×104) where maximum efficiency occurs. However, as the efficiencies 

decrease exponentially with Reynolds number, the phase angles between the 2DOFs increase and 

tend towards 180° as an inverse function. Comparatively, the highest efficiency achieved through 

stall flutter induced LCOs was 10.3% at a frequency ratio of 0.9. The highest efficiencies 

produced by stall flutter induced LCOs occurred within the lock-in region. The efficiency of the 

LCO decreased with increasing Reynolds number for frequency ratios below one, and increased 

with Reynolds number for frequency ratios above one. The rate of increase of the trends was 

increased for frequency ratios closer to one. The highest efficiency values also corresponded 

with phase angles between the 2DOFs falling between 0° and 180°.  

 

 From these results, it can be concluded that coupling between pitch and heave is crucial 

for energy extraction from a flow using a reciprocating design. In addition, it appears that the 

phase angle between the 2DOFs and inclusion of the heave degree of freedom influences energy 

extraction. More energy is extracted for phase angles between 0° and 180°. Allowing the heave 

degree of freedom to oscillate greatly increases the energy uptake for stall flutter induced LCOs, 

which is inherently a 1DOF problem. The same observation was made for 2DOF SAOs by Poirel 

and Mendes [13]. Understanding the dynamics of the entire system is therefore essential to 

obtain maximum efficiencies from a kinematically-passive device driven by aeroelastic 

instability.  

The potential for the design of a new type of energy extracting device through 

reciprocating motion has been realized in this thesis. This stands in contrast to the better 

understood traditional wind-turbine problem, which is both kinematically and dynamically 

different. Wind-turbines rely on continuous rotational motion. On the other hand, the amount of 

energy extractable though the reciprocating device studied depends on its aeroelastic response, 

and on the underlying physical tenets of the flutter. It is important to note that the theoretical 

maximum percent of extractable energy from a flow is known as the Betz limit, and is 

analytically derived to be 59.3% [38]. The maximum efficiency obtained from this study meets 

or exceeds the aerodynamic efficiencies of other simulated prototypes of reciprocating designs. 

The results for efficiency are also comparable to conventional rotary designs. In practice, the 

most efficient HAWTs extract a maximum of about 45% of the available wind power. The 

performance of the two types of devices can only be compared at low airspeeds however. The 

design used in this study therefore may have more potential for use at low airspeeds. Conditions 

with reduced airspeed include heights close to the ground, where traditional HAWTs experience 

problems with performance. Therefore, there may be promise to favour similar designs based on 

reciprocating motion in applications where the use of HAWT towers becomes problematic. 

Potential for subsequent development thus exists for use in remote areas, such as defense 
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applications and First Nation communities for example, where the transportation of large towers 

becomes impractical. 

5.2 Recommendations for Future Work  

 Subsequent development is required in extending this work to explore the practical 

applicability of a reciprocating device using aeroelastic instability as well as furthering the 

understanding of the physics. The effect of including a generator or load to the design, as well as 

its effect on the aeroelastic response should be considered as the next step. Experiments with a 

load (simulated or physical) can be performed in order to generate responses with more realistic 

structural damping values and phases between pitch and heave motions. In addition, scaling the 

parameters of the system in this study for practical applications should be investigated.  

 Further experiments should also consider using a more robust test set-up to explore the 

physics of aeroelastic phenomena at the extremities of the Reynolds numbers explored in this 

study. The physics of 2DOF stall flutter has potential for additional study, especially at higher 

Reynolds numbers than the ones explored in this study. Exploring the system’s capabilities to 

extract energy at lower Reynolds number through coupled flutter induced LCOs for higher 

efficiencies should also be considered. The nature of the aerodynamic nonlinearity of the system 

remains unclear. The influence of the separated flow during the LCO cycle, as well as the 

importance and nature of shed LEVs in both coupled and stall flutter remains to be seen. This 

may be achieved through experimental means, such as Particle Image Velocimetry (PIV), or 

through numerical means such as Large Eddy Simulations (LES).  

In addition, the effect of free-stream turbulence on both types of LCO responses is also 

not fully understood. Subsequent experimental investigations should include a turbulence grid. 

The effect of free-stream turbulence becomes important when analyzing the feasibility of using a 

kinematically-passive device for outdoor applications, since the atmospheric boundary layer 

contains high levels of turbulence.  
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Appendix A – Blockage Calculations 

A.1 Cross Sectional Areas of Experimental Rig Components  

 The frontal cross-sectional areas of each component in the test rig are listed in the Table 

A.1 below. The cross-sectional area based on the frontal projection of the wing at 0°, as well as 

at the maximum pitch angle observed in experiment of 77.5°, are also included. This angle is 

used in order to determine the maximum blockage that was experienced during testing.  

