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Abstract

A t-design on a sphere or projective space is a finite subset such that
the integral of any degree t polynomial over the sphere or projective space is
equal to the average value of that polynomial evaluated at the points of the
t-design. Tight t-designs are optimal in that they use the minimum possible
number of points to achieve a particular value of t. Although t-designs are
abundant, tight t-designs are rare structures in combinatorics that continue
to resist a full classification. However, there are precisely four tight projective
5-designs: the vertices of a regular hexagon, the vertices of a regular icosahe-
dron, the lines spanning the short vectors of the Leech lattice, and a set of
points in the octonion projective plane forming a generalized hexagon finite
geometry. This thesis explores the four tight projective 5-designs and their
connections to various exceptional structures. The regular hexagon provides
a starting point from which to recover Lie and Jordan theory. We explore an
exceptional sequence of Lie algebras that terminates in the Lie algebra of the
standard model of particle physics and provides a three generation represen-
tation of standard model fermions. The regular icosahedron is unique among
tight t-designs, apart from most polygons on the unit circle, in that it has an
irrational angle set. We provide proof of this fact by using Jordan algebras to
generalize and correct certain previous attempts to prove that tight t-designs
have rational angles. Finally, we explore the relationship between the two
remaining tight 5-designs by examining octonion constructions of the Leech
lattice and their octonion reflection symmetries. We introduce a common con-
struction technique that yields the two remaining tight 5-designs and explore
the role that octonion integers and exceptional Jordan algebra integers can
play in this common construction.
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Résumé

Un t-design sur une sphère ou un espace projectif est un sous-ensemble
fini tel que l’intégrale de tout polynôme de degré t sur la sphère ou l’espace
projectif est égale à la valeur moyenne de ce polynôme évaluée en des points du
t-design. Les t-designs serrés sont optimaux en ce sens qu’ils utilisent le plus
petit nombre possible de points pour atteindre une valeur particulière de t.
Bien que les t-designs soient abondants, les t-designs serrés sont des structures
rares en combinatoire qui continuent à résister à une classification complète.
Cependant, il existe précisément quatre 5-designs projectifs serrés: les som-
mets d’un hexagone régulier, les sommets d’un icosaèdre régulier, les lignes
couvrant les vecteurs courts du treillis de Leech, et un ensemble de points dans
le plan de Cayley formant une géométrie hexagonale finie généralisée. Cette
thèse explore les quatre 5-designs projectives serrées et leurs liens avec diverses
structures exceptionnelles. L’hexagone régulier constitue un point de départ
pour retrouver les théories de Lie et de Jordan. Nous explorons une séquence
exceptionnelle d’algèbres de Lie qui se termine par l’algèbre de Lie du modèle
standard de la physique des particules et qui fournit une représentation à trois
générations des fermions du modèle standard. L’icosaèdre régulier est unique
parmi les t-designs serrés, hormis de la plupart des polygones sur le cercle
unitaire, du fait qu’il possède un ensemble d’angles irrationnels. Nous appor-
tons la preuve de ce fait en utilisant les algèbres de Jordan pour généraliser
et corriger certaines tentatives antérieures de prouver que les t-designs serrés
ont des angles rationnels. Enfin, nous explorons la relation entre les deux 5-
designs serrés restantes en examinant les constructions par octonions du treillis
de Leech et leurs symétries de réflexion d’octonions. Nous introduisons une
technique de construction commune qui permet d’obtenir les deux 5-designs
serrées restantes et nous explorons le rôle que les octonions entiers et les entiers
exceptionnels de l’algèbre de Jordan peuvent jouer dans cette construction
commune.

vii





Contents

Acknowledgements iii

Abstract v
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CHAPTER 1

Introduction

This thesis is motivated by exceptional structures in mathematics—both
explanations for their existence and their potential explanatory power. Most of
the structures that we will examine are well known and well studied. The focus
will be addressing connections that are not yet fully understood and forming
new explanations surrounding certain rare structures. We focus primarily on
the four tight projective 5-designs. A t-design is a finite subset of a unit
sphere or projective space with special properties. Tight t-designs are optimal
in a certain sense, and the four tight projective 5-designs are particularly
interesting. These four structures consist of the vertices of a regular hexagon,
of a regular icosahedron, the lines spanned by the short vectors of the Leech
lattice, and an exceptional structure in the octonion projective plane. These
four objects are closely related to numerous other exceptional structures in
mathematics and deserve closer investigation.

1.1. Understanding Exceptionality

1.1.1. Defining Exceptionality. To understand what counts as an ex-
ceptional object, it helps to begin with the concept of a classification. A
classification of a family of mathematical structures often begins with a set of
axioms. We then raise the question of what are all of the objects that satisfy
these axioms. A classification is the answer to such a question. Having com-
pleted a classification, we can organize the objects according to their specific
properties or methods of construction. An exceptional object stands apart
from the others in some sense.

For instance, in the classification of finite simple groups the objects form
infinite families of groups as well as twenty six exceptions, known as the spo-
radic finite simple groups. These sporadic groups are exceptional because they
lack an infinite family. In contrast, the classification of division composition
algebras over the rational numbers has only four examples. The largest ex-
ample, the octonion algebra, is exceptional because it alone is non-associative.
Another example is the classification of symmetric permutations groups. The
exceptional symmetric group is the group of all permutations on six points,
since it alone has a non-trivial outer automorphism. In this case the exception
has a special property that sets it apart from an infinite number of remaining
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2 1. INTRODUCTION

examples. These examples illustrate how an object within a classification can
qualify as exceptional for different reasons.

Sometimes a classification is incomplete or otherwise difficult to achieve.
As we will see, the classification of tight t-designs over spheres and projective
spaces is incomplete. Even tight 5-designs are not yet classified. In the case of
tight projective 5-designs, however, we do have a classification that includes
exactly four examples. These four examples are perhaps exceptional because
any tight projective t-design (other than those contained in the real projective
line) is known to have t ≤ 5, so these four examples achieve a type of bound.
In another sense, a tight t-design is exceptional among t-designs because it is
tight, namely it is optimal in certain senses defined below. We see then that a
structure may be considered exceptional on account of being a finite example
lacking an infinite family, on account of a unique property, or on account of
being optimal in some way.

1.1.2. Exceptionality, Explanation, and Physics. In a certain sense,
exceptional structures are simply given, conjured by the axioms that define
the family of structures to which they belong. Yet the existence of exceptional
objects within a family may seem surprising. An explanation has explanatory
power when it lessens the surprise about the existence of an exceptional object
(see for example [SS11]). Certain exceptional structures exist because others
do. A construction yields the one from the other, or the one exists as a
substructure of the other. In either case, the construction or reduction allows
the existence of the one to explain the existence of the other.

When it comes to applying mathematics to physics, certain symmetries are
useful in the construction of physical models. For instance, the Lie algebra of
the standard model of particle physics selects one of the infinite available Lie
algebras as physically manifest or actual. Why is this particular Lie algebra
manifest in physics, in contrast to all the others? The standard model Lie
algebra is exceptional in that it is physically manifest, but it is difficult to
explain why this particular case is the exceptional one.

The existence of an exceptional object could hold explanatory power over
something else, such as the manifestation in physics of one specific symmetry
among other possibilities. As described in Chapter 2, many researchers have
attempted to describe the symmetries of the standard model of particle physics
via embedding in some larger symmetry group. The choice of embedding
requires some justification and many have sought to find that justification
using exceptional mathematical objects and their special properties. In this
way, exceptionality may serve an explanatory role. It turns out that standard
model symmetries can be embedded in all simple Lie algebras of rank at least
5, so the mere fact that an embedding is possible explains little about the
choice of embedding. An exceptional embedding explains more that the mere
fact of an embedding.
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1.1.3. Where to Begin? It is not simple to determine where to start
when working with Lie, Jordan, and composition algebras. McCrimmon re-
lates a dictum from Kantor: “There are no Jordan algebras, there are only Lie
algebras,” but replies with his own: “nine times out of ten, when you open up
a Lie algebra you find a Jordan algebra inside which makes it tick” [McC04,
p. 10]. Perhaps the same could be said of composition algebras, which de-
termine the properties of a unital Jordan algebra about three-quarters of the
time (i.e., for three of the four infinite families). Indeed, Jordan triple systems
(used to construct Jordan algebras) can be constructed from 3-graded Lie al-
gebras, and the reverse is also true. Yet not all simple Lie algebras admit a
3-grading, and not all Jordan triple systems admit a unital Jordan algebra
construction. Only the unital Jordan algebras of rank at least 3 always admit
a composition algebra construction. These nuances prevent us from treating
Lie, Jordan, and composition algebras as interchangeable structures, yet they
should not be treated as independent structures given their many connections
(the category theory relating Lie and Jordan structures is described well in
[CS14]).

For example, the octonions are the largest and uniquely non-associative
composition algebra. The only simple Jordan algebra of rank greater than
2, constructed using octonions, is the exceptional Jordan algebra Herm(3,O),
which admits a Jordan triple system corresponding to a three-grading on the
exceptional Lie algebra e7. This means that the octonion algebra O, the
exceptional Jordan algebra Herm(3,O), and the simple Lie algebra e7 form a
natural family of related exceptional objects. We will pay careful attention
to these three structures in what follows. Chapter 3 will draw attention to
exceptional properties of e7 and Chapters 5 and 6 will explore the relation of
O and Herm(3,O) to the third and fourth tight projective 5-designs.

Instead of beginning with Lie, Jordan, and composition algebras it is pos-
sible to focus on the combinatorial structures that govern their properties and
classification. Lie algebras admit a Cartan grading and Jordan triple systems
admit a Jordan grid, both of which are governed by the structure of root
systems. Root systems, in turn, define root lattices. Root lattices can be
manipulated to construct unimodular lattices. In certain cases, unimodular
lattices correspond to important integer subrings of composition or Jordan
algebras. We will examine integer subrings of O and Herm(3,O) in Chapter
6. Wherever possible, we will attend to the underlying combinatorics of root
systems when dealing with Lie or Jordan structures.

In what follows we elect to focus on the combinatorics of the four tight
projective 5-designs. We will characterize a t-design as a finite subset (with
certain special properties) of the primitive idempotents of a simple Euclidean
Jordan algebra. Simple Euclidean Jordan algebras, and t-designs subsets,
are directly related to the geometry of symmetric cones. Specifically, simple
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Euclidean Jordan algebras are in one-to-one correspondence with connected
symmetric cones in Euclidean vector spaces [FK94, chaps. 2-3]. The primitive
idempotents of the algebra form the boundary of the corresponding symmetric
cone. Equipped with the standard Jordan inner product, the manifold of
primitive idempotents forms a compact connected symmetric space of rank 1,
and all such spaces can be constructed in this way [FK94, p. 79], [Hog92,
p. 259]. Indeed, these Jordan primitive idempotent manifolds also constitute
the classification of compact and connected two-point homogeneous spaces, in
which the isometry group is transitive on pairs of points at each fixed distance
[Wan52]. Although subsets of Jordan primitive idempotents may appear to
require a great deal of algebraic preamble to understand, t-designs on the
symmetric spaces that they model are conceptually quite simple.

1.1.4. Outline. This thesis is organized around the four tight projective
5-designs, which are exceptional in their own way, and aims to explore con-
nections between them and other exceptional structures. One objective of this
thesis is to show that the standard model Lie algebra is also exceptional for
combinatorial reasons, lessening the surprise at it being physically manifest.
Another objective is to strengthen the explanation of certain exceptional ob-
jects in terms of properties of others, using the four tight projective 5-designs
as a focal point.

The remainder of Chapter 1 reviews the definitions of tight t-designs. The
known examples are given in Appendix A. We then provide an exposition of
the basic structure of Lie, Jordan, and composition algebras as well as some
well known connections between the three. In particular, we will see how
the smallest tight projective 5-design provides the minimal structure needed
to construct all irreducible root systems, and thereby to recover all of Lie,
Jordan, and composition algebra theory. The structure of root lattices also
permits one to construct the Leech lattice, which defines our third example of
a tight projective 5-design.

Chapter 2 provides a literature review of recent work related to the research
described in Chapters 3-6. We describe certain notable attempts to use the
octonion algebra to explain the seemingly accidental structure of the standard
model of particle physics and provide some commentary on the difficulties
remaining with these models. We also identify a gap in the literature relating
to theorems about the angle sets of tight t-designs, prior to addressing that
gap in chapter 4. Finally, we describe the most important examples in the
literature of attempts to use octonions to construct the Leech lattice or to
connect the two strictly projective tight 5-designs.

Chapter 3 explores the connections between the regular hexagon—our first
tight projective 5-design—and the structure of simply-laced irreducible root
systems, with their corresponding simple Lie algebras. We explore sequences
of three-gradings and identify one particular sequence as exceptional. This
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sequence begins with the exceptional E7 root system and terminates in the
A1A2 root system of the standard model Lie algebra.

Chapter 4 explores the properties of tight t-designs and their angle sets.
The main aim is to repair and extend respectively incorrect and incomplete
proofs in the literature. This allows us to verify that, apart from certain
exceptions, the angle set of a tight t-design is rational. The main exception
is the vertices of an icosahedron on the complex projective line, the second of
our for tight projective 5-designs.

Chapter 5 provides a common construction of the two remaining tight
projective 5-designs in terms of the exceptional octonion algebra. This chapter
has been published elsewhere as [Nas22]. Chapter 6 continues work with this
common construction with a focus instead on octonion integer rings. Both
chapters provide methods to generate certain sporadic simple groups using
octonion reflection matrices.

Chapter 7 concludes with some open questions and areas for potential
exploration.

1.2. Tight t-Designs

In this section we define tight t-designs and provide a catalogue of the
known examples. We then describe the classification of tight projective 5-
designs. These definitions are also given where needed in chapters 4 and 5.

1.2.1. Concepts. Let V be a simple Euclidean Jordan algebra of rank ρ
and degree d (defined in [FK94, chap. 2] and describe in terms of Lie algebras
in Section 1.4.2). Algebra V is equipped with a positive definite inner product
⟨x, y⟩. The manifold of primitive idempotents J (V ) with inner product ⟨x, y⟩
is one of the following spheres or projective spaces [FK94, chap. 2]:

Ωd+1, RPρ−1, CPρ−1, HPρ−1, OP2, d ≥ 1, ρ ≥ 3.

In the non-spherical cases, d = [F : R] = 1, 2, 4, 8, where F is one of R,C,H,O.
A design X ⊂ J (V ) is a finite subset of the manifold of primitive idempotents.
We call X a spherical design when X ⊂ Ωd+1, which is precisely whenever
ρ = 2. We call X a projective design when X ⊂ FPρ−1, which is precisely
whenever d = 1, 2, 4, 8. A design with ρ = 2 and d = 1, 2, 4, 8 is both spherical
and projective. We call X a strictly projective design when it is projective and
not spherical, which is precisely when ρ > 2.

Each design has some degree s and strength t. To determine the degree,
we use the angle set A(X) of design X:

A(X) = {⟨x, y⟩ | x, y ∈ X ⊂ J (V ), x ̸= y} .
The degree s of design X is the cardinality of A(X), written s = |A(X)|. We
also write ε = |{0} ∩A(X)|. A design with 0 ∈ A(X), so that ε = 1, is known
as an antipodal design.
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The strength t of a design has to do with its ability to approximate func-
tions on a sphere or projective space. Since we are using Jordan algebra
idempotents, we may adapt the common definition of a t-design as follows. A
t-design is a finite subset X of Jordan algebra primitive idempotents J (V )
such that the integral of any degree t polynomial over J (V ) is equal to the
average value of that polynomial evaluated on the points of X (cf. [Sei90],
[Sei01]). To determine the strength t we use the following renormalized Jacobi
polynomials:

Qε
k(x) =

(
1

2
ρd+ 2k + ε− 1

)
(12ρd)k+ε−1

(12d)k+ε

P
( 1
2
d(ρ−1)−1, 1

2
d−1+ε)

k (2x− 1).

In this definition, we use k a non-negative integer, ε = 0 or 1, Pochhammer

symbol (a)i = a(a+ 1)(a+ 2) · · · (a+ i− 1), and Jacobi polynomial P
(α,β)
n (x)

as defined in [AS72, 22.2.1]. The strength of design X is the maximum non-
negative integer t that satisfies,∑

x∈X

∑
y∈X

Q0
k(⟨x, y⟩) = 0, k = 1, 2, . . . , t.

A t-design is just a design with strength t.
Given any design X, we can determine A, s, and t using the definitions

above. It is more difficult to construct or obtain a set X with a predetermined
angle set, degree, or strength. Indeed, there are strict limits on the cardinality
of |X| for a given A or t. If we specify s then |X| has an absolute upper limit.
If we specify t then |X| has an absolute lower limit. To reach either limit, X
must have a specific angle set A(X). A design is tight when it meets both
limits simultaneously, with t = 2s− ε [Hog82, BH85].

A simple way to describe the properties of a tight t-designX ⊂ J (V ) is via
the annihilator polynomial. The annihilator polynomial ann(x) of design X is
the unique degree s polynomial that satisfies |X| = ann(1) and ann(α) = 0 for
each α in A(X). When a design is tight, we have t = 2s − ε and annihilator
polynomial ann(x) = xεRε

s−ε(x), where we have

Rε
s−ε(x) = Qε

0(x) +Qε
1(x) + · · ·+Qε

s−ε(x) =
(12ρd)s

(12d)s
P

( 1
2
d(ρ−1), 1

2
d−1+ε)

s−ε (2x− 1).

The equivalence between these two expressions for Rε
s−ε(x) is verified in Ap-

pendix B. These definitions ensure that a tight (2s− ε)-design has cardinality
|X| = Rε

s−ε(1) and an angle set A(X) given by the roots of the annihilator
polynomial ann(x) = xεRε

s−ε(x). Furthermore, a tight t-design defines an
association scheme and corresponding Bose-Mesner algebra—concepts that
generalize strongly regular graphs and to which we return in Chapter 4. The
important parameters of an association scheme (the subdegrees and intersec-
tion numbers) are fixed by the value of t, rank ρ, and degree d [Hog92].
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1.2.2. Examples of Tight t-Designs. It is very difficult to obtain new
tight t-designs or complete the full classification. As described in Chapter 5,
the classification of tight t-designs is incomplete. A complete classification
would need to determine whether any additional tight 2-designs or 3-designs
exist in RPρ−1, CPρ−1, orHPρ−1. However, the classification of tight projective
5-designs is complete and corresponds to the t = 5 case of Example A.2, as well
as Examples A.5, A.10, and A.19. We will discuss this partial classification
more specifically in Chapter 5. The known tight t-designs and their basic data
are given in table Table 1.1 and also described in Appendix A.

1.3. Root Systems

In this section we describe the fundamental role that our smallest tight
projective 5-design, the regular hexagon, plays in the theory of root systems,
and therefore in the theory of Lie, Jordan, and composition algebras. We
will describe integral lattices, root lattices, and special properties of their dual
lattices. This will allow us to describe the processes of one-line extension and
three-grading, which allow us to construct larger root lattices from smaller
ones, as well as obtain certain sublattices from larger ones. We will see that
the smallest tight projective 5-design has the structure required to recover all
root lattices. We will also see how the Leech lattice, our third tight projective
5-design, can be constructed from certain root lattices.

1.3.1. Integral Lattices. Integral lattices, root lattices, and root sys-
tems are described at length in many places. This treatment follows the
description given in [CS13] and [Ebe13].

We begin with a real vector space Rn equipped with the standard Eu-
clidean inner product, denoted (x, y) and with vectors x = (x1, x2, . . . , xn)
written in orthonormal coordinates relative to (x, y). A lattice Γ is a subset of
Rn equipped with a (non-unique) basis {e1, e2, . . . , en} such that any x in Γ
is a Z-linear combination of the basis vectors. The corresponding dual lattice
Γ∗ is the subset of Rn with integral inner product to every lattice point in Γ:

Γ∗ = {x ∈ Rn | (x, y) ∈ Z,∀y ∈ Γ} .
Given a lattice basis {e1, e2, . . . , en} we define the generator matrix M as the
matrix with the ei vectors as rows. In the orthonormal coordinates chosen,
the Gram matrix G = MMT is the matrix of all inner products of basis
vectors. The lattice determinant det Γ is defined as the determinant of the
Gram matrix. The matrix G−1M has for rows the dual basis {e∗1, e∗2, . . . , e∗n},
which satisfy (e∗i , ej) = δi,j . That is, G−1M is the generator matrix of dual
lattice Γ∗. The determinant of the dual lattice is the inverse of the determinant
of the lattice:

det Γ∗ =
1

det Γ
.
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Example ρ d t A |X| G

A.1 ρ d 1 {0} ρ

A.2 2 1 t
{
cos2

(
nπ
t+1

)
| n ∈ Z

}
t+ 1 W (I2(t+ 1))

A.3 2 d 2
{

d
2(d+1)

}
d+ 2 W (Ad+1)

A.4 2 d 3
{
0, 12
}

2d+ 2 W (Dd+1)

A.5 3 1 2
{
1
5

}
6 A5

2 2 5
{
0, 12

(
1± 1√

5

)}
12 W (H3)

A.6 7 1 2
{
1
9

}
28 Sp6(2)

2 5 4
{
1
4 ,

5
8

}
27 W (E6)

2 6 5
{
0, 13 ,

2
3

}
56 W (E7)

A.7 23 1 2
{

1
25

}
276 Co3

2 21 4
{
3
8 ,

7
12

}
275 McL : 2

2 22 5
{
0, 25 ,

3
5

}
552 2× Co3

A.8 8 1 3
{
0, 14
}

120 O+
8 (2) : 2

2 7 7
{
0, 14 ,

1
2 ,

3
4

}
240 W (E8)

A.9 23 1 3
{
0, 19
}

2300 Co2

2 22 7 {0, 13 , 12 , 23} 4600 Co2

A.10 24 1 5
{
0, 1

16 ,
1
4

}
98280 Co1

2 23 11 {0, 14 , 38 , 12 , 58 , 34} 196560 2 · Co1
A.11 ρ 2 2

{
1

ρ+1

}
ρ2 Weyl-Heisenburg

A.12 3 2 2 {1
4} 9 SU3(2)

A.13 8 2 2 {1
9} 64 26 : (PSU3(3) : 2)

A.14 4 2 3 {0, 13} 40 PSU4(2) : 2

A.15 6 2 3 {0, 14} 126 PSU4(3) : 2

A.16 5 4 3 {0, 14} 165 PSU5(2)

A.17 3 4 2 {2
7} 15

A.18 3 8 2 { 4
13} 27

A.19 3 8 5 {0, 14 , 12} 819 3D4(2)

Table 1.1. Known tight t-designs with cardinality |X|, angle
set A, and isometry group G.

Lattice Γ is an integral lattice when all inner products are integers, i.e.
when Γ ⊂ Γ∗. The norm of a lattice point is the square of its length, computed
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as (x, x). An integral lattice must only have lattice points of integer valued
norm.

1.3.2. Root Systems and Root Lattices. Certain integral lattices
have reflection symmetries defined by a subset of their vectors. Specifically,
vector r defines the following reflection in Rn.

sr : x 7→ x− 2
(x, r)

(r, r)
r.

A root system is a subset of integral lattice vectors that define reflections. As
described in [CS13, p. 97], a root vector, or root, is a vector r in integral
lattice Γ for which the reflection map sr is a reflection symmetry of Γ. A root
system Φ is a set of roots that span Γ such that for all α, β in Φ,

(1) If α, β are linearly dependent then α = ±β.
(2) sα(β) and sβ(α) are also in Φ.

Similar definitions are available in numerous treatments of the topic. The
traditional requirement that 2(x, r)/(r, r) be an integer is captured above in
the requirement that the roots of Φ define reflection symmetries of Γ. A
root system is irreducible if we cannot partition it into mutually orthogonal
components. The irreducible root systems are classified, with proofs available
in numerous places. We summarize the classification and various properties
in Table 1.2, based on [Wil09a, p. 33], [Ebe13, p. 25], and [Car72, chap.
3].

Φ |Φ| h Γ(Φ) W (Φ) Diagram

An (n ≥ 1) n(n+ 1) n+ 1 Γ(An) Sn+1

Bn (n ≥ 2) 2n2 2n Zn C2 ≀ Sn

Cn (n ≥ 3) 2n2 2n Γ(Dn) C2 ≀ Sn

Dn (n ≥ 4) 2n(n− 1) 2n− 2 Γ(Dn) Cn−1
2 : Sn

E6 72 12 Γ(E6) O−
6 (2)

E7 126 18 Γ(E7) O7(2)× 2

E8 240 30 Γ(E8) 2 ·O+
8 (2)

F4 48 12 Γ(D4) 21+4 : (S3 × S3)

G2 12 6 Γ(A2) D10

Table 1.2. Properties of irreducible root systems.

Let Γ(Φ) be the integral lattice spanned by root system Φ. A simple system
of roots Π ⊂ Φ is a basis for Γ(Φ) with the property that every root in Φ has
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either all non-negative or all non-positive coefficients in the Π basis. Each root
system has a corresponding simple system of roots, which we depict using a
Coxeter-Dynkin diagram. As described in [Wil09a, p. 34], in such a diagram
each simple root is a vertex. Orthogonal simple roots are not connected by
an edge. Simple roots of equal length at an angle of 120 degrees are joined by
a single undirected edge. A pair of roots of relative length

√
2 and angle of

135 degrees are joined by a double directed edge, pointing toward the shorter
root. Finally, a pair of roots of relative length

√
3 and angle 110 degrees are

joined by a triple directed edge, pointing toward the shorter root.
We can obtain the full root system Φ by taking the closure of its simple

system under reflection. The finite group generated by all reflections defined
by the roots in Φ is known as the Weyl group W (Φ). The Coxeter number
h of a root system is |Φ|/n, where Φ spans Rn. Finally, the integral lattices
spanned by two root systems are not necessarily distinct. In certain cases, two
root systems can span the same integral lattice.

A root lattice is an integral lattice spanned by a root system. A root lattice
is always spanned by its norm 1 and 2 vectors, although in certain systems
there are roots longer than norm 2. Likewise, an integral lattice spanned by
its norm 1 and 2 vectors is also a root lattice [CS13, chap. 4].

1.3.3. Dual Lattices and Glue Vectors. As described above, an in-
tegral lattice is always a sublattice of its dual, Γ ⊆ Γ∗. The quotient Γ∗/Γ
is a group of order det Γ. In the context of root lattices, Γ∗/Γ is called the
glue group and certain special representatives [i] of coset [i] + Γ are called
glue vectors [CS13, chap. 4]. Given a simply-laced root system for lattice
Γ(Φ), we can define a glue vector [i] in terms of a simple root system, using a
modified Coxeter-Dynkin diagram. That is, glue vector [i] is the unique vector
in Γ∗ orthogonal all black vertices in the diagram and having inner product
1 with the white vertex. Put another way, if we define the dual basis relative
to a simple root system, the dual to the indicated root in the Coxeter-Dynkin
diagram is the corresponding glue vector. Except in the case of Dn with n
even, we can compute ([i]+Γ)+([j]+Γ) = [i+ j]+Γ, where i+ j is evaluated
modulo det Γ(Φ). In the case of Dn with n even the glue group is the Klein
group V4, with [i] + [i] = [0] and [1] + [2] = [3] for all permutations of 1, 2, 3.
The glue group properties for irreducible root lattices are collected in Table
1.3.

1.3.4. One Line Extensions. There are numerous ways to classify root
lattices with minimal norm 2 in the literature. One interesting method pro-
ceeds as follows: since the inner products between linearly independent roots
must have values (x, y) = −1, 0, 1, the problem is equivalent to classifying sys-
tems of lines in Rn where any two lines are either orthogonal or form an angle
of 60 degrees. This method was first employed in [CGSS76], in connection
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Φ det Γ(Φ) Γ∗(Φ)/Γ(Φ) [i] ([i], [i])

An n+ 1 Cn+1 [i] = i(n+1−i)
n+1

Dn 4 V4 (n even) [1] = n
4

C4 (n odd) [2] = 1

[3] = n
4

E6 3 C3 [1] = 4
3

[2] = 4
3

E7 2 C2 [1] = 3
2

E8 1 1

Table 1.3. Glue vectors of irreducible root lattices

with the problem of classifying graphs with least eigenvalue −2. It is also
described at length in [CVL91, chap. 3], [GR01, chap. 12], and [CRS04,
chap. 3].

The treatment in [CRS04, chap. 3] makes use of a process called one line
extension, in which a single line is added at 60 or 90 degrees to all previous
lines and then a closure operation is conducted. The corresponding process
in a irreducible root lattice involves finding a glue vector [i] of norm at most
2. For u a norm 1 vector orthogonal to all of the roots, we construct a new
norm 2 vector of the form u

√
2− ([i], [i]) − [i] and append it to the simple

roots. Together they span a new irreducible root system. Indeed, this new root
defines the line of the one-line extension in [CRS04, chap. 3]. All possible
one line extensions are given in Figure 1.1 with a representative glue vector
labeling the arrow from the old to the new root system.

It is interesting to examine the one-line extensions that yield the excep-
tional root systems E6, E7, and E8. For example, the root systems of type An
have the symmetric groups for Weyl reflection groups, W (An) = Sn+1. The
exceptional symmetric group, S6, is the Weyl group of type A5, which is the
first root system with a glue vector of type [3]. This new glue vector defines
a third class of one-line extension, yielding E6. Indeed, an examination of
Table 1.3 and Figure 1.1 shows that the En series does not continue beyond
E8 because we lack glue vectors with norm at most 2 in larger root systems
to carry out the needed one-line extensions. As we move up the An and Dn
series, the temporary existence of glue vectors of suitable norms explains the
exceptional one-line extensions yielding root systems of types E6, E7, and E8.
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E6

E7

E8

D4

D5

D6

D7

D8

D9

. . .

A2

A3

A4

A5

A6

A7

A8

A9

. . .

A7

A8

D8

E7

E8

E8

[1
]

[1
]

[1
]

[1
]

[1
]

[1
]

[1
]

[1
]

[2
]

[2
]

[2
]

[2
]

[2
]

[2
]

[2]

[2]

[2]

[2]

[2]

[2]

[2]
[1
]

[1
]

[1]

[1]

[1]

[3]

[3]

[3]

[4]

[3]

[1]

Figure 1.1. One line extension construction of irreducible
root lattices

1.3.5. Three-Gradings. Three-gradings of root systems are described
in detail in [LN04]. Each glue vector of an irreducible root system has the
property that it is orthogonal to all simple roots except for one. Accordingly,
for root system Φ with glue vector [i], there exists a partition,

Φ = Φ1 ∪̇ Φ0 ∪̇ Φ−1, Φn = {α ∈ Φ | (α, [i]) = n} .
This partition is a three-grading on root system Φ, since we have Φi + Φj ⊂
Φi+j , where Φk = ∅ for k ̸= −1, 0, 1. In fact, all three-gradings on a root
system are defined in this way—in terms of a glue vector of the corresponding
root lattice.
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In addition to the glue vectors given in Table 1.3, we need to address
three-gradings on root systems of type Bn and Cn, which both contain Dn as a
subsystem. In the case of Bn the three-grading due to the glue vector [2] of Dn
also defines a three-grading on Bn. In the case of Cn the three-grading due to
the glue vectors [1] or [3] of Dn also defines a three-grading on Bn. Respectively,
these three-gradings correspond to the following diagrams:

The classification of three-gradings on irreducible root systems is depicted
in Figure 1.2. Of note, the only irreducible root systems that lack a three-
grading are the systems of types E8, F4, and G2.

E7

E6

D5

A4

A1 × A2

A1 × A1

An × A4−n

An × A5−n

An × A6−n

D4

D6

D7

A1 A2

A3

A5

A6

A7

Bn Bn−1

Cn An−1

[1]

[1]

[1]

[2]

[2]

[n
+
1]

[n
+
1]

[n
+
1]

[1
]

[1
]

[1
]

[1
]

[1
]

[1]

[1]

[2
]

[2
]

[2
]

[1]

[1]

. . . . . .

[1
]

[2
] [1]

[2]

[1]

Figure 1.2. Three-gradings of irreducible root systems

In Chapter 3 we will examine the structure of Figure 1.2 more closely and
define sequences of three-gradings on root systems. Our aim will be to obtain
an exceptional sequence that terminates in the root lattice of the Lie algebra
of the standard model of particle physics.
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1.3.6. Construction of Unimodular Lattices. In special cases an in-
tegral lattice can be self-dual, so that not only do we have Γ ⊆ Γ∗ but also
Γ∗ ⊆ Γ. A self-dual integral lattice is called a unimodular lattice. An integral
lattice is even when the norm of each vector is an even integer, i.e. when
(x, x) is an even integer for each lattice point x in Γ. We are interested in
constructing even unimodular lattices. Even unimodular lattices only exist in
Rn when n ≡ 0 (mod 8) [CS13, p. 192].

Begin with n = 8. If Γ is an even unimodular lattice then Γ is the E8
root lattice [Ebe13, p. 52]. We can construct an even unimodular lattice by
taking the Z-span of the D8 roots and the norm 2 glue vector [1] or [3], but
not both.

E8 ∼= D8 ∪ (D8 + [1]) ∼= D8 ∪ (D8 + [3]).

Likewise, we can construct an even unimodular lattice by taking the Z-span
of the A8 roots and the glue vector [3] (or equivalently [6]).

E8 ∼= A8 ∪ (A8 + [3]) ∼= A8 ∪ (A8 + [6]).

In general, for n = 8, 16, 24, the sublattice of an even unimodular lattice
generated by the roots (which is not necessarily a unimodular sublattice) is
such that the irreducible components each have the same Coxeter number h
and the number of roots |Φ| = hn [Ebe13, p. 89]. This ensures that for n = 16
there are only two possible even unimodular lattices, with root sublattices
either E8 × E8 or D16. The root lattice E8 × E8 is already unimodular. To
obtain an even unimodular lattice from D16 we use either the [1] or [3] glue
vector (which are both norm 4 glue vectors):

Γ = D16 ∪ (D16 + [1]) ∼= D16 ∪ (D16 + [3]).

For n = 24 there are 23 non-empty root systems that span R24 and have the
same Coxeter number for each irreducible component. The even unimodular
lattices constructed from each of these are called the Niemeier lattices with
roots (the Leech lattice lacks any roots and is also a Niemeier lattice). Apart
from the Leech lattice, there are 23 Niemeier lattices, and their construction
via glue vectors is given in [CS13, chap. 16]. Furthermore, each Niemeier
lattice with roots admits a construction of the Leech lattice. Indeed, each
set of simple roots for the root sublattice of a Niemeier lattice supplies a
construction of the Leech lattice. These constructions are described in [CS13,
chap. 24].

1.3.7. Summary. We have seen that the smallest tight projective 5-
design (the regular hexagon of Example A.2) is fundamental to the theory
of root systems. Using the one-line extension process, as depicted in Figure
1.1, we can recover all indecomposible simply-laced root systems from the A2
root system. These root systems define the root lattices, which in turn allow
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us to construct the 24 Niemeier lattices, including the Leech lattice. As de-
scribed in Appendix A, it turns out that orbits of various glue vectors of root
systems define infinite families of tight 2-designs and 3-designs, as well as a
tight 4-design, and a tight 5-design. The Leech lattice and its substructures
are responsible for most of the remaining known spherical tight t-designs.

1.4. Lie, Jordan, and Composition Algebras

Root systems determine the structure of an important family of non-
associative algebras, the Lie algebras. In this section we review the relation of
root systems to Lie algebras. We then describe how to recover Jordan struc-
tures (including Jordan algebras) and composition algebras. This will clarify
the known connections between various exceptional structures. These connec-
tions are clearest when we work with Lie, Jordan, and composition structures
over the complex numbers C.

1.4.1. Lie Algebras and Root Systems. A Lie algebra g over C is an
algebra in which all squares vanish and multiplication is an algebra derivation.
Every simple Lie algebra g admits a grading known as a Cartan decomposition,
which has the form,

g = h⊕
⊕
r∈Φ

gr.

Here h is a Cartan subalgebra of g, Φ is an irreducible root system, and gr
are the root spaces of the decomposition. The dimension of h is equal to the
dimension of the space Rn spanned by the roots Φ, whereas the dimension of
each root space gr is 1. The rank of the Lie algebra is the dimension of h.

We can construct the simple Lie algebra corresponding to any root sys-
tem by defining a basis that exhibits this grading. Such a basis is known as
a Chevalley basis, and may be constructed as follows. Each subspace gr is
spanned by basis vector er, where r is a root in Φ. The Cartan subalgebra h is
spanned by the co-roots of Φ, written hr = 2r/(r, r). In general, we choose a
simple system of co-roots for a basis of Cartan subalgebra h. For any x not in
Φ ∪ {0} we have gx = 0. The products involving co-roots are defined entirely
in terms of the geometry of the roots r, s in Φ:

[hr, hs] = 0, [hr, es] =
2(r, s)

(r, r)
es, [er, e−r] = hr.

If two roots are linearly independent, then the corresponding basis vectors
involve structure constants Nr,s:

[er, es] = Nr,ser+s.

We have Nr,s = 0 whenever r + s is not a root. Otherwise, Nr,s = ±(p + 1)
for p = max {q ∈ Z | s− qr ∈ Φ}. The axioms of a Lie algebra place certain
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additional constraints on the structure constants Nr,s, but this construction
of a simple Lie algebra from the roots of an irreducible system is unique up to
isomorphism.

Theorem 1.1. [Car72, pp. 42-43] Let Φ be an irreducible root system.
Then there exists, up to Lie algebra isomorphism, a unique simple Lie algebra
g over C with a Chevalley basis.

This means that we can represent a simple Lie algebra using a Coxeter-
Dynkin diagram of an irreducible root system. Table 1.4 lists some data about
the simple Lie algebras, taken from [Car72, p. 43]. We see that the simple
Lie algebras are in bijection with the irreducible root systems.

Type g dim g rank g |Φ| Dynkin diagram

An (n ≥ 1) sl(n+ 1) n(n+ 2) n n(n+ 1)

Bn (n ≥ 2) so(2n+ 1) n(2n+ 1) n 2n2

Cn (n ≥ 3) sp(2n) n(2n+ 1) n 2n2

Dn (n ≥ 4) so(2n) n(2n− 1) n 2n(n− 1)

E6 e6 78 6 72

E7 e7 133 7 126

E8 e8 248 8 240

F4 f4 52 4 48

G2 g2 14 2 12

Table 1.4. Classification of simple Lie algebras over C.

An important property of the Chevalley basis is that the structure con-
stants of the Lie algebra with respect to this basis are integers [Car72, p. 57].
This property makes it possible to construct several families of finite simple
groups, known as the Chevalley groups, as described in [Car72]. Indeed for
each simple Lie algebra over C, and for each field K, there exists a correspond-
ing Chevalley group. These groups are finite when the field K is finite. This
means that for each prime power q and each irreducible root system Φ we can
construct a finite simple group, the corresponding Chevalley group.

1.4.2. Jordan Structures. We now review Jordan structures from the
standpoint of the Cartan grading on the corresponding Lie algebra. We will
show how to construct a Jordan pair, Hermitian Jordan triple system, and
Jordan algebra from a three-graded simple Lie algebra.

As depicted in Figure 1.2, every simple Lie algebra except for g2, f4, and e8
admits a three-grading, corresponding to a three-grading on the corresponding
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irreducible root system. Let Φ = Φ1 ∪̇ Φ0 ∪̇ Φ−1 be a three-grading on
irreducible root system Φ. The corresponding simple Lie algebra three-grading
is a coarsening of the familiar Cartan grading:

g =

⊕
r∈Φ1

gr

⊕

h⊕
⊕
s∈Φ0

gs

⊕

 ⊕
t∈Φ−1

gt

 = g(1)⊕ g(0)⊕ g(−1).

This three-grading satisfies,

[g(i), g(j)] ⊆ g(i+ j).

Jordan structures (including Jordan pairs, Jordan triple systems, and Jordan
algebras) can be understood in terms of this coarsening of a Cartan grading.
In particular, Jordan structures emerge from the fact that we also have,

[[g(i), g(j)], g(k)] ⊆ g(i+ j + k).

This means that the g(±1) components satisfy,

[[g(±1), g(∓1)], g(±1)] ⊆ g(±1).

This expression shows that g(1) and g(−1) have a special relationship. The
concept of a Jordan pair, introduced axiomatically by Loos, captures this
relationship [Loo75].

A Jordan pair consists of two vector spaces and two trilinear maps satis-
fying certain axioms. The two vector spaces are the pair (g(1), g(−1)). The
needed trilinear maps must have structure {·, ·, ·}σ : g(σ) × g(−σ) × g(σ) →
g(σ), for σ = ±1. We define both maps at once in terms of the Lie product
as,

{x, y, z}σ =
1

2
[[x, y], z].

The factor of 1
2 makes defining idempotents and tripotents more convenient

below. This construction satisfies the axioms of a Jordan pair. Indeed, the
simple Jordan pairs are classified in [Loo75, pp. 195-201] and listed in Ta-
ble 1.5. They correspond precisely to the three-gradings of irreducible root
lattices.

A Jordan pair idempotent (f+, f−) is an element (pair of vectors) that
satisfies {fσ, f−σ, fσ}σ = fσ [Loo75, p. vii]. Using the Cartan grading of a
simple Jordan pair described above, we see that (es, e−s) with s ∈ Φ1 is an
idempotent since for any s in Φσ,

{es, e−s, es}σ =
1

2
[[es, e−s], es] =

1

2
[hs, es] =

1

2

(
2(s, s)

(s, s)

)
es = es.

We define a Jordan grid as the idempotents {(er, e−r)σ | r ∈ Φσ} correspond-
ing to the Cartan decomposition of g(σ). Neher introduced Jordan grids and
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Type Roots dim g(σ) rank g(σ) Unital Diagram

Ip,q Ap+q−1 → Ap−1Aq−1 pq p p = q

IIn Dn → An−1

(
n

2

) ⌊n
2

⌋
n even

IIIn Cn → An−1

(
n+ 1

2

)
n true

IV2m Dm+1 → Dm 2m 2 true

IV2m−1 Bm → Bm−1 2m− 1 2 true

V E6 → D5 16 2 false

VI E7 → E6 27 3 true

Table 1.5. Classification of simple Jordan pairs over C.

classified Jordan triple systems axiomatically using this concept in [Neh87].
Further details are available in [LN04].

A Jordan triple system is a Jordan pair with the additional structure of an
involution that swaps the vector spaces of the pair. This permits us to use one
vector space and one triple product, rather than two of each. Different choices
of involutions yield different Jordan triple systems, so a Jordan pair is more
basic than a Jordan triple system. Given involution θ : g(σ) → g(−σ), the
corresponding Jordan triple system is the single vector space g(σ) and single
triple product {·, ·, ·} : g(σ)× g(σ)× g(σ) → g(σ) of the form,

{x, y, z} =
1

2
[[x, θ(y)], z].

The Cartan grading on g(σ) and Chevalley basis provides a natural definition
of θ. Specifically, we set θ(λer) = λe−r, where λ is a complex scalar and er is
the Chevalley basis vector spanning the root space gr. When a Jordan triple
system is defined in terms of this involution θ, it is called a Hermitian Jordan
triple system. Simple Hermitian Jordan triple systems correspond precisely to
simple Jordan pairs and three-graded simple Lie algebras [FKK+00, p. 525],
so Figure 1.5 also lists the Hermitian Jordan triples systems.

Although Jordan algebras were invented first [JvNW34], they are the last
Jordan structure we discuss in our constructive approach. Given a Jordan
triple system V containing vector a, we define a Jordan algebra on V with
product ◦a as follows:

x ◦a y = {x, a, y}.
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Likewise, given a Jordan algebra we can recover the underlying triple system
via the expression,

{x, y, z} = (x ◦a y) ◦a z + x ◦a (y ◦a z)− (x ◦a z) ◦a y.
So defined, this Jordan algebra may or may not include an identity element
e. Regardless of whether the algebra (V, ◦a) has an identity element, it is
commutative and satisfies the traditional Jordan identity, x(x2y) = x2(xy)
[FKK+00, chap. V:II]. This identity specifies that multiplication by x com-
mutes with multiplication by x2.

A unital Jordan algebra is a Jordan algebra with identity element e. To
construct a unital Jordan algebra we require that the underlying Jordan triple
system contain a unitary tripotent : an element e in V that satisfies {e, e, e} = e
and also {e, e, x} = x for all x in V . Given unitary tripotent e, the Jordan
product x ◦e y = {x, e, y} defines a unital Jordan algebra on V . The Lie
algebra 3-gradings that admit the construction of a unital Jordan algebra are
specified in Table 1.5.

It turns out that every complex simple unital Jordan algebra is the com-
plexification of an underlying simple Euclidean Jordan algebra [FK94, p. 155].
To recover a Euclidean Jordan algebra from a unital Jordan algebra over C we
simply take all R-linear combinations of primitive idempotents. Of note, the
manifolds of primitive idempotents correspond to the following Jordan pair
classification types, as depicted in Table 1.5:

Ωd+1 = IVd+2, RPρ−1 = IIIρ, CPρ−1 = Iρ,ρ, HPρ−1 = II2ρ, OP2 = VI.

Euclidean Jordan algebras are particularly interesting because there exists a
one-to-one correspondence between them and symmetric cones [FK94, chap.
III]. For our purposes, the primitive idempotents of a simple Euclidean Jordan
algebra form a compact Riemannian symmetric space of rank 1, and all such
spaces can be obtained in this way as manifolds of primitive idempotents
[FK94, p. 99]. We are interested in the properties of tight t-designs on these
spaces.

1.4.3. Quadratic Maps and Jordan Isotopes. A Jordan algebra is
commutative and power associative, but non-associative in general. In order
to avoid complications related to non-associativity, it is convenient to use the
quadratic representation of a Jordan algebra. Let V be a simple Euclidean
Jordan algebra with identity e and let L(x)y = x ◦ y, so that L(x) is the
left-translation map of x. The quadratic operator of x is defined as [FK94, p.
32],

P (x) = 2L(x)2 − L(x2).

The quadratic operator satisfies the following identity [FK94, p. 33]:

P (P (x)y) = P (x)P (y)P (x).
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Whenever P (x) is an invertible map in End(V ) we can define a Jordan inverse
x−1 = P (x)−1x. (There are subtle differences between the concept of a Jordan
inverse and the more familiar algebra inverse element [FK94, pp. 30-31]. We
denote by x−1 the Jordan inverse in what follows.) The subset of invertible
elements in V is precisely the subset of elements for x which the quadratic
map P (x) is invertible.

A Euclidean Jordan algebra also has well defined trace and determinant.
In terms of quadratic map P (x) and translation map L(x), we can define the
Jordan trace as tr(x) = ρ

nTrL(x) and the Jordan determinant as det(x) =

(DetP (x))ρ/2n, where ρ is the rank of V and n = dim(V ) [FK94, p. 52].
Accordingly, the trace of the identity is tr(e) = ρ and the invertible elements
of V are precisely the elements x with det(x) ̸= 0. Another important property
of a Jordan algebra is the composition rule [FK94, p. 52], [McC04, p. 75]:

det(P (x)y) = det(x)2det(y).

This composition rule ensures that the set of invertible elements in V is closed
under the mapping (x, y) 7→ P (x)y [FK94, p. 33]. Likewise, the elements
with determinant 1 are also closed under this mapping.

For any a in V we can define a new Jordan algebra V (a) with a modified
product ◦a on V as follows [McC04, p. 86],

x ◦a y = {x, a, y} = x ◦ (a ◦ y) + (x ◦ a) ◦ y − a ◦ (x ◦ y),
The algebra V (a) is called the a-homotope of V . The algebra V (a) is a Jordan
algebra but it is only unital when a is invertible. When a is invertible the
element a−1 is the identity of V (a) and we call V (a) the a-isotope of V . In
either case, the algebra V (a) has a simple expression for the corresponding
quadratic operator:

P (a)(x) = P (x)P (a).

A square in V (which has identity e) has the form x ◦e x = P (x)e for some

x in V . In V (a) (which has identity a−1) a square relative to product ◦a is

defined as P (x)a = P (x)P (a)a−1 = P (a)(x)a−1. Homotopy and isotopy are
reflexive and transitive relations:

V (e) = V, (V (a))(b) = V (P (a)b).

When a is invertible P (a)−1 exists and we can use b = P (a)−1e such that

(V (a))(P (a)−1e) = V (e). That is, for a invertible, V (a) is the a-isotope of V and

V is the P (a)−1e-isotope of V (a).
The symmetric cone Ω in V is the orbit of identity e under the action

of P (x), for any invertible x in V [FK94, p. 48]. Any element a−1 in the
symmetric cone is the identity element of the a-isotope algebra. For any a−1
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in Ω there exists an invertible x such that a−1 = P (x)e. This map P (x) gives

the isomorphism of Jordan algebras between V and V (a).

1.4.4. Composition Algebras. A composition algebra is an algebra over
some field equipped with a non-degenerate quadratic form N on the under-
lying vector space that satisfies the composition law N(xy) = N(x)N(y). A
division composition algebra has the additional property that N(x) = 0 only
when x = 0. There are precisely four division composition algebras over R,
namely F = R,C,H,O. These are normally used to construct the Euclidean
Jordan algebras Herm(ρ,F) (with ρ = 2, 3 for F = O).

However, for a unital Jordan algebra of rank ρ ≥ 3, there are many ways
to recover the underlying composition algebra. This process of obtaining a
composition algebra from a Jordan algebra V of rank ρ = 3 is described care-
fully in [SV00, chap. 5] and also for higher ranks in [FK94, chap. 5]. We do
not define this composition algebra construction here, but the process is sim-
ilar to defining explicit matrices for a vector space of linear transformations.
This process involves selecting a non-unique basis (resulting in a Pierce de-
composition of the Jordan algebra) and specifying an identity element (since
the off-diagonal entries had dimension degree d = 1, 2, 4, 8). There are many
ways to do this, all of which result in the same composition algebra up to iso-
morphism for a particular Jordan algebra Herm(3,F). One might say, in the
pattern of Kantor and McCrimmon, that there are no composition algebras
but only Jordan algebras; yet usually (i.e. for ρ ≥ 3) when you open up a
Jordan algebra you find a composition algebra inside that makes it tick.

1.4.5. Summary. This section has described the path from three-grad-
ings on root systems through Lie algebras, to Jordan structures, and finally
to composition algebras. A more familiar path is to begin with composition
algebras, construct Jordan algebras, and then recover Lie algebras. In Chapter
3 we will examine the correspondence of exceptional sequences of root systems
to sequences of Lie algebras. In Chapter 5 we will use primitive idempotents
u of Euclidean Jordan algebras to define reflection elements of the form e−2u
that act by right multiplication on row vectors in Fρ and by the quadratic map
P (e− 2u) on the corresponding projective space FPρ−1. In Chapter 6 we will
explore integer subrings of the octonions and the Jordan algebra Herm(3,O).
We will also use the concept of a-isotope algebras to generate non-isomorphic
Jordan integer rings that exhibit structure related to the two strictly projective
tight 5-designs.





CHAPTER 2

Literature Survey

This chapter describes the literature pertinent to the research outlined
in the following chapters. We begin with a description of recent efforts to
use exceptional structures in mathematics to explain certain features of the
standard model of particle physics, preparing for the approach described in
Chapter 3. We then briefly discuss a gap in the literature regarding the angle
sets of tight t-designs, which we address in Chapter 4. Finally, to prepare
for the techniques explored in Chapters 5 and 6, we explore octonion and
exceptional Jordan algebra approaches to the Leech lattice and the tight 5-
design in the octonion projective plane.

2.1. The Standard Model and Exceptional Explanation

In what follows we will describe the basic terminology and structure of the
standard model of particle physics. We will then describe a number of attempts
to explain seemingly accidental or surprising features of the standard model
using exceptional mathematical objects.

2.1.1. The Standard Model Lie Algebra and Nomenclature. The
standard model is described fairly clearly in [Sch18], and in a form that
best suits our purposes by Baez and Huerta in [BH10]. Our focus is to
describe the standard model particles as a suitable complex representation of
the Lie algebra of the standard model and to link that representation to various
exceptional structures in mathematics. We will not address the dynamics,
particle masses, or Higgs mechanism of the standard model.

The standard model of particle physics describes a particular Lie group
GSM with the following 12 dimensional Lie algebra over C:

gSM = C⊕ sl2 ⊕ sl3.

In the standard model, physical particles correspond to specific representations
of this Lie algebra. A Lie algebra representation of Lie algebra g is a vector
space V and homomorphism ϕ : g → End(V ) such that for any x, y in g we
have,

ϕ([x, y]) = [ϕ(x), ϕ(y)] = ϕ(x)ϕ(y)− ϕ(y)ϕ(x).

Here [x, y] denotes the Lie product in g and ϕ(x)ϕ(y) denotes the composition
of the two endomorphisms ϕ(x) and ϕ(y).

23
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Since the rank of gSM is 4, any representation (ϕ, V ) must contain four
commuting endomorphisms in the image of the four-dimensional Cartan sub-
algebra of gSM . A conventional basis uses a hypercharge operator B that
spans the C component, a weak isospin operator W0 that spans the Cartan
subalgebra of the sl2 component, and the pair of orthogonal colour charge op-
erators λ3 and

√
3λ8 that span the Cartan subalgebra of the sl3 component.

For V a representation of gSM , a simultaneous eigenvector v in V of these
four commuting endomorphisms corresponds to a particle with some partic-
ular hypercharge, isospin, and colour. The corresponding antiparticle of v is
the vector with the opposite eigenvalues.

In general, particles of the adjoint representation V = gSM are called
bosons and (aside from the Higgs boson), particles of other representations
are called fermions. A fermion is called right-handed if it belongs to a trivial
representation of the sl2 component, with isospin 0, and called left-handed if it
belongs to a two dimensional representation of sl2, with isospin ±1

2 . A fermion
is called a lepton (either an electron or neutrino) if it belongs to the trivial
representation of the sl3 component, being colourless. A fermion is called a
quark (either up or down) if it belongs to a three-dimensional representation
of sl3, in which case the eigenvalue pairs of λ3 and

√
3λ8 form one of three

colours or their anti-colour. The hypercharge eigenvalue of B determines how
a fermion represents the C component. The electric charge of a particle is the
eigenvalue of Q = B

2 +W0. As described in [BH10], standard model fermions
are the following representations of gSM = C⊕ sl2 ⊕ sl3:

• Left-handed leptons: C−1 ⊗ C2 ⊗ C,
• Left-handed quarks: C 1

3
⊗ C2 ⊗ C3,

• Right-handed neutrino: C0 ⊗ C⊗ C,
• Right-handed electron: C−2 ⊗ C⊗ C,
• Right-handed up quarks: C 4

3
⊗ C⊗ C3,

• Right-handed down quarks: C− 2
3
⊗ C⊗ C3.

The fermion representation of gSM is the direct sum of these six irreducible
representations, a sixteen dimensional reducible representation.

A generation of particles corresponds to a representation ρSM of gSM
that contains the sixteen dimensional fermion representation and their corre-
sponding antiparticles. Accordingly, ρSM is a 32-dimensional representation
of gSM . The standard model includes three generations of fermions, so the
full fermion content of the standard model is a 96-dimensional representation
ρSM ⊕ρSM ⊕ρSM . The second generation replaces electrons with muons, elec-
tron neutrinos with muon neutrinos, up quarks with charm quarks, and down
quarks with strange quarks. The third generation replaces the electron with
the tau, electron neutrino with tau neutrino, up quarks with top quarks, and
down quarks with bottom quarks. Although the particle masses differ between
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the generations, the corresponding particles in each of the three generations
have the same hypercharge, weak isospin, and colour.

2.1.2. Open Questions. The standard model of particle physics is em-
pirically motivated and verified, although right-hand neutrinos (due to their
null eigenvalues) have not been observed. This experimental foundation leaves
some explanatory questions unanswered. As described in [Sch18], [Boy20],
[Fur18], and [Kra21] (among others), the following questions are still open:

• Why does experiment support this symmetry group GSM , with Lie
algebra gSM , and not some other?

• Why does experiment observe this representation ρSM for a genera-
tion of fermions and not some other?

• Why does experiment observe three generations ρSM of fermions and
not some other number of generations?

In each case, certain facts about the standard model seem arbitrary or sur-
prising.

2.1.3. Grand Unified Theories and Explanation. In order to better
explain these seemingly arbitrary facts about the standard model, many re-
searchers have sought to construct grand unified theories by embedding gSM
in a larger Lie algebra. Suppose that g is a finite dimensional simple Lie alge-
bra and that it contains gSM as a subalgebra. The project of constructing a
grand unified theory involves obtaining a suitable representation of g and de-
termining how it splits into representations of the subalgebra gSM . Ideally, the
representation of g would split perfectly into a representation ρSM⊕ρSM⊕ρSM ,
providing the full fermion content of the standard model as a restriction on
the symmetries of g, although this is rarely the case. Often only one genera-
tion ρSM is represented and sometimes only a partial generation emerges. In
many cases, irreducible representations of gSM distinct from those listed above
appear, which represent new particles required by the grand unified theory.

An extensive recent paper by Yamatsu provides an overview of the land-
scape of possible grand unified theories [Yam20]. Yamatsu provides detailed
calculations that analyse finite dimensional Lie algebras for the purpose of
obtaining representations of the standard model Lie algebra. For gSM a sub-
algebra of g, the manner in which irreducible representations of g split into
irreducible representations of gSM is governed by branching rules. Yamatsu
compiles the branching rules for, what is likely, all potentially useful repre-
sentations of simple Lie algebras g containing gSM [Yam20]. This paper
provides a suitable context for the other attempts to link the standard model
to exceptional structures that we will discuss below.

Since the standard model Lie algebra gSM has rank 4, the smallest avail-
able examples of g are simple Lie algebras of rank 4 or 5. As described in
[Yam20], gSM is a subalgebra of the simple Lie algebras of types A4, B4, C4,
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and F4 (but not D4). An important historical A4 approach is known as the
Georgi and Glashow SU(5) grand unified theory, which is described clearly in
[BH10]. Krasnov develops a B4 approach using octonions in [Kra21]. We are
not aware of any C4 approaches, but the branching rules given in [Yam20]
suggest that it might be difficult to construct the desired fermion representa-
tion of gSM using C4. An F4 approach is developed in [TD18], using octonions
and the exceptional Jordan algebra. Of note, the standard model can be em-
bedded in F4 in two ways [Yam20], only one of which is discussed in [TD18].
We discuss these F4 and B4 approaches in relation to octonions below. The
rank 5 Lie algebras that contain gSM as subalgebras are those of types A5,
B5, C5, and D5, namely all simple Lie algebras of rank 5 [Yam20]. Grand
unified theories for all but C5 are given in the references of [Yam20], and the
D5 theory is described well in [BH10].

Whether a grand unified theory provides any explanatory power over the
features of the standard model is another question. For instance, the SU(5)
grand unified theory sets g = sl4 and begins with a 5 dimensional represen-
tation. As described in [BH10], by taking the exterior algebra we obtain
a reducible representation of sl4 with irreducible components of dimensions
1 + 5 + 10 + 10 + 5 + 1. This sl4 representation becomes a ρSM representa-
tion of gSM according to the branching rules for sl4. That is, branching rules
compiled in [Yam20] ensure that the 5 and 10 dimensional irreducible repre-
sentations of sl4 split into physically useful quark and lepton representations of
gSM . Even so, the original choice of sl4 and the exterior algebra representation
are not self-explanatory. Why choose sl4 rather than some larger Lie algebra
containing sl4? Indeed, the references provided in [Yam20] reflect numerous
attempts by researchers to construct grand unified theories from most simple
Lie algebras of rank at least 4 (examples of type Cn are notably absent).

In Chapter 3, we will explore combinatorial reasons to favour a construc-
tion from the Lie algebra of type E7. Constructions from E7 exist in the
literature, notably in [KY84], and have the advantage of including all three
generations of fermions in the adjoint representation of e7. A survey article by
Slansky identifies some challenges facing E7 grand unification, particularly due
to the fact that the irreducible representations of the corresponding compact
Lie group are all self-conjugate [Sla81]. Even so, mechanisms to overcome
these obstacles exist and E7 remains a viable candidate [Yam20]. Our focus
will be on the potential explanatory power of exceptional structures to justify
the choice of gSM as an exceptional subalgebra of g = e7.

2.1.4. Exceptional Structures and the Standard Model. To pro-
vide further context for our approach to e7 in Chapter 3, we now discuss some
examples of how other researchers have attempted to link the seemingly arbi-
trary standard model to exceptional structures in mathematics, rather than
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seemingly arbitrary choices of Lie algebras. The octonion algebra, the excep-
tional Jordan algebra, and the exceptional Lie algebras all provide potential
structures that could render the standard model less arbitrary if it could be
linked to any of them. A brief history of the attempts to incorporate octo-
nions and the exceptional Jordan algebra into physics is provided by Gürsey
and Tze in [GT96, pp. 340-346].

Günyadin and Gürsey wrote an important paper linking the standard
model to the octonion algebra over C [GG73]. This paper serves as a dic-
tionary between the terminology related to Lie algebras g2, so(7), and so(8)
and the terminology of particle physics, particularly the non-trivial quark rep-
resentations of sl3 ⊂ g2. The authors provide a convenient basis for g2 and
so(7) that allows them to construct representations of subalgebras that corre-
spond to portions of the standard model representation. Günyadin and Gürsey
thereby link particle physics to the octonion algebra over C, which is unique
and has the complex Lie algebra g2 for its derivation algebra. By constructing
components of the standard model representation using octonion derivations,
this paper explains aspects of the standard model in terms of an exceptional
structure.

The simple Lie algebra g2 has both sl3 and sl2⊕sl2 as maximal subalgebras
[Yam20]. The main focus of [GG73] is the fact that octonion derivations g2
have sl3 as a subalgebra. The 7 dimensional representation of g2 is given by the
octonions orthogonal to the identity element 1 and the adjoint representation
of g2 is 14 dimensional. The branching rules for sl3 ⊂ g2 split these into
7 = 1+3+3 and 14 = 3+3+8. The authors of [GG73] interpret these three
dimensional irreducible representations of sl3 as quarks of the standard model.
They also interpret the 8 dimensional irreducible representation as mesons
(composite, not fundamental, particles). In summary, [GG73] focuses mostly
on the fact that the sl3 component of standard model Lie algebra gSM is a
subalgebra of the derivations of the complex octonion algebra. This provides
some partial clues to the exceptionality of gSM while leaving many aspects
unanswered.

Another attempt to explain the standard model in terms of exceptional
structures is Dixon’s analysis of the algebra R⊗C⊗H⊗O in [Dix94]. Here
the four division composition algebras form a tensor product over R, resulting
in a 32-dimensional C-algebra. Again, the 8-dimensional C ⊗ O algebra has
derivation Lie algebra g2 with subalgebra sl3. Algebra R ⊗ C ⊗ H ⊗ O has
derivation Lie algebra sl2 ⊕ g2, with the sl2 component corresponding to the
derivations of H. As in [GG73], the C ⊗ O representation splits into a 1 +
3 + 3 + 1 dimensional representation of sl3, with 3 dimensional quark and 1
dimensional lepton components.

Furey provides a subsequent treatment of the algebra R ⊗ C ⊗ H ⊗ O in
[Fur15] and [Fur18]. The left multiplication algebra of C ⊗ O is equivalent
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to Mat(8,C). The orbit of a primitive idempotent in Mat(8,C) under left
multiplication is an eight-dimensional subspace of Mat(8,C). Furey selects
a pair of maximally totally isotropic subspaces of C ⊗ O and uses them to
construct the needed primitive idempotent in Mat(8,C), using the concept
of ladder operators. The stabilizer of the original totally isotropic spaces
corresponds to Lie algebra sl3. The left ideal forms a 1+3+3+1 representation
of this stabilizer, serving as a representation of two quarks and two leptons.
Furey also uses right multiplication and the C ⊗ H structure to exhibit the
weak force properties of these quark and lepton representations [Fur18]. Furey
also attempts to construct a representation of three generations of quarks and
leptons from the vector space Mat(8,C), the left multiplication algebra of
C⊗O.

In summary, these three attempts to link standard model symmetries to
properties of the division composition algebras—those of the octonions in
particular—tend to focus on the fact that sl3 is a subalgebra of octonion
derivations g2 and that sl2 is the derivation Lie algebra of the quaternions. In
particular, the sl3 subalgebra corresponds to fixing or selecting an octonion
imaginary unit that is stabilized by the automorphisms corresponding to these
derivations. In these approaches, the representations selected do not seem to
easily explain the three generations of standard model particles. Whether
these approaches provide a simple or natural connection between the stan-
dard model and division composition algebras is a largely subjective question.

As described in [Yam20], gSM is also a subalgebra of f4, the simple Lie al-
gebra of type F4. This Lie algebra is itself exceptional and is also the derivation
Lie algebra of the exceptional Jordan algebra (known as the Albert algebra).
Exploring F4 approaches is a natural next step beyond G2 approaches since
the Albert algebra is an algebra of Hermitian octonion matrices under the
commutative Jordan product.

An important recent example of an F4 approach is given by Todorov and
Drenska, who obtain the standard model Lie group as Albert algebra auto-
morphisms [TD18]. Although they work with Lie groups, their approach
corresponds to constructing an f4 grand unified theory using the fact that
gSM is a subalgebra of Albert algebra derivations. Todorov and Drenska be-
gin by noting that the octonion automorphism group G2 is a subgroup of the
Jordan algebra automorphism group F4. Furthermore, a SU(3) subgroup of
G2 stabilizes a complex structure O = C ⊕ C3 (this is also the stabilizer of
a single imaginary unit in O). There are two maximal subgroups of F4 that
contain this SU(3), namely Spin(9) and (SU(3)×SU(3))/Z3. The intersection
of these two Albert algebra automorphism subgroups is the standard model
group. As noted in [TD18], the 26-dimension representation of F4 (i.e. the
trace-free elements of Herm(3,O)) does not provide a full generation of quarks
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and leptons (some right-handed fermions are missing). This is also clear from
the branching rules catalogued in [Yam20].

The primitive idempotents of Herm(3,O) form a 16-dimensional mani-
fold known as the octonion projective plane, OP2. The approach developed
in [TD18] only describes one of the two possible embeddings of gSM in f4
[Yam20]. The embedding described in [TD18] corresponds to restricting to
Albert algebra automorphisms (or their derivations) that (1) fix a primitive
idempotent in OP2 and (2) also fix an octonion imaginary unit in Herm(3,O).
Put another way, this embedding simultaneously stabilizes in the Albert alge-
bra (1) a Herm(2,O) subalgebra and (2) a Herm(3,C) subalgebra. The other
embedding of gSM in f4 given in [Yam20] corresponds instead to stabilizing a
Herm(3,C) subalgebra within a Herm(3,H) subalgebra of the Albert algebra.
This other embedding is not explored by [TD18].

In a follow up paper [DVT19], Dubois-Violette and Todorov attempt to
construct three generations of fermions in the following manner. They take
a Jordan frame of three orthogonal primitive idempotents with the three cor-
responding Herm(2,O) Jordan subalgebras and use each one to construct a
generation. Each generation is obtained by combining and complexifying the
two 16-dimensional irreducible representations of the Clifford algebra related
to Herm(2,O). These are obtained by constructing the two natural univer-
sal unital associative envelops of the Herm(2,O) subalgebra orthogonal to
the primitive idempotent. This addresses the missing lepton content of the
minimal representation of f4 described above, by focusing instead on repre-
sentations of so(9) ⊂ f4 corresponding to stabilizing a primitive idempotent.
Again, whether this approach provides a simple or natural connection between
the standard model and division composition algebras is a subjective question.

The Lie algebra so(9) is of type B4. The F4 approaches described above,
which fix a primitive idempotent, effectively reduce the problem of a F4 ap-
proach to that of a B4 approach. Krasnov addresses the B4 approach directly
in [Kra21], aiming to avoid prior discussion of the Albert algebra. Krasnov
observes that the standard model Lie group is the subgroup of Spin(9), and
that Spin(9) has a construction using octonion multiplication acting on O⊕O,
providing a 16-dimensional representation. The standard model group is the
subgroup of Spin(9) that stabilizes an imaginary unit i in O, or equivalently
preserves a description of the octonions as O = C ⊕ C3. Krasnov also ob-
serves that only the left-handed fermions of a single generation of particles are
given in the O ⊕ O representation of the standard model Lie group, which is
consistent with [TD18] and the branching rules for so(9) given in [Yam20].

Of note, prior to these recent papers on B4 and F4 approaches involving
octonions, Gürsey and Tze observed that the F4 automorphism group of the
Albert algebra contains a SU(3)×SU(3) subgroup—the first component arising
as a subgroup of octonion automorphisms G2 and the second component due
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to the 3 × 3 structure of the Albert algebra matrices [GT96, p. 305]. They
further observe that SU(2) × U(1) is a maximal subgroup of SU(3), which
ensures that the standard model symmetry group is a subgroup of F4. Gürsey
and Tze also observed that the stabilizer of both a primitive idempotent and
an octonion imaginary unit in F4 is the standard model Lie group [GT96, p.
216].

Regarding explanatory power, authors of F4 approaches involving octo-
nions tend to overstate the simplicity of their models. In particular, because
the Albert algebra can be constructed as Hermitian octonion 3 × 3 matrices
with the Jordan product, it is often taken for granted that fixing an imag-
inary octonion unit is a single simple assumption. However, the octonions
are not simply given by the Albert algebra. In order to obtain an octonion
product from the Albert algebra product one must follow a process described
in [SV00, pp. 129-136]. This involves first selecting a primitive idempotent,
extending it to a full Jordan frame, and then conducting the correspond-
ing Peirce decomposition (which identifies the three independent off-diagonal
components). The stabilizer of this selection is a Lie group of type D4, the
only rank 4 example that does not admit the standard model symmetries as
a subgroup [Yam20]. To complete the process, one must identify a pair of
(non-isotropic) vectors in distinct off-diagonal vector spaces and use them to
define the octonion product on the remaining off-diagonal vector space. Ac-
cordingly, an octonion approach to the standard model involves using both
more and less symmetry than octonions afford. We need to use both sym-
metries that do not preserve Pierce decomposition (i.e., symmetries outside of
D4) and also neglect those symmetries of the octonion product that do not fix
some imaginary unit (i.e., to isolate a sl3 subalgebra of g2). These facts do
not rule out octonion constructions, but they should inform our estimation of
the explanatory power of octonions for the standard model.

We conclude this overview of exceptional approaches to the standard model
by discussing two recent E8 approaches. Lisi has developed an embedding
of the standard model within e8, the largest exceptional simple Lie algebra
[Lis07]. Lisi’s model also includes additional particles, which he employs in
an attempt to incorporate gravitation and the Higgs mechanism. We do not
explore either aspect of Lisi’s E8 model in what follows since our focus in
Chapter 3 will be on the internal symmetries of the standard model and not
the particle masses.

In Table 9 of [Lis07], Lisi assigns explicit particle labels to the roots of
E8. The E8 root system contains a D4D4 subsystem. Close inspection of Lisi’s
labeling reveals that in his model, the 192 roots of E8 \ D4D4 correspond to
the standard model fermions, two per fermion on this construction. There
are two roots per fermion because Lisi subsequently combines these two real
root spaces into a one dimensional complex vector space per fermion. The
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three fermion generations are the length 64 + 64+ 64 orbits of these E8 \ D4D4
roots under the action the reflection group W (D4D4). The sl2⊕ sl3 component
of gSM corresponds to root system A1A2 ⊂ D4D4. Here the A1 component is
a subset of the first D4 component, and the A2 component is a subset of the
second D4 component. The remaining abelian Lie subalgebra of gSM , which we
denote C, is not restricted to the Cartan subalgebra corresponding to either
D4 component, but contains a component in both.

Lisi’s choice of hypercharge operator in [Lis07] defines an 11-grading on
the first and second generations of fermions, which yields appropriate hyper-
charge eigenvalues for the fermions in these two generations. However, this
same hypercharge operator defines a 9-grading on Lisi’s third generation of
fermions, which yields incorrect hypercharge eigenvalues. This is a problem
with Lisi’s model since we would expect the same hypercharge for the corre-
sponding fermions of distinct generations. Lisi acknowledges in [Lis07] that
this is a difficulty with his model, and identifies a triality matrix (a map-
ping of order 3) to transform fermions from one generation to another. An
improved version of this model would correct this hypercharge discrepancy,
perhaps using the triality operator or perhaps by selecting a different hyper-
charge operator.

Another recent E8 approach to the standard model is that of Manogue,
Dray, and Wilson in [MDW22]. These authors select one of the three real
Lie algebras of type E8, namely e8(−24). They then select a maximal so(12, 4)
real Lie subalgebra of type D8 so that the adjoint representation can be written
e8(−24) = so(12, 4)⊕ 128. This real 128-dimensional component defines a real
representation of so(12, 4). In order to obtain a complex representation, the
authors decompose the real Lie algebra so(12, 4) as follows:

so(12, 4) = so(10, 4)⊕ so(2)⊕ (2× 14).

The so(2) component provides a complex structure, allowing the authors to
reduce the 128 real spinor of so(12, 4) to a 64-dimensional complex spinor of
so(10, 4), which is interpreted instead as the complex Lie algebra so(14). This
so(14), in turn, contains a so(10) subalgebra which the authors use to link
their model to the Georgi-Glashow so(10) GUT, an important D5 approach
described clearly in [BH10]. In terms of fermion generations, the authors do
not model a single representation containing all three generations. Instead,
different choices in the process of reduction from e8(−24) to gSM result in
different generations. Since the critical step in this reduction involves selecting
a choice of axis in R3, the authors propose a potential mechanism for three
generations corresponding to three orthogonal axes. Accordingly, this model
describes “overlapping generations” of particles rather than a representation
containing all three generations. In this way it is similar to the F4 approach to
representing three generations by, Dubios-Violette and Todorov in [DVT19].
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In summary, the approach of [MDW22] is to select a D8 subsystem of E8 and
further restrict D8 to obtain a complex structure, a Lorentz group structure,
and a standard model internal symmetry structure. It isn’t clear why these
reductions or restrictions are warranted or whether they provide a compelling
explanation of why the standard model is what it happens to be.

2.1.5. Planned Contribution. We have seen that most attempts to
explain the arbitrary features of the standard model in terms of exceptional
structures can be classified according to the Lie algebra containing (a compo-
nent of) gSM . The early and most popular examples of grand unified theories
involve the Lie algebra of types A4 and D5, and are well described in [BH10].
These approaches do not strictly involve an exceptional structure but are use-
ful because of their low rank. Approaches of type G2 emphasize octonions
but only address part of gSM , while approaches of types F4 and B4 tend to
take for granted octonion structure when counting the assumptions needed to
select the gSM subalgebra. Most approaches, except perhaps D5, have some
trouble obtaining a representation with the correct fermion content. The E8
approaches of [Lis07] and [MDW22] may put to rest the question of why
the grand unified theory is not embedded in some larger theory, since E8 is
maximal, but have problems respectively with correct hypercharge eigenvalues
and obtaining a simultaneous representation of all three generations. The fact
that gSM is a subalgebra of e8 should not be surprising, since it belongs to
every simple Lie algebra of rank 5. The choice of gSM with e8 needs some jus-
tification when developing an exceptional explanation for the standard model.

Gürsey and Tze describe how the exceptional groups of type E6, E7, E8,
can be thought to include lower rank classical groups by truncating their
corresponding Coxeter-Dynkin diagrams [GT96, p. 305]. For instance, we
could define E5 to be the group D5 = SO(10). However, there are two distinct
ways to truncate E5 resulting in E′4 as D4 = SO(8) or E4 as A4 = SU(5). They
do not explore the further possibility of E3 as A2 × A1 = SU(3)× SU(2), which
we will examine in Chapter 3.

In Chapter 3 we will explore a method to obtain the standard model Lie
algebra gSM and a representation including three generations by identifying an
exceptional sequence of three-gradings on irreducible root systems. This ap-
proach is distinct from those described above because not only does it include
the standard model symmetries within a larger set of symmetries, but it pro-
vides reasons for regarding the standard model as an exceptional substructure
of a larger exceptional structure in which it is embedded. This approach will
also provide a simultaneous representation of all three generations of fermions,
and not just a single representation that can be repurposed or reconfigured to
describe a different generation.
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2.2. Tight t-Designs and Rational Angle Sets

In this section we briefly describe the similarities between combinatorial
t-designs and spherical t-designs, before identifying a gap in the literature
regarding the properties of the angle sets of a tight spherical or projective
t-design.

2.2.1. Combinatorial t-Designs. A combinatorial t-design, specifically
a t− (v, k, λ) design, consists of size k subsets (blocks) of a v-set (points) with
the property that any size t subset belongs to precisely λ blocks. Combinato-
rial designs correspond to spherical designs in the following manner [DGS77].
The sphere Ωd+1 corresponds to all k-subsets of the v points (namely the
sphere is replaced by Johnson scheme J(v, k)). The finite design X ⊂ Ωd+1

corresponds to the blocks B ⊂ J(v, k). The angle set corresponds to the sizes
of all pairwise intersections of blocks, corresponding to the set of all inner
products between design points on the sphere. The size of the angle set is the
degree s of the design, and the strength t is defined in the usual way for both
cases. Just as a spherical t-design satisfies certain inequalities, a combinatorial
t-design satisfies a number of inequalities.

Theorem 2.1. [RCW75] A 2s − (v, k, λ) design and v ≥ k + s satisfies
b ≥

(
v
s

)
, where b = |B| is the number of blocks.

Theorem 2.2. [RCW75] Let B ⊂ J(v, k) be the blocks of a design with
degree s = |{|x ∩ y| | x ̸= y ∈ B}| and let b = |B|. Then b ≤

(
v
s

)
.

A tight combinatorial 2s-design is a 2s − (v, k, λ) design with |B| =
(
v
s

)
.

The only non-trivial tight combinatorial 4-designs are the Steiner design 4 −
(23, 7, 1) and its complement [RCW75].

2.2.2. The Angles of Tight t-Designs. The concept of a spherical t-
design was introduced by Delsarte, Goethals, and Seidel in [DGS77]. That
paper included lower bounds on the cardinality of a spherical t-design, and
labeled a t-design meeting the lower bound as tight (Theorems 5.11 and 5.12).
Bannai states shortly thereafter, in Theorem 1 of [Ban79], that for a tight
spherical t-design in Ωd+1 with d ≥ 2 certain polynomials that determine the
angle set of the design will have rational roots. However, the tight 5-design
in Ω3 defined by the vertices of the icosahedron serves as a counter-example,
with the corresponding polynomial having the irrational roots ±1/

√
5.

Building on Neumaier’s work [Neu81], Hoggar introduced the concept of
a projective t-design in [Hog82]. In [Hog84], Hoggar introduced a theorem
that for a tight projective t-design not belonging to RP1, the angle set is
rational. Again, as observed by Lyubich [Lyu09], the icosahedron provides a
counter example, but this time in the projective space CP1 ∼= Ω3. In [BH89],
Bannai and Hoggar use this incorrect result about rational angle sets to prove
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that tight projective t-designs (other than in RP1) must have t ≤ 5. Hoggar
then uses the rationality of angle sets to prove that the t = 4 case is not
realized in tight projective t-designs, and to rule out some t = 5 possibilities
(including the counter-example of CP1). In [Lyu09], Lyubich repairs Hoggar’s
proof in [Hog84], but does not apply that proof to the spherical or octonion
projective cases.

2.2.3. Planned Contribution. In Chapter 4 we generalize Lyubich’s
repair of Hoggar’s proof to apply to all spherical and projective tight t-designs.
Fortunately, most of the results concerning tight t-designs in the literature are
not affected by this error, once the icosahedron exception is properly accounted
for. Independently of our work on this problem, Boyvalenkov, Nozaki, and
Safaei very recently proved that all tight spherical t-designs apart from the
icosahedron have rational angle sets [BNS22]. Their paper does not mention
the polygon exceptions in the unit circle. However, these exceptions are well
known and can be considered implicit in their paper. They provide a more
general result involving designs that satisfy t ≥ 2s− 2 and s ≥ 3, but do not
consider the projective cases. Our contribution is independent and focuses
instead on treating projective and spherical cases together in a unified way.

2.3. Octonions and Tight Projective 5-Designs

This final section describes attempts to construct the Leech lattice using
octonions, including techniques involving octonion integers. We also describe
a lattice method of constructing the tight 5-design in the octonion projective
plane using octonion integers.

2.3.1. Octonions and the Leech Lattice. The Leech lattice is the
unique even unimodular lattice in R24 without any roots. It also defines the
most dense sphere packing possible in 24 dimensions [CKM+17] and man-
ifests the sporadic symmetry of the Conway group Co1. The most valuable
reference on the Leech lattice is Conway and Sloane’s book [CS13], which
describes numerous constructions and special properties. The lines spanned
by the shortest vectors of the Leech lattice define a projective tight 5-design
in RP23. The remaining strictly projective tight 5-design exists in the octo-
nion projective plane OP2, which suggests that the Leech lattice might admit
an octonion construction. Indeed, Hoggar conjectured that some connection
between the tight 5-designs in RP23 and OP2, but could not yet provide one
[Hog82].

Wilson constructs the Leech lattice using octonion vectors in O3, rather
than R24 [Wil09a], [Wil09b]. Wilson’s construction is not the first. Dixon
provided a somewhat complicated construction in [Dix95], which is further
updated in [Dix10]. Elkies and Gross also provide a Leech lattice construction
using the exceptional Jordan algebra [EG96]. We will first discuss Wilson’s
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construction, since it forms the template for our work in Chapter 5, and then
describe the approach due to Elkies and Gross.

2.3.2. Wilson’s Octonion Leech Lattice. Wilson’s Leech lattice con-
struction in [Wil09a] and [Wil09b] can be described in terms of integer
octonion rings as follows. Let {it | t ∈ PL(7) = {∞} ∪ F7} be an orthonormal
basis for the octonion algebra O, as described in [CS03]. Let B denote the
E8/

√
2 lattice with the following choice of 240 roots, for all t ∈ F7:

±1, ±it,
1

2
(±1± it ± it+1 ± it+3),

1

2
(±it+2 ± it+4 ± it+5 ± it+6).

This is a natural choice since itit+1it+3 = −1 for all t in F7. The lattice
B is not closed under octonion multiplication. But we obtain seven distinct
octonion integer rings as follows:

At =
1

2
(1− it)B(1− it), t ∈ F7.

The At octonion rings are each known as Coxeter-Dickson integral octonions.
Finally, we can recover the standard coordinates for the E8 lattice in both the
left-handed L and right-handed R form as follows:

L = (1 + it)At = B(1− it), R = At(1 + it) = (1− it)B.

The intersection L ∩ R is a standard copy of the D8 lattice, namely the span
of all 112 D8 roots ±ir ± it for r, t ∈ PL(7). The remaining roots in L are the
128 vectors of the form 1

2(±1± i0 ± i1 · · · ± i6) with an odd number of minus
signs. The remaining roots in R are the 128 vectors of this form but with an
even number of minus signs instead. So the vector s = 1

2(−1 + i0 + i1 + i2 +
i3 + i4 + i5 + i6) is in L, while the vector s is in R.

Wilson’s key observation in [Wil09b] is that, although they are not closed
under multiplication, the lattices L,R,B nevertheless satisfy the following
simple relations due to the octonion Moufang laws:

LR = 2B, BL = L, RB = R.

These identities simplify Wilson’s proofs compared to Dixon’s and allow Wil-
son to define the octonion Leech lattice as all row vectors (x, y, z) in O3 with
norm,

N(x, y, z) =
1

2
(x, y, z)(x, y, z)† =

1

2
(xx+ yy + zz),

that satisfy,

(1) x, y, z ∈ L
(2) x+ y, y + z, x+ z ∈ Ls
(3) x+ y + z ∈ Ls.
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In what follows we denote as Wilson’s Leech lattice this particular octonion
construction.

In [Wil09a] and [Wil11], Wilson also shows how to construct 2 ·Co1, the
automorphism group of the Leech lattice, using 3×3 octonion matrices acting
from the right on the row vectors of his Leech lattice. In particular, Wilson
shows that right scalar multiplication by certain octonions preserves his Leech
lattice as follows:

(x, y, z) 7→ 1

2
((x, y, z)R1−i0)R1+it , t ∈ F7, Rx =

 x 0 0
0 x 0
0 0 x

 .

These nested matrix actions generate a 2·A8 group action on the Leech lattice.
If we include all coordinate permutations, coordinate sign changes, and right
multiplication by diag(1, it, it) for t in F7, then we obtain by right multiplica-
tion a 23+12(A8 × S3) action on Wilson’s Leech lattice. This group turns out
to be a maximal subgroup of the Leech lattice automorphism group 2 · Co1.
To obtain the full 2 · Co1 action, Wilson adjoins right multiplication by,

1

2

 0 s s
s −1 1
s 1 −1

 ,

which is the negative of the reflection matrix of the vector (s, 1, 1) [Wil11].
In [Wil09a] and [Wil11], Wilson uses subsets of these actions, and closely

related ones, to exhibit the groups of the Suzuki chain of Co1 subgroups acting
on this octonion Leech lattice:

S3 < S4 < PSL2(7) < PSU3(3) < HJ < G2(4) < 3 · Suz.
Since the Suzuki chain subgroup are centralizers of alternating groups in Co1,
Wilson’s construction via 2 ·A8 lends itself well to this task.

2.3.3. Baez and Egan. The octonion algebra, octonion integer rings,
the exceptional Jordan algebra, the E8 lattice and the Leech lattice are all
discussed together in an accessible form in a series of mathematics blog posts
by Baez [Bae14a], who also authored a comprehensive review of the octonion
algebra [Bae02]. In [BE14b], Baez and Egan describe how by restricting
the exceptional Jordan algebra to octonion integer entries, we obtain a lattice
containing a (E8E8E8)/

√
2 sublattice. They further explore ways to restrict to

a Leech sublattice of (E8E8E8)/
√
2 and to ensure this lattice is closed under a

quadruple Jordan product.

2.3.4. Elkies and Gross. Elkies and Gross define different inner prod-
ucts on an Albert algebra integer ring and octonion integer triples. These
inner products respectively yield a lattice containing the 819 rank 1 elements
with a Gh(2, 8) structure and the Leech lattice [EG96]. In this section we
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describe their constructions. We will also adopt notation similar to what we
use in Chapters 5 and 6.

First, we construct the Albert algebra as matrices Herm(3,O) with the
standard Jordan commutative product. The octonion algebra contains a max-
imal integer subring isometric to a scaled copy of E8, which we denote O ⊂ O
(the subring in [EG96] is the 1-integer octavian ring of [CS03], denoted A1

by Wilson, but any choice of At is equivalent up to automorphism). So we can
restrict to a subring of the Albert algebra Herm(3,O), which is closed under
twice the Jordan product, i.e. 2(x ◦ y) = xy + yx. We denote an element of
Herm(3,O) as follows:

(d, e, f | D,E, F ) =

d F E
F e D
E D f

 , d, e, f ∈ Z, D,E, F ∈ O.

The Albert algebra is equipped with a determinant det(x) and corresponding
symmetric trilinear form ⟨x, x, x⟩ = det(x) [SV00, p. 120] (note that the con-
vention in [EG96] is to use 6⟨x, y, z⟩, but we will use the definition of [SV00]
in what follows). Elkies and Gross give the following explicit expression for
the determinant [EG96]:

det(d, e, f | D,E, F ) = def + 2Re(DEF )− dDD − eEE − fFF .

Second, Elkies and Gross identity the following positive definite rank 3 ele-
ments in Herm(3,O) which have determinant 1:

I =

1 0 0
0 1 0
0 0 1

 , E =

2 λ λ

λ 2 λ

λ λ 2

 .

Here λ is any norm 2 element of O with Re(λ) = −1
2 (we generalize from the

λ given in [EG96], since any choice of λ is equivalent up to octonion integer
automorphism). Let G be the group of all invertible linear transformations
acting on Herm(3,O) that preserve the determinant det(x). Since G is transi-
tive on positive-definite elements with determinate 1, there is a symmetry in G
mapping I to E [EG96]. However, the stabilizer of Herm(3,O) ⊂ Herm(3,O)
in G is not transitive on positive-definite determinant 1 elements, but has two
orbits with I and E as representatives [EG96].

Given these two representatives, Elkies and Gross construct the inner prod-
ucts needed to exhibit the Leech lattice and the 819 point structure in the octo-
nion projective plane. Specifically, for any positive-definite A with det(A) = 1
they define the following inner product on Herm(3,O):

⟨x, y⟩A = 9⟨x,A,A⟩⟨y,A,A⟩ − 6⟨x, y,A⟩, x, y ∈ Herm(3,O).

For A = I, Herm(3,O) has the standard Jordan inner product and the au-
tomorphisms preserving this inner product form a group isomorphic to 22 ·
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O+
8 (2) ·S3 [Gro96, p. 273]. For A = E, Herm(3,O) has inner product ⟨x, y⟩E

and contains 819 elements that satisfy ⟨x, x⟩E = 4 and ⟨x,E⟩E = 2. These are
called integral Jordan roots in [EG96], and they define the tight 5-design in
the octonion projective plane, relative to ⟨x, y⟩E . The lattice on Herm(3,O)
relative to inner product ⟨x, y⟩E has automorphism group 3D4(2) · 3 [Gro96,
p. 273]. This is the subgroup of G stabilizing the elements of Herm(3,O), the
determinant, and E.

The authors also define the following inner product on row vectors x, y ∈
O3:

{x, y} = 2Re(xET yT ), x, y ∈ O3.

Here ET is the transpose of E in Herm(3,O) and x is the octonion conjugate
transpose, a column vector. This inner product defines a Leech lattice on O3.
If we replace E with I, then this inner product instead yields a E38 lattice on
O3.

2.3.5. Planned Contribution. Wilson’s approach in [Wil11] makes
use of a single octonion vector reflection, the reflection matrix of (s, 1, 1). In
our approach, described in Chapters 5 and 6, we will provide a construction
of the sporadic simple group Co1 using only reflection matrices as generators,
and exhibit the Suzuki chain subgroup using subsets of these reflections as
generators.

In Chapter 6 we will generalize Wilson’s Leech lattice construction and
explore Leech lattices that are sublattices of octonion integer triples. This
will simplify our method of exhibiting Suzuki chain subgroups.

In Chapter 5 we will also connect the reflections generating 2 · Co1 and
an octonion Leech lattice to a corresponding involution acting on OP2. This
will permit us to provide a common construction of the two strictly projective
tight 5-designs. Chapter 5 has been published elsewhere as [Nas22].

In Chapter 6 we approach many of the questions discussed by Baez and
Egan in [Bae14a] and [BE14b] using a different approach. Instead of work-
ing out detailed examples in explicit coordinates, we work with the integral
octonions evaluated modulo 2, namely with the ring O/2O. This reduces many
questions about octonion integers to questions about the properties of a small
strongly regular graph.

Finally, in Chapter 6, we will also describe the approach to the two tight
projective 5-designs given by Elkies and Gross in [EG96] and [EG01] using
the theory of Jordan isotopes and the quadratic map. Although Jordan iso-
topes are isomorphic as algebras, the restriction to an integer subring yields
non-isomorphic isotope rings if we construct the isotope ring from an element
in a distinct orbit among the Albert algebra integers. This provides an inter-
esting avenue for future work exploring the connections between isotopic yet
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non-isomorphic Jordan algebra integer rings. A recent paper by Garibaldi, Pe-
tersson, and Racine also identifies Jordan isotopy as the main concept implicit
in the work of Elkies and Gross [GPR22]. Our contribution is to examine
the role of the orbit containing the squares in Herm(3,O) more closely.





CHAPTER 3

An Exceptional Combinatorial Sequence and
Standard Model Particles

3.1. Introduction

We can succinctly describe many features of both Lie and Jordan struc-
tures in algebra and geometry using root systems. The following sequence of
root systems has a number of exceptional properties:

E7 → E6 → D5 → A4 → A1 × A2.(⋆)

The final root system and nesting in this sequence, A4 → A1 × A2, corresponds
to the Lie group of the standard model of particle physics: U(1) × SU(2) ×
SU(3). The third and fourth root systems correspond to two well-studied
grand unification theories: the Spin(10) and SU(5) theories [BH10]. This
chapter describes some special properties of this sequence of root systems and
explains how it affords a natural representation of all three generations of
standard model fermions.

3.2. Star-Closed Line Systems

Consider the three axes of a regular hexagon in R2. These lines have the
special property that the angle between any two of the three is 60 degrees.
That is, the three axes of a regular hexagon are a system of equiangular lines.
It turns out that for any system of equiangular lines in Rd, the number of
lines n must satisfy n ≤

(
d+1
2

)
[GR01, chap. 11]. The number

(
d+1
2

)
is called

the absolute bound on the number of equiangular lines in d-dimensions. The
three axes of the hexagon meet this absolute bound in d = 2 dimensions. The
only other known examples of equiangular lines at the absolute bound consist
of the axes of an icosahedron in d = 3, a 28 line system for d = 7, and a 276
line system for d = 23 (Examples A.5, A.6, and A.7). Any further examples,
if they exist, will occur in d ≥ 119 [BB09, p. 1402].

In what follows we will refer to three lines at 60 degrees as a star. The
star is the smallest system of equiangular lines at the absolute bound, and
stars are responsible for an abundance of rich structures in algebra and com-
binatorics. Examples of structures that can be constructed from stars include

41
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root systems, root lattices, Lie algebras, Jordan grids, Jordan triple systems,
Jordan algebras, and many interesting spherical and projective t-designs.

We will focus for the moment on line systems of type (0, 1/2). A line
system of type (a1, a2, . . . , an) is a finite set of lines through the origin of a
real vector space (equivalently, points in a real projective space) such that
the Euclidean inner product of any two unit vectors spanning distinct lines
satisfies | cos θ| ∈ {a1, a2, . . . , an}. Line systems of type (0, 1/2) are studied in
[CGSS76], while line systems of types (0, 1/3) and (0, 1/2, 1/4) are studied in
[SY80]. In what follows we will refer to line systems of type (0, 1/2) simply
as line systems. That is, we will take a line system to be a set of lines in a
real vector space such that any two lines in the system are either orthogonal
or at 60 degrees.

Each pair of non-orthogonal lines in a line system defines a unique coplanar
line that is at 60 degrees to both members of the pair. Three lines at 60 degrees
form a star, and any two members of a star defines the third member. Using
this concept, we can compute the star-closure of a line system by adding to the
line system any missing third lines defined by any nonorthogonal pair. When a
line system is equal to its own star-closure, it is a star-closed line system. When
a line system cannot be partitioned into two mutually orthogonal subsets, it is
an indecomposable line system. Finally, a star-free line system is a line system
without stars, in which any three mutually non-orthogonal lines span a vector
space of dimension three.

The indecomposable star-closed line systems are classified in [CGSS76].
The classification makes heavy use of the following lemma:

Lemma 3.1. Let L be a line system and let S ⊂ L be a star. Then each
line in L \ S is orthogonal to either 1 or 3 members of S.

That is, for line system L containing star S, we can partition the lines
of L into S, lines orthogonal to S, and three sets of lines orthogonal to just
one member of S. We may call this partition the star-decomposition of line
system L with respect to star S ⊂ L. That is, for S = {a, b, c} we can write
L = S ∪̇ A ∪̇ B ∪̇ C ∪̇ D, where A is the set of lines in L orthogonal to
just a, B orthogonal to just b, C orthogonal to just c, and D orthogonal to
all three lines of S. We will see below that the physics concepts of particle
colour and generation can be recovered from the combinatorial concept of line
system star-decomposition.

When L is an indecomposable star-closed line system, we can say a number
of helpful things about subsets of lines in the star-decomposition of L, as
developed in [GR01, chap. 12]. First, L is the star-closure of S ∪̇ A. Second,
the set A does not contain any stars and we can find a set of vectors spanning
A with all non-negative inner products. Third, any pair of orthogonal lines
in A belongs to a set of three mutually orthogonal lines in A, called a triad.
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Fourth, the triads in A always form the “lines” of a generalized quadrangle. So
the task of classifying indecomposable star-closed line systems is equivalent to
the task of classifying the (possibly trivial) generalized quadrangle structures
with “lines” of size 3 on the set A of the star-decomposition of that system.

A generalized quadrangle is a point-line incidence structure such that the
bipartite incidence graph has diameter 4 and girth 8. We denote by Gq(s, t)
a generlized quadrangle in which each “line” contains s+1 “points” and each
“point” belongs to t + 1 “lines”. In terms of A, the “points” are the lines
of A and the “lines” are the orthogonal triads of A. We will see below that
the lines corresponding to a single generation of particles define a generalized
quadrangle Gq(2, 2) with automorphism group S6 (the exceptional symmetric
group, with a non-trivial outer automorphism).

We will say that the lines of A represent graph G if we can find a vector
on each line of A such that the Gram matrix of these vectors, apart from the
diagonal entries, is the adjacency matrix of G. In the case of star-free A, the
graph G has the lines of A for vertices and two vertices adjacent if and only
if they are non-orthogonal lines. The vertices of this graph and the maximal
independent sets must form the “points” and “lines” of a generalized quad-
rangle, albeit a possibly trivial one. This restriction on the possible structure
of A yields the classification of indecomposable star-closed line systems. For
more details on the following theorem, see [GR01, chap. 12].

Theorem 3.2. [CGSS76] Every indecomposable star-closed line system
is the star-closure of a system of lines S ∪̇ A, where S is a star and A is a
star-free set of lines orthogonal to just one line in S, and where A represents
graph G with maximal independent sets forming a generalized quadrangle:

(a) An for G the complete graph Kn−2,
(b) Dn for G the cocktail party graph CP (n− 3) plus an isolated vertex,
(c) E6 for G the unique srg(9, 4, 1, 2),
(d) E7 for G the unique srg(15, 8, 4, 4),
(e) E8 for G the unique srg(27, 16, 10, 8).

Here we denote by Φ a star-closed line system and by Φ the set of length√
2 vectors that span the individual lines of Φ. As the labels above suggest,

the star-closed line systems are precisely the lines spanned by the roots of the
more familiar simply-laced root systems, the root systems with all equal-length
roots. Note that the standard terminology is such that an indecomposable line
system Φ corresponds to an irreducible root system Φ.

Remark 3.3. Not all irreducible root systems are simply-laced. That is,
there are irreducible root systems of types Bn, Cn, G2, and F4 that include roots
of two different lengths. We can recover these systems from line systems via
the root lattices of the corresponding simply-laced root systems. Put another
way, every root lattice is also the root lattice of a simply-laced root system
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[CS13, p. 99]. First, suppose that we have an An1 = A1 × A1 × · · · × A1 star-
closed system of lines. This is simply a set of n mutually orthogonal lines in
Rn. Take the vectors of length

√
2 spanning these lines. These vectors span

the root lattice of type Zn. The second layer of that lattice (the lattice points
at the second shortest distance to the origin with the roots forming the first
layer) is a root system of type Dn, containing roots of length 2. The sum
of these An1 roots of length

√
2 and Dn roots of length 2 is a Bn root system.

Second, suppose that we have a Dn star-closed system of lines. Take the vectors
of length

√
2 spanning these lines to obtain a Dn root system spanning a Dn

root lattice. There exists in the second layer of the Dn lattice a subset of
vectors that both spans an An1 set of lines and identifies additional reflection
symmetries of the underlying Dn system. If we include these vectors, we obtain
a Cn root system. Finally, we obtain the G2 roots by taking the first two layers
of the lattice defined by A2, and the F4 roots by taking the first two layers of
the lattice defined by D4.

3.3. Nested Sequences of Binary Decompositions

We have seen that any indecomposable star-closed line system admits a
star decomposition. Apart from E8, it turns out that every indecomposable
star-closed line system also admits at least one binary decomposition, namely
a partition Φ = Φ0 ∪̇ Φ1 such that Φ0 is star-closed, Φ1 is star-free, and Φ
is the star-closure of the star-free component Φ1. We can characterize binary
decompositions in terms of 3-gradings of simply-laced root systems, since each
star-closed line system corresponds to a simply-laced root system. Following
[LN04, p. 168], we define a 3-grading on a root system Φ as a partition,

Φ = Φ−1 ∪̇ Φ0 ∪̇ Φ1,

such that,

Φ ∩ (Φa +Φb) ⊂ Φa+b,

and also,

Φ ∩ (Φ1 − Φ1) = Φ0.

That is, if the difference between any two roots in Φ1 is also a root, then it is
a root in Φ0. Also, every root in Φ0 is the difference of some two roots in Φ1.
The following properties are described in [LN04, p. 168] for 3-gradings on
root systems. Since every 3-grading corresponds to a homomorphism from the
corresponding root lattice to the grading group Z, we have Φ−1 = −Φ1. This
means that we can recover the entire root system from the Φ1 piece alone, as
linear combinations of roots in Φ1. In particular, the 3-grading defined by Φ1

defines a star-free set of lines Φ1, spanned by the roots of Φ1. Just as we can
recover Φ from Φ1 by familiar Weyl reflections, so we can also recover Φ from
Φ1 by star-closure.
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The coweight of a root system Φ is a vector q such that for each root α
in Φ, the Euclidean inner product (α, q) is an integer. In general, a Z-grading
on a root system Φ can be identified with some coweight q as follows [LN04,
p. 166]:

Φi = Φi(q) = {α ∈ Φ | (α, q) = i ∈ Z} .
The coweights responsible for 3-gradings are the minuscule coweights [LN04,
p. 61] (described as glue vectors in Chapter 1 and [CS13]). That is, a mi-
nuscule coweight of Φ is a vector q such that (α, q) = −1, 0, 1 for all roots α.
These facts can be used to show that the possible 3-gradings on connected root
systems are classified using the weighted Coxeter-Dynkin diagrams shown in
Table 3.1. In each case, we obtain the 3-grading of an irreducible root system
Φ by identifying the Φ0 component as the root subsystem with its Coxeter-
Dynkin diagram given by the dark vertices [LN04, p. 171].

3-Grading Name Diagram Φ
|Φ1|−−→ Φ0

rectangular Ap+q−1
pq−→ Ap−1 × Aq−1

Hermitian Cn
(n+1

2 )−−−→ An−1

odd quadratic Bn
2n−1−−−→ Bn−1

even quadratic Dn
2(n−1)−−−−→ Dn−1

alternating Dn
(n2)−−→ An−1

Albert E7
27−→ E6

bi-Cayley E6
16−→ D5

Table 3.1. The 3-gradings on finite irreducible root systems.

We see from Table 3.1 that root systems of types Bn, Cn, E6, and E7
only admit one possible type of 3-grading. Root systems of types An and
Dn admit multiple possible 3-gradings. In the case of An root systems, there
are ⌊(n+1)/2⌋ possible rectangular 3-gradings. In the case of Dn root systems,
there is a quadratic 3-grading and an alternating 3-grading. Root systems of
types E8, G2, and F4 do not admit a 3-grading. In each case, we need only
identify the Φ0 component to identify the 3-grading.

We define a sequence of nested 3-gradings as a sequence of root systems

Φ(n) ⊂ Φ(n+1) such that Φ(n) = Φ
(n+1)
0 . We denote such a sequence using a

diagram of the form,

· · · → Φ(n+1) |Φ(n+1)
1 |−−−−−→ Φ(n) |Φ(n)

1 |−−−→ Φ(n−1) → · · ·
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The weight of the arrow is the dimension of the 1-part of the 3-grading it rep-
resents. Figure 3.1 illustrates the structure of sequences of nested 3-gradings
for the simply-laced root systems of rank 7 or less. Multiple sequences can
pass through a single root system. For instance, from Figure 3.1 we see that
both Dn → Dn−1 → An−2 and Dn → An−1 → An−2 represent possible nestings
of 3-gradings containing both Dn and An−2. The diagram could be extended
to the upper-right by including higher rank root systems, adding the arrows

D8
14−→ D7, A8

8−→ A7, D8
28−→ A7, and so on.

E7

E6

D5

A4

A1 × A2

A1 × A1

An × A4−n

An × A5−n

An × A6−n

D4

D6

D7

A1 A2

A3

A5

A6

A7
27

16

10

6

4

7

6

5

4

3

2

6

8

10

12

15

21
. . . . . .

Figure 3.1. Nested 3-gradings of simply-laced root irre-
ducible root systems in R7.

Sequences of nested 3-gradings on root systems correspond to sequences
of nested binary decompositions on line systems, and vice versa. The mesh
of available 3-gradings on irreducible root systems shown in Figure 3.1 also
applies to indecomposable star-closed line systems to describe the available
binary decompositions. By working with line systems, we can better appreci-
ate that the combinatorial properties of Φ1 and Φ−1 are equivalent. Indeed,
the lines defined by Φ1 are precisely the same lines defined by Φ−1.
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The exceptional sequence (⋆), bolded in Figure 3.1, is one example of a
sequence of nested 3-gradings of simply-laced root systems, or equivalently a
sequence of nested binary decompositions of star-closed line systems.

3.4. The Exceptional Sequence

We now identify some special properties of sequence (⋆), in comparison to
all other possible sequences of nested binary decompositions, as illustrated in
Figure 3.1.

First, sequence (⋆) begins with E7, which is the only indecomposable star-
closed line system (or irreducible simply-laced root system) that admits a
binary decomposition but is not embedded in another line system as the zero-
component of a binary decomposition. That is, any sequence of nested binary
decompositions can be extended further to the left unless it begins with E7.
So sequences that begin with E7 and end in either A1, A1 × A1, or A1 × A2 are
unique in that they cannot be made any longer by being extended to the left
or the right.

Second, sequence (⋆) is a local sequence in the following sense. For a binary
decomposition Φ = Φ1 ∪̇ Φ0, we can define a binary decomposition graph G
with the lines of Φ1 for vertices and all pairs of nonorthogonal lines for edges.
Using this definition, we can assign a graph to each binary decomposition,
or arrow, in a nested sequence. The graph of a binary decomposition for Φ
indecomposable is always vertex-transitive. This means that there is a unique
local subgraph of G, the induced subgraph on the neighbours of any given
point. We will say that a sequence of nested binary decompositions is a local
sequence when the binary decomposition graph of each arrow is isomorphic to
the local subgraph of the binary decomposition graph in the preceding arrow.
The possible local sequences beginning with indecomposable star-closed line
systems are as follows:

· · · → An → An−1 → · · · → A2 → A1,

· · · → Dn → Dn−1 → · · · → D4 → A3 → A1 × A1,

Dn → An−1 → A1 × An−3,

E7 → E6 → D5 → A4 → A1 × A2.

If we restrict ourselves to local sequences that cannot be embedded in a longer
sequence, then the exceptional sequence (⋆) is the only one with this property,
since it is the only local sequence that begins with E7.

Third, sequence (⋆) is a maximal sequence in the following sense. We say
that a sequence of nested binary decompositions is a maximal sequence when
the path of the sequence through the possible binary decompositions, shown
in Figure 3.1, is such that the largest Φ1 component is chosen in each case.
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That is, a maximal sequence always follows the highest weight arrows from a
given starting point in Figure 3.1.

Theorem 3.4. The sequence (⋆) is the unique local and maximal sequence
of nested 3-gradings (or binary decompositions) that cannot be embedded in a
longer sequence.

Proof. Any sequence that cannot be embedded in a longer sequence be-
gins with E7. The only local sequence beginning with E7 is the sequence (⋆).
Likewise, the only maximal sequence beginning with E7 is the sequence (⋆). □

Remark 3.5. The minuscule coweights of E7 span the unique system of 28
equiangular lines in R7 that attain the absolute bound

(
7+1
2

)
described earlier

(Example A.6). By acute minuscule coweights we mean a set of minuscule
coweights with positive pairwise inner product. Recall that E6 is constructed
by taking the lines of E7 orthogonal to a single member of the 28 equiangular
lines. Likewise, D5, A4, and A1 × A2 are constructed as the lines of E7 orthogonal
to a pair, triple, and quadruple of acute minuscule coweights, and the subset
of the 28 equiangular lines they span. So we can also understand the sequence
(⋆) by taking roots orthogonal to successively larger sets of acute minuscule
coweights of E7.

3.5. Lie Algebras of Star-Closed Line Systems

Certain important Lie and Jordan structures correspond to star-closed
line systems and binary decompositions. Indeed, all Jordan triple systems
are constructed from 3-gradings on root systems, or equivalently from binary
decompositions on line systems. In what follows we focus on Lie algebras,
given their direct application to particle physics. Even so, many of the struc-
tures described below could be constructed using the Jordan triple systems
corresponding to the 3-graded Lie algebra in question.

A Lie algebra is a vector space g with product [x, y] such that [x, x] = 0
and [[x, y], z] + [[y, z], x] + [[z, x], y] = 0 for all vectors x, y, z. Lie algebras
are non-associative in general, and we say that a Lie algebra is abelian when
[x, y] = 0 for all x, y. We can construct certain important Lie algebras (the
semi-simple ones) using root systems, including the simply-laced root systems
corresponding to star-closed line systems.

Theorem 3.6. [Car72, pp. 42-43] Let Φ be an irreducible root system.
Then there exists, up to Lie algebra isomorphism, a simple Lie algebra g over
C with a Chevalley basis.

That is, given root system Φ, there is a Φ-graded Lie algebra of the form,

g = h⊕
⊕
r∈Φ

gr.
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This is called the Cartan grading of Lie algebra g. Here h is a Cartan subalgebra
of g and gr are the root spaces of the decomposition. The dimension of h is
equal to the dimension of the space Rn spanned by the roots Φ, whereas the
dimension of each root space gr is 1. The rank of the Lie algebra is the
dimension of h. The Cartan subalgebra h has basis hr, where r is each simple
root of Φ (corresponding to the vertices of the Coxeter-Dynkin diagram of Φ).
Each subalgebra gr is spanned by basis vector er, where r is a root in Φ. For
any x not in Φ we have gx = 0. The products involving the Cartan subalgebra
h are defined entirely in terms of the geometry of the roots r, s in Φ:

[hr, hs] = 0, [hr, es] =
2(r, s)

(r, r)
es, [er, e−r] = hr.

Here (r, s) denotes the standard Euclidean inner product between vectors r, s
in Rn (where dimC(h) = n). Products of the root spaces of two linearly
independent roots are defined by,

[er, es] = Nr,ser+s.

The structure constants Nr,s can be fixed without loss of generality to define
the Chevalley basis, as described in [Car72, pp. 56-57]. Theorem 3.6 applies
to all irreducible root systems. In what follows we only make use of the cases
involving simply-laced root systems, which are listed in Table 3.2 [Car72, p.
43].

Type g dim g rank g |Φ| Dynkin diagram

An (n ≥ 1) sln+1 n(n+ 2) n n(n+ 1)

Dn (n ≥ 4) so2n n(2n− 1) n 2n(n− 1)

E6 e6 78 6 72

E7 e7 133 7 126

E8 e8 248 8 240

Table 3.2. The Lie algebras of simply-laced root systems.

Suppose that indecomposable star-closed line system Φ admits a binary
grading, Φ = Φ1 ∪̇ Φ0. The lines of the star-free component Φ1 can be spanned
by roots with non-negative inner products. We denote these spanning roots
by Φ1 and define Φ−1 = −Φ1 as the set of opposite roots, which also has all
non-negative inner products. Then we have the following 3-grading on g as a
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coarsening of the Cartan grading:

g =

 ⊕
r∈Φ−1

gr

⊕

h⊕
⊕
r∈Φ0

gr

⊕

⊕
r∈Φ1

gr

 = g(−1)⊕ g(0)⊕ g(1).

That is,

[g(i), g(j)] ⊆ g(i+ j).

We see, then, that a 3-grading on a root system Φ
n−→ Φ0 defines abelian Lie

subalgebras g(−1) and g(1) of dimension n = |Φ−1| = |Φ1| = |Φ1|. The g(0)
Lie subalgebra acts on each of these abelian Lie subalgebras via [g(0), g(±1)] ⊆
g(±1). Also, since the entire Cartan subalgebra h is contained in g(0), we see
that g(0) is not isomorphic to the Lie algebra constructed from root system
Φ0, but rather is the direct product of this algebra and the one-dimensional
abelian Lie algebra:

g(0) = C⊕ [g(0), g(0)].

That is, g(0) contains h, the Cartan subalgebra of g. But [g(0), g(0)] does not
contain h. The Cartan subalgebra of [g(0), g(0)] is a subalgebra of h with one
dimension less than h.

In particular, the binary decomposition A4 → A1×A2 signifies the following
Lie algebra 3-grading:

sl5 = sl5(−1)⊕ sl5(0)⊕ sl5(1),

where sl5(1) is six-dimensional and [sl5(0), sl5(0)] = sl2⊕sl3. This means that
the 0-piece of this 3-grading is,

sl5(0) = C⊕ sl2 ⊕ sl3.

This Lie algebra—the 0-piece of the 3-grading due to the A4 → A1 × A2 binary
decomposition—is in fact the Lie algebra of the standard model of particle
physics.

3.6. Connection to the Standard Model

The exceptional sequence (⋆) corresponds to the following sequence of
nested Lie algebra 3-gradings:

e7
27−→ e6

16−→ so10
10−→ sl5

6−→ sl2 ⊕ sl3.

The final arrow, A4 → A1 × A2, corresponding to the diagram , yields
the Lie algebra of the standard model of particle physics as the 0-piece of the
3-grading.

gSM = C⊕ sl2 ⊕ sl3.
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Our next step is to determine the action of gSM on the rest of e7, so that we
can identify certain root spaces with familiar standard model particles.

Each root in E7 indexes a one-dimensional root space gr, spanned by vector
er, in the Lie algebra e7 described above. By construction, each er is an
eigenvector of each h in the Cartan subalgebra h, since we have [hs, er] =
2(s, r)/(s, s)er = (s, r)er. Recall that (in the Chevalley basis) gSM contains
the Cartan subalgebra of sl5, which has dimension 4 and is itself a subalgebra
of h, the Cartan subalgebra of E7. In order to find the correspondence between
root spaces gr and particles, we need to find a well-chosen basis of h∩gSM (the
Cartan subalgebra of sl5). The four simultaneous eigenvalues with respect to
this basis give us the familiar hypercharge, isospin, and colour of each particle
(where colour signifies a pair of eigenvalues). Since h is seven dimensional,
there are three possible remaining simultaneous eigenvalues. We can use two of
these to assign a generation to each root space gr and the remaining eigenvalue
to distinguish particles of the standard model from additional particles.

For specificity, we will denote the exceptional sequence (⋆) in terms of
Coxeter-Dynkin diagrams as follows:

−→ −→ −→ −→
We may write vectors in the Cartan subalgebra h ⊂ e7 using Dynkin diagrams,
e.g.:

a1

a2

a3 a4 a5 a6 a7
=

7∑
i=1

aihsi ∈ h,

where si are a set of simple roots of E7. This means that we compute the
eigenvalues of the action of a vector in h on a root space as follows:[

a1

a2

a3 a4 a5 a6 a7
, gr

]
=

(
7∑

i=1

ai(si, r)

)
gr.

We define the isospin of each root space gr as its eigenvalue for multipli-
cation by the following vector in h ∩ gSM :

W0 =
0

1
2

0 0 0 0 0
.

The vector 2W0 is a coweight of E7 (also a coroot) and defines an isospin 5-
grading on E7. Root spaces with isospin 0 correspond to right-handed particles
(left-handed anti-particles). Root spaces with isospin ±1

2 correspond to left-
handed particles (right-handed anti-particles). The unique root spaces with
isospins ±1 correspond to the W± bosons. Specifically, W0 and W± span the
sl2 (i.e., A1), component of the standard model Lie algebra gSM .
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We define the colour of each root space as the pair of eigenvalues of the
following vectors in h ∩ gSM :

λ3 =
1

0

0 0 0 0 0
,

√
3λ8 =

1

0

2 0 0 0 0
.

The vectors λ3,
√
3λ8 in h as well as the six unique root spaces gr with eigen-

values ±(2, 0), ±(−1, 3), ±(−1,−3) form the sl3 (i.e., A2) component of the
standard model Lie algebra gSM . These eight-dimensions of e7 represent the
eight gluons, the bosons responsible for the strong force. The corresponding
A2 root system defines a star-decomposition of E7 that allows us to assign par-
ticle colour. Specifically, we will call blue the fifteen root spaces with λ3,

√
3λ8

eigenvalues (0, 2), their opposite root spaces are called anti-blue. Likewise,
eigenvalues (−1,−1) signify red and eigenvalues (1,−1) signifies green. The
opposite eigenvalues signify anti-red and anti-green. Finally, the 30 root spaces
with eigenvalues (0, 0) are called colourless. Root spaces outside of gSM that
are red, green, or blue correspond to quarks whereas those that are colourless
correspond to leptons.

We define the hypercharge of each root space as the eigenvalue of the
following operator:

B =
2
3

1

4
3 2 0 0 0

.

The 3-grading defined by −→ also defines a unique
line perpendicular to the R3 of A1 × A2 (spanned by W0, λ3, λ8) but also
within the R4 spanned by the coroots of A4. This unique line is spanned by
the hypercharge operator B. Although B is not a coweight, there is a 13-
grading defined by coweight 3B. This means that the eigenvalues of B are in
the set

{
0,±1

3 ,±2
3 ,±1,±4

3 ,±5
3 ,±2

}
. All of these values correspond to known

and observed physical particles except for ±5
3 , which are the eigenvalues of

the root spaces of the roots in A4 \ (A1 × A2). These B = ±5
3 particles are not

observed within the standard model but emerge when the standard model is
embedded within an A4 Lie algebra, as in the original SU(5) grand unification
theory of Georgi and Glashow [GG74].

Using the four simultaneous eigenvalues of B,W0, λ3, λ8, we can assign a
standard particle name to each of the root spaces gr with roots in E7 \ A4, as
shown in Table 3.3. Here we label particles according to the eigenvalues for
hypercharge and isospin given in [BH10], while the three colour labels (red,
green, blue) are treated as conventional.

Remark 3.7. Anti-particles correspond to roots with opposite eigenvalues
of the partner particle. Just as each root describes a particle or anti-particle,
each line in the corresponding line system describes a particle/anti-particle
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Name Symbol B W0 λ3

√
3λ8

Right-handed neutrino νR 0 0 0 0

Right-handed electron e−R −2 0 0 0

Right-handed red up quark urR
4
3 0 −1 −1

Right-handed green up quark ugR
4
3 0 1 −1

Right-handed blue up quark ubR
4
3 0 0 2

Right-handed red down quark drR −2
3 0 −1 −1

Right-handed green down quark dgR −2
3 0 1 −1

Right-handed blue down quark dbR −2
3 0 0 2

Left-handed neutrino νL −1 1
2 0 0

Left-handed electron e−L −1 −1
2 0 0

Left-handed red up quark urL
1
3

1
2 −1 −1

Left-handed green up quark ugL
1
3

1
2 1 −1

Left-handed blue up quark ubL
1
3

1
2 0 2

Left-handed red down quark drL
1
3 −1

2 −1 −1

Left-handed green down quark dgL
1
3 −1

2 1 −1

Left-handed blue down quark dbL
1
3 −1

2 0 2

Table 3.3. Fermion particle nomenclature.

pair. Whether we choose to work with Lie structures (roots) or Jordan struc-
tures (lines) largely corresponds to whether we choose to work with particles
or with particle/anti-particle pairs.

The next task is to sort the particles into generations, and to identify any
additional particles beyond those given in the standard model. To do so, we
note that the Lie centralizer of the standard model Lie algebra in e7 has the
form,

Ce7(gSM ) = C2 ⊕ sl3.

The sl3 component is generated by the root spaces gr corresponding to the
unique six roots in E7 perpendicular to each root in A4. These six root are
unique in E7 in that their root spaces have null hypercharge, isospin, and are
colourless. For this reason, we call them right-handed neutrinos (and left-
handed anti-neutrinos)—the undetectable partners to left-handed neutrinos
(and right-handed anti-neutrinos). These six gr root spaces in the centralizer
of gSM serve the same role as the six coloured gluons in gSM . Just as the
six coloured gluons define the star-decomposition of E7 that gives us particle
colour, the three right-handed neutrinos and their anti-particles can be used
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to define a second star-decomposition of E7 that gives us particle generation.
We assign particle generation to each root space gr using the eigenvalue pair
of the following two operators:

ρ3 =
0

0

0 0 0 1 0
,

√
3ρ8 =

0

0

0 0 0 1 2
.

Specifically, we may call the thirty root spaces with ρ3,
√
3ρ8 eigenvalues

±(0, 2) the first generation, the thirty with eigenvalues ±(1, 1) the second gen-
eration, and the thirty with eigenvalues ±(1,−1) the third generation. Each
generation consists of fifteen particles with the eigenvalues given in Table 3.3
and the corresponding fifteen anti-particles. Any root spaces with eigenvalues
(0, 0) do not belong to any generation. These include the boson root spaces
of gSM and 22 additional root spaces.

So far we have defined an orthogonal basis {ρ3, ρ8, B,W0, λ3, λ8} for a
C6 subspace of h, and can use the simultaneous eigenvalues of this basis to
partition e7 into the familiar standard model bosons gSM , a right-handed
neutrino sl3, three generations of fifteen particles and their anti-particles, plus
22 additional root spaces and one remaining dimension of h perpendicular to
this C6. We can use this remaining dimension to distinguish familiar particles
from potentially new and unobserved ones. That is, we define a seventh vector
in h perpendicular to C6:

H =
1

3
2

2 3 5
2

5
3

5
6

The vector 3H is a coweight of E7 and defines a 7-grading, so the eigenvalues
of H are in the set

{
0,±1

3 ,±2
3 ,±1

}
.

It turns out that the three generations of particles are precisely the root
spaces gr with H eigenvalues ±1

3 and ±2
3 . Furthermore the particles with H

eigenvalue 0 consist of the bosons of gSM , the right-handed neutrino sl3, and
the particles with hypercharge ±5

3 (corresponding to root spaces gr with r in
A4 \ A1 × A2).

To summarize, we can trim out the unobserved particles of e7 by making
±1 a forbidden eigenvalue of H and ±5

3 a forbidden eigenvalue of B. All
other root spaces correspond to familiar bosons and the three generations of
fermions.

Remark 3.8. The fifteen particle/anti-particle pairs of a single generation
correspond to a generalized quadrangle structure in the following way. If we
take the corresponding 15 roots in E7, then these span a star-free line system
representing the unique graph srg(15, 8, 4, 4). This graph has precisely 15
maximal independent sets, all of size 3, representing triads of orthogonal lines.
These triads serve as the “lines” of a generalized quadrangle Gq(2, 2). In terms
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of the nomenclature given in Table 3.3, the particle triads are:

{νL, urL, urR}, {νL, ugL, u
g
R}, {νL, ubL, ubR},

{e−L , drL, urR}, {e−L , d
g
L, u

g
R}, {e−L , dbL, ubR},

{e−R, urR, drR}, {e−R, u
g
R, d

g
R}, {e−R, ubR, dbR},

{urL, d
g
L, d

b
R}, {urL, dbL, d

g
R}, {ugL, drL, dbR},

{ubL, drL, d
g
R}, {ugL, dbL, drR}, {ubL, d

g
L, d

r
R}.

Of these fifteen triads, six have the property that they do not contain a lepton.
These six are also the only six where the eigenvalues of B,W0, λ3, λ8 each add
to zero over the triad:

{urL, d
g
L, d

b
R}, {urL, dbL, d

g
R}, {ugL, drL, dbR},

{ubL, drL, d
g
R}, {ugL, dbL, drR}, {ubL, d

g
L, d

r
R}.

In fact, this subset of six triads forms a smaller generalized quadrangle Gq(2, 1)
on nine points. The roots corresponding to these particle root spaces have the
following interesting property. The roots of the Gq(2, 1) particles all have
non-negative inner product, as do the roots of the Gq(2, 2)\Gq(2, 1) particles.
However, the inner products between a root from each of the two sets is always
non-positive. The fact that a generation of 15 particles does not correspond
to a set of roots with all non-negative inner products, but rather describes an
embedding of Gq(2, 1) within Gq(2, 2), leaves a tempting combinatorial clue
regarding abundance of matter and the dearth of antimatter in the physical
universe. Specifically, a generation of fermions splits into matter and antimat-
ter components in such a way that a Gq(2, 1) substructure emerges from a
larger Gq(2, 2).

3.7. Discussion

This chapter does not attempt to account for the Higgs mechanism, the
embedding of electromagnetism within the electroweak force, or particle spin.
Neither does it speculate on a role for the 22 additional root-spaces within e7
that do not correspond to familiar particles of the standard model. Rather,
this chapter converts certain questions about the accidental properties of parti-
cle physics into corresponding questions about exceptional mathematical ob-
jects. To the question of why we have this particular standard model Lie
algebra gSM and not another, perhaps we could answer that this is the Lie
algebra in which the exceptional sequence terminates. To the question of
why there are three generations of fifteen particles that represent this Lie al-
gebra (or sixteen with the right-handed neutrino), perhaps we could answer
that the exceptional sequence defines an action of gSM on e7 and that star-
decomposition explains the existence of three generations. Most remarkably,
questions about physical symmetries and structures can perhaps be answered
in terms of systems of equiangular lines at the absolute bound, beginning with
3 line stars and the 28 lines spanned by the minuscule coweights of E7.





CHAPTER 4

Rational Angles and Tight T-Designs

4.1. Introduction

Combinatorial t-designs were generalized to spherical t-designs in [DGS77]
and to projective spaces in [Neu81] (see also [Sei90]). Given a finite subset
X of a sphere or projective space we can evaluate both the angle set A(X) and
strength t of that subset. For a given strength t there exists an absolute lower
bound on the cardinality |X| such that X is a t-design. Likewise, for a given
cardinality s, there is an absolute upper bound on the cardinality |X| such
that |A(X)| = s. Furthermore, t is bounded by s according to the inequality
t ≤ 2s−ε where ε = |A∩{0}|. These three bounds are satisfied simultaneously
if any one of them is met. When a set X meets these absolute bounds, X is
called a tight t-design.

The full classification of tight t-designs is incomplete, but various theorems
place upper bounds on the value of t for different geometries (e.g., [Hog89],
[BH89]). In the case of projective geometries, many of these theorems con-
straining t depend on a result given in [Hog84] that, except for the real pro-
jective line, the angle set A(X) must be rational. However, a counter-example
exists in the case of the complex projective line: a subset corresponding to
the vertices of an icosahedron. This counter-example is examined in [Lyu09],
which attempts to repair the defective proof in [Hog84]. Unfortunately, the
repair in [Lyu09] is restricted to the real, complex, and quaternion projec-
tive cases. It neglects the octonion projective case and the spherical cases.
The aim of this chapter is to complete the repair in [Lyu09] by including the
remaining octonion and spherical cases. This also generalizes the attempted
proof in [Hog84] to the full family of spherical cases (a recent independent
proof of the spherical cases is available in [BNS22]). In order to treat all
possible cases at once, we will work with the primitive idempotents of simple
Euclidean Jordan algebras. This allows us to treat the spherical, projective,
and octonion cases in a unified way.

4.2. Jordan Algebras and T-Designs

This section reviews simple Euclidean Jordan algebras and the concepts
required to identify and describe tight t-designs. In addition to the real num-
bers R, the classification of simple Euclidean Jordan algebras consists of four

57



58 4. RATIONAL ANGLES AND TIGHT T-DESIGNS

infinite families and one exception. The first infinite family has rank ρ = 2
and degree d ≥ 1. The second, third, and fourth family respectively have
degree d = 1, 2, 4 and rank ρ ≥ 3. The exceptional Euclidean Jordan algebra
has rank ρ = 3 and degree d = 8. Each Euclidean Jordan algebra has a well
defined trace that we can use to define a Euclidean inner product,

⟨x, y⟩ = Tr(x ◦ y).
Here ◦ denotes the Jordan product. Let V be a simple Euclidean Jordan al-
gebra of rank ρ and degree d. We denote by J (V ) the manifold of primitive
idempotents of V . The rank ρ = 2 family has manifolds of primitive idem-
potents isometric to spheres. The degrees d = 1, 2, 4 families have manifolds
of primitive idempotents respectively isometric to real, complex, and quater-
nionic projective spaces. Finally, the rank ρ = 3, degree d = 8 exceptional
case has a manifold of primitive idempotents isometric to the octonion pro-
jective plane. This means we can use simple Euclidean Jordan algebras and
their manifolds of primitive idempotents to model the following geometries for
d ≥ 1 and ρ ≥ 3:

Ωd+1, RPρ−1, CPρ−1, HPρ−1, OP2.

More details about simple Euclidean Jordan algebras can be found in [FK94].
Let X be a finite subset of J (V ), the manifold of primitive idempotents

of simple Euclidean Jordan algebra V . Then we call X an A-code, namely a
set of points where all inner products of distinct elements belong in set A. We
define the angle set A(X) as,

A(X) = {⟨x, y⟩ | x ̸= y ∈ X ⊂ J (V )} .
Subset X is also a t-design where t is the largest integer such that X satisfies
[DGS77], [Hog82],∑

x∈X

∑
y∈X

Q0
k(⟨x, y⟩) = 0, k = 1, 2, . . . , t.

Here we use renormalized Jacobi functions Qε
k(x) with ε = 0, 1 in terms of the

rank ρ and degree d of V as follows (recall that Ωd+1 has rank 2 and degree
d):

Qε
k(x) =

(
1
2ρd+ 2k + ε− 1
1
2ρd+ k + ε− 1

)
(12ρd)k+ε

(12d)k+ε

P
( 1
2
d(ρ−1)−1, 1

2
d−1+ε)

k (2x− 1).

Here and below, P
(α,β)
k (x) denotes Jacobi polynomials as defined in [AS72,

22.2.1]. We use the Pochhammer symbol (x)n for non-negative integer n, which
can also be defined in terms of the usual Γ function:

(x)n = x(x+ 1) · · · (x+ n− 1) =
Γ(x+ n)

Γ(x)
.
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The expression for Qε
k(x) given here generalizes both the spherical and pro-

jective cases described respectively in [DGS77] and [Hog82]. Appendix B
verifies that this generalization is the correct one.

Some of the polynomials that we will use are given below, with N = 1
2ρd

and m = 1
2d. The N,m notation is more common in the literature about

projective designs.

Q0
0(x) = 1,

Q1
0(x) =

N

m
,

Q0
1(x) = (N + 1)

(
N

m
x− 1

)
,

Q0
2(x) =

(
N(N + 3)

2m(m+ 1)

)(
(N(N + 3) + 2)x2

−2(N + 1)(m+ 1)x+m(m+ 1)) .

Next we construct the annihilator polynomial of X [Hog82, 242]:

ann(x) =
|X|∏

α∈A(1− α)

∏
α∈A

(x− α).

By construction, we have ann(1) = |X| and ann(α) = 0 for each angle α ∈ A.
The polynomial ann(x) has degree |A| = s, and can be written as a linear
combination of our renormalized Jacobi functions (which depend on the rank
and degree of the Jordan algebra containing X):

ann(x) =
s∑

i=0

aiQ
0
i (x).

The coefficients a0, a1, . . . , as are known as the indicator coefficients of X. To
summarize, given a finite subset X ⊂ J (V ) we can determine the values of A
and t needed to describe X as an A-code and t-design. We can also compute
the annihilator polynomial ann(x) and indicator coefficients a0, a1, . . . , as.

A tight (2s− ε)-design is a finite subset X ⊂ J (V ) where the annihilator
polynomial, as defined above, obtains the following value [DGS77], [Hog82]:

ann(x) = xεRε
s−ε(x), Rε

s−ε(x) =

s−ε∑
i=0

Qε
i (x).

Appendix B verifies that Rε
s−ε(x) is proportional to a single Jacobi polynomial

with different indices. As the inner products of primitive idempotents in a
Euclidean Jordan algebra, the elements of α ∈ A(X) are all real-valued in
the range 0 ≤ α < 1. We are interested in whether a tight t-design will have
only rational elements in angle set A(X). This chapter proves the following
theorem, which generalizes the theorems of [Hog84] and [Lyu09]:
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Theorem 4.1. Let V be a simple Euclidean Jordan algebra of rank ρ and
degree d with manifold of primitive idempotents J (V ). Let X be a finite subset
of J (V ) forming a tight (2s − ε)-design, namely with ann(x) = xεRε

s−ε(x).
Then the roots of ann(x), which form the angle set A(x), are rational with
exceptions when (ρ, d) = (2, 1) with t ̸= 1, 2, 3, 5 and when (ρ, d) = (2, 2) with
t = 5.

4.3. Bose-Mesner Algebras and the Idempotent Basis

We now review the faulty proof given in [Hog84], which was intended for
the degree d = 1, 2, 4, 8 cases only (i.e., the projective cases). The notation
here is not necessarily the same as that in [Hog84] or [Lyu09]. The problem
with the faulty proof in [Hog84] is that the matrices Ei identified in that
paper are not in fact the idempotent basis for the Bose-Mesner algebra that
they are assumed to be. The burden of [Lyu09] is to replace Ei with the
correct idempotents Li and complete the remainder of the proof, in the case
of degrees d = 1, 2, 4. We do the same here for any rank and degree.

First, a tight (2s−ε)-design has the property that t ≥ 2s−2, which ensures
that X defines an association scheme. We can describe an association scheme
in terms of the Gram matrix of the elements of X with respect to the Jordan
inner product ⟨x, y⟩ = Tr(x ◦ y) given above. That is, the elements of G, a
|X| × |X| matrix, are given by:

(G)x,y = ⟨x, y⟩.
We can write this Gram matrix as a linear combination of adjacency matrices
as follows:

G = I +
∑

α∈A(X)

αDα.

Here Dα is the adjacency matrix of the graph on X where an edge exists
between any x, y in X with ⟨x, y⟩ = α. In this notation, we can write I = D1

since ⟨x, x⟩ = 1 for all x in X. Specifically, for t ≥ 2s − 2 (which is satisfied
for tight t-designs), the Dα for α in A(X) define the s = |A(X)| classes of an
association scheme.

The matrices Dα and I form the basis for a commutative matrix algebra
of dimension s + 1 known as the Bose-Mesner algebra of X (or rather of the
association scheme defined on X via its Gram matrix). The Bose-Mesner
algebra consists of all C-linear combinations of the commuting basis given by
the adjacency matrices and the identity matrix,

{Dα | α ∈ A(X)} ∪ {I}
The simultaneous eigenvectors of these commuting symmetric matrices can be
used to construct a unique orthogonal idempotent basis for the Bose-Mesner
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algebra [CVL91, pp. 201-204]:

{Li | i = 0, 1, . . . , s}, LiLj = δi,jLi.

We denote by qi(α)/|X| the coefficients of the Li elements in the Dα basis,
such that:

|X|Li = qi(1)I +
∑

α∈A(X)

qi(α)Dα.

That is, we define the entries of Li as follows:

(Li)x,y =
1

|X|qi(⟨x, y⟩), i = 0, 1, . . . , s.

The faulty proof in [Hog84] assumes that qi(α) = Q0
i (α) for X any tight

(2s− ε)-design. Indeed, [Hog84] uses matrices Ei instead of Li:

(Ei)x,y =
1

|X|Q
0
i (⟨x, y⟩), i = 0, 1, . . . , s.

The matrices E0, E1, . . . , Es−ε are orthogonal idempotents (for ε = 0, Es is
idempotent). The problem, as described in [Lyu09], is that for ε = 1 the
matrix Es is not necessarily idempotent, so we cannot assume that Ls =
Es, where s = |A(X)|. To see why, note that the orthogonal basis of s + 1
idempotents L0, L1, . . . , Ls must satisfy,

I =

s∑
i=0

Li.

The components of this matrix equation are given by,

δx,y =
1

|X|
s∑

i=0

qi(⟨x, y⟩).

For a tight t-design we also have,

δx,y =
1

|X|ann(⟨x, y⟩) =
1

|X| ⟨x, y⟩
εRε

s−ε(⟨x, y⟩) =
1

|X| ⟨x, y⟩
ε
s−ε∑
i=0

Qε
i (⟨x, y⟩).

This means that we require,
s∑

i=0

qi(⟨x, y⟩) = ⟨x, y⟩ε
s−ε∑
i=0

Qε
i (⟨x, y⟩).

When ε = 0, this constraint is satisfied by setting qi(⟨x, y⟩) = Q0
i (⟨x, y⟩).

When ε = 1 we need to select qs(⟨x, y⟩) more carefully.
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To find Ls we begin with,

Ls = I −
s−1∑
i=0

Li.

Since the Ei are idempotent for i ̸= s we set Li = Ei for i ̸= s. This yields
the following components of Ls:

(Ls)x,y = δx,y −
1

|X|
s−1∑
i=0

Q0
i (⟨x, y⟩).

The first term is equal to ann(⟨x, y⟩)/|X| and the sum in the second term
is equal to R0

s−1(⟨x, y⟩). This provides us with a general expression for Ls,
regardless of whether ε equals 0 or 1:

(Ls)x,y =
1

|X|
(
ann(⟨x, y⟩)−R0

s−1(⟨x, y⟩)
)
.

When ε = 0 we have ann(⟨x, y⟩) = R0
s(⟨x, y⟩) which ensures that Ls = Es.

However, when for ε = 1 we have Ls ̸= Es.

4.4. Idempotent Ranks and Complex Automorphisms

Having replaced the faulty Ei with a proper Li idempotent basis, as de-
scribed in [Lyu09], we return to the proof in [Hog84]. Hoggar’s proof in-
volves the so-called wild automorphisms of C. The identity and the complex
conjugation map are the automorphisms of C that fix R. The other field auto-
morphisms of C are constructed using the axiom of choice, and are called wild
automorphisms of C. These wild automorphisms map R to a dense subset of
C, leaving Q fixed [Yal66]. Indeed,

Lemma 4.2. [Yal66, Cai13] Let x ∈ R be fixed by all wild automorphisms
of C. Then x is rational.

We use this property of Q immediately below in Lemma 4.3, assuming
the axiom of choice. Let σ be an automorphism of C, potentially among the
wild automorphisms. The map σ acts as an automorphism of the the Bose-
Mesner algebra by acting on all matrix coefficients. Even so, σ leaves the basis
matrices I and Dα fixed, since they only have 0 and 1 for entries. Since each
Li is a C-linear combination of the Dα matrices, and since the orthogonal
idempotent basis is unique because we are working over a commutative ring,
the action of σ on {L0, L1, . . . , Ls} must permute these idempotent matrices.
It must also preserve matrix rank, so that rank Li = rank σ(Li).

Lemma 4.3. [Hog84] If the idempotent matrices {L0, L1, . . . , Ls} have
distinct ranks then ⟨x, y⟩ is rational for all x, y in tight t-design X.
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Proof. If the matrices {L0, L1, . . . , Ls} have distinct ranks then any field
automorphism of C must fix these matrices, so that σ(Li) = Li. This ensures
that the Li are matrices with rational entries. Specifically, each Li is of the
form |X|(Li)x,y = qi(⟨x, y⟩). If σ(Li) = Li then we also have σqi(⟨x, y⟩) =
qi(⟨x, y⟩). If qi(⟨x, y⟩) is fixed by all σ then it is rational, by Lemma 4.2. In
the case of i = 1 we have,

(L1)x,y = Q0
1(⟨x, y⟩) =

(
1

2
ρd+ 1

)
(ρ⟨x, y⟩ − 1) ,

This means that ⟨x, y⟩ is rational.
□

The next task is to compute the ranks of the Li idempotent matrices. The
ranks found here are the same as those calculated in [Lyu09], but presented
in a slightly different form.

Lemma 4.4. Let X be a tight (2s− ε)-design. Then the orthogonal idem-
potents of the Bose-Mesner algebra have the following ranks:

rank Li =

{
Q0

i (1), i = 0, 1, . . . , s− 1
Rε

s−ε(1)−R0
s−1(1), i = s

Here we have,

Q0
i (1) =

(
1
2ρd+ 2i− 1
1
2ρd+ i− 1

)
(12ρd)i(

1
2ρd− 1

2d)i

(12d)ii!
.

For ε = 0 we have R0
s(1)−R0

s−1(1) = Q0
s(1). For ε = 1 we have,

R1
s−1(1)−R0

s−1(1) =
s

1
2ρd+ 2s− 1

Q0
s(1).

Proof. The rank of an idempotent matrix is equal to its trace. For Li

with i ̸= s we have,

rank Li = Tr Li =
∑
x∈X

(Li)x,x =
∑
x∈X

Q0
i (1)

|X| = Q0
i (1).

For Ls we have,

rank Ls = Tr Ls =
∑
x∈X

(Ls)x,x =
∑
x∈X

1

|X|
(
ann(1)−R0

s−1(1)
)
.

Since ann(1) = 1εRε
s−ε(1) we have,

rank Ls = Rε
s−ε(1)−R0

s−1(1).



64 4. RATIONAL ANGLES AND TIGHT T-DESIGNS

The specific expression for Q0
i (1) given above is obtained from the expression

for Qε
k(x) given earlier and the property P

(α,β)
k (1) =

(
α+k
k

)
= (α+1)k

k! . In order
to evaluate Rε

s−ε(1) we use,

Rε
s−ε(x) =

(12ρd)s

(12d)s
P

( 1
2
d(ρ−1), 1

2
d−1+ε)

s−ε (2x− 1).

This expression is given in [Lyu09] and verified in Appendix B. Therefore,

Rε
s−ε(1) =

(12ρd)s(
1
2ρd− 1

2d+ 1)s−ε

(12d)s(s− ε)!
=

(12ρd)s

(12d)s

(1
2d(ρ− 1) + s− ε

s− ε

)
By construction R0

s(1)−R0
s−1(1) = Q0

s(1). When ε = 1 we instead have,

R1
s−1(1)−R0

s−1(1) =

(
(12ρd)s

(12d)s
− (12ρd)s−1

(12d)s−1

)(1
2d(ρ− 1) + s− 1

s− 1

)
.

Using
(

a
b−1

)
= b

a−b+1

(
a
b

)
and then

(
a+b
b

)
= (a+1)b

b! we have,

R1
s−1(1)−R0

s−1(1)

=
(12ρd)s

(12d)s

(
1−

1
2d+ s− 1
1
2ρd+ s− 1

)
s

1
2d(ρ− 1)

(1
2d(ρ− 1) + s− 1

s

)
=

s
1
2ρd+ s− 1

(12ρd)s(
1
2ρd− 1

2d)s

(12d)ss!

=
s

1
2ρd+ 2s− 1

Q0
s(1).

□

The exceptional case of the unit circle, Ω2
∼= RP1, deserves specific atten-

tion. We examine it before proceeding with the remainder of the proof.

Lemma 4.5. When rank ρ = 2 and degree d = 1, the case of Ω2
∼= RP1,

we have

rank L0 = 1, rank Li = 2, i = 1, . . . , s− ε.

When ε = 1, we have rank Ls = 1.

Proof. We evaluate Q0
i (1) for ρ = 2 and d = 1. First, Q0

0(x) = 1 so we
have rank L0 = Q0

0(1) = 1. In what follows we assume i > 0. The following
expression simplifies to 2:

Q0
i (1) =

(
1 + 2i− 1

1 + i− 1

)
(1)i(1− 1

2)i

(12)ii!
= 2.
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When ε = 1 we have,

rank Ls = R1
s−1(1)−R0

s−1(1) =
s

1 + 2s− 1
Q0

s(1) =
2

2
= 1.

□

The remaining cases satisfy the following lemma:

Lemma 4.6. [Lyu09] For any tight (2s− ε)-design, not in Ω2
∼= RP1, the

idempotent basis matrices satisfy,

rank L0 < rank L1 < · · · < rank Ls−ε.

Proof. This is equivalent to Q0
0(1) < Q0

1(1) < · · · < Q0
s−ε(1). We can

compute the following expression:

Q0
i+1(1) =

(
1
2ρd+ 2i+ 1
1
2ρd+ 2i− 1

)(
1
2d(ρ− 1) + i

1
2d+ i

)(
1
2ρd+ i− 1

i+ 1

)
Q0

i (1)

The first factor is always greater than one. The second factor is always
greater than or equal to one. The third factor is greater than or equal to
one when ρd ≥ 4. This leaves the (ρ, d) = (3, 1) case to check, which yields
Q0

i+1(1) = Q0
i (1)

(
2i+ 5

2

)
/
(
2i+ 1

2

)
. Therefore, for (ρ, d) ̸= (2, 1) we have

Q0
i (1) < Q0

i+1(1) for all i ≥ 0. □

4.5. Completing the Proof

To complete the proof of Theorem 4.1 we need to apply Lemma 4.3 to all
the relevant cases. However, since Ω2

∼= RP1 generally involves idempotent
basis matrices of equal rank, we cannot use Lemma 4.3 for this exceptional
case. This case is examined carefully for completeness in [Lyu09] and we
address it in the following theorem.

Theorem 4.7. [Lyu09] A tight t-design in Ω2
∼= RP1 has a rational angle

set if and only if t = 1, 2, 3, 5.

Proof. A tight t-design in Ω2
∼= RP1 always exists and is given by the

corners of a regular (t+ 1)-gon. The angle between any pair of design points
on the unit circle is θ = 2mπ/(t + 1) for some integer m. The corresponding
Jordan inner product is ⟨x, y⟩ = cos2

(
θ
2

)
= 1

2 +
1
2 cos θ. This means that ⟨x, y⟩

is rational if and only if cos θ is rational. The only values of t for which cos θ
is rational are known to be t = 1, 2, 3, 5. □

We now examine the remaining cases with (ρ, d) ̸= (2, 1), i.e., distinct from
the unit circle. The simplest to deal with, using Lemma 4.3, is the case where
t = 2s is even.
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Theorem 4.8. A tight (2s)-design, not in Ω2
∼= RP1, has a rational angle

set.

Proof. According to Lemma 4.6, the idempotent basis matrices Li each
have distinct rank. Therefore, by Lemma 4.3, the angle set is rational. □

We now examine cases with odd t = 2s− 1.

Lemma 4.9. Let (ρ, d) ̸= (2, 1). If Ls and L1 have distinct ranks then the
angle set is rational.

Proof. According to Lemma 4.6, the ranks of all Li are distinct except
possibly for Ls when ε = 1. Therefore no field automorphism of C interchanges
L1 with any Li other than possibly Ls. If Ls and L1 have distinct ranks, then
L1 is fixed by all field automorphisms of C and therefore is a matrix with
rational entries Q0

1(α)/|X|. As described in the proof of Lemma 4.3, it follows
from the rationality of Q0

1(α) that α is rational. □

The simplest odd t = 2s − 1 case is for s = 1, corresponding to a tight
1-design. A tight 1-design exists in each Ωd+1 and FPρ−1 and is also known
as a Jordan frame, or full rank set of orthogonal primitive idempotents. The
annihilator polynomial is ann(x) = ρx, so the angle set is A = {0}, which is
clearly rational. Since this case is fully understood, we will assume s > 1 in
what follows.

We now address the remaining spherical cases.

Theorem 4.10. A tight (2s− 1)-design in Ωd+1 with d > 1 has a rational
angle set except when d = 2 and s = 3.

Proof. In the spherical cases we have ρ = 2 and can simplify Q0
i (1) to

the following:

Q0
i (1) =

(
d+ 2i− 1

d+ i− 1

)
(d)i
i!

.

This means that,

rank L1 = Q0
1(1) = d+ 1.

Likewise,

rank Ls = R1
s−1(1)−R0

s−1(1) =
s

d+ 2s− 1
Q0

s(1) =

(
d+ s− 2

s− 1

)
.

For s = 2, we always have rank Ls − rank L1 = −1. By Lemma 4.3, a
tight spherical 3-design must therefore have a rational angle set. For s > 2,
rank Ls − rank L1 ≥ 0 with the equality achieved only when d = 2 and s = 3.
Aside from this exception, Lemmas 4.3 and 4.9 ensure a rational angle set.
Therefore, the only case where rank Ls = rank L1 is for d = 2 and s = 3. A
tight 5-design exists in this case and is known to be the vertices of a regular
icosahedron in Ω3. □
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Remark 4.11. In contrast to Lyubich, who only deals with projective
cases of degree d = 1, 2, 4, we have dealt here with all spherical (ρ = 2)
cases simultaneously. This provides a slightly different approach to identifying
Lyubich’s exception in Ω3

∼= CP1, namely as spherical design rather than as a
projective design.

We will call a design with ρ > 2 a strictly projective design. All remaining
cases are strictly projective. In what follows we will therefore require that
ρ > 2.

Theorem 4.12. A strictly projective tight (2s−1)-design, i.e., with ρ > 2,
has a rational angle set.

Proof. The proof method shown here is equivalent to the method used
in [Lyu09], but the parameters are allowed to extend to the octonion case
(d = 8) yet restricted to the strictly projective ρ > 2 cases. We need to verify
that rank Ls ̸= rank L1. In the cases below we use that fact that,

rank Ls ≥
2

1
2ρd+ 3

Q0
2(1)

Specifically, as a function of s the expression sQ0
s(1)/(

1
2ρd+2s− 1) decreases

as the value of s decreases. We can confirm this fact using the expression given
in the proof of Lemma 4.6. We will therefore assume that rank Ls is greater
than or equal to the same expression evaluated at s = 2. This ensures that,

rank Ls − rank L1 ≥
2

1
2ρd+ 3

Q0
2(1)−Q0

1(1).

Writing the expression on the right hand side explicitly, in simplified form, we
have,

rank Ls − rank L1 ≥
1

2

(
d(ρ− 1)

d(d+ 2)

)(
ρ2d2 − 2ρd2 − 2d− 4

)
Whenever the right hand side of the inequality is greater than zero, we have
confirmed by Lemmas 4.3 and 4.9 that rank Ls ̸= rank L1 and therefore that
the angle set is rational. We define,

fd(ρ) = ρ2d2 − 2ρd2 − 2d− 4.

If fd(ρ) > 0 then the corresponding tight projective (2s − 1)-design has a
rational angle set. Therefore, we only need to consider the cases where fd(ρ) ≤
0 as potential examples of an irrational angle set.

Real Projective Case. Set d = 1 and ρ > 2. Then we have,

f1(ρ) = ρ2 − 2ρ− 6.
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The only integer value of ρ > 2 with f1(ρ) ≤ 0 is ρ = 3. This means that the
real projective case of ρ = 3 and d = 1 is a possible case for rank Ls = rank L1.
We must examine this possibility more closely.

Let d = 1 and ρ = 3. If s = 2, for a tight 3-design, then we know that
rank Ls ̸= rank L1 by the fact that f1(3) ̸= 0, as shown above. We need to
also ensure rank Ls ̸= rank L1 for s > 2. To do so, we repeat the argument
given above except instead we use,

rank Ls ≥
3

1
2ρd+ 5

Q0
3(1).

For d = 1 and ρ = 3 we have,

rank Ls − rank L1 ≥
6

13
Q0

3(1)−Q0
1(1) = 1.

Therefore each real tight strictly projective designs has a rational angle set.
Complex Projective Cases. Let ρ ≥ 3 and d = 2. Then the second factor

in the inequality above simplifies to,

f2(ρ) = 4ρ2 − 8ρ− 8.

All integer values of ρ > 2 satisfy f2(ρ) > 0. This means that rank Ls >
rank L1 for all of the complex projective cases.

Quaternion Projective Cases. Let ρ ≥ 3 and d = 4. Then the second
factor in the inequality above simplifies to,

f4(ρ) = 16ρ2 − 32ρ− 12.

All integer values of ρ > 2 satisfy f4(ρ) > 0. This means that rank Ls >
rank L1 for all of the quaternion projective cases.

Exceptional Octonion Projective Case. Let ρ = 3 and d = 8. Then the
second factor in the inequality above simplifies to,

f8(3) = 172.

This means that rank Ls > rank L1 for the exceptional case. Having checked
all the cases, we have distinct ranks for all idempotent basis matrices Li and
by Lemma 4.3 the angle sets of a strictly projective tight (2s− 1)-design must
be rational. □

4.6. Conclusion

We have extended the result of [Hog84] for d = 1, 2, 4, 8, which is corrected
by [Lyu09] for d = 1, 2, 4, to the full range of possible values of rank ρ and
degree d, proving Theorem 4.1. This clarifies the full conditions under which a
tight t-design—whether spherical or projective—has a rational angle set. The
only examples of irrational angles sets exist on the unit circle Ω2

∼= RP1 for
t ̸= 2, 3, 4, 5 and on the unit sphere Ω3

∼= CP1 for t = 5.
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A recent independent paper provides a complementary proof in the case of
spherical t-designs only [BNS22]. That paper applies to all spherical designs
with t ≥ 2s− 2. A comparison suggests that it may be possible to extend the
results of this chapter to all spherical and projective designs with t ≥ 2s− 2.
Since a t-design with t ≥ 2s − 2 also defines an association scheme, many of
the techniques used in this chapter would still apply. Computing the explicit
ranks of Li might be difficult since these would depend on the angle set A,
which would not be fixed by tightness.

A comparison with [BNS22] also suggests that the use of wild automor-
phisms of C and the axiom of choice may not be essential for the proof of this
chapter. Instead, we could follow [BNS22] and use some severe constraints
on the properties of association schemes given in [Suz98] and the properties
of the splitting field of the design, namely the smallest field extension F of Q
containing all entries of the Li matrices. Of course, assuming the axiom of
choice, any automorphism of F extends to a wild automorphism of C. Yet an
alternate proof of the results of this chapter is likely possible without use of
wild automorphisms of C.





CHAPTER 5

Octonions and the Two Strictly Projective Tight
5-Designs

5.1. Introduction

A spherical t-design is a finite subset of points on the unit sphere in a
real vector space with the following special property: the average value of
any polynomial of degree at most t over the sphere is equal to the average
value of the polynomial evaluated at the points of the t-design [DGS77]. Ev-
ery t-design is also an A-code, where A is the set of angles between distinct
points in the t-design. A projective t-design (and A-code) generalizes this
concept from spheres to projective spaces [Neu81, Hog82]. Taken together,
the spheres and infinite projective spaces constitute the compact symmetric
spaces of rank 1 [Hog92], the compact and connected two-point homogeneous
spaces [Wan52], and also the manifolds of primitive idempotents for the sim-
ple Euclidean Jordan algebras [FK94]. That is, for V a simple Euclidean
Jordan algebra of rank ρ and degree d, the manifold of primitive idempotents
J (V ) is given by,

Ωd+1, RPρ−1, CPρ−1, HPρ−1, OP2, d ≥ 1, ρ ≥ 3.

There are no repetitions on this list, but the projective lines (not listed) are
isomorphic to the following spheres:

Ω2
∼= RP1, Ω3

∼= CP1, Ω5
∼= HP1, Ω9

∼= OP1.

A t-design is spherical when it is a subset of sphere Ωd+1 (with ρ = 2), and
projective when it is a subset of projective space FPρ−1 (with d = [F : R] =
1, 2, 4, 8). We will call a t-design strictly projective when it has ρ ≥ 3 and
is therefore not also spherical. Both spherical and projective t-designs are
interesting objects in part because of their connections to real, complex, and
quaternion reflection groups, as well as other sporadic simple groups [ST54,
Coh76, Coh80, Hog82, BB09].

A tight t-design (whether spherical or projective) simultaneously meets a
lower bound, given its value of t, and an upper bound, given its value of A.
While t-designs are common, tight t-designs are rare and continue to elude
full classification. Even so, a projective tight t-design with FPρ−1 ̸= RP1

71



72 5. OCTONIONS AND THE TWO STRICTLY PROJECTIVE TIGHT 5-DESIGNS

has t ≤ 5 [Hog84, Hog89] and there are precisely four projective tight 5-
designs. Two of these are also spherical, the hexagon in Ω2

∼= RP1 and the
icosahedron in Ω3

∼= CP1 [Lyu09]. The remaining two tight 5-designs are
strictly projective: one in RP23 consisting of the 98280 lines spanned by the
Leech lattice short vectors and the other in OP2 realizing the 819 lines of the
unique generalized hexagon Gh(2, 8) [Hog89].

Hoggar conjectured that the two strictly projective tight 5-designs are
closely related, since the first has cardinality 98280 = 120 · 819, the second
has cardinality 819, and there are 120 pairs of opposite octonion integer units.
Hoggar reports that this conjecture was initially met with skepticism [Hog82].
This chapter provides the missing common construction using certain octonion
involutionary matrices. These matrices can act on both the octonion vector
space O3 ∼= R24 and the octonion projective plane OP2 to produce the two
strictly projective tight 5-designs. This common construction also serves as
a new connection between the generalized hexagon Gh(2, 8) and the Leech
lattice.

5.2. Tight t-Designs

This section reviews tight t-designs and their partial classification in order
to provide context for the common construction that follows.

5.2.1. Definitions. Let V be a simple Euclidean Jordan algebra of rank
ρ and degree d and let J (V ) be the manifold of primitive idempotents. We
can use the following renormalized Jacobi polynomials to describe both the
spherical (ρ = 2) and projective (d = 1, 2, 4, 8) cases:

Qε
k(x) =

(
1

2
ρd+ 2k + ε− 1

)
(12ρd)k+ε−1

(12d)k+ε

P
( 1
2
d(ρ−1)−1, 1

2
d−1+ε)

k (2x− 1).

Here we have k a non-negative integer, ε = 0 or 1, Pochhammer symbol

(a)i = a(a+1)(a+2) · · · (a+i−1), and Jacobi polynomial P
(α,β)
n (x) as defined

in [AS72, 22.2.1]. Let X be a finite subset of J (V ) and let ⟨x, y⟩ = Tr(x ◦ y)
be the Jordan inner product. We can compute angle set A as follows:

A(X) = {⟨x, y⟩ | x, y ∈ X ⊂ J (V ), x ̸= y} .
We can also compute strength t as the maximum non-negative integer t that
satisfies ∑

x∈X

∑
y∈X

Q0
k(⟨x, y⟩) = 0, k = 1, 2, . . . , t.

With these values we call X both an A-code and t-design.

Remark 5.1. In the spherical ρ = 2 case, the Jordan inner product has the
form ⟨x, y⟩ = 1

2 + 1
2 cos θ, where θ is the angle between the two points x, y on

the sphere. This ensures that antipodal points on the sphere are orthogonal
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relative to the Jordan inner product. In general, for primitive idempotents
x ̸= y, we have 0 ≤ ⟨x, y⟩ < 1 and ⟨x, x⟩ = 1.

The annihilator polynomial of X ⊂ J (V ), denoted ann(x), is the unique
degree |A| polynomial constructed to ensure that

|X| = ann(1), A(X) = {α ∈ R | ann(α) = 0}.
Given finite X, we can compute t, A, and ann(x) directly. The more difficult
task is to specify t, A, or ann(x) and then find a finite subset X ⊂ J (V )
that realizes them. In general a t-design (and A-code) satisfies the inequality
t ≤ 2s− ε, where s = |A(X)| and ε = |A(X) ∩ {0}|. A tight t-design achieves
t = 2s − ε. It also simultaneously achieves the lowest possible cardinality
|X| for the given t value and the highest possible cardinality |X| for the given
s = |A| value [Hog82, BH85]. We can equivalently define a tight t-design as a
finite subset X ⊂ J (V ) with the annihilator polynomial ann(x) = xεRε

s−ε(x),
where we have

Rε
s−ε(x) = Qε

0(x) +Qε
1(x) + · · ·+Qε

s−ε(x).

That ensures that a tight (2s − ε)-design has cardinality |X| = Rε
s−ε(1) and

an angle set A(X) given by the roots of polynomial xεRε
s−ε(x).

5.2.2. Partial Classification. Tight t-designs are partially classified as
follows (see also Appendix A). In the case of the circle Ω2

∼= FP1 (ρ = 2,
d = 1), a tight t-design exists for all positive integer t values, corresponding
to the vertices of a (t+ 1)-gon.

As described in [CD07, BB09], in the remaining spherical cases (ρ = 2,
d ≥ 2) a tight t-design must have t = 1, 2, 3, 4, 5, 7, 11. On the sphere Ωd+1,
a tight 1-design is a pair of antipodal points, a tight 2-design is a simplex
of d + 2 points, and a tight 3-design is a cross polytope of 2d + 2 points.
Tight spherical 4- and 5-designs are in one-to-one correspondence and the
search for tight spherical 5-designs is still open. The only known examples
outside of Ω2 are sets of vectors spanning equiangular lines in Ω3, Ω7, and
Ω23. If any further example exists, it will have d ≥ 118 [BMV05, BB09].
Likewise, the search for spherical tight 7-designs is open with examples known
in Ω8 and Ω23. If any further spherical tight 7-designs exist, they will have
d ≥ 103 [BMV05, BB09]. Finally, there is precisely one spherical tight
11-design, the points defined by the short vectors of the Leech lattice in Ω24.

As described in [Hog84, Hog89, Lyu09], the remaining projective cases
(ρ ≥ 3, d = 1, 2, 4, 8) have t = 1, 2, 3, 5. A projective tight 1-design is a
Jordan frame, namely ρ orthogonal points. A Jordan frame exists in each
projective space and generalizes antipodal points on the sphere for ρ = 2. All
remaining examples have t ≥ 2. A real projective tight t-design (d = 1, ρ ≥ 3),
corresponds to a spherical tight (2t+1)-design, so the search for spherical tight
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5- and 7-designs is equivalent to the search for real projective tight 2- and 3-
designs. There is just one real projective tight 5-design: the lines spanned by
the short vectors of the Leech lattice. The remaining complex or quaternion
projective tight t-designs (d = 2, 4, ρ ≥ 3) must have t = 2, 3. The search for
complex and quaternion projective tight 2- and 3-designs remains open. As
described in [CKM16], there are many known examples of tight 2-designs in
CPρ−1, but surprisingly few have been found in HPρ−1. Finally, the remaining
tight t-designs in the octonion case (d = 8, ρ = 3) must have t = 2, 5. The
tight 2-design in OP2 has been proven to exist without an explicit construction
in [CKM16]. The tight 5-design in OP2 was constructed in [Coh83].

To summarize, the classification of tight t-designs will remain open until
the tight 2- and 3-designs in RPρ−1, CPρ−1, and HPρ−1 are all identified. In
contrast, the projective tight 5-designs are fully classified.

Theorem 5.2. A projective tight 5-design X ⊂ J (V ) is either,

(1) The vertices of a regular hexagon in Ω2
∼= RP1;

(2) The vertices of a regular icosahedron in Ω3
∼= CP1;

(3) The lines spanned by the short vectors of the Leech lattice in RP23;
or

(4) The unique realization of Gh(2, 8) in OP2.

Remark 5.3. Two of the four projective tight 5-designs in Theorem 5.2
are also spherical tight 5-designs constructed from systems of equiangular lines
in R2 and R3. The other two examples, in RP23 and OP2, are not spherical
and constitute the only two strictly projective tight 5-designs. This chapter will
identify a common construction for the two unique strictly projective 5-designs
of Theorem 5.2.

Remark 5.4. The proof in [Hog84, Hog89] that t = 1, 2, 3, 5 for projec-
tive tight t-designs (d = 1, 2, 4, 8, ρ ≥ 2) other than RP1 (d = 1, ρ = 2) rests
on a faulty lemma. Specifically, Hoggar attempts to prove that for a projec-
tive tight t-design X, the angle set A(X) must be rational [Hog84], and the
proofs of various restrictions on t depend on this result. However, as described
in [Lyu09], the icosahedron vertices in CP1 ∼= Ω3 serve as a counter-example
since the angle set of that projective tight 5-design is irrational. Lyubich re-
pairs the faulty lemma in [Hog84] for d = 1, 2, 4, accounting for the exceptions
in RP1 ∼= Ω2 and CP1 ∼= Ω3, but ignores the octonion d = 8 cases [Lyu09].
The repair in [Lyu09] involves correctly identifying the idempotent basis of
the Bose–Mesner algebra of a tight t-design, which was incorrectly chosen
in [Hog84]. This can also be done for the remaining spherical (ρ = 2) and
octonion (d = 8) cases in the same way as outlined in [Lyu09]. No new
exceptions exist beyond those captured in [Lyu09]. As a result, the results
about possible t values for tight t-designs in [Hog84, Hog89] still hold true.
Furthermore, aside from the known exceptions in RP1 ∼= Ω2 and CP1 ∼= Ω3,
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the angle set of a tight t-design is indeed rational. Chapter 4 provides this
general proof.

5.3. Octonions and Isometries

This section describes how certain involutionary isometries of vector space
Fρ and projective space FPρ−1, with associative F = R,C,H, generalize to the
non-associative octonion case where F = O.

5.3.1. Definitions. The division composition algebras over the real num-
bers are precisely the real numbers R, the complex numbers C, the quaternions
H, and the octonions O. A standard basis for the octonions is {it | t ∈ PL(7) =
{∞} ∪ F7}, with 1 = i∞ the identity and

i2t = −1, it = it+1it+3 = −it+3it+1, t ∈ F7.

Octonion conjugation is the R-linear involution defined by 1 = 1 and it = −it
for t ∈ F7. The real-valued norm is given by N(x) = xx = xx. The subalgebra
of O generated by a single octonion is commutative (isomorphic to R or C)
and the subalgebra generated by any two octonions is associative (isomorphic
to R, C, or H). Many further details about this non-associative algebra are
available in [SV00, Bae02, CS03, Sch17].

As described above, simple Euclidean Jordan algebras of rank ρ ≥ 3 can
be described as Hermitian matrices relative to octonion conjugation, which
we denote Herm(ρ,F), with the Jordan product defined in terms of the usual
matrix product xy as follows:

x ◦ y =
1

2
(xy + yx).

Here we have F = R,C,H,O (in the octonion case, we must have ρ = 3 and the
underlying matrix product xy is non-associative). In addition to the Jordan
product, each Jordan algebra element defines an endomorphism P (x), known
as the quadratic representation [FK94, II.3]:

P (x) : y 7→ 2x ◦ (x ◦ y)− x2 ◦ y.
When the Jordan product is constructed from an underlying associative algebra
(as in all but the ρ = 3 and d = 8 octonion case) then P (x) simplifies to
P (x)y = xyx, with xyx computed using that underlying associative product.
Many further details about Euclidean Jordan algebras are available in [FK94,
SV00, Bae02, Sch17].

Let x = (x1, x2, . . . , xρ) be a row vector in Fρ and let x† be the conjugate
transpose, a column vector. We will call a vector x in Fρ commutative when
the coefficients {x1, x2, . . . , xρ} generate a real or complex subalgebra of O
and associative when the coefficients generate a real, complex, or quaternion
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subalgebra of O. We can extend the norm on F described above to vectors in
Fρ as follows:

N(x) = xx† = x1x1 + · · ·+ xρxρ = N(x1) + · · ·+N(xρ).

This norm is real-valued and serves as a Euclidean norm for the corresponding
real vector space Rρd ∼= Fρ with d = [F : R]. The inner product is constructed
from the norm in the standard way:

(x, y) =
1

2
(N(x+ y)−N(x)−N(y)) =

1

2
(xy† + yx†) = Re(xy†) = Re(yx†).

If vector x is associative, then [x] = x†x/N(x) is also a primitive idempotent
in FPρ−1 ⊂ Herm(ρ,F). Indeed, any primitive idempotent [x] in FPρ−1 can be
constructed this way for some (non-unique) associative vector x in Fρ.

5.3.2. Isometries. Given our real-valued inner products defined on both
Fρ and FPρ−1, we now want to construct isometries. An important property
of the quadratic representation is that when w ◦ w = Iρ the map P (w) is
an involutionary automorphism of the Jordan algebra and an isometry of the
manifold of primitive idempotents J (V ) relative to ⟨x, y⟩ = Tr(x ◦ y).

For associative F = R,C,H, the following pairs of maps defined by asso-
ciative vector r are involutionary isometries of Fρ and FPρ−1 respectively:

x 7→ x(Iρ − 2[r]), [x] 7→ (Iρ − 2[r])[x](Iρ − 2[r]).(5.1)

Matrices of the form W (r) = Iρ − 2[r] satisfy W (r)†W (r) = Iρ and therefore
belong to the matrix groups O(ρ), U(ρ), or Sp(ρ) respectively when F =
R,C,H. In the non-associative case, with F = O and ρ = 3, we can ensure
that the maps of Eq. (5.1) are isometries by selecting a commutative vector r
in O3.

Lemma 5.5. Let r be a commutative vector in Fρ. Then the maps of
Eq. (5.1) are respectively isometries of Fρ ∼= Rρd with inner product (x, y) =
Re(xy†) and of FPρ−1 with inner product ⟨x, y⟩ = Tr(x ◦ y).

Proof. Consider the map x 7→ xW (r) with W (r) = Iρ − 2[r]. In the
associative cases with F = R,C,H, the matrix W (r) belongs to one of the
matrix groups O(ρ), U(ρ), or Sp(ρ) since W (r)2 = Iρ. This ensures that the
map above is an isometry for F associative [Ada96, pp. 1-2]. It remains
to check the non-associative case with F = O and ρ = 3, which includes
ρ = 2 when we restrict to the appropriate subspace. Any linear transformation
acting on O3 preserving the norm N(x) will also preserve the inner product
(x, y). Since our map is linear we need to show that N(x) = N(xW (r)). To
do so, let x = a+ b+ c with a = (A, 0, 0), b = (0, B, 0), c = (0, 0, C) and with
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A,B,C in O. Writing W = W (r), we have

N(xW ) = N(aW ) +N(bW ) +N(cW ) + 2(aW, bW )

+ 2(bW, cW ) + 2(cW, aW ).

The first term satisfies N(aW ) = N(a) since the coefficients of a and W be-
long to a common quaternion subalgebra. Likewise we have N(bW ) = N(b)
and N(cW ) = N(c). Since N(x) = N(a) + N(b) + N(c), it remains to show
that the cross terms of the form (aW, bW ) vanish. To do so we write primitive
idempotent matrix [r] in the form

[r] =

d F E
F e D
E D f

 , d, e, f ∈ R, D,E, F ∈ O.

The following inner product evaluates to

1

4
(aW, bW ) = Re((AE)(D B)) +

(
e− 1

2

)
Re((AF )B)

+

(
d− 1

2

)
Re(A(FB)).

In general, Re(A(FB)) = Re((AF )B) for any octonions A,B, F [Wil09a, p.
145]. Likewise, Re((AE)(D B)) = Re(((AE)D)B). We can also use the prim-
itive idempotent relations e + d − 1 = −f and fF = E D [Wil09a, p. 157].
Finally, by construction E and D belong to a common complex subalgebra
of O, since r is a commutative vector. This ensures that (AE)D = A(E D).
Taken together, our expression simplifies to zero:

1

4
(aW, bW ) = Re(((AE)D)B) + (d+ e− 1)Re((AF )B)

= Re(((AE)D)B)− Re((A(fF ))B)

= Re(((AE)D −A(E D))B)

= 0.

A similar calculation cycling a 7→ b 7→ c 7→ a, d 7→ e 7→ f 7→ d, and
D 7→ E 7→ F 7→ D verifies that (bW, cW ) = (cW, aW ) = 0. This confirms
that x 7→ xW (r) is an isometry of O3 when r is a commutative vector.

In the associative cases, with F = R,C,H, the map [x] 7→ W (r)[x]W (r) =
P (W (r))[x] is a known isometry of FPρ−1. In the non-associative case with
F = O, we verify that [x] 7→ W (r)[x]W (r) is an isometry of OP2 by beginning
with the known isometry P (W (r))[x] given by the quadratic map. We can
write [x] = a+ b+ c+A+B+C for a, b, c real-valued matrices corresponding
to the diagonal entries of [x] and A,B,C octonion-valued Hermitian matrices
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corresponding to the octonion valued off-diagonal entries of [x].

P (W (r))[x] = P (W (r))a+ · · ·+ P (W (r))C.

Each term in this expansion contains matrix entries in the factors that share
a common quaternion subalgebra, so we can use the simplification of P (x)y =
xyx available in associative cases for each term:

P (W (r))[x] = W (r)aW (r) + · · ·+W (r)CW (r) = W (r)[x]W (r).

This confirms that for r a commutative vector, the map [x] 7→ W (r)[x]W (r)
is an isometry of OP2. □

5.4. The Common Construction

This section defines a common construction for pairs of t-designs, provides
a familiar example, and then applies the common construction to the two
strictly projective tight 5-designs of Theorem 5.2.

Definition 5.6 (Common construction). Let r1, r2, . . . , rn be commuta-
tive row vectors in Fρ, with d = [F : R], and let [r1], [r2], . . . , [rn] be the
corresponding primitive idempotents in projective space FPρ−1. Let G be the
group acting on Fρ generated by the following isometries under composition:

x 7→ x (Iρ − 2[ri]) , i = 1, 2, . . . , n.

Let H be the group acting on FPρ−1 generated by the following isometries
under composition:

[x] 7→ (Iρ − 2[ri]) [x] (Iρ − 2[ri]) , i = 1, 2, . . . , n.

If G is finite, then the orbit of r1, r2 . . . , rn defines a spherical design in Ωρd us-

ing Rρd ∼= Fρ. The lines spanned by the points of this spherical design define a
real projective design in Rρd−1. When H is finite, the orbit of [r1], [r2], . . . , [rn]
defines a projective design in FPρ−1.

Remark 5.7. This common construction definition relies on Lemma 5.5
to ensure that the needed maps are indeed isometries when r1, r2, . . . , rn are
each commutative. When F ̸= O, we can relax the commutative requirement
of Definition 5.6, since for any r in Fρ with F associative, the matrix W (r)
will belong to the isometry group of Fρ (either O(ρ), U(ρ) or Sp(ρ)). In gen-
eral, a selection r1, r2, . . . , rn of commutative vectors must be chosen carefully
in order for the isometries given in Definition 5.6 to generate finite groups.
More details about the classification of finite reflection groups are available
in [ST54, Coh76, Coh80, Wil09a].



5.4. THE COMMON CONSTRUCTION 79

Example 5.8. Let r1, r2, . . . , r6 ∈ C6 be the rows of the following matrix,
where ω is a complex cube root of unity:

2 0 0 0 0 0
0 2 0 0 0 0
0 0 2 0 0 0
1 ω ω 1 0 0
ω 1 ω 0 1 0
ω ω 1 0 0 1

 .

The common construction of Definition 5.6 yields finite groups G and H. The
group G acting on C6 is the complex reflection group W (K6) = (6.PSU4(3)) :
2. The orbit of r1, r2, . . . , r6 under the action ofG form the 756 shortest vectors
of the K12 integral lattice, defining a 5-design in Ω12. This corresponds to the
projective 2-design in RP11 consisting of the 378 lines spanned by theK12 short
vectors. The orbit of [r1], [r2], . . . , [r6] under the action of H = PSU4(3) : 2
form the 126 points of a tight 3-design in CP5. More details about this example
are available in [CS13, pp. 127-129].

We may now introduce the main result of this chapter.

Theorem 5.9. There exists a set of commutative vectors r1, r2, . . . , rn in
O3 that yield the two strictly projective tight 5-designs under the common
construction of Definition 5.6. The vectors r1, r2, . . . , rn are not unique and
can be given, for example, by the rows of the following matrix, for any t ∈ F7

and with s = 1
2(−1 + i0 + i1 + i2 + i3 + i4 + i5 + i6):

2 2 0
2s 0 0
s2 s s
2 2it 0
2 2it+1 0
2 2it+3 0

 .

Proof. The examples given in Theorem 5.9 were found and checked using
the software GAP [Gro22]. Setting t = 0, the computation begins by first
applying the isometries of Definition 5.6 respectively to x ∈ {r1, . . . , r6} and
[x] ∈ {[r1], . . . , [r6]}. Any new elements in O3 and OP2 are added to the
respective sets. This process is repeated and each application of the isometries
either provides new elements or permutes the elements of the set. Once all
six isometries permute the appropriate set, without providing new elements,
those permutations are used to generate the groups G and H. Permutation
group tools in GAP identify G and H as 2 · G2(4) and 3D4(2) respectively.
The properties of the tight 5-designs given by the full orbits of {r1, . . . , r6} and
{[r1], . . . , [r6]} are verified directly using the definitions above. Since it 7→ it+1
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is an automorphism of O, the result is also true for 0 ̸= t ∈ F7. For more
details on this construction, see Remark 5.10 below. □

Remark 5.10. If we apply the common construction of Definition 5.6 to
the vectors given in Theorem 5.9 then we obtain an isometry group G =
2 ·G2(4) ⊂ O(24) acting on R24 ∼= O3. The orbit of r1, . . . , r6 under the action
of G forms a

√
2 : 1 scale copy of the short vectors of the Leech lattice, which

define the unique tight 11-design on Ω24 with cardinality 196560. The lines
spanned by the spherical tight 11-design vectors form the corresponding tight
5-design in RP23 with cardinality 98280. The common construction also yields
isometry group 3D4(2) ⊂ F4 acting on OP2. The orbit of [r1], [r2], . . . , [r6]
under the action of H form a copy of the unique tight 5-design on OP2 of
cardinality 819.

5.5. Leech Lattice Symmetries and the Octonion Projective Plane

In light of Theorem 5.9, we can use the involutionary isometries from our
common construction to generate certain symmetries of the Leech lattice and
exhibit their relation to the octonion projective plane. This section outlines
a construction of the Suzuki chain of Leech lattice symmetries acting on O3

and describes their corresponding action on OP2 where possible.
The vectors in O3 ∼= R24 of the spherical tight 11-design in Theorem 5.9

are precisely the short vectors of Wilson’s octonion Leech lattice construc-
tion [Wil09b, Wil09a, Wil11]. In fact, a GAP computation confirms that
any choice of t ∈ F7 in Theorem 5.9 yields the same orbit in O3 but distinct
orbits in OP2 and distinct groups of type 2 ·G2(4) acting on O3. The union of
these seven distinct 2 ·G2(4) groups generates the full Leech lattice automor-
phism group, Conway’s group Co0 = 2 ·Co1. The corresponding permutation
group acting on the 98280 lines defining the tight 5-design in RP23 is the
sporadic simple group Co1.

The group Co1 contains the alternating group A9 as a subgroup, with
symmetric group S3 centralizing A9 in Co1. The Suzuki chain is a chain of
centralizers in Co1 of the corresponding chain of alternating groups A9 > A8 >
· · · > A3 [Wil09a, p. 219]:

S3 < S4 < PSL2(7) < PSU3(3) < HJ < G2(4) < 3 · Suz.
Here HJ and Suz are respectively the Hall–Janko and Suzuki sporadic simple
groups. Wilson uses scalar octonion multiplication acting on a Leech lattice
in O3 to construct the isometries needed to generate a chain of double covers
of the alternating groups used in the Suzuki chain. Wilson then also includes
known coordinate symmetries of the octonion triples (coordinate permutations
and sign changes) to construct a maximal subgroup of 2 ·Co1. By appending
the single reflection x 7→ xW (r), with r = (s, 1, 1), Wilson is able to recover
the entire Leech lattice automorphism group Co0. The Suzuki chain subgroups
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{r1, . . . , rn} G/{±1} ⊂ Co1 H ⊂ F4

V∞ S4 S4

S PSL2(7) PSL2(7)

S ∪ Vt PSU3(3) PSU3(3)

S ∪ Vt ∪ Vt′ HJ 3D4(2)

S ∪ Vt ∪ Vt+1 ∪ Vt+3 G2(4)
3D4(2)

S ∪ Vt+2 ∪ Vt+5 ∪ Vt+6 ∪ Vt+7 3 · Suz
S ∪ V∞ ∪ V0 ∪ V1 ∪ V2 ∪ V3 ∪ V4 ∪ V5 ∪ V6 Co1

Table 5.1. The common construction applied to orbits of
combinations of S, V∞, and Vt for t ̸= t′ ∈ F7.

are described in the context of these isometries. More details about Wilson’s
construction and the group theory involved are available in [Wil09b, Wil09a,
Wil11].

Using the computational results of the construction in Theorem 5.9, we can
provide an alternative construction of Leech lattice automorphisms and the
Suzuki chain. The benefit of this alternative construction is that all the gener-
ators involved are involutionary isometries of O3 with corresponding isometries
on OP2 via the common construction of Definition 5.6.

Definition 5.11. Let t ∈ F7, let s =
1
2(−1+ i0+ i1+ i2+ i3+ i4+ i5+ i6),

and let V∞, Vt, and S be, respectively, the sets of vectors of the form (2, 2, 0),
(2, 2it, 0), and (s2, s, s), under all coordinate permutations and sign changes.

Example 5.12. As depicted in Table 5.1, under the common construction
of Definition 5.6, different choices of commutative vectors yield different finite
group actions G/{±1} acting on O3/R ∼= RP23 and H acting on OP2. Here
we have t, t′ ∈ F7 and t ̸= t′.

Remark 5.13. The groups described in Example 5.12 (Table 5.1) are com-
puted using GAP in the same manner as described in the proof of Theorem 5.9.
Computation time is saved by using the octonion automorphism it 7→ it+1 to
reduce the number of cases to check.

Remark 5.14. In Table 5.1, the bottom three rows yield the full tight
5-design in RP23. Both the fourth and fifth rows yield the tight 5-design in
OP2. The fifth row yields both tight 5-designs and corresponds to the example
in Theorem 5.9.

Remark 5.15. The first three rows of the table in Table 5.1 involve initial
vectors {r1, . . . , rn} with coefficients belonging to a common associative sub-
algebra of O. Accordingly, the isometries generating G and H also generate
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matrix groups, which accounts for the agreement between G/{±1} and H.
The bottom four rows in the table involve sets {r1, . . . , rn} with coefficients
that generate the full non-associative octonion algebra. This means that the
groups G and H generated by the initial isometries are no longer related to a
matrix group generated by matrices W (ri) = I3 − 2[ri]. Indeed, the matrices
W (ri) instead generate a non-associative octonion matrix loop rather than a
matrix group. This partly explains the divergence between the properties of
the groups G and H in the bottom four rows of the table. In the bottom two
rows of the table, the initial isometries generate a finite group G acting on
O3 but do not seem to generate a corresponding finite group acting on OP2.
An open question is whether they generate the Lie group F4, the full isometry
group of OP2.

Remark 5.16. As described above, Theorem 5.9 yields the same tight
5-design in RP23 but distinct tight 5-designs in OP2 for distinct t ∈ F7. In
contrast, if we take the conjugate s 7→ s in Theorem 5.9, then for distinct
t ∈ F7 the common construction will instead yield distinct tight 5-designs in
RP23 but just one common tight 5-design in OP2.

Remark 5.17. Possible variations on initial vectors in Theorem 5.9 include
using carefully selected norm 2 integral octonions to construct the initial vec-
tors {r1, . . . , rn} of the common construction of Definition 5.6. Chapter 6 will
explore constructions of this form and how they can be used to exhibit Suzuki
chain symmetries of the Leech lattice.

5.6. Conclusion

We have seen in Theorem 5.9 and Table 5.1 that vectors {r1, . . . , rn} =
S ∪ Vt ∪ Vt+1 ∪ Vt+3, with t ∈ F7, define isometries of O3 and OP2 according
to the common construction of Definition 5.6. These isometries generate a
finite group G2(4) acting on O3/R ∼= RP23 and a finite group 3D4(2) acting
on OP2 that yield the two strictly projective tight 5-designs as orbits. Specif-
ically, the two tight 5-designs are, respectively, the orbits of the initial vectors
{r1, . . . , rn} and of the primitive idempotents {[r1], . . . , [rn]}. This common
construction accounts for the previously conjectured connection between these
two tight 5-designs in [Hog82].

Hoggar remarks in [Hog82] that his conjectured connection was met with
skepticism. “Against this, the referee remarks: the automorphism group of
the unique (2, 8) hexagon has index 3 subgroup 3D4(2), which has no irre-
ducible projective representation of degree ≤ 24. Furthermore, 3D4(2) has
no proper subgroups acting transitively on the 819 points” [Hog82]. In our
common construction of Definition 5.6, the link between our two designs is
the initial commutative vectors {r1, r2, . . . , rn} rather than the group 3D4(2),
its subgroups, or its representations. Indeed the pair of groups, G2(4) acting



5.6. CONCLUSION 83

on RP23 and 3D4(2) acting on OP2, have relative cardinality 25/21 so that
one cannot be a subgroup of the other. The non-associativity of the octonion
algebra permits the common construction to yield these seemingly unrelated
groups and the tight 5-designs given by their orbits.





CHAPTER 6

Octonion Integers and Tight 5-Designs

6.1. Introduction

Let F be a real division composition algebra—one of R,C,H,O. A previous
paper [Nas22] (Chapter 5 of this thesis) introduced a common construction
for t-designs in RPρd−1 and FPρ−1 and showed how this common construction
can yield the only two strictly projective tight 5-designs, which exist in RP23

and OP2. The example used in that paper was obtained by computation and
given to establish the existence of the common construction of these two tight
5-designs. That example matches the coordinates used in Wilson’s octonion
Leech lattice construction [Wil09b, Wil11]. This chapter instead examines
the common construction of these two tight 5-designs using octonion integers
and their symmetries.

We begin with a review of [Nas22]. In what follows, let rank ρ and degree
d be positive integers with ρ greater than 1 and d = [F : R] when ρ is greater
than 2. We will call vector x = (x1, x2, . . . , xρ) in Fρ respectively commu-
tative or associative when the coefficients x1, x2, . . . , xρ belong to a common
commutative or associative subalgebra of F. The norm N(x) is defined as
N(x) = xx†, where x† is the conjugate transposed of row vector x. When x is
associative we can define the projector [x] = x†x/N(x), which is a primitive
idempotent Hermitian matrix in Herm(ρ,F). Projectors of this form belong
to the projective space FPρ−1, represented as primitive idempotent Hermitian
matrices, as described in [Hog82]. If r in Fρ is commutative or F is associative
then we can define the following pair of reflection isometries acting on Fρ and
FPρ−1:

Wr : x 7→ x(Iρ − 2[r]), [x] 7→ (Iρ − 2[r])[x](Iρ − 2[r]).

That both actions of Wr are in fact respectively isometries of Fρ and FPρ−1

is verified in [Nas22]. We can use these actions to construct spherical and
projective t-designs, or simply designs. A spherical design X is a finite subset
of points X ⊂ Ωρd where Ωρd is a sphere. A projective design is a finite subset

of points X ⊂ FPρ−1 where FPρ−1 is a projective space. A design X has
certain properties such as tightness, angle set A, and strength t which are
reviewed in [Nas22]. Of note, the only two strictly projective tight 5-designs

85
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are shown to have a common construction in [Nas22], where the common
construction is defined as follows:

Definition 6.1 (Common Construction). Let r1, r2, . . . , rn be commuta-
tive vectors in Fρ (or let F be associative). Let G and H be the group of
isometries generated by Wr1 , Wr2 , . . . , Wrn respectively acting on Fρ and FPρ−1.
If G is finite then the union of orbits of r1, r2, . . . , rn defines a spherical design
on Ωρd, since Fρ ∼= Rρd, with a corresponding projective design on RPρd−1.
If H is finite then the union of orbits of [r1], [r2], . . . , [rn] defines a projective
design on FPρ−1.

Suitable vectors r1, . . . , r6 exist such that the common construction above
yields the two strictly projective tight 5-designs [Nas22]. The coordinates
given in [Nas22] ensure that the tight 5-design on RP23 is given by the lines
spanned by the short vectors of Wilson’s octonion Leech lattice construction
[Wil09b]. In this chapter we will instead work with octonion integers to de-
scribe the common construction of these two tight 5-designs. We will also
clarify Leech lattice constructions using octonion integer triples and describe
the Suzuki chain subgroups of Leech lattice automorphisms as octonion reflec-
tion groups. Finally, we will compare the common construction described here
to treatment of the two tight strictly projective 5-designs given in [EG96].

6.2. Octonion Integers

This section reviews octonion algebra and octonion integer ring concepts in
order to provide a complete description of the common construction of [Nas22]
in terms of octonion integers. Many important properties of octonions and
their integer rings are described in [SV00], [Bae02] [CS03].

A composition algebra is an algebra over some field equipped with a non-
degenerate quadratic form N that satisfies the composition rule N(xy) =
N(x)N(y). A composition algebra is unital if it also includes an identity el-
ement. A division composition algebra lacks isotropic vectors, i.e. N(x) = 0
only for x = 0. A major theorem due to Hurwitz confirms that there are
precisely four unital division composition algebras F over the real numbers:
the real field R, the complex field C, the quaternions H, and the octonions O.
The octonion algebra O contains the others as subalgebras.

The corresponding inner product ⟨x, y⟩ = N(x+y)−N(x)−N(y) is twice
the standard Euclidean inner product. This means that N(x) = 1

2⟨x, x⟩, and
the standard Euclidean inner product is 1

2⟨x, y⟩.
Remark 6.2. Many authors prefer to define the inner product as 1

2(N(x+
y)−N(x)−N(y)) so that it matches the standard Euclidean inner product.
In our definition of inner product ⟨x, y⟩ we omit the factor of 1

2 for convenience
when working with octonion integers modulo 2 below. This also follows the
convention in [SV00].



6.2. OCTONION INTEGERS 87

The real component of an octonion x is the component projected onto the
identity: Re(x) = 1

2⟨1, x⟩. The difference Im(x) = x− Re(x) is the imaginary
component of x. The octonion conjugate is defined as x = 2Re(x) − x. The
octonion product ensures that N(x) = xx = xx and that every octonion
satisfies the following characteristic equation:

x2 − 2Re(x)x+N(x) = 0.

In what follows we will denote by R(x1, x2, . . . , xn) the subalgebra ofO gen-
erated by the products and R-linear combinations of octonions 1, x1, x2, . . . , xn.
Any octonion x not contained in the real subalgebra, so that x ̸= Re(x), gen-
erates a complex subalgebra R(x) ∼= C. Any two octonions x, y generating
distinct complex subalgebras R(x) ̸= R(y) will generate a quaternion subal-
gebra R(x, y) ∼= H. Finally, any three octonions x, y, z that pairwise generate
distinct quaternion subalgebras R(x, y), R(y, z), R(x, z) will generate the full
octonion algebra R(x, y, z) = O. Every octonion belongs to some complex and
quaternion subalgebra of O. The complex numbers form a commutative and
associative algebra, while the quaternion algebra is not commutative but still
associative. The octonions are neither commutative nor associative but still
have many special properties and symmetries.

An octonion algebra automorphism is an invertible R-linear map σ : O →
O that also preserves the octonion product, so that σ(xy) = σ(x)σ(y). The
group Aut(O) of all such octonion algebra automorphisms is a Lie group of
type G2. The group Aut(O) is transitive on imaginary units, namely octonions
i such that Re(i) = 0 and N(i) = 1. It follows that Aut(O) is transitive on
the complex subalgebras of O, which each have the form C ∼= R(i) for some
imaginary unit i. Likewise, Aut(O) is transitive on ordered pairs of orthogonal
imaginary units, namely all (i, j) such that ⟨i, j⟩ = 0. This ensures that
Aut(O) is transitive on quaternion subalgebras of O since these all have the
form H ∼= R(i, j) for some pair of orthogonal imaginary units (i, j). Finally,
a basic triple is an ordered triple of orthogonal imaginary units (i, j, l), where
i, j, l pairwise generate distinct quaternion subalgebras. The group Aut(O) is
also transitive on basic triples [Bae02, p. 185], so we can select any basic
triple (i, j, l) in O without loss of generality.

Remark 6.3. For any quaternion subalgebra H ⊂ O, the group Aut(O)
contains an involution fixing H and multiplying the orthogonal component by
−1. That is, for any basic triple (i, j, l), the map (i, j, l) 7→ (i, j,−l) defines an
octonion algebra automorphism fixing H = R(i, j).

As described in [CS03], we now define the more familiar octonion standard
basis {it | t ∈ PL(7)}, indexed by the projective line PL(7) = {∞} ∪ F7, in
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terms of some basic triple (i, j, l):

i∞ = 1, i0 = −(ij)l, i1 = il, i2 = i,

i3 = j, i4 = l, i5 = ij, i6 = jl.

The units in this basis multiply as expected according to their properties in
the quaternion subalgebras they pairwise define. That is, for all t ̸= ∞, the set
{1, it, it+1, it+3} forms a standard quaternion basis with itit+1it+3 = −1. The
PL(7) indexing of the standard basis vectors exhibits certain helpful octonion
algebra automorphisms, namely those defined on the basis by it 7→ it+1 and
it 7→ i2t (here 1 = i∞ is fixed and the remaining indices are computed modulo
7).

We will call Z the rational integers to distinguish Z from octonion integer
rings in what follows. A Gravesian integer ring is all Z-linear combinations
of some standard basis [CS03, p. 100]. Equivalently, any basic triple (i, j, l)
defines a Gravesian integer ring Z(i, j, l), consisting of all Z-linear combina-
tions of 1, i, j, l and their products, which include the standard basis vectors.
Since a Gravesian integer ring contains a basic triple, and since Aut(O) is
transitive on basic triples, the octonion automorphism group is transitive on
Gravesian integer rings. This means we can select a representative and speak
of the Gravesian integer ring without loss of generality.

The Gravesian integers are an example of an octonion order : a subring of
the octonion algebra where each subring element x has Z-valued 2Re(x) and
N(x) [CS03, p. 100]. If an octonion order contains basic triple (i, j, l) it must
also contain the corresponding standard basis {it | t ∈ PL(7)} defined above.
Therefore, any octonion order containing a basic triple also contains the corre-
sponding Gravesian integer ring. An octonion arithmetic is a maximal order.
It is known that there are precisely seven octonion arithmetics containing any
given Gravesian integer ring, and that these form a single orbit under the
octonion algebra automorphism subgroup generated by it 7→ it+1 [CS03, p.
100]. It follows that any octonion arithmetic containing a basic triple is one
of seven containing the Gravesian integer ring defined by that basic triple.

We want to distinguish one of the seven octonion arithmetics containing
the Gravesian integers as canonical. We will do so using properties of some
underlying basic triple. Basic triple (i, j, l) defines a unique pair of opposite
imaginary units in the standard basis corresponding to all possible triple prod-
ucts of i, j, l, namely {i0,−i0} (recall that i0 = −(ij)l = l(ij), etc.). We will
select a canonical octonion arithmetic for basic triple (i, j, l) that distinguishes
i0 from the other units in the standard basis defined by that basic triple. To
do so, we note that there are three quaternion double bases in {±it | PL(7)}
containing ±i0, namely {±1,±i0,±ir,±i3r} for r = 1, 2, 4 (indices computed
modulo 7). The rings Z(i0, ωr) with ωr = 1

2 (−1 + i0 + ir + i3r), for r one of
1, 2, 4, are isomorphic to the Hurwitz integer ring H [CS03, p. 57]. The three
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Hurwitz integer rings Z(i0, ω1), Z(i0, ω2), Z(i0, ω4) together generate one of the
seven arithmetics containing the basic triple (i, j, l). Indeed, a brief computa-
tion confirms that this arithmetic has the form Z(ω1, ω2, ω4). Accordingly, we
define the canonical arithmetic O containing basic triple (i, j, l) as the ring,

O = Oi,j,l = Z(ω1, ω2, ω4), ωr =
1

2
(−1 + i0 + ir + i3r) .

The ring O is called the octavian integers in [CS03, p. 99] but we will call it
the octonion integer ring. The remaining six octonion arithmetics containing
(i, j, l) are given by the orbit of O under the automorphism defined on the
basis by it 7→ it+1.

We now verify that any octonion arithmetic containing a basic triple is
isomorphic to the canonical arithmetic defined above.

Lemma 6.4. The octonion algebra automorphism group is transitive on
octonion arithmetics containing at least one basic triple.

Proof. Let O be an octonion arithmetic containing a basic triple (i, j, l).
It follows that O contains the Gravesian integer ring defined by (i, j, l) and is
one of the seven isomorphic arithmetics containing that order. Likewise, let
O′ be an octonion arithmetic containing a basic triple (i′, j′, l′), one of seven
isomorphic arithmetics containing this basic triple. The image of O′ under
any octonion automorphism is also an isomorphic arithmetic containing the
image of basic triple (i′, j′, l′). The octonion algebra automorphism group is
transitive on basic triples, which means that there exists an automorphism σ
such that σ(i′) = i, σ(j′) = j, σ(l′) = l. Since σ(O′) is also an arithmetic and
contains (i, j, l), it must be one of the seven arithmetics containing this basic
triple. Therefore O and σ(O′) are in the same orbit of the automorphism
subgroup generated by cycle it 7→ it+1. Therefore an automorphism exists
mapping O′ to O. □

Using the double Euclidean inner product ⟨x, y⟩ = N(x+y)−N(x)−N(y),
the canonical arithmetic O of basic triple (i, j, l) has the geometry of an E8
lattice. Since we have N(x) = 1

2⟨x, x⟩, the units of O correspond to E8 roots
and we can select a simple root system as a basis.

Remark 6.5. For the canonical arithmetic O defined above, the following
Coxeter-Dynkin diagram provides a simple E8 root system:

α1

α2

α3 α4 α5 α6 α7 α8
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α1 =
1

2
(−i1 + i5 + i6 + i0), α2 =

1

2
(−i1 − i2 − i4 − i0),

α3 =
1

2
(i2 + i3 − i5 − i0), α4 =

1

2
(i1 − i3 + i4 + i5),

α5 =
1

2
(−i2 + i3 − i5 + i0), α6 =

1

2
(i2 − i4 + i5 − i6),

α7 =
1

2
(−i1 − i3 + i4 − i5), α8 =

1

2
(−1 + i1 − i4 + i6).

These particular simple roots have been chosen so that the highest root β is
opposite the identity,

β =
2

3

4 6 5 4 3 2
= −1,

and also so that α1, . . . , α7 are the simple roots of an E7 sublattice of purely
imaginary octonion integers. This choice of simple roots is not uniquely defined
by these properties.

The ring automorphism group Aut(O) has type G2(2) ∼= PSU3(3) : 2 and
order 12096. We can represent Aut(O) as a finite subgroup of Aut(O), the Lie
group of automorphisms.

Lemma 6.6. Every element of Aut(O) is a restriction of a unique element
of Aut(O) to O ⊂ O.

Proof. The group Aut(O) is known to be of type G2(2) ∼= PSU3(3) : 2,
with cardinality 12096 [Wil09a, pp. 132-134]. A ring automorphism group
preserves units and we can represent Aut(O) faithfully using a permutation
representation acting on the 240 units of O. Any map acting on O of the form
x 7→ a−1xa with Re(a3) = a3 is an octonion algebra automorphism [CS03,
p. 98]. Computation using GAP on a canonical copy of O verifies that the
56 units ω in O of order 3 define permutations on the units of O of the form
x 7→ ω−1xω, and these permutations generate a ring automorphism group of
order 6048 and type PSU3(3). Suppose that O contains basic triple (i, j, l) as
described above. There exists an octonion algebra automorphism such that
(i, j, l) 7→ (i, j,−l), since (i, j,−l) is also a basic triple. This octonion algebra
automorphism fixes the subalgebra generated by i and j, while negating the
perpendicular component of O. Computation confirms that this algebra au-
tomorphism also permutes the units in O and is not contained in the PSU3(3)
ring automorphism subgroup given above. Therefore the ring automorphism
group Aut(O) has a permutation representation on the 240 units of O and
a matrix representation as endomorphisms of O in Aut(O). That is, we can
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characterize each element of Aut(O) as an automorphism in Aut(O) restricted
to O. Finally, we show uniqueness. Let O be the canonical arithmetic of basic
triple (i, j, l). The orbit of ordered triple (i, j, l) under the action of Aut(O)
has length 12096. That is, the only ring automorphism in Aut(O) fixing (i, j, l)
is the identity. Let σ be an octonion automorphism fixing basic triple (i, j, l).
It follows that σ also fixes the standard basis defined by this basic triple.
Since σ is an automorphism of an R-algebra that fixes a basis it must be the
identity automorphism. It follows that the only algebra automorphism that
restricts to the ring identity automorphism is the identity. Therefore, each
ring automorphism is a restriction of a unique algebra automorphism. □

Remark 6.7. We can also describe Aut(O) as the stabilizer of O in Aut(O).
That is, we can take the subgroup of octonion automorphisms mapping basic
triple (i, j, l) to (i′, j′, l′) such that Oi,j,l = Oi′,j′,l′ , i.e. such that the canonical
arithmetics defined by the two triples are equivalent. This includes the maps
(i, j, l) 7→ (ω−1iω, ω−1jω, ω−1lω) for any ω in O with ω3 = 1 and (i, j, l) 7→
(i, j,−l). Under the Aut(O) action generated by these maps, the basic triple
(i, j, l) belongs to an orbit of 12096 basic triples for which O is the canonical
arithmetic.

Octonion integers O form a non-associative ring and have the property that
every ideal is a two-sided principle ideal of the form nO, for n a rational integer
[CS03, pp. 109-110]. The quotient ring O/2O is a finite simple non-associative
ring. In fact, the ring O/2O is precisely the unique finite octonion algebra over
the field with two elements F2 [SV00, pp. 19-22]. The automorphism group of
the ring O/2O is the automorphism group G2(2) of this ring as an F2-algebra.

The residue classes of O/2O (of the form x+2O) each have representatives
x of minimal norm either 0, 1, or 2. With respect to the standard Euclidean
inner product 1

2⟨x, y⟩, O is isomorphic to the scaled E8/
√
2 lattice, with 240

norm 1 and 2160 norm 2 elements:

|O/2O| = 1 +
240

2
+

2160

16
.

Following [CS03, p. 136] we will call the 16 norm 2 representatives of a residue
class a frame. Each frame is geometrically eight orthogonal pairs of opposite
norm 2 vectors. The norm 1 and 2 elements of O form the following orbits
under the action of Aut(O):

(1) The zero of x2 − 2x+ 1, the identity 1.
(2) The zero of x2 + 2x+ 1, the element −1.
(3) The 126 zeros of x2 + 1, order 4 imaginary units denoted i.
(4) The 56 zeros of x2 + x+ 1, order 3 units denoted ω.
(5) The 56 zeros of x2 − x+ 1, order 6 units −ω.
(6) The 126 zeros of x2 − 2x+ 2, norm 2 elements 1 + i.
(7) The 126 zeros of x2 + 2x+ 2, norm 2 elements −1− i.
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(8) The 576 zeros of x2 − x+ 2, norm 2 elements denoted −λ.
(9) The 576 zeros of x2 + x+ 2, norm 2 elements λ.

(10) The 756 zeros of x2 + 2, norm 2 elements denoted i+ j.

To summarize, when working with the octonion integers we can use the
arithmetic O without loss of generality since an arithmetic containing a stan-
dard basis (indeed a basic triple) is unique up to automorphism. Furthermore,
we can select a root λ of x2 + x+ 2 in O without loss of generality since any
choice is unique up to automorphism. This will allow us to construct octonion
Leech lattices using properties of octonion integers but without reference to a
particular choice of coordinates. In what follows we will also make use of the
finite ring O/2O to simplify computations and proofs.

6.3. Octonion Integer Leech Lattices

In what follows we will make use of certain theorems described in [LM82]
to identify E8 sublattices of O and Leech sublattices of O3. First we describe
a method to identify the E8 and Leech lattices using the classification of uni-
modular lattices in low dimensions.

Theorem 6.8. The Gosset lattice E8 is the unique unimodular lattice in R8

with minimal norm at least 2. The Leech lattice Λ24 is the unique unimodular
lattice in R24 with minimal norm at least 4.

Proof. Every unimodular lattice is either odd (type I) or even (type II).
A unimodular lattice with a norm 1 vector is of the form Z⊕L for some other
unimodular lattice L. The only unimodular lattice in R8, with minimal norm
2, is the Gosset lattice. So any unimodular lattice in R8 without vectors of
norm 1 has minimal norm at least 2 and must be the Gosset lattice. The
unimodular lattices in dimension d ≤ 24 with minimal norm at least 2 are
classified in [CS13, chaps. 16-18]. There are 24 even and 156 odd unimodular
lattices in R24 with minimal norm at least 2. The only odd unimodular lattice
in R24 with minimal norm at least 3 is the odd Leech lattice O24, which contains
vectors with minimal norm 3. The only even unimodular lattice in R24 with
minimal norm at least 3 is the Leech lattice Λ24, which contains vectors with
minimal norm 4. This classification confirms that any unimodular lattice
(whether odd or even) in R24 with minimal norm at least 4 is the Leech
lattice. □

In order to understand the main result of [LM82] we need to describe
the concept of a totally isotropic subspace of quotient L/2L for L an even
unimodular lattice. The quotient L/2L has the structure of a F2-vector space
with the residue classes modulo 2L (i.e., the additive cosets x+2L) acting as
points. The corresponding inner product on L/2L has value 0 or 1 in F2 ac-
cording to whether any given representatives in L have even or odd Euclidean
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inner product. A totally isotropic subspace of L/2L is the image, modulo 2L,
of a sublattice of L which contains 2L and for which all inner products are
even. Since L is even unimodular, dim L/2L is also even. A maximal totally
isotropic subspace M/2L of L/2L is a totally isotropic subspace with dimen-
sion dim M/2L = 1

2dim L/2L. We are interested in the sublattice preimage
M ⊂ L of maximal totally isotropic subspace M/2L ⊂ L/2L.

Theorem 6.9. [LM82] Let L be an even unimodular lattice with M a
sublattice satisfying,

2L ⊂ M ⊂ L.

The lattice M/
√
2 is an even unimodular lattice if and only if M/2L is a

maximal totally isotropic subspace of L/2L.

As described in [LM82], the requirement that M/2L is totally isotropic
ensures that M/

√
2 is an even lattice and the condition that M/2L is maximal

as a totally isotropic subspace ensures that M/
√
2 is also unimodular. We ver-

ify the maximal condition by simply checking that dim M/2L = 1
2dim L/2L.

We will now adapt this theorem to the case where L = On. To do so, we
extend the octonion normN to octonion vectors x in On such thatN(x) = xx†.
The double Euclidean inner product on octonion vectors is,

⟨x, y⟩ = N(x+ y)−N(x)−N(y) = xy† + yx†.

For any pair of residue classes x+2On, y+2On in the F2-vector space O
n/2On,

we define the inner product as (x + 2On, y + 2On) 7→ ⟨x, y⟩ (mod 2). The
following theorem adapts Theorem 6.9 so that it identifies even unimodular
sublattices of On with respect to 1

2⟨x, y⟩:
Theorem 6.10. Let N be a sublattice of On that satisfies,

2On ⊂ N ⊂ On.

The lattice N is an even unimodular lattice with respect to Euclidean inner
product 1

2⟨x, y⟩ if and only if N/2On is a maximal totally isotropic subspace of
On/2On with respect to inner product ⟨x, y⟩ (mod 2).

Proof. With respect to inner product ⟨x, y⟩, the lattice On is an En8 lat-
tice. It is therefore an even unimodular lattice relative to ⟨x, y⟩ and we can
apply Theorem 6.9 to the sublattice N. According to that theorem, N/

√
2 is

an even unimodular lattice with respect to ⟨x, y⟩ if and only if N/2On is a
maximal totally isotropic subspace of On/2On. The condition that N/

√
2 is

an even unimodular lattice with respect to ⟨x, y⟩ is equivalent to the condition
that N is an even unimodular lattice with respect to 1

2⟨x, y⟩. The condition
that N/2On is a totally isotropic subspace is equivalent to the condition that
for any x, y in N, inner product ⟨x, y⟩ is an even integer. Therefore, this
theorem is a special case of Theorem 6.9. □
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Example 6.11. Let n = 1. Then O/2O is an 8-dimensional F2-vector
space. This vector space contains a zero vector, 120 norm 1 vectors and 135
non-zero isotropic vectors (with N(x) = 0). A totally isotropic subspace is
spanned by isotropic vectors with representatives satisfying ⟨x, y⟩ (mod 2) = 0
for any x + 2O ̸= y + 2O in the subspace. If we construct a graph on the
135 isotropic vectors, assigning an edge when ⟨x, y⟩ (mod 2) = 0, we ob-
tain a strongly regular graph srg(135, 70, 37, 35). This graph has 270 maxi-
mal cliques, each corresponding to the non-zero vectors of a four-dimensional
totally isotropic subspace of O/2O. Since these totally isotropic subspaces
have dimension equal to half the dimension of O/2O, they are maximal to-
tally isotropic subspaces. These subspaces also form a single orbit under the
action of the graph automorphism group. Each clique defines a maximal to-
tally isotropic subspace N/2O, and the corresponding pre-image N ⊂ O is
an even unimodular lattice with respect to Euclidean inner product 1

2⟨x, y⟩.
Each clique has sixteen vectors, forming a finite F2-vector space of dimension
4. Since even unimodular lattice N has minimal norm 2, it must be the E8
lattice. Therefore, there are precisely 270 E8 sublattices of O that contain 2O.

Remark 6.12. The fact that E8 contains at least 270 sublattices isometric
to

√
2E8 is discussed in a mathematics blog post [BE14a]. The use of O/2O

structure and Theorem 6.10 makes it possible to determine this fact by exam-
ining the properties of a strongly regular graph on 135 points, the isotropic
vectors of O/2O.

We now describe some further properties of the E8 sublattices of O that
contain 2O. In the following lemmas, let s, s′ denote norm 2 elements in O
and recall that λ denotes any zero of x2+x+2 in O, so that Re(λ) = −1

2 and
N(λ) = 2.

Lemma 6.13. Two E8 sublattices of O containing 2O of the form Os, Os′

have equal images modulo 2O if and only if s ≡ s′ (mod 2O). The same is
true of sublattices sO and s′O.

Proof. Left or right octonion multiplication is a conformal mapping,
meaning that the ⟨sx, sy⟩ = N(s)⟨x, y⟩ = ⟨xs, ys⟩ [SV00, p. 5]. Since
N(s) = 2, this ensures that Os and sO are both E8 sublattices of O, relative
to inner product 1

2⟨x, y⟩. Since mapping modulo 2O is a ring homomorphism,
Os and Os′ have the same image if s ≡ s′ (mod 2O). A brief computation
confirms that Os and Os′ have the different images modulo 2O if instead
s ̸≡ s′ (mod 2O). The same argument applies for sO and s′O. □

Remark 6.14. Lemma 6.13 ensures that each frame in O defines a pair of
E8 sublattices of the form Os and sO for s any norm 2 frame representative.
For s ̸≡ s′ (mod 2)O, the lattices Os and Os′ are distinct since they have
distinct images modulo 2O.
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Lemma 6.15. Each E8 sublattice of O containing 2O has the form of either
Os or sO, where s is any norm 2 representative of s+ 2O.

Proof. We can construct 135 lattices of the form Os and 135 more lattices
of the form sO, yielding a total of 270 E8 sublattices of O. By taking the images
modulo 2O we can verify that there are no repetitions, so that the preimages
are 135 + 135 distinct sublattices of O. By Example 6.11 there are only 270
E8 sublattices of O containing 2O so we have found them all. □

Lemma 6.16. Let s ̸≡ s′ (mod 2O). Then Os∩s′O ̸= 2O. Also, Os∩Os′ =
2O if and only if N(s+ s′) is odd.

Proof. We can verify this lemma efficiently by computation using the
ring O/2O. That is, s ̸≡ s′ (mod 2O) ensures that Os and Os′ have distinct
images modulo 2O and therefore represent distinct lattices (likewise for left
multiplication by s, s′). Both Os and sO contain 2O. The properties of the
images modulo 2O determine the properties of the intersections given above
and can be quickly verified by computation. □

Corollary 6.16.1. Since N(λ+ λ) = 1 we have Oλ ∩ Oλ = 2O.

The following can be verified by computation using a canonical copy of O
and is also proven in [CS03].

Lemma 6.17. [CS03, pp. 138-141] The stabilizer in Aut(O) of residue
class λ+ 2O is a subgroup of type PSL2(7), which also stabilizes λ+ 2O.

We can now describe how to construct a Leech sublattice of octonion
integer triples in O3, adapting the techniques described in [LM82] for octonion
integers. We begin by selecting any two E8 sublattices of O with respect to
1
2⟨x, y⟩, call them Φ and Ψ, that satisfy the following requirements:

Φ + Ψ = O, Φ ∩Ψ = 2O.

Such lattices exist, as established by Example 6.11 and Corollary 6.16.1. By
Theorem 6.10, the images of Φ and Ψ modulo 2O are both maximal totally
isotropic subspaces of O/2O that only intersect in zero, the 0 + 2O residue
class.

Definition 6.18. Let Φ and Ψ be any two E8 sublattices of O, with respect
to 1

2⟨x, y⟩, that satisfy Φ+Ψ = O and Φ∩Ψ = 2O. Let Λ(Φ,Ψ) be the following

sublattice of O3:

Λ(Φ,Ψ) =
{
(a, b, c) ⊂ O3 | a+ b, b+ c, a+ c ∈ Φ, a+ b+ c ∈ Ψ

}
Equivalently,

Λ(Φ,Ψ) = {(x1 + z, x2 + z, x3 + z) | xi ∈ Φ, x1 + x2 + x3, z ∈ Ψ} .
and also,

Λ(Φ,Ψ) = {(x+ y + z, x+ z, y + z) | x, y ∈ Φ, z ∈ Ψ} .
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Remark 6.19. To verify that the three definitions of Λ(Φ,Ψ) are equiva-
lent, it suffices to verify that the second definition is a sublattice of the first,
the third a sublattice of the second, and the first a sublattice of the third. To
show that the second is a sublattice of the first, we use a+ b = x1 + x2 + 2z,
which ensures that a + b is in Φ because x1 and x2 are. We also know that
a + b + c = (x1 + x2 + x3 + 2z) + z is in Ψ since the component in brackets
is in Ψ ∩ Φ = 2O and z is in Ψ. To show that the third is a sublattice of the
second we use x2 = x, x3 = y, and x1 = x + y. These three elements are in
Φ since x and y are. We know that x1 + x2 + x3 = 2(x + y) is in Ψ since it
is in 2O = Φ ∩ Ψ. To show that the first is a sublattice of the third we use
y = a+b−2x−2z, which is in Φ because a+b is. We also use x = b+c−y−2z,
which is in Φ because b+c and y are. We also use z = (a+b+c)−2(x+y+z)
which is in Ψ because a+ b+ c is.

Theorem 6.20. The lattice Λ = Λ(Φ,Ψ) of Definition 6.18, with inner
product 1

2⟨x, y⟩, is a Leech lattice.

Proof. We need to apply Theorem 6.10 to show that Λ is an even uni-
modular lattice with respect to 1

2⟨x, y⟩. The following sketch parallels a proof
given in [LM82], which does not involve octonions. Since Φ and Ψ are sub-
lattices of O we know that Λ ⊂ O3. Since 2O is in both Φ and Ψ, we know
that Λ contains (2a, 0, 0) for any a in O. The same is true for the other coor-
dinate positions. Therefore we also have 2O3 ⊂ Λ. Relative to inner product
⟨x, y⟩ (mod 2) on pre-image vectors, the F2-vector space Λ/2O3 consists of
three mutually orthogonal totally isotropic subspaces. Each of these sub-
spaces has dimension 4. These are the three subspaces spanned respectively
by vectors with pre-images of the form (x, x, 0), (y, 0, y), and (z, z, z) (for x, y
in Φ and z in Ψ). Therefore totally isotropic subspace Λ/2O3 has dimension
12, which is maximal for a totally isotropic subspace in O3/2O3 since it is half
of 24. Therefore it is a maximal totally isotropic subspace of O3/2O3. This
ensures that Λ is an even unimodular lattice relative to the standard Euclidean
inner product 1

2⟨x, y⟩. Finally, the proof in [LM82, Theorem 2.2] verifies that
Λ lacks any norm 2 vectors. By Theorem 6.8, it is a Leech lattice. □

We can describe a family of octonion Leech lattices with respect to certain
norm 2 octonions as follows.

Definition 6.21. Let s, s′ in O be norm 2 octonion integers with Os ∩
Os′ = 2O. We define Λ(s, s′) to be the Leech lattice Λ(Os,Os′).

Remark 6.22. In what follows we restrict ourselves to describing Leech
lattices of the form Λ(Os,Os′), rather than Λ(sO, s′O), since the latter lattices
can easily be obtained from the former by octonion conjugation.

Lemma 6.23. The lattices Λ(s, s′) and Λ(t, t′) are equal if and only if s ≡
t (mod 2O) and s′ ≡ t′ (mod 2O).
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Proof. First, by Lemma 6.13, Lemma 6.15, since Λ(s, s′) = Λ(Os,Os′),
and since Λ(t, t′) = Λ(Ot,Ot′), if Os = Ot and Os′ = Ot′ then Λ(s, s′) =
Λ(t, t′). Suppose instead that either s ̸≡ t (mod 2O) or s′ ̸≡ t′ (mod 2O).
It follows by Lemma 6.13 that either Os ̸= Ot or Os′ ̸= Ot′. Indeed, either
Os/2O ̸= Ot/2O or Os′/2O ̸= Ot′/2O. It follows that Λ(s, s′) and Λ(t, t′) have
distinct images modulo 2O3, given the construction of that totally isotropic
subspace, and therefore cannot be the same lattice. □

Remark 6.24. The octonion integer units α1, . . . , α8 given in Remark 6.5
form a basis for O, since they correspond to simple roots. This means that
the lattice Λ(s, s′) has the following basis,

(αis, αis, 0), (0, αis, αis), (αis
′, αis

′, αis
′), i = 1, 2, . . . , 8.

Definition 6.25. The following translation or multiplication maps acting
on O are defined as in [CS03]:

Lx : y 7→ xy, Rx : y 7→ yx, Bx : y 7→ xyx.

We can extend these translations to a diagonal action on O3 as follows.

Definition 6.26. For X one of L, R, B we define the following diagonal
action on (x, y, z) ⊂ O3:

Xu(x, y, z) = (Xu(x), Xu(y), Xu(z)).

For any unit u in O, the translation maps Lu, Ru, and Bu are isometries
of both O and O3. This means that given Leech lattice Λ(s, s′) we can obtain
another Leech lattice using a translation map Xu. In fact, we can use octonion
translations to describe a single orbit of 8640 octonion integer Leech lattices
of the form Λ(s, s′). In order to describe this orbit, we can use certain helpful
properties of translation maps due to properties of the octonion algebra as a
Moufang loop.

Lemma 6.27. For any x, y, u in O with u a unit, the translations given
above satisfy the following:

Lu(xy) = Bu(x)Lu(y), Ru(xy) = Ru(x)Bu(y), Bu(xy) = Lu(x)Ru(y).

Proof. These are another form of the Moufang identities that the octo-
nions satisfy, as described in [CS03, p. 74]:

u(xy) = (uxu)(uy), (xy)u = (xu)(uyu), u(xy)u = (ux)(yu).

□

These properties of translations allow us to permute E8 sublattices of O
containing 2O, which all have the form Os or sO for some norm 2 octonion
integer s.
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Lemma 6.28. Let u be a unit and s a norm 2 element in O. Then we have,

u(Os) = O(us), (Os)u = O(usu), u(Os)u = O(su),

u(sO) = (usu)O, (sO)u = (su)O, u(sO)u = (us)O.

which can also be written as,

Lu(Os) = OLu(s), Ru(Os) = OBu(s), Bu(Os) = ORu(s),

Lu(sO) = Bu(s)O, Ru(sO) = Ru(s)O, Bu(sO) = Lu(s)O.

Proof. These follow from the Moufang identities, the fact that u is a unit
in O if and only if u is also a unit in O, and the fact that any translation of O
by a unit simply permutes the elements of O. □

Theorem 6.29. Let u be a norm 1 element and let s, s′ be norm 2 elements
in O. Let s + s′ have odd norm (i.e., Os ∩ Os′ = 2O). Then the 2 · O+

8 (2)
isometry group, generated by translations Xu for all units u, permutes the
lattices of Definition 6.21 as follows:

LuΛ(s, s
′) = Λ(Lu(s), Lu(s

′)),

RuΛ(s, s
′) = Λ(Bu(s), Bu(s

′)),

BuΛ(s, s
′) = Λ(Ru(s), Ru(s

′)).

Proof. The identities follow from the definition Λ(s, s′) = Λ(Os,Os′) and
the Moufang identities expressed in terms of L, R, B. The 2 · O+

8 (2) group of
translations Xu can be constructed and identified in GAP using a canonical
copy of O. □

Theorem 6.30. Let s, s′ in O be norm 2 octonion integers with s + s′

having an odd norm (i.e., Os∩Os′ = 2O). Then there exists a norm 2 root of
x2 + x+ 2 in O, called λ, and unit u in O such that,

Λ(s, s′) = LuΛ(λ, λ).

There are 8640 = 72 · 120 choices of λ and u, taken modulo 2O, corresponding
to the 8640 lattices of the form Λ(s, s′). These form a single orbit under the
action of the 2 ·O+

8 (2) generated by Xu for u any octonion unit and X = L, R, B.

Proof. First, we construct a graph on the 135 norm 2 octonion integers
modulo 2O where two vertices are adjacent when the sum of their repre-
sentatives has odd norm. This graph is a srg(135, 64, 28, 32) and each di-
rected edge s → s′ represents a Leech lattice of the form Λ(s, s′) (in general
Λ(s, s′) ̸= Λ(s′, s)). Second, we can construct an edge-transitive automor-
phism group of this graph generated by the translation maps Xu acting on ver-
tices. Indeed, this automorphism group is transitive on directed edges. Third,
we can recover all 8640 directed edges by computing (Lu(λ), Lu(λ)) (mod 2O)
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Type Number Comment

(2u, 0, 0) 3× 240 for u a unit in O

(s,±s, 0) 6× 240 for s a root in Oλ

(±1,±1, λ′) 12× 16 for λ′ ≡ λ (mod 2O)

Table 6.1. Commutative vectors r in Λ(λ, λ) defining reflec-
tion symmetries Wr of Λ(λ, λ).

for the 72 choices of λ and the 120 choices of u modulo 2O. These facts can
be confirmed by computation using GAP. □

Remark 6.31. The 2 × 8640 Leech lattices of the form Λ(Os,Os′) or
Λ(sO, s′O) are identified and described in the mathematics blog posts [Bae14b]
and [BE14a], by John Baez and Greg Egan. They use a combination of di-
rect computation and analysis of E8 lattice properties to identify these lat-
tices. The approach shown here instead makes use of the ring homomorphism
O 7→ O/2O and Theorem 6.9 of [LM82] to simplify the calculations to prop-
erties of a strongly regular graph on 135 points, which can easily be explored
by computation or other graph theory techniques.

6.4. Leech Lattice Symmetries

By construction the lattice Λ(λ, λ) is symmetric under all coordinate per-
mutations and coordinate sign changes, which is a 2×S4 group action. We will
call these the coordinate automorphisms of Λ(λ, λ). The lattice Λ(λ, λ) is also
fixed under the octonion automorphisms that preserve our canonical choice of
arithmetic O and residue class λ + 2O. We call automorphisms belonging to
this PSL2(7) ⊂ Aut(O) the scalar automorphisms of Λ(λ, λ).

We now introduce reflection automorphisms of Λ(λ, λ). A computer search
using GAP of a canonical copy of Λ(λ, λ) shows that the short vectors of this
Leech lattice contain 2 × 1260 commutative octonion integer triples, namely
triples where the three coefficients generate a commutative subalgebra of O.
Of these triples, 2× 1176 define reflections Wr acting on O3 that preserve the
Leech lattice Λ(λ, λ). These include 720 of the form (2u, 0, 0) for u a unit in O
and 1440 of the form (s,±s, 0) for s any E8 root in Oλ. For r a commutative
vector in Λ(λ, λ) of the form (2u, 0, 0) or (s,±s, 0), the corresponding reflection
Wr is a coordinate symmetry in 2×S4. The remaining 2×96 commutative short
vectors in Λ(λ, λ) that define reflection symmetries have the form (1, 1, λ′) for
λ′ ≡ λ (mod 2O), under all coordinate permutations and sign changes.

Theorem 6.32. Let λ be an octonion integer in O and zero of x2 + x+2.
The vector r = (1, 1, λ), for any λ ≡ λ′ (mod 2O), defines an automorphism
Wr of the Leech lattice Λ(λ′, λ′).
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Proof. Since r is a commutative vector, Lemma 5.5 ensures that Wr acting
on O3 is an isometry with respect to the Euclidean inner product. It remains
to confirm that Wr maps Λ(λ′, λ′) to Λ(λ′, λ′). To begin, we write Λ(λ′, λ′) =
Λ(λ, λ) since λ′ ≡ λ (mod 2O). Note that λ+ λ = −1 and that 1− λ = −λ2.
A vector (a, b, c) ∈ Λ(λ, λ) is reflected as follows:

Wr(a, b, c) = (a, b, c)− 2(a, b, c)[r].

Since (a, b, c) is in the Leech lattice, we will have Wr(a, b, c) also in the Leech
lattice when 2(a, b, c)[r] is in the Leech lattice. Let (a′, b′, c′) = 2(a, b, c)[r].
We can compute (a′, b′, c′) by first computing [r].

[r] =
r†r

rr†
=

1

4

1
1

λ

 (1, 1, λ) =
1

4

1 1 λ
1 1 λ

λ λ 2

 .

This means that we have,

(a′, b′, c′) = 2(a, b, c)[r] =
1

2
(a, b, c)

1 1 λ
1 1 λ

λ λ 2


=

1

2

(
a+ b+ cλ, a+ b+ cλ, aλ+ bλ+ 2c

)
.

We first verify that a′ + b′ + c′ ∈ Oλ.

a′ + b′ + c′ = (a+ b)

(
1 +

λ

2

)
+ c(λ+ 1).

By construction a + b is in Oλ so we have a + b = αλ for some α in O.
Furthermore, α, λ, 1 + λ

2 belong to a common associative subalgebra of O.

This means that we use λλ = 2 and simplify as follows:

a′ + b′ + c′ = (α+ c)(λ+ 1).

But λ+ 1 = −λ so a′ + b′ + c′ is in Oλ. Next we show that a′ + b′ ∈ Oλ.

a′ + b′ = a+ b+ cλ.

By construction a + b = αλ for some α in O. This ensures that a′ + b′ is in
Oλ. Finally we check that b′ + c′ = a′ + c′ ∈ Oλ.

a′ + c′ =
1

2
(a+ b) (1 + λ) +

1

2
c
(
2 + λ

)
= −1

2
(a+ b)λ− 1

2
cλ

2

We know that (a+ b) = αλ:

a′ + c′ = −1

2
(α+ c)λ

2
.
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We also know that a+ b+ c = βλ and can write c = βλ− αλ:

a′ + c′ = −1

2
(α− αλ)λ

2 − 1

2
(βλ)λ

2

= −1

2
α(1− λ)λ

2 − βλ.

We use the properties 1− λ = −λ2 and λ2λ
2
= 4:

a′ + c′ =
1

2
αλ2λ

2 − βλ

= 2α− βλ.

Since 2α is in 2O ⊂ Oλ, this ensures that a′ + c′ = b′ + c′ are in Oλ. □

Theorem 6.32 ensures that Wr for r = (1, 1, λ′) and λ′ ≡ λ (mod 2O) is a
reflection symmetry of Leech lattice Λ(λ, λ). It turns out that that each of the
2 × 96 short vectors in Λ(λ, λ) of the form (±1,±1, λ′) for λ′ ≡ λ (mod 2O)
defines a reflection symmetry of Λ(λ, λ). Computation in GAP on a canonical
example verifies the following two theorems about how to generate the full
automorphism group of the Leech lattice Λ(λ, λ).

Theorem 6.33. The automorphism group 2 · Co1 of Leech lattice Λ(λ, λ)
is generated by reflections Wr for r = (±1,±1, λ′) under all coordinate permu-
tations and with λ′ ≡ λ (mod 2O).

Theorem 6.34. The automorphism group 2 · Co1 of Leech lattice Λ(λ, λ)
is generated by the 2× S4 coordinate permutations and sign changes together
with reflections Wr for r = (1, 1, λ′) for λ′ ≡ λ (mod 2O) and Re(λ) = Re(λ′).

Remark 6.35. The condition that Re(λ) = Re(λ′) is simply introduced
to find a smaller generating set of the group 2 · Co1. From these two theo-
rems, checked by computation, it follows that all automorphisms of Λ(λ, λ) are
compositions of octonion reflection automorphisms. Although the Leech lat-
tice does not have any real reflection symmetries, the octonion Leech lattice
Λ(λ, λ) has octonion reflection symmetries that generate the full automor-
phism group.

Remark 6.36. We can also describe automorphisms of any octonion Leech
lattice of the form Λ(s, s′). Since by Theorem 6.30 we know that Λ(s, s′) =
LuΛ(λ, λ) we also have LuΛ(s, s

′) = Λ(λ, λ). Let r = (1, 1, λ′), under any
coordinate permutation and sign change, and for any λ′ ≡ λ (mod 2O). Then
Wr acting on O3 is an automorphism of Λ(λ, λ) and LuWrLu is an automorphism
of LuΛ(λ, λ). We can generate the automorphism group 2 ·Co1 of Leech lattice
LuΛ(λ, λ) using involutions of the form LuWrLu. In the special case where u = 1,
the involution LuWrLu becomes an octonion reflection.
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6.5. The Common Construction and Octonion Integer Triples

We now use the common construction of [Nas22] to describe the corre-
spondence between certain structures in the octonion integer Leech lattice and
generalized hexagons in the octonion projective plane. We will also describe
an approach to generating the Suzuki chain of Leech lattice automorphism
subgroups using octonion reflections.

First introduced by Jacques Tits, a finite generalized n-gon of order (s, t)
is a block design on v points such that (1) each block contains s+1 points, (2)
each point belongs to t+1 blocks, and (3) the point-block incidence graph has
diameter n and girth 2n (described also as a bipartite graph with diameter n
and girth 2n in [GR01, 5.6]). We will write Gh(s, t) to denote the generalized
hexagon (n = 6) of order (s, t). An ordinary hexagon, taken as a block design
with edges for blocks and vertices for points, is a Gh(1, 1). Cohen demonstrates
in [Coh83] that the generalized hexagons Gh(2, 1), Gh(2, 2), and Gh(2, 8) can
be constructed as sets of Jordan frames (i.e., three orthogonal primitive idem-
potents) in the octonion projective plane. We will show that the common
construction of [Nas22] puts these generalized hexagon structures in corre-
spondence with certain integral octonion triples with reflections that generate
Suzuki chain subgroups of Leech lattice automorphisms.

Second, the automorphism group of the Leech lattice is the Conway group
Co0 = 2 · Co1. The tight 5-design in RP23 corresponding to the 98280 lines
spanned by the Leech lattice short vectors has the sporadic simple group Co1
for an isometry group. The Suzuki chain is a series of subgroups of Co1
constructed in the following manner [Wil09a, p. 219]. The group Co1 has a
maximal subgroup A9 × S3. The symmetric group S3 centralizes A9 in Co1.
The chain of alternating subgroups A9 > A8 > A7 > · · · > A4 > A3 has
the following corresponding chain of centralizers in Co1, known as the Suzuki
chain:

S3 < S4 < PSL2(7) < PSU3(3) < HJ < G2(4) < 3 · Suz.
Here HJ is the Hall-Janko sporadic simple group and Suz is the Suzuki spo-
radic simple group. In what follows we will see how the group Co1 and the
Suzuki chain subgroups can be constructed as octonion reflection groups, act-
ing projectively on R24/{±1} ∼= O3/{±1}, generated by reflections on O3 of
the form Wr for suitable choices of octonion triple r.

Remark 6.37. Consider the following related sequence of groups:

PSU3(3) < HJ < G2(4) < Suz.

The groups in this sequence have permutation representations respectively of
degrees 63, 100, 416, and 1782. The Suz group action on 1782 points has
rank 3, and the point stabilizer is the group G2(4) with orbits of lengths
1+416+1365. The action of G2(4) on the 416 points also has rank 3, and the
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point stabilizer is the group HJ with orbits of lengths 1+100+315. The action
of HJ on the 100 points also has rank 3, and the point stabilizer is the group
PSU3(3) with orbits of lengths 1 + 36 + 63. The action of PSU3(3) on both
the 36 or 63 length orbits is rank 4, so the sequence of rank 3 permutation
groups stops (contrary to [Gri98, p. 124]). As mentioned in [Gri98, p. 124],
there is no rank 3 permutation group containing Suz as a point stabilizer.

Having described generalized hexagons and the Suzuki chain of Leech lat-
tice symmetries, we now define certain octonion integer triples for use in the
common construction in order to link the two concepts. Consider the following
vectors with λ some zero of x2 + x+ 2 in O:

Sλ =
{
(2, 0, 0), (λ, 0, λ), (1, 1, λ)

}
.

Since the coefficients belong to a common complex subalgebra C, we have
Sλ in C3 ⊂ O3 and the projectors {[x] | x ∈ Sλ} in the complex projective
subplane CP2 ⊂ OP2.

Example 6.38. The common construction of [Nas22] applied to initial
vectors {r1, r2, r3} = Sλ yields G = 2×PSL2(7) acting on C3, with a 42 point
design on Ω6. The common construction also yields H = PSL2(7) acting
on CP2 and the orbit of the projectors of Sλ define a 21 point design. The
21 points of the design in CP2, and the blocks of three mutually orthogonal
points, form a Gh(2, 1) structure. Here we have a link between the Suzuki
chain group H = PSL2(7) ∼= G/{±1} and a generalized hexagon Gh(2, 1) of
Jordan frames on CP2.

Remark 6.39. The 2-design in CP2 of Example 6.38 is equivalent to Ex-
ample 12 of [Hog82]. However, this design is mislabeled in [Hog82] as a
3-design at the special bound. A calculation confirms that it is neither a
3-design nor at the special bound.

Remark 6.40. The group G = 2×PSL2(7) acting on C3 of Example 6.38
contains a real reflection subgroup 2 × S4. Indeed, the 42 vectors generated
by Sλ under reflection Wr are precisely the orbits of the vectors in Sλ under
all coordinate permutations and sign changes, which is the action of 2 × S4.
The projectors generating these reflections are the nine contained in the real
projective subplane RP2 ⊂ CP2, which form a 1-design. Their reflection action
on O3 generate the 2× S4 coordinate symmetries of Λ(λ, λ) discussed above.

We call the stabilizer in Aut(O) of the norm 2 representatives of residue
class λ+2O a frame stabilizer. This frame stabilizer is a group of type PSL2(7).
Under the action of this PSL2(7) frame stabilizer, the vector λ has an orbit
of length 8. The corresponding scalar action on the set of triples Sλ also
has length 8, as does the scalar action on the Gh(2, 1) structures generated
by reflections Wr for r in Sλ vectors. Each Sλ′ in this orbit is defined by
λ′ ≡ λ (mod 2O) and Re(λ′) = Re(λ).
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The permutation action of PSL2(7) on the eight λ′ ≡ λ (mod 2O) with
Re(λ) = Re(λ′) is 2-transitive. However, this action is transitive on unordered
subsets {λi, λj , λk, . . .} of size n, except when n = 4. That is, the frame stabi-
lizer is also transitive on pairs {λi, λj} and triples {λi, λj , λk}. It is therefore
also transitive on subsets of cardinality 5, 6, 7, 8. In contrast, there are three
orbits of quadruples {λi, λj , λk, λl}, with lengths 14+42+14. Both length 14
orbits define Steiner systems S(3, 4, 8) on the eight λ′ with λ′ ≡ λ (mod 2O)
and Re(λ′) = Re(λ).

We can now describe the Suzuki chain groups and their correspondence to
certain generalized hexagons via the common construction of Definition 6.1.
In each case, the result is obtained by computation in GAP on a representative
example.

Example 6.41. If we apply the common construction to any pair Sλi
∪Sλj

we obtain G/{±1} = PSU3(3) and H = PSU3(3). The corresponding design
on HP2 ⊂ OP2 defines a Gh(2, 2) finite geometry.

Example 6.42. If we instead apply the common construction to any triple
Sλi

∪Sλj
∪Sλk

we obtain G/{±1} = HJ and H is 3D4(2). The corresponding

design on OP2 defines a Gh(2, 8) finite geometry.

Example 6.43. The two Steiner systems on quadruples {λi, λj , λk, λl}
behave differently. One, but not the other, has the special property that
{r1, . . . , rn} = Sλi

∪ Sλj
∪ Sλk

∪ Sλl
yields the two strictly projective tight

5-designs under the common construction of [Nas22]. That is, for one of the
two length 14 orbits of quadruples, the common construction applied to the
vectors of Sλi

∪ Sλj
∪ Sλk

∪ Sλl
yields G/{±1} = G2(4) and H is 3D4(2).

The corresponding spherical design on Ω24 is the same as that given by the
short vectors of Leech lattice Λ(λ, λ), with the corresponding tight projective
5-design in RP23. The corresponding design on OP2 defines a Gh(2, 8) finite
geometry. This is the same finite geometry and 3D4(2) group obtained by the
common construction using any three Sλi

, Sλj
, Sλk

contained in the quadruple.

Example 6.44. The quadruples {λi, λj , λk, λl} of the other length 14 orbit

and of the length 42 orbit no longer yield the Gh(2, 8) finite geometry on OP2

under the common construction, although they still yield G/{±1} = G2(4)
and the Leech lattice short vectors on O3. It is unclear whether the projectors
of the generating set have a finite orbit under the action of corresponding
group H, or whether the group H is finite.

Example 6.45. Any quintuple Sλi
∪ . . .∪Sλj

yields G/{±1} = 3 ·Suz and
the same spherical design on Ω24 as its G2(4) subgroups do.
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{r1, . . . , rn} G/{±1} ⊂ Co1 H ⊂ F4 Example

Sλi
PSL2(7) PSL2(7) 6.38

Sλi
∪ Sλj

PSU3(3) PSU3(3) 6.41

Sλi
∪ Sλj

∪ Sλk
HJ 3D4(2) 6.42

Sλi
∪ Sλj

∪ Sλk
∪ Sλl

G2(4)
3D4(2) 6.43

Sλi
∪ Sλj

∪ Sλk
∪ Sλl

G2(4) 6.44

Sλi
∪ Sλj

∪ Sλk
∪ Sλl

∪ Sλm 3 · Suz 6.45

Sλi
∪ Sλj

∪ Sλk
∪ Sλl

∪ Sλm ∪ Sλn Co1 6.46

Table 6.2. The common construction of [Nas22] applied to
orbits of combinations of Sλ under PSL2(7) ⊂ Aut(O).

Example 6.46. Any sextuple Sλi
∪ . . . ∪ Sλj

yields G/{±1} = Co1 and
the same spherical design on Ω24 as its 3 ·Suz subgroups do. The same is true
of a septuple or the union of the full set of eight Sλ.

The results described above are summarized in Table 6.2. The Suzuki
chain subgroups satisfy the following theorem.

Theorem 6.47. The Suzuki chain subgroups of Co1,

PSL2(7) < PSU3(3) < HJ < G2(4) < 3 · Suz,
are the quotients modulo {±1} of octonion reflection groups generated by re-
flections Wr acting on O3 with r in the union of any subset of {Sλi

, · · · , Sλj
}

of cardinality respectively 1, 2, 3, 4, 5.

Proof. The proof involves checking representative examples in GAP. □

The following remarks describe two remaining open questions.

Remark 6.48. Using the notation given above, the element Wr for r =
(1, 1, λ′) is an involution in 2 ·Co1. What is the conjugacy class of this involu-
tion? Likely the full conjugacy class contains involutions that are not octonion
reflections. Of note, an octonion reflection may have determinant −1 as an
octonion matrix even though the 24 × 24 real matrix for the endomorphism
acting on O3 as a real 24-vector has determinant 1.

Remark 6.49. An open question is whether there is some algebraic prop-
erty of {λi, λj , λk, λl} in the S(3, 4, 8) of Example 6.43 that yields the two
tight projective 5-designs that distinguishes it from the other length 14 orbit
(which is also an S(3, 4, 8)) in Example 6.44.
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6.6. Albert Isotope Integer Rings and Tight 5-Designs

In this section we describe the work of [EG96] and [EG01] in terms of
Jordan algebra isotopes and connect those papers to our approach in this
chapter. Let V = Herm(3,O) be the Albert algebra with identity e. The
product and quadratic map are given by,

x ◦ y =
1

2
(xy + yx) = L(x)y, P (x) = 2L(x)2 − L(x2).

Let A = Herm(3,O) ⊂ V be the subset of the Albert algebra restricted to oc-
tonion integer matrix entries. Each element x in V satisfies the cubic equation
with real-valued tr(x), σ(x), det(x) [FK94, chap. 2]:

x3 − tr(x)x2 + σ(x)x− det(x)e = 0.

For x in A, we have tr(x), σ(x), det(x) in Z. The positive-definite elements of
V (in terms of eigenvalues, not discussed here) form the symmetric cone Ω.
For any element in Ω, the cubic equation coefficients tr(x), σ(x), det(x) are
greater than zero. All elements in Ω are invertible and we compute the inverse
as x−1 = P (x)−1x. Also, every element q in Ω has the form q = a2 = P (a)e for
some a with det(a) ̸= 0. Not all squares are invertible and not all invertible
elements are squares. But the symmetric cone Ω is precisely the invertible
squares of V [FK94, chap. 3].

As described in [McC04, p. 86], given any q = P (a)e in Ω we can con-

struct a q-isotope algebra V (q) with identity q−1 using product and quadratic
map,

x ◦q y = x ◦ (q ◦ y) + (x ◦ q) ◦ y − q ◦ (x ◦ y), P (q)(x) = P (x)P (q).

The algebra V is isomorphic to isotope V (q) with P (a)−1 = P (a−1) the iso-

morphism map. Isotopy is an equivalence relation. It is reflexive, since V (q)

is its own q−1-isotope. It is symmetric, since V (q) is the q-isotope of V and V
is the P (q)−1e-isotope of V (q). It is transitive, since (V (q))(r) = V (P (q)r).

We are interested in using isotopy to describe the results of [EG96] (as
also done recently in [GPR22]). For q in Ω∩A with det(q) = 1, we define the

q-isotope Albert integer ring A(q) as the set A = Herm(3,O) with the product

2x ◦q y and quadratic map P (q)(x).
Let G(Ω ∩ A) be the group of general linear transformations on V that

preserve Ω and also preserve A. This group is studied in [Gro96, sec. 4] and
[GPR22, sec. 18]. Group G(Ω∩A) preserves the determinant det(x) and the
corresponding symmetric trilinear form,

6⟨x, y, z⟩ = det(x+ y + z)− det(x+ y)− det(y + z)− det(x+ z)

+ det(x) + det(y) + det(z).
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The crucial observation of [EG96] and [Gro96] is that there are precisely two
orbits of determinant 1 elements in Ω under the action of G(Ω ∩ A), with the
following representatives, for λ any root of x2 + x+ 2 in O:

e =

1 0 0
0 1 0
0 0 1

 , b =

2 λ λ

λ 2 λ

λ λ 2

 .

The group G(Ω∩A) is infinite, but the stabilizers of e and b−1 are respectively
the finite groups 22 ·O+

8 (2) : S3 and
3D4(2) : 3 [Gro96]. These are respectively

the isotope ring automorphism groups Aut(A(e)) and Aut(A(b)).
The Jordan Euclidean inner product in the q-isotope is defined as,

⟨x, y⟩(q) = 9⟨x, q−1, q−1⟩⟨y, q−1, q−1⟩ − 6⟨x, y, q−1⟩.
Using q as either e = (1, 1, 1 | 0, 0, 0) and b = (2, 2, 2 | λ, λ, λ) for the two orbits
of G(Ω∩A) described above, we will characterise the geometry of the isotope

rings A = A(e) and A(b). Although A(e) and A(b) are the same set of elements
in Herm(3,O), they have different ring products, quadratic maps, traces, and
inner products. As described in [EG96] and [EG01], with respect to their

respective inner products ⟨x, y⟩(e) and ⟨x, y⟩(b), both A(e) and A(b) are odd

unimodular lattices. The b-isotope ring A(b) has a different lattice geometry,
described in [Bor84, 5.7], [EG96], [EG01], and [GPR22].

First consider A(e). There are 723 elements in A(e) with ⟨x, x⟩(e) = 4 and
that satisfy x◦ex = 2x. Each of these elements is twice a primitive idempotent
relative to product ◦e. They are the elements in Herm(3,O) of the following
form, for any octonion integer unit u in O:

(0, 1, 1 | u, 0, 0), (1, 0, 1 | 0, u, 0), (1, 1, 0 | 0, 0, u),
(2, 0, 0 | 0, 0, 0), (0, 2, 0 | 0, 0, 0), (0, 0, 2 | 0, 0, 0).

The maps P (e − x) = P (x − e) for x any of these 723 vectors generate the

ring automorphism group Aut(A(e)) = 22 ·O+
8 (2) : S3 [Gro96].

The lattice defined by the ring A(b) is described well in [EG01]. There are

819 elements in A(b) with ⟨x, x⟩(b) = 4 and that satisfy x ◦b x = 2x. We can
verify by a brief computation that these define the tight projective 5-design
on the octonion projective plane in the Herm(3,O)(b) isotope algebra. The

shortest vectors of A(b) are those with ⟨x, x⟩(b) = 3, which consist of ±b and

±(b−x) for x one of the 819 vectors described above. The maps P (b)(b−x) and

P (b)(x − b) generate a simple group of type 3D4(2). The full automorphism

group Aut(A(b)) is 3D4(2) : 3, which includes these quadratic maps as well as
an outer automorphism of order 3 [Gro96] [EG96].



108 6. OCTONION INTEGERS AND TIGHT 5-DESIGNS

Remark 6.50. A GAP computation confirms a conjecture of [EG96, p.
688] that the group 3D4(2) is transitive on the 69888 elements proportional

to primitive idempotents with trace 3 in A(b).

The trace in the q-isotope is defined as tr(q)(r) = 3⟨r, q−1, q−1⟩. The au-
thors of [EG96] define the following inner product on octonion integer triples
O3:

{x, y}(q) = tr(q)(x†y + y†x) = 3⟨x†y + y†x, q−1, q−1⟩ = 2Re(xqy†).

Since x†y+ y†x and x†x are in A, we know that {x, y}(q) is Z-valued and that

{x, x}(q) is 2Z-valued. This inner product therefore defines an even integral
lattice geometry on O3. We can verify on any basis of O3, by checking the
Gram matrix determinant and computing the shortest vector lengths, that
{x, y}(e) defines an E38 lattice and that {x, y}(b) defines a Leech lattice.

We see then that, as described in [EG96], the b-isotope yields the Leech

lattice via inner product {x, y}(b) = tr(b)(x†y + y†x) on O3, which provides us

with the tight 5-design in RP23, and that the b-isotope A(b) contains 819 ele-
ments defining the tight projective 5-design in OP2. To connect the examples
of [EG96] to our examples in this chapter, note that we can decompose b as

2b = 2(2, 2, 2 | λ, λ, λ) = MλM
†
λ with Mλ the following matrix for λ in O a

root of x2 + x+ 2:

Mλ =

2 0 0

λ λ 0
λ −1 1

 .

It turns out that the Leech lattice Λ(λ, λ) defined earlier in this chapter is an
O-linear combination of the rows of Mλ:

Λ(λ, λ) =
{
xMλ | x ∈ O3

}
.

We can verify on a basis for a canonical example that the following inner
product on O3 is a Leech lattice,

{x, y}(b) = 2Re(xby†) = Re(x(MM †)y) = Re((xM)(yM)†).

We have used Mλ because it has the property 2b = MMλ, which corresponds
to the use of b in [EG96]. To correspond more closely to the notation of this
chapter, we can write,

Sλ =

2 0 0

λ 0 λ
1 1 λ

 , c =
1

2
SλS

†
λ.

We previously used Sλ to denote a set of triples, but now denote a matrix with
those triples for rows. We can confirm by computations on a suitable basis
that the isotope ring A(c) is isomorphic to A(b). The 819 elements of A(c) that
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satisfy x◦cx = 2x define a tight projective 5-design on the octonion projective
plane and the 98280 lines spanned by elements of O3 of norm {x, x}(c) =
2Re(xcx†) = 4 define the tight projective 5-design due to the Leech lattice on
Λ(λ, λ).

6.7. Isotope Rings, Orbits, and Squares

Based on the results of [Gro96] and [GPR22], we know that for q in

Ω ∩ A with det(q) = 1, the isotope ring A(q) is isomorphic to either A(e) or

A(b), which are described above. We are interested in the relation between
orbits of G(Ω ∩ A) acting on determinant 1 elements in Ω ∩ A and these two

isomorphism classes of isotope ring A(q).

Lemma 6.51. Let q, r be in Ω ∩ A with det(q) = det(r) = 1. Then A(q) ∼=
A(r) if and only if q and r share an orbit of G(Ω ∩ A).

Proof. Let G(Ω) be the group of general linear transformations of Al-
bert algebra V that preserve the positive definite cone Ω. Let G(Ω)x be the
stabilizer of some x in Ω. For a, b in Ω with b = ga for g ∈ G(Ω), the following
stabilizer groups are conjugate: G(Ω)b = gG(Ω)ag

−1 [FK94, p. 5]. Likewise,
when q and r share an orbit of G(Ω ∩ A), there is an element g in G(Ω ∩ A)
such that q = gr and G(Ω ∩ A)q = gG(Ω ∩ A)rg

−1. This ensures that the
stabilizers of q and r are isomorphic when they share an orbit. Equivalently,
if q and r have non-isomorphic stabilizers they cannot be in the same orbit of
G(Ω∩A). We know that there are precisely two stabilizers up to isomorphism
[Gro96] corresponding to two Albert isotope rings [GPR22], which are de-
scribed above. Since there are only two orbits of G(Ω ∩ A) on determinant
1 elements in Ω ∩ A, there cannot be any cases of isomorphic stabilizers (or
isotope rings) in distinct orbits. □

Lemma 6.52. For q in Ω ∩ A with det(q) = 1, the set A = Herm(3,O) is

closed under (x, y) 7→ 2x ◦q y and (x, y) 7→ P (q)(x)y.

Proof. We can write the isotope product in terms of a Jordan triple
system as follows: 2x ◦q y = 2{x, q, y} = P (x+ y)q − P (x)q − P (y)q. We can
check on some basis for A that 2{x, q, y} is always in A, which proves closure
of A under the product 2x ◦q y. To prove that A is closed under the action
of (x, y) 7→ P (x)y, we first select some basis for A and check that all pairs of
basis elements x, y satisfy that P (x)y in A. Next, for any x, y, z in A we have

P (x+ z)y = 2x ◦y z + P (x)y + P (z)y.

This ensure that P (x+ z)y is in A when P (x)y and P (z)y are. Any element
in A is the sum of basis vector elements. By induction, since the sum of any
pair x + y has P (x + z)y in A when P (x)y and P (z)y are in A, we must
have P (a)b in A for any a, b in A. By composition A is also closed under



110 6. OCTONION INTEGERS AND TIGHT 5-DESIGNS

(x, y) 7→ P (q)(x)y = P (x)P (q)y for q in Ω ∩ A with det(q) = 1 (we are only
interested in q-isotopes for det(q) = 1 since we require that q−1 is also in
A). □

Lemma 6.53. For any a in A with det(a) = ±1, the map P (a) belongs to
G(Ω ∩ A).

Proof. By Lemma 6.52 we also have P (a)A = A. Since det(a) = ±1, a
is invertible and the map P (a) is in G(Ω). Suppose that q = P (a)r. Then we
have det(q) = det(a)2det(r) = det(r). So the map P (a) preserves determinant
and we know that P (a)−1 also preserves A. Therefore P (a) is in G(Ω∩A). □

Remark 6.54. Consider all elements q, r in the set Ω ∩ A with det(q) =
det(r) = 1. There exists an a in Ω with det(a) = ±1 such that q = P (a)r.
When a is also in A we call q a r-square. Otherwise, q is a r-nonsquare. By
Lemma 6.53, the r-squares are all contained in G(Ω ∩ A)r. Therefore, by

Theorem 6.51, A(q) ∼= A(r) when q is an r-square. An open question is whether
A(q) ∼= A(r) if and only if q is an r-square. An equivalent open question is
whether q and r share an orbit of G(Ω∩A) if and only if q is an r-square (and
r is a q-square). A related question is whether P (a)A = A if and only if a is
in A, which is a stronger claim than Lemma 6.52.

Remark 6.55. It also remains to be proven that {x, y}(q) is an E38 geometry
on O3 for any q in the orbit G(Ω ∩ A)e and a Leech lattice geometry for any
q in the orbit G(Ω ∩ A)b, although this seems very likely to be true.

6.8. Conclusion

We have seen that the Leech lattice can be constructed as a sublattice of
octonion integer triples, determined up to unit u and root λ of x2+x+2 taken
modulo 2O, as described in Theorem 6.30. We have also seen that the auto-
morphism group of the Leech lattices with u = 1 are generated by octonion
reflections Wr, as described in Theorems 6.33 and 6.34. For u ̸= 1 these gener-
ating reflections are replaced by generating involutions LuWrLu. We have also
seen that this Leech lattice construction (for u = 1) provides a simple means
of generating the two strictly projective tight 5-designs, given in Example
6.43. Specifically, the generating reflections used in the common construction
satisfy a S(3, 4, 8) Steiner system structure determined via PSL2(7) octonion
integer automorphisms stabilizing λ+ 2O. We also see that the Suzuki chain
subgroups of Co1 have a simple octonion reflection construction given by The-
orem 6.47. Finally, we have described the prior results of [EG96] in terms of
Jordan isotopes and made a connection between the examples used there and
those of this chapter. Some open questions remain about the role of squares
in the orbits of G(Ω ∩ A).



CHAPTER 7

Conclusion

This thesis explored the four tight projective 5-designs and their connec-
tions to various exceptional structures. In what follows we review the previous
chapters and describe some areas for further exploration.

7.1. The Regular Hexagon

We began by reviewing how the vertices of a regular hexagon, also called a
star, define an important root lattice. Through the process of one-line exten-
sion, we can construct all irreducible root lattices from the star. This process
involves identifying the glue vectors of a root lattice, which in turn define the
one-line extensions of that lattice. The glue vectors of a lattice also define the
three-gradings of an irreducible root lattice. Given an irreducible root lattice
with non-trivial glue vectors we can both construct larger root systems via
one-line extension and also construct smaller root systems via three-gradings.
In the introduction we also reviewed how the irreducible root lattices and their
root systems govern the structure of Lie, Jordan, and composition algebras.
In particular, irreducible root systems are in one-to-one correspondence with
simple Lie algebras over C and Jordan structures correspond to three-gradings
on root systems.

In Chapter 3 we asked whether any combinatorial properties of root lattices
might provide a partial explanation for certain seemingly arbitrary properties
of the standard model of particle physics. Specifically, we sought to answer
whether the Lie algebra of the standard model and its particular representa-
tion, as three generations of fermions, could be attributed to any exceptional
structures or properties of root systems. We found that by considering all
possible sequences of three-gradings, the following sequence emerges as excep-
tional:

E7 → E6 → D5 → A4 → A1 × A2.

First, the E7 system is unique in that it is the only irreducible root lattice
that admits a three-grading without itself being obtainable by three-grading.
This means that any sequence of three-gradings can be extended further left
unless it begins with E7. Second, this sequence is local in the following sense.
Each three-grading defines a graph with the roots of the 1-component for
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vertices and two roots adjacent when they are not orthogonal. A sequence
of three-gradings is local when the graph of each three-grading is the local
subgraph of the previous one. The set of local sequences of three-gradings are
well-defined and this is the only local sequence that begins with E7. Finally,
this sequence is maximal in the following sense. Given a root system that
admits multiple three-gradings, the cardinality of the 1-component of each
three-grading will generally differ. A three-grading is maximal when it yields
the largest 1-component. The exceptional sequence given above only contains
maximal three-gradings.

Having identified this sequence as exceptional for these reasons, we find
that the Lie algebra of the standard model corresponds to the last Lie algebra
in this exceptional sequence, of type A1 × A2. The branching rules for A1 × A2
within the adjoint representation of Lie algebra E7, the first Lie algebra in the
exceptional sequence, yields the three generations of standard model fermions.
This provides some combinatorial justification for the seemingly accidental
properties of the standard model of particle physics—namely, the physical
choice of gSM and representation ρSM ⊕ρSM ⊕ρSM among all possiblities—in
terms of exceptional structures in the landscape of irreducible root systems
and their corresponding Lie and Jordan structures.

There are some additional properties of this exceptional sequence that are
not yet fully developed. For instance, the three-grading graph of E7 → E6 is
the Schläfli graph, the unique srg(27, 16, 10, 8). This graph also appears in
the context of certain interesting t-designs. For example, there is a 2-design
in HP3 with |X| = 64 and angle set A = {1

9 ,
1
3} [Hog82, Example 22]. This

design can be obtained as the derived design of the tight 3-design in HP4 (and
can be converted to the Hoggar lines in CP7). Of note, the neighbours of any
point with angle 1

9 form the 27 vertices of a graph, with edges when the angle

between the pair is 1
3 . This graph is also a Schläfli graph. The local sequence

of subgraphs may yield an analogous set of structures.
For a second related example, consider the tight 3-design in CP5 with

angle set A = {0, 14} (Example A.15). The graph on orthogonal elements
is a srg(126, 45, 12, 18), and the induced subgraph on the neighbours of any
element is a srg(45, 12, 3, 3). This graph has 27 maximal cliques, each of size
5, and the graph on non-intersecting cliques is the Schläfli graph. These two
examples suggest that the exceptional sequence, which begins with the Schläfli
graph, may appear in the context of other t-designs. Our exceptional sequence
and these two examples suggest that the Schläfli graph and the sequence of
its local subgraphs provides a tool for identifying interesting substructures of
certain exceptional objects. Of note, the Schläfli graph is also the Jordan grid
graph of the exceptional Jordan algebra.

Another approach worth exploring involves nested sequences of rank 3 per-
mutation representations (related to towers of permutations groups [Car72,
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pp. 306-307]). Strongly regular graphs, such as the Schläfli graph, correspond
to rank 3 permutation groups. The stabilizer of a point in a rank 3 permu-
tation group has two non-trivial orbits. When the action of the stabilizer on
one of these orbits is also a rank 3 permutation group, then we can begin to
form a chain of rank 3 permutation groups. The exceptional sequence above
is one such chain, acting on the 1-component of each three-grading, corre-
sponding to groups U4(2) : 2 → 24 : S5 → S5 → D12. Other interesting
nested sequences of rank 3 permutation groups exist, often including sporadic
simple groups. For instance, the Suzuki group acting on 1782 points has the
following rank 3 chain: Suz → G2(4) → HJ → PSU3(3). The McLaughlin
group acting on 275 points has the chain McL → PSU4(3) → PSL3(4) → A6.
The Fischer sporadic simple groups also form a rank 3 chain, given by Fi′24 →
Fi23 → Fi22 → PSU6(2) acting respectively on 306936, 31671, 3510, and 693
points. Although this chain terminates in PSU6(2) acting on 693 points, the
group PSU6(2) acting instead on 672 points yields another long rank 3 chain:
PSU6(2) → PSU5(2) → U4(2) → (32 : Q8) : 3 → 3 × S3. As these exam-
ples suggest, rank 3 sequences may be an interesting aspect of exceptional
symmetries worth exploring further.

7.2. The Regular Icosahedron

The vertices of a regular icosahedron in CP1 ∼= Ω3 form our second tight
projective 5-design. In Chapter 4 we verified that it is exceptional among
tight t-designs outside of the unit circle because it has an irrational angle set.
We reviewed how prior proofs of this fact either included errors or excluded
the full range of spherical and projective spaces. The proof given in Chapter
4 addressed the previous errors and also included all possible cases, since we
used the manifolds of Jordan primitive idempotents to treat spherical and
projective cases together in a unified way. In this way we verified that the
regular icosahedron vertices are the unique example of a non-polygon tight
t-design with an irrational angle set.

The icosahedron is an extremely well-studied object that continues to re-
ward careful attention. The edges of an icosahedron define the H3 vectors,
which extend to H4 and which can be assigned a quaternion product to pro-
duce the icosian ring. Triples of icosian ring elements can be used to construct
the Leech lattice, using a special inner product [Wil09a, pp. 220-223]. This
suggests that many exceptional structures, including the sporadic Co1 sym-
metries of the Leech lattice, can be traced back to the icosahedron.

Another fascinating aspect of the icosahedron is the fact that it has six
axes. The exceptional properties of the symmetric group S6 can be used to
construct a number of sporadic permutation groups, including M22, M23, M24,
HS, and McL. Finally, although the angle set of the icosahedron is not rational,
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it does belong to the golden field Q(
√
5). Many exceptional structures are can

be constructed from this starting point.

7.3. The Leech Lattice and the Octonion Projective Plane

In Chapters 5 and 6 we explored properties of the Leech lattice related to
the octonion algebra, especially properties related to the octonion projective
plane. The Leech lattice is a well-studied object but its relation to octonions
has received less attention. Twelve of the twenty-six sporadic simple groups
are symmetries of the Leech lattice, namely subgroups of Co1.

In Chapter 5 we explored Robert Wilson’s octonion construction of the
Leech lattice and described how certain short vectors can define reflections,
despite the non-associativity of the octonion algebra. Wilson describes the
Leech lattice symmetries using right multiplication by octonion matrices. In
contrast, we described how to use reflections to generate the full symmetry
group of the Leech lattice, 2 ·Co1. We also describe how to choose reflections
that generate the Suzuki chain subgroups of Co1. It turns out that the gen-
erators of the subgroup G2(4) both yield the tight 5-design on RP23 and also
have a 3D4(2) action on OP2 that also yields a tight 5-design. We explore the
orbits of other subgroups as well.

The Leech lattice reflections described above correspond to primitive idem-
potents in the octonion projective plane. We use this correspondence to de-
fine a common construction of designs in Ω24, RP23, and OP2. This common
construction allows us to link the two tight strictly projective 5-designs by
producing them together using well-chosen vectors to generate correspond-
ing involutions on O3 ∼= R24 and OP2. Despite the non-associativity of the
octonion algebra, the common construction remains well-defined because we
use suitable vectors to define the needed involutions rather than requiring all
vectors of a certain length to define involutions. One interesting property of
the common construction is that it yields groups G and H of relatively prime
order in the non-associative case responsible for the two strictly projective
tight 5-designs.

In Chapter 6 we move beyond Wilson’s definition of an octonion Leech lat-
tice and explore Leech lattices constructed from octonion integer ring triples.
In contrast to other authors exploring octonion integer Leech lattices, we fo-
cus on the properties of the octonion integers modulo 2. This permits us to
understand a family of Leech lattices using the properties of a small strongly
regular graph defined on the 135 non-units in O/2O. We then generalize the
results from Chapter 5 to a larger family of octonion integer Leech lattices,
defining generators of the automorphism group 2 · Co1 and the Suzuki chain
subgroups.

Finally, in Chapter 6 we return to a result due to Elkies and Gross [EG96]
that provides a different link between the Leech lattice and the tight 5-design
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in the octonion projective plane. We interpret these results using the concept
of Jordan algebra isotopes and describe our integer octonion Leech lattice
Λ(λ, λ) as the O-span of three octonion vectors used to define a corresponding
isotope.

This Jordan isotope approach suggests some new techniques for identifying
exceptional structures in the context of t-designs. Specifically, suppose that
we select an integer ring F ⊂ F within composition algebra F and also select
a determinant 1 element u in Herm(ρ,F). In certain cases, the u-isotope ring

Herm(ρ,F)(u) will contain vectors that define an interesting t-design on FPρ−1.
In addition to the octonion projective plane example examined in Chapter 6,
a brief computation in GAP confirms that we can use this technique to obtain
the tight 3-designs in HP4 and CP5, Examples A.15 and A.16.
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APPENDIX A

Tight T-Designs

This Appendix describes the known tight t-designs. We begin with exam-
ples of infinite families of tight t-designs. These include a pair of antipodal
points generalized to any rank and degree as a Jordan frame, the regular
polygons on the unit circle Ω2, and orbits of the Weyl groups W (Ad+1) and
W (Dd+1) corresponding to the simplex and cross polytope in Ωd+1. The glue
vectors [n] described below are special vectors of the dual lattice to a root
lattice, labelled according to the convention given in [CS13, chap. 4] and
described in Chapter 1. These examples correspond to the entries of Table
1.1. More details are available in [DGS77], [Hog84], [CD07, chap. 54], and
[BB09].

Example A.1. A Jordan frame is a set of ρ orthogonal primitive idempo-
tents in a simple Jordan algebra of rank ρ. A Jordan frame is a tight 1-design.

Example A.2. The t + 1 vertices of a regular polygon in the circle Ω2

constitute a tight t-design. The symmetries of the polygon are given by the
dihedral group D2(t+1), which is the Coxeter group of type I2(t+1). Since the

unit circle is isomorphic to the real projective line, Ω2
∼= RP1, we also have a

tight t-design in RP1 for each value of t. We treat both cases as equivalent,
since they have the same rank ρ = 2 and degree d = 1. The t = 5 case is the
first of our four tight projective 5-designs.

Example A.3. Begin with a root system in Rd+1 of type Ad+1 and glue
vector [1] (or [d + 1]). The orbit of glue vector [1] under the action of Weyl
group W (Ad+1) is a tight spherical 2-design in Ωd+1, also called a simplex.

Example A.4. Begin with a root system in Rd+1 of type Dd+1 with glue
vector [2]. The orbit of glue vector [2] under the action of Weyl group W (Dd+1)
is a tight spherical 3-design in Ωd+1, also called a cross polytope. This example
consists of the unit vectors spanning a set of d+ 1 mutually orthogonal lines.

The next three examples are tight t-designs corresponding to systems of
equiangular lines in a real vector space. Equiangular lines define a strength s =
3 set of antipodal (so ε = 1) points on the sphere. For a tight spherical design
corresponding to equiangular lines, we have t = 2s− 1 = 5. In addition to the
vertices of a regular hexagon, which is the t = 5 case of Example A.2, there are
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three known additional systems of tight equiangular lines, described below. In
each case, the equiangular lines define a tight 2-design on the corresponding
real projective space, and a tight 4-design taken by selecting one point on the
sphere and projecting its nearest neighbours into the portion of the sphere
perpendicular to it (also called the derived design). Every tight spherical 5-
design corresponds to a tight spherical 4-design [BB09, p. 1401] and tight
real projective 2-design. The search for additional examples can be reduced
to searching for additional tight spherical 5-designs.

The classification of tight spherical 5-designs remains open, but [Gil18]
proves that the known examples for d = 1, 2, 6, 22 are the only cases that
contain subsets of d + 1 vectors with positive pairwise inner product. Any
new tight spherical 5-designs will lack this property. Another special property
of the known tight 5-designs is that they have a 2-transitive automorphism
group action on the lines. However, the 2-transitive automorphism groups on
equiangular lines (equivalent to two-graphs) have been classified in [Tay92].
This suggests that any future spherical tight 5-designs will lack a 2-transitive
automorphism group, although this requires some more work to establish.

Example A.5. The vertices of a regular icosahedron defines a tight 5-
design in Ω3

∼= CP1, forming a single orbit under the action of Coxeter group
W (H3) = 2× A5. The corresponding icosahedron axes define a tight 2-design
in RP2. The corresponding tight 4-design in Ω2 is the regular pentagon of
Example A.2 for t = 4.

Example A.6. Begin with the E7 root systems and glue vector [1]. The
orbit of [1] under the action of Weyl groupW (E7) is a tight spherical 5-design in
Ω7, also known as the axes of the Hess polytope. These antipodal points define
a corresponding tight 2-design in RP6. The corresponding tight 4-design in
Ω6 can also be obtained by beginning with the E6 root system and glue vector
[1] or [2]. The orbit of either glue vector under the action of W (E6) is a tight
4-design.

Example A.7. Begin with the Leech lattice Λ24 and any vector r of norm
6. The projection of the 552 norm 4 vectors with smallest angle relative to r
onto the subspace perpendicular to r is a tight 5-design in Ω23. These points
form an orbit of 2×Co3. The corresponding tight 4-design is an orbit of McL : 2
in Ω22 (McL is the McLaughlin sporadic simple group). The corresponding
projective tight 2-design is an orbit of Co3 in RP22.

There are only three known tight 7-designs: the t = 7 instance of Example
A.2 and the following two spherical examples. Any additional tight 7-designs,
if found, will be spherical [BH89].

Example A.8. The E8 lattice is the lattice with most dense sphere-packing
in R8 [Via17]. The E8 root system defines a tight 7-design in Ω8, forming a
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single orbit under the action of Weyl group W (E8). The corresponding tight
projective 3-design is an orbit of O+

8 (2) : 2 in RP7.

Example A.9. Begin with the Leech lattice Λ24 and select a norm 4 vector
r. The 4600 norm 4 vectors with smallest angle relative to r, projected onto
the subspace orthogonal to r, form a tight 7-design in Ω23 and is an orbit
of Co2. The corresponding tight 3-design is an orbit of Co2 in RP22. Both
designs are orbits of the sporadic simple group Co2 acting on the respective
spaces.

The Leech lattice short vectors are the only tight 11-design [BS81], aside
from the regular dodecagon in Ω2. We describe this rare structure in the
following example.

Example A.10. The Leech lattice is the lattice with the most dense
sphere-packing in R24 [CKM+17]. It is spanned by its 196560 shortest vec-
tors, which span a system of 98280 lines. There are numerous constructions
of the Leech lattice, many of which are given in [CS13]. The lines spanned
by these short vectors define the tight projective 5-design in RP23, the third
of our four examples. Both designs are orbits of the group 2 · Co1 acting on
the vectors and the lines respectively.

We now describe an important family of tight 2-designs in complex pro-
jective spaces. A tight 2-design in CPρ−1 (ρ > 1, d = 2) is also known in
the literature as a SIC-POVM (Symmetric Informationally Complete Positive
Operator Valued Measure) [Sta20]. An important open question is whether a
SIC-POVM exists for each positive integer ρ > 1.

Example A.11. According to [Sta19], exact solutions for tight 2-designs
with d = 2 are known for the following ranks:

ρ = 2–28, 30, 31, 35, 37–39, 42, 43, 48, 49, 52, 53, 57, 61–63,

67, 73, 74, 78, 79, 84, 91, 93, 95, 97–99, 103, 109, 111, 120,

124, 127, 129, 134, 143, 146, 147, 168, 172, 195, 199, 228,

259, 292, 323, 327, 399, 489, 844, 1299.

The d = 2 case is already described in Example A.3. All SIC-POVMs are
defined as an orbit of a group acting on CPρ−1. Indeed, except in the case of
ρ = 8, the group is known as the Weyl-Heisenberg Group [Sta20, 5]. We can
construct this group using the following two operators acting on orthonormal
basis vectors e0, e1, e2, . . . , eρ−1:

X : en 7→ e(n+1) (mod ρ), Z : en 7→ exp

(
2πni

d

)
en.

The Weyl-Heisenberg group is the group generated by X and Z acting on Cρ,
and the corresponding action on CPρ−1. Apart from ρ = 8, then, the task of
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describing a SIC-POVM in a known dimension is just the task of identifying
an orbit representative, known in the SIC-POVM literature as the fiducial
vector, for the orbit of X ⊂ CPρ−1 under the Weyl-Heisenberg group action.
The angle set is always given by A = { 1

ρ+1} and the cardinality is given by

|X| = ρ2.

In the case of ρ = 2, 3, 8 there also exist sporadic SICs, which have sporadic
symmetries either beyond or instead of the Weyl-Heisenberg group symmetries
[Sta21]. Specifically, the sporadic SICs of ρ = 2, 3, 8 are the only complex tight
2-designs (i.e. degree d = 2) with a group action that is 2-transitive on the
points [Zhu15]. The ρ = 2 case is given by Examples A.3 and A.11, namely
the vertices of a tetrahedron in CP1 = Ω3. The Weyl reflections defined by the
A3 roots in CP1 = Ω3 permute the tetrahedron vertices with a S4 group action.
This group action is 4-transitive. The A4 alternating subgroup is 2-transitive.
The remaining two sporadic examples are given separately below. A recent
detailed study of these three sporadic SICs is available in [Sta21].

Example A.12. [Hog82, Example 5] There exists a sporadic SIC-POVM
in ρ = 3, called the Hesse SIC, that is a tight 2-design. The automorphism
group is SU3(2) and has order 216. This group is 2-transitive on the points.
Each pair of points defines a RP1 subspace containing three points. These
triples form the blocks of the unique Steiner triple system STS(9).

Example A.13. [Hog82, Example 8] A sporadic SIC-POVM also exists
in ρ = 8, known as the Hoggar SIC or Hoggar lines. It is a tight 2-design.
This design is an orbit of a 2-transitive group of order 64×6048 and has point
stabilizer G2(2) = PSU3(3) : 2.

The following three examples of complex or quaternion projective tight
3-designs are collected from [Hog82]. The classification of tight complex and
quaternion projective 2- and 3-designs is open.

Example A.14. [Hog82, Example 6] This tight 3-design in CP3 corre-
sponds to a complex E8 lattice, where the vectors of six roots map to the same
primitive idempotent. The strongly regular graph of orthogonal idempotents
has parameters srg(40, 12, 2, 4) and the 40 maximal cliques, which are Jordan
frames, form a generalized quadrangle Gq(3, 3). This 3-design is an orbit of
PSU4(2) : 2 acting on C4.

Example A.15. [Hog82, Example 7] The complex K12 Coxeter-Todd lat-
tice short vectors define a tight 3-design in CP5 (ρ = 6, d = 2) with cardinality
|X| = 126 and angle set A =

{
0, 14
}
. This design is an orbit of a rank 3 action

of PSU4(3) on CP5. The strongly regular graph constructed from orthogonal
idempotents has parameters srg(126, 45, 12, 18). There are 567 Jordan frames
corresponding to maximal cliques in this graph. Unlike Examples A.14 and
A.16, the Jordan frames do not define a generalized quadrangle geometry.
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Example A.16. [Hog82, Example 9] The quaternion reflection group
W (U) = 2×PSU5(2) has an orbit in HP4 (ρ = 5, d = 4) that forms a tight 3-
design with angle set {0, 14} and cardinality |X| = 165. There are 297 Jordan
frames in this set and each point belongs to 9 Jordan frames. The Jordan
frames form the lines of a Gq(4, 8) geometry. We can recover the Hoggar
lines, Example A.13, from this design by taking a derived design and then
converting to the corresponding complex design.

An existence proof in [CKM16] establishes that the following two exam-
ples exist, although explicit vectors are not yet available.

Example A.17. As described in [CKM16], a tight 2-design exists in HP2,
with A = {2

7} and |X| = 15.

Example A.18. As described in [CKM16], a tight 2-design exists in OP2,
with A = { 4

13} and |X| = 27.

The final example is the fourth and final instance of tight projective 5-
designs. We discuss it in detail in Chapters 5 and 6.

Example A.19. The generalized hexagon Gh(2, 8) can be described as a
tight octonion projective 5-design in OP2 of cardinality |X| = 819 and angle
set A =

{
0, 14 ,

1
2

}
. One construction, corresponding to [Wil09a, 162], involves

taking the 819 = 3× (1 + 16+ 162) row vectors (1, 0, 0), (1, j, 0), and (sj, j, 1)
under all cyclic coordinate permutations, where j = ±it for t ∈ PL(7) and
where s = 1

2(±i1±i2±i3±i4±i5±i6±i7±i∞) with the positions of the plus signs
forming the extended Hamming code generated by the quaternion subalgebra
bases {it, it+1, it+3, i∞}. Another construction of the same idempotents comes
from setting s = 1

2(i1 + i2 + i3 + i4 + i5 + i6 + i7 − i∞) and constructing
the idempotents corresponding to the row vectors (±sj,±j, 1) for j in the
octonion double basis. Under Weyl reflection, these elements close to the
Gh(2, 8) structure given above. If we instead begin with (±sj,±j, 1) for j in
some quaternion double basis, {±it,±it+1,±it+3,±i∞} with t in F7, then the
corresponding idempotents close to seven distinct Gh(2, 8) tight 5-designs.





APPENDIX B

Jacobi Polynomials

The Jacobi polynomials P
(α,β)
k (x) are defined in [AS72, 22.2.1]. Let V be

a simple Euclidean Jordan algebra of rank ρ and degree d. In order to study
a design modeled as a finite subset X of Jordan primitive idempotents J (V ),
we employ the following renormalized Jacobi polynomials Qε

k(x):

Qε
k(x) =

(α+ β + 1− ε)k+ε

(β + 1− ε)k+ε

(
α+ β + 2k

α+ β + k

)
P

(α−1,β)
k (2x− 1).

Here we use α = 1
2(ρ − 1)d and β = 1

2d − 1 + ε. We also use Pochhammer
symbol (a)k = a(a+ 1) · · · (a+ k − 1). For the projective cases (d = 1, 2, 4, 8)
this definition of Qε

k(x) corresponds to the definition given in [Hog82]. This
appendix verifies that this definition also applies to the spherical cases (ρ = 2)
and confirms an important Jacobi polynomial identity used in the construction
of the annihilator polynomial ann(x).

B.1. Application to the Spherical Cases

In the spherical cases we have ρ = 2. This means that α = 1
2d, β = α−1+ε,

and Qε
k(x) has the form,

Qε
k(x) =

(2α)k+ε

(α)k+ε

(
2α+ 2k − 1 + ε

2α+ k − 1 + ε

)
P

(α−1,α−1+ε)
k (2x− 1).

Using [AS72, 22.5.20] and (x)n = Γ(x+ n)/Γ(x), we can write,

P
(α−1,α−1)
k (2x− 1) =

(α)k
(2α− 1)k

C
(α− 1

2
)

k (2x− 1).

Therefore, in the ε = 0 case we have,

Q0
k(x) =

(2α)k
(α)k

(
2α+ 2k − 1

2α+ k − 1

)(
(α)k

(2α− 1)k
C

(α− 1
2
)

k (2x− 1)

)
.

Since (2α)k/(2α − 1)k = (2α + k − 1)/(2α − 1), the expression simplifies as
follows:

Q0
k(x) =

(
2α+ 2k − 1

2α− 1

)
C

(α− 1
2
)

k (2x− 1).
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This expression matches the one given in [DGS77]. (N.B. the expression in
[DGS77] uses d to denote the sphere’s dimension. Here we use d to denote
Jordan algebra degree, so that J (V ) ∼= Ωd+1).

B.2. An Annihilator Polynomial Identity

To simplify computations with ann(x) = xεRε
s−ε(x), the annihilator poly-

nomial, with Rε
s−ε(x) defined as,

Rε
s−ε(x) = Qε

0(x) +Qε
1(x) + · · ·+Qε

s−ε(x),

this section confirms that we can also write,

Rε
s−ε(x) =

(α+ β + 1− ε)s
(β + 1− ε)s

P
(α,β)
s−ε (2x− 1).

We begin with a recurrence relation for the Jacobi polynomials P
(α,β)
n (x), given

in [AS72, 22.7.18]:

P (α,β)
n (2x− 1) =

(α+ β + 2n)

(α+ β + n)
P (α−1,β)
n (2x− 1) +

(β + n)

(α+ β + n)
P

(α,β)
n−1 (2x− 1).

Applying this recurrence relation repeatedly, we obtain P
(α,β)
n (2x − 1) as a

linear combination of P
(α−1,β)
k (2x− 1) polynomials:

P (α,β)
n (2x− 1) =

n∑
k=0

(β + k + 1)n−k

(α+ β + k + 1)n−k

(α+ β + 2k)

(α+ β + k)
P

(α−1,β)
k (2x− 1).

We now substitute this expression into our second expression for Rε
s−ε(x) given

above:

Rε
s−ε(x) =

s−ε∑
k=0

(β + k + 1)s−ε−k(α+ β + 1− ε)s
(β + 1− ε)s(α+ β + k + 1)s−ε−k

(α+ β + 2k)

(α+ β + k)
P

(α−1,β)
k (2x− 1).

Using the expression (x)n/(x)m = (x +m)n−m for n ≥ m [Bor04, p. 17] we
recover our first expression for Rε

s−ε(x):

Rε
s−ε(x) =

s−ε∑
k=0

Qε
k(x).
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