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Abstract

Perron, Patrick J.G. Royal Military College of Canada, May 27, 2014. Contribution of ion

temperature anisotropy and velocity shears in the direct generation of small-scale irregu-

larities in the high-latitude F-region Supervised by Dr. Jean-Marc Noël.

Plasma instabilities play an important role in producing small-scale irregularities in

the ionosphere. In particular, current-driven electrostatic ion-acoustic (CDEIA) instabili-

ties contribute to high-latitude F-region electrodynamics. CDEIA instabilities are affected

by ion velocity shears and temperature anisotropies. Ion temperature anisotropies with

perpendicular enhancements often exist in the high-latitude F-region. In addition to tem-

perature anisotropies, ion velocity shears are observed near auroral arc edges, sometimes

coexisting with thermal ion upflow processes and field-aligned currents (FAC). We investi-

gated whether ion temperature anisotropy or shears lower the threshold conditions required

for the onset of CDEIA instabilities and also, enhance the incoherent scattering from ion-

acoustic waves. We generalized a dispersion relation to include ion thermal anisotropy,

finite Larmor radius corrections and collisions. We derived new fluid-like analytical ex-

pressions for the threshold conditions required for instability. We studied how the insta-

bility threshold conditions vary as a function of the wave vector direction in both fluid

and kinetic regimes. We found that, in some cases, ion temperature anisotropy lowers sig-

nificantly the threshold drift requirements for a large range of intermediate aspect angles.

In particular, realistic ion temperature anisotropies contribute to reducing the instability

threshold velocity shears that are associated with small relative drift thresholds, for modes

propagating almost perpendicularly to the geomagnetic field. Such instabilities could play

a role in the direct generation of field-aligned irregularities in the collisional F-region that

could be observed with the Super Dual Auroral Radar Network (SuperDARN) array of

high-frequency radars. These modes would be very sensitive to the radar probing direction
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since they are restricted to very narrow angular intervals. On the other hand, our study

confirmed that temperature anisotropies in magnetized plasmas are unimportant when the

incoherent radar is pointing at the critical angle for which the total temperature is equal

to the effective temperature. Yet, under the right conditions, “small” ion velocity shears

produce significant enhancements in ISR spectra, especially for directions near perpendic-

ular to the geomagnetic field. This could lead to overestimations of the interpreted electron

to ion temperature ratio and electron density when using standard ISR fitting procedures.

In closing, ion temperature anisotropies and velocity shears are important parameters that

need to be considered in the studies of CDEIA waves and instabilities in the high-latitude

F-region, especially for propagation directions near perpendicular to the geomagnetic field.

Keywords: Ionosphere (Plasma waves and instabilities) - Space plasma physics (Waves

and instabilities; Kinetic theory) - Small-scale irregularities - incoherent scatter radars -

coherent scatter radars
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Résumé

Perron, Patrick J.G. Collège militaire royal du Canada, April, 2014. Contribution des

anisotropies de température et des cisaillements de vitesses ioniques dans la génération

directe d’irrégularités à petite échelle au sein de la région F de l’ionosphère à hautes lati-

tudes Thèse dirigée par M. Jean-Marc Noël, Ph.D.

Les instabilités du plasma jouent un rôle important dans la production d’irrégularités

à petite échelle au sein de l’ionosphère. En particulier, les instabilités électrostatiques

ion-acoustiques déclenchées par courants contribuent aux processus électrodynamiques

de la région F à hautes latitudes. Ces instabilités sont affectées par les cisaillements de

vitesse ionique et les anisotropies de température. Les anisotropies de température avec

une température perpendiculaire plus importante que parallèle se manifestent souvent au

sein de la région F à hautes latitudes. En outre, des cisaillements de vitesse sont observées

près des contours des arcs auroraux, parfois en présence de remontées d’ions thermiques

et de courants alignés avec le champ magnétique. Nous avons examiné si les anisotropies

de température ou bien les cisaillements de vitesse réduisent les conditions de seuil req-

uises pour le déclenchement d’instabilités ion-acoustiques et aussi, si elles augmentent

la diffusion incohérente à partir des ondes ion-acoustiques. Nous avons généralisé une

relation de dispersion en incluant les anisotropies thermiques, les corrections du rayon

de Larmor et les collisions. Nous avons dérivé de nouvelles expressions analytiques de

nature fluide pour les conditions de seuil requises pour déclencher l’instabilité. Nous

avons étudié comment les conditions de seuil varient en fonction de la direction du vec-

tor d’onde pour les régimes fluide et cinétique. Dans certains cas, nous avons trouvé que

les anisotropies de température diminuent de façon significative la dérive de seuil pour une

gamme d’angles d’aspect intermédiaires. En particuler, des anisotropies de température

réalistes réduisent les dérives minimales vers des plus petites valeurs seuil de cisaille-
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ment, pour les ondes se propageant vers des directions presque perpendiculaires au champ

magnétique. Ces instabilités pourraient contribuer à la génération directe d’irrégularités

alignées avec le champ magnétique au sein de la région F et en présence de collisions.