  Area (m2) 

end plate supports  0.0038 

end plates  0.0195 

fiberglass rods 0.0021 

airfoil, θ = 0° 0.0114 

airfoil, θ = 77.5° 0.0929 

Table A.1 Experimental rig frontal areas 

The total areas of the obstructions for each pitch angle case are shown below in Table A.2.  

  Area (m2) 

total frontal area, θ = 0° 0.0368 

total frontal area, θ = 77.5° 0.118 

Table A.2 Total frontal areas of obstructions 

Since the areas of all the test components at as obstructions, they reduce the effective cross-

sectional area which permits the free-stream flow. Table A.3 below presents the unobstructed 

cross-sectional area (ATS) of the test section, as well as the cross-sectional area of the free-stream 

with obstructions (A’TS) for each pitch angle case.  

  Area (m2) 

unobstructed test section 0.821 

obstructed test section, θ = 0° 0.784 

obstructed test section, θ = 77.5° 0.702 

Table A.3 Total unobstructed and obstructed cross-sectional   
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A.2 Blockage Calculations  

The free-stream airspeed (U’TS) due to the obstructions in the test section is calculated using 

equation A.1 below:  

𝑈′𝑇𝑆 =
𝐴𝑇𝑆

𝐴′𝑇𝑆
𝑈𝑇𝑆               [A.1] 

The percent increase in the free-stream airspeed due to the obstructions (δU) is:  

𝛿𝑈 =  
𝑈′𝑇𝑆−𝑈𝑇𝑆

𝑈𝑇𝑆
𝑥100%        [A.2] 

 

A.2.1 Blockage for a Wing at θ = 0° 

From equation A.1, and using the calculated values presented in Table A.3, the blockage created 

by the wing at 0° is: 

𝑈′𝑇𝑆 =
0.821

0.784
𝑈𝑇𝑆 = 1.047𝑈𝑇𝑆 

𝛿𝑈 =  
1.047𝑈𝑇𝑆 − 𝑈𝑇𝑆

𝑈𝑇𝑆
𝑥100 = 4.7% 

 

A.2.2 Blockage for a Wing at θ = 77.5° 

The maximum blockage experienced throughout this study is: 

𝑈′𝑇𝑆 =
0.821

0.702
𝑈𝑇𝑆 = 1.168𝑈𝑇𝑆 

𝛿𝑈 =  
1.168𝑈𝑇𝑆 − 𝑈𝑇𝑆

𝑈𝑇𝑆
𝑥100 = 16.8% 

 

The value is below 20%, and is not considered to significantly influence the results of this study.  
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Appendix B – Convergence Study 

In order to determine the adequate sample size of data collected, a convergence study was 

performed. For this study, 2DOF LCOs due to coupled flutter were analyzed in order to 

determine at which sample size the magnitude of the amplitude of oscillation ceased to change. 

The configuration used was for an elastic axis location at 27% the chord length, and a frequency 

ratio of 1.04. Data was collected for 120 seconds, at a sampling frequency of 1 kHz. There was 

difficulty obtaining data beyond a 200 second sample. LCO data was collected for three different 

airspeeds. A manual perturbation was used in order to induce LCOs. Once data was collected, 

the oscillation was manually ceased, the RPM increased, and the process repeated twice more. 

Attention was paid to the LCO response to ensure that data was collected only once the system 

reached steady state. The ammeter was monitored in order to confirm little variation in airspeed 

at each value of fan RPM. 

 

Figure B.1: Pitch amplitude values for various sample sizes at an airspeed of 3.95 m/s, and a maximum 

sample size of 120 seconds. 

 

Figure B.2: Heave amplitude values for various sample sizes at an airspeed of 3.95 m/s, and a maximum 

sample size of 120 seconds 
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Pitch and heave amplitudes were calculated from the modes of the corresponding 

histograms using 200 bins. The amplitudes were calculated from various increasing sample 

lengths, with the maximum size being 120 seconds. The results are presented in the figures 

below. As can be observed, the amplitude values appear to level off at about 80 seconds. From 

this information, the majority of the analysis in this thesis was conducted for a sample length of 

80 seconds. 

 

Figure B.3: Pitch amplitude values for various sample sizes at an airspeed of 4.09 m/s, and a maximum 

sample size of 120 seconds. 

 

Figure B.4: Heave amplitude values for various sample sizes at an airspeed of 4.09 m/s, and a maximum 

sample size of 120 seconds. 
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Figure B.5: Pitch amplitude values for various sample sizes at an airspeed of 4.23 m/s, and a maximum 

sample size of 120 seconds. 

 

Figure B.6: Heave amplitude values for various sample sizes at an airspeed of 4.23 m/s, and a maximum 

sample size of 120 seconds. 
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Appendix C – Initial Conditions 

 The influence of initial conditions on the response of a 1DOF LCO was studied. The 

pitch stiffness Kθ was kept at 0.3 Nm/rad. The effect of increasing and decreasing airspeed was 

explored, and was compared to an LCO response where the oscillations are induced from rest at 

each airspeed increment.  

Three runs were conducted, the Run 1 had the airspeed increased to a maximum, then 

decreased. For this test, a manual perturbation initially induced the LCO, however the wing was 

allowed to oscillate without interruption for the remainder of the test run. Data was collected 

when the LCO amplitude was deemed to have reached steady state at each airspeed increment. 

Run 2 was conducted similarly to the first, however the airspeed was decreased first from a 

maximum airspeed to the minimum, then increased. A perturbation was induced at each airspeed 

increment, and data was recorded when the LCOs reached steady state for Run 3. Before the 

airspeed was increased, the LCOs were stopped such that the wing remained at rest while the 

airspeed was increased.  

 The results for LCO amplitude and frequency from each test run were plotted with 

airspeed. They are presented below in Figures C.1 and C.2. It can observed that initial conditions 

with airspeed do not significantly affect the LCO response. Regardless, the same initial 

conditions in Run 3 were used throughout the study.  

 

Figure C.1: 1DOF stall flutter LCO amplitude for different initial conditions in airspeed. 
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Figure C.2: 1DOF stall flutter LCO frequency for different initial conditions in airspeed. 
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Appendix D – Differentiation Scheme 

 A five-point formula is used for the numerical differentiation of the velocity and 

acceleration terms for both pitch and heave [35]. Once calculated over a time interval, knowing 

the structural terms, the moment and lift could be calculated from the equations of motion 1.2 

and 1.3. Little difference in values was found between results obtained using a five-point versus 

seven-point equation. Sample equations for velocity and acceleration in pitch are shown below.  

 

𝜃̇ =
1

12∆𝑡
(−𝜃𝑖+2 + 8𝜃𝑖+1 − 8𝜃𝑖−1 + 𝜃𝑖−2)                  [D.1] 

𝜃̈ =
1

12∆𝑡
(−𝜃̇𝑖+2 + 8𝜃̇𝑖+1 − 8𝜃̇𝑖−1 + 𝜃̇𝑖−2)               [D.2] 
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Appendix E – List of Experiments  

Included in the tables below is a summary of each experiment. The damping ratio and structural damping constants were averaged 

from the results obtained from no-flow tests. The stiffness in pitch and heave were determined from the averages of the slopes of the 

linear curves obtained from calibration.  

Table E.1: List of coupled flutter tests for each configuration performed with the elastic axis set at 27% the chord length. 

 

 

EA 

Location Test Date Range of Airspeeds Configuration ζθ 

Dθ 

(Nms/rad) ζh 

Dh 

(Ns/m) 

Kθ 

(Nm/rad) 

Kh 

(N/m) 

27% the 

chord 

length 

March 3rd, 2017 9.28 m/s - 13.99 m/s  =  0.0333 
0.0012 

0.0796 4.51 

0.3 

307.1 

March 4th, 2017 9.16 m/s -12.95 m/s  =  0.0332 0.0729 4.36 343.775 

August 18th, 2016 6.41 m/s - 12.12 m/s 
  =  0.0394 0.0014 0.0293 2.1 503.8 

August 25th, 2016 6.24 m/s - 12. 6 m/s 0.0379 0.0271 2.00 

March 6th, 2017 5.36 m/s - 10.52 m/s   =  0.0325 0.0011 0.0544 4.22 586.71 

March 7th, 2017 4.74 m/s - 8.01 m/s 
  =  

0.0326 0.0012 0.0541 4.73 
693 

March 27th, 2017 4.73 m/s - 10.43 m/s 0.0313 0.0011 0.0455 3.87 

March 8th, 2017 4.25 m/s - 6.46 m/s 
 =  

0.0316 
0.0011 

0.0516 4.49 
738.05 

April 7th, 2017 4.27 m/s - 10.35 m/s 0.0321 0.0446 3.89 

August 10th, 2016 3.94 m/s - 6.83 m/s 
 =  

0.0443 0.0013 0.0261 2.86 

805.4 August 15th, 2016 3.92 m/s - 8.84 m/s 0.0388 
0.0014 

0.0282 2.39 

August 18th, 2016 3.65 m/s - 7.08 m/s  =  0.0382 0.0206 1.94 889.69 

March 10th, 2017 6.07 m/s - 6.16 m/s  =  0.0325 0.0011 0.0399 4.43 1229.26 
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Table E.1: List of stall flutter tests for each configuration performed with the elastic axis set at 35% the chord length.

EA 

Location Test Date Range of Airspeeds Configuration ξθ 

Dθ 

(Nms/rad) ξh 

Dh 

(Ns/m) 

Kθ 

(Nm/rad) 

Kh 

(N/m) 

35% the 

chord 

length 

October 30th, 2016 5.69 m/s - 11.15 m/s 1DOF 0.0364 
0.0009 

N/A N/A 

0.15 

N/A 
October 31st, 2016 6.22 m/s - 11.08 m/s 1DOF 0.0352 0.2 

March 1st, 2016 
7.26 m/s - 11.16 m/s 

1DOF, with 

sandpaper 0.0345 0.0012 

0.3 

September 18th, 2016 7.53 m/s - 12.07 m/s 1DOF 0.0308 0.0011 

October 11th, 2016 6.81 m/s - 11.17 m/s  =  0.0295 

0.001 

0.1816 3.64 343.775 

October 12th, 2016 6.67 m/s - 10.28 m/s 
 =  

0.0706 0.0382 2.74945 
503.8 

November 18th, 2016 6.62 m/s - 10.23 m/s 0.0285 0.0341 2.409 

November 22nd, 2016 8.03 m/s - 8.94 m/s  =  0.0300 0.0576 4.56 610.64 

January 30th, 2017 8.47 m/s  =  0.0275 0.0009 0.0579 4.74 637.06 

January 16th, 2017 8.34 m/s  =  0.0245 0.001 0.0482 4.10 693 

January 13th, 2017 7.82 m/s - 8.23 m/s  =  0.0317 0.0011 0.0358 3.07 738.05 

August 29th, 2016 8.08 m/s - 8.92 m/s 

 =  

0.0320 0.0256 2.32 

805.4 December 7th, 2016 8.05 m/s - 8.85 m/s 0.0291 

0.001 

0.0376 3.37 

December 9th, 2016 8.01 m/s - 8.81 m/s 0.0304 0.0343 3.08 

October 14th, 2016 7.86 m/s - 9.16 m/s 
 =  

0.0299 0.0282 2.65 
889.69 

December 13th, 2016 7.71 m/s - 8.99 m/s 0.0342 0.0380 3.54 

January 23rd, 2017 7.71 m/s - 9.05 m/s  =  0.0289 0.0408 4.32 1229.26 

October 26th, 2016 7.99 m/s - 10.54 m/s  =  0.0297 0.0279 3.54 1533.24 

December 21st, 2016 7.77 m/s - 11.77 m/s 1DOF 0.0298 0.0012 N/A N/A 

0.35 

N/A 

January 9th, 2017 
7.71 m/s - 8.65 m/s  =  0.0298 

0.0011 

0.0550 3.98 503.8 

8.32 m/s - 8.38 m/s  =  0.0302 0.0492 4.41 805.4 

December 21st, 2016 7.98 m/s - 8.39 m/s  =  0.0292 0.0393 3.66 889.69 

January 10th, 2017 7.74 m/s - 8.62 m/s  =  0.0759 0.03115 3.80 1533.24 
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Appendix F – Additional Stall Flutter LCO Results  

Additional experiments for stall flutter induced 2DOF LCOs were conducted for a pitch 

stiffness of 0.35 Nm/rad, the EA set to 35% the chord length. Although additional frequency 

ratios at this pitch stiffness should be tested in order to more properly compare behaviours, the 

preliminary results correlate to the case in the main body. For cases where the frequency ratio is 

less than or greater than one, the pitch drives the heave motion. A resonance phenomenon is 

observed, where the amplitude in heave and efficiency are increased for the two frequency ratios 

closest to one.  

 

 

Figure F.1: Pitch amplitude for each frequency ratio over increasing Reynolds Numbers. 
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Figure F.2: Heave amplitude for each frequency ratio over increasing Reynolds Numbers. 

 

Figure F.3: LCO frequency for each frequency ratio over increasing Reynolds Numbers 
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Figure F.4: Aerodynamic efficiency of each frequency ratio tested, for increasing Reynolds 

Numbers 

 

Figure F.5: Pitch amplitude (right) and LCO frequency (left) as a function of frequency ratio for a 

Reynolds number of approximately 8.6 x 104. 
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Figure F.6: Heave Amplitude (left) and phase angle (right) as a function of frequency ratio for a 

Reynolds number of approximately 8.6 x 104. 
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Appendix G – Uncertainty Analysis  

G.1 Error Propagation  

 For a function of the form 𝑦 = 𝑓(𝑥1, 𝑥2, … , 𝑥𝑛) , in which n independent variables have 

uncertainties ∆𝑥1,∆𝑥2, … , ∆𝑥𝑛, the uncertainty in y can be estimated from by using Equation G.1. 

Here, the uncertainty can be calculated by taking the partial derivatives with respect to each 

variable, and multiplying each term with their corresponding estimated uncertainties.   

∆𝑦 ≅  |
𝜕𝑓

𝜕𝑥1
| ∆𝑥1 + |

𝜕𝑓

𝜕𝑥2
| ∆𝑥2 + ⋯ + |

𝜕𝑓

𝜕𝑥𝑛
| ∆𝑥𝑛    [G.1] 

 

G.2 Uncertainty Calculations 

G.2.1 Air Density (ρ) 

The uncertainty in the air density Δρ is calculated by deriving Equation G.3 from the methods 

used above (for Equation G.1), from Equation 2.15 (restated below). 

𝜌 =
𝑃𝑎𝑡𝑚

𝑅𝑎𝑖𝑟𝑇∞
            [2.15] 

∆𝜌 = |
𝜕𝜌

𝜕𝑃𝑎𝑡𝑚
| ∆𝑃𝑎𝑡𝑚 +  |

𝜕𝜌

𝜕𝑇∞
| ∆𝑇∞     [G.2] 

∆𝜌 =
1

𝑅𝑎𝑖𝑟
[|

1

𝑇∞
| ∆𝑃𝑎𝑡𝑚 +  |−

𝑃𝑎𝑡𝑚

𝑇∞
2 | ∆𝑇∞]   [G.3] 

Taking the average ambient temperature and pressure to be 293°K and 101300 Pa respectively, 

and the corresponding uncertainties (ΔT and ΔPatm) to be ±0.1°K and ±50 Pa as well, the 

uncertainty in air density is calculated to be ±0.001 kg/m3.    

G.2.2 Dynamic Pressure (Pdyn) 

For the equation used to calculate the dynamic pressure Pdyn as presented in Chapter 2, Equation 

G.5 for the uncertainty in the dynamic pressure ΔPdyn is derived.   

𝑃𝑑𝑦𝑛 = 673.7(𝑉 − 𝑉0)                  [2.16] 

∆𝑃𝑑𝑦𝑛 = |
𝜕𝑃𝑑𝑦𝑛

𝜕𝑉
| ∆𝑉 +  |

𝜕𝑃𝑑𝑦𝑛

𝜕𝑉0
| ∆𝑉0        [G.4] 
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∆𝑃𝑑𝑦𝑛 = 673.7(∆𝑉 + ∆𝑉0)         [G.5] 

Estimating the error in V0 from the voltmeter (ΔV0) to be ±0.001 V, and the error in V (ΔV) to be 

±0.01 V, an uncertainty of ±7 Pa was calculated for the dynamic pressure using Equation G.5.  

G.2.3 Airspeed (U) 

For an airspeed of 8 m/s (from September 18th 2016 test) the dynamic pressure was taken to be 

42 Pa, and the air density to be 1.2 kg/m3. Using the uncertainties estimated for air density and 

dynamic pressure in the derived Equation G.7 (from Equation 2.17), the uncertainty in the 

airspeed ΔU was calculated to be ±0.7 m/s.  

𝑈∞ = √
2𝑃𝑑𝑦𝑛

𝜌
       [2.17] 

∆𝑈∞ = |
𝜕𝑈∞

𝜕𝑃𝑑𝑦𝑛
| ∆𝑃𝑑𝑦𝑛 +  |

𝜕𝑈∞

𝜕𝜌
| ∆𝜌     [G.2] 

∆𝑈∞ =
√2

2
[|

1

√𝜌𝑃𝑑𝑦𝑛
| ∆𝑃𝑑𝑦𝑛 +  |−√

𝑃𝑑𝑦𝑛

𝜌3 | ∆𝜌]     [G.3] 

 

 

 

 

 

 

 