Ces irrégularités pourraient être observées avec des radars à diffusion cohérente à haute-

fréquence. D’autre part, nous avons confirmé que les anisotropies de température au sein

d’un plasma magnétisé sont d’importance moindre lorsqu’un radar à diffusion incohérente

pointe vers la direction correspondant à l’angle critique pour lequel la température to-

tale est égale à la température effective. Cependant, dans les bonnes conditions, de pe-

tits cisaillements de vitesse ionique produisent des augmentations importantes des spec-

tres à diffusion incohérente, spécialement pour des directions presque perpendiculaires au

champ magnétique. Ceci pourrait mener à une surestimation du rapport de température

électron/ion et de la densité électronique lorsque les procédures normalisées d’ajustement

aux spectres à diffusion incohérente sont utilisées. Pour conclure, les anisotropies de

température et les cisaillements de vitesse sont d’importants paramètres qui doivent être

considérés dans l’étude des ondes et des instabilités ion-acoustiques au sein de la région F

à hautes latitudes et pour des petits angles d’aspect.

Mots clés : Ionosphère (ondes et instabilités dans un plasma) - Physique des plasmas

spatiaux (Ondes et instabilités; théorie cinétique) - Irrégularités à petite échelle - radars à

spectre incohérent - radars à spectre cohérent
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Chapter 1

Introduction

In this chapter, we describe some elements of the Sun-Earth environment and plasma

physics as an introduction to this thesis. To remain concise, we only touch upon a few solar-

terrestrial relationship features that influence the properties of the high-latitude ionosphere.

Furthermore, we introduce two important remote sensing tools used to study plasma ir-

regularities in the ionosphere: incoherent and coherent scatter radars. In the last section,

we provide a description of small-scale irregularities in the high-latitude F-region and we

discuss their possible generation mechanisms.

1.1 Introduction to the Sun-Earth Environment

1.1.1 The Sun as a source of space weather

Space weather encompasses several components of the Sun-Earth system, such as the vari-

able solar wind, sunspots, solar flares, solar energetic particles (SEP), coronal mass ejec-

tions (CME), interactions with the Earth’s magnetosphere and ionosphere, and the produc-

tion of the aurora. First, the prime source of space weather is the dynamic Sun. Deep

inside the Sun’s core, nuclear fusion reactions release enormous amounts of energy being

radiated outwards. Closer to the surface, large convection cells generate electrical currents

and strong magnetic fields. The Sun continuously releases supersonic streams of highly

conductive electrically charged particles, called “solar wind”. The solar wind travels in the

interplanetary space at speeds of several hundreds km/s, carrying with it the Sun’s magnetic

field, also called “interplanetary magnetic field” (IMF). The direction of the IMF plays a

crucial role in how well the solar wind couples with the Earth’s magnetic field and conse-

quently, transfers energy to the Earth.

Besides the solar wind, dark regions often appear on the surface of the Sun, called

sunspots. The number of sunspots visible on the surface of the Sun is well correlated with
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the approximate 11 years solar cycle. Sunspots are associated with magnetically active

regions of the Sun’s surface. At times, short-lived explosions can occur near these active

regions, discharging radiation across the EM spectrum and high-energy particles. These

bursts are called “solar flares”. Solar flares are important because they have a direct ef-

fect on the properties of the Earth’s upper atmosphere. As a result, solar flares can disrupt

long-range radio signals and enhance satellite drag. Sometimes flares accelerate the Sun’s

particles to extremely high energies, propagating at velocities that can reach 80% of the

speed of light. These high-energy particles are called “solar energetic particles” (SEP).

SEP events are of particular interest because they can endanger human life in outer space

and damage electronics.

In addition to solar flares and SEPs, strong magnetic field loops, called prominences,

may extend outside the surface of the Sun. At times, these features break apart, releasing

formidable amounts of charged matter at speeds that can be much faster than the solar wind.

This phenomenon corresponds to a CME. When a CME is directed towards the Earth, it

can trigger a geomagnetic storm. Solar wind, sunspots, solar flares, SEPs and CMEs are

all components of solar activity, which are driven by the dynamics of the Sun’s magnetic

field.

1.1.2 The Earth’s magnetosphere

The Earth’s magnetic field is continuously immersed in the solar wind, which carries a

large amount of kinetic energy. Similarly to a magnetohydrodynamic (MHD) electrical

generator, some of the kinetic energy is converted into electrical energy. This electrical

energy is fed into the ionosphere, which acts as a load. The term “magnetosphere” refers

to the domain inside of which the motion of charged particles is mainly controled by the

Earth’s magnetic field. On the sunward side, the magnetosphere is compressed due to the

solar wind’s kinetic pressure. On the nightside, the magnetosphere is stretched into a long

magnetotail that resembles a windsock. The magnetosphere’s boundary is called “mag-

netopause”. Figure 1.1 shows several magnetospheric plasma populations and regions.
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Figure 1.1: Cartoon representation of several regions, plasma populations and current systems

in the Earth’s magnetosphere. Reproduced from Kelley (2009).

The magnetosphere contains multiple current systems that result from complex solar-wind-

magnetosphere interactions. For example, in the magnetotail, the stretched magnetic field

is associated with the neutral sheet current, that flows across the neutral sheet in the dawn to

dusk direction. The neutral sheet is also the region in which open field lines may reconnect

to form closed field lines that convect back to the earth. This topic will be further discussed

in more detail in Sect. 1.1.4.

1.1.3 The Earth’s ionosphere

Besides the outflow of highly energetic particles, the Sun continuously emits electromag-

netic (EM) radiation, ranging from the short wave X-rays up to the longer radio waves.

Most of the emitted energy is concentrated in the infrared (IR), visible and ultra-violet

(UV) portion of the EM spectrum, providing light and heat on Earth. The extreme UV and

X-ray parts of the solar radiation spectrum are responsible for ionizing the upper part of the

Earth’s atmosphere, between approximately 60-1000 km of altitude. This region, known

as the ionosphere, is comprised of free electrons, different type of molecular and atomic
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Figure 1.2: Typical altitude profiles of neutral atmospheric temperature and ionospheric plasma

density with the various layers identified. Reproduced from Kelley (2009).

ions as well as neutral particles. On a macroscopic scale, the ionosphere contains an equal

number of ions and electrons, a property named “quasineutrality”.

The various ionospheric layers are shown in Fig. 1.2, along with neutral gas tempera-

tures. It should be noted that the typical plasma density “nose shape” vertical distribution

profile portrayed in Fig. 1.2 is representative of mid-latitudes. The D-region (60-90 km)

contains small electron densities and large neutral densities. It is the most complex chem-

ically, including ion production, recombination and transport processes that are not fully

understood yet. Also, its ionization level is so low that its properties differ a lot compared

with the weakly collisional E-region (105-160 km) and the quasi-collisionless F-region.

NO+ and atomic oxygen dominate the plasma below about 150 km (E-region), whereas the

F-region comprises mostly of atomic oxygen (see Fig. 1.3). The F-region is further divided

into two sub-regions: F1 (160-180 km) and F2 (with a peak at approximately 300 km).

In general, the ion temperature is lower than the electron temperature, but larger than

the neutral one. Figure 1.4 shows typical temperature profiles for neutrals, ions and elec-

trons between 100 and 600 km. All ionospheric layers are highly variable depending on
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Figure 1.3: Typical altitude profiles of number density for the most common ion and neutral

species, together with the electron density profile. Reproduced from Kelley (2009).

seasons and solar activity. Diurnal variations make the D, E and F1 regions vanish at night,

whereas the F2 region tends to persist since atomic oxygen has a much longer lifetime than

molecular ions (see right hand side of Fig. 1.2). At high-latitudes, the plasma density pro-

file can differ from the one presented in Fig. 1.2, one reason being that solar radiation is

not the only source of plasma. Indeed, at high-latitudes, the ionosphere is strongly cou-

pled with the magnetosphere and consequently, is strongly affected by the solar-terrestrial

environment. Energetic particles precipitating along the magnetic field lines and into the

neutral gas can also be an important source of ionization at high-latitudes. In the auroral

zone, the interaction of energetic particles with those of the upper atmosphere emits green,

red and sometimes violet light, a phenomenon known as auroral borealis (northern hemi-

sphere) and australis (southern hemisphere). On global scales, the aurora takes the form of

ovals centered on the Earth’s magnetic poles. The region encircled by the auroral oval is

the polar cap.

1.1.4 Electrical coupling between the ionosphere, magnetosphere and solar wind

The ideal geometry that enhances electrical currents closure in the ionosphere occurs when

the vertical component of the IMF (Bz) points in the southward direction. Indeed, magnetic

field merging on the dayside magnetosphere is most effective when Bz and the Earth’s mag-

netic field point in opposite directions. On the dayside magnetopause, the neutral points
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Figure 1.4: Representative altitude profiles of ion, electron and neutral temperatures between

100 and 600km. Reproduced from Brekke (2012).

where the magnetic field is nul map down along magnetic field lines to near-Earth regions

at a geomagnetic latitude of ±78◦. As a result, solar wind particles can then easily pene-

trate into these ionospheric regions that are named “polar cusps” or “clefts” (see Fig. 1.1).

After magnetic reconnection on the dayside magnetopause, the newly created open field

lines have one foot attached to the Earth (associated with the cusp and polar cap) and the

other one being swept antisunward with the solar wind, resulting in magnetic flux trans-

fer to the magnetotail. This process is illustrated in Fig. 1.5. The numbers indicate the

temporal sequence of the magnetic field lines reconnection and movement. Magnetic field

reconnection can also occur in the neutral sheet (magnetotail), forming closed field lines

that convect back in the sunward direction. In general, the auroral oval corresponds to the

boundary between open and closed magnetic field lines.

For an ideal, magnetized and collisionless (with infinite conductivity) solar wind plasma,

MHD theory dictates that its electric field with respect to a fixed frame of reference is
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Figure 1.5: Cartoon representation of IMF-magnetosphere reconnection processes when Bz is

south. The view is in the noon-midnight plane. Ey is the interplanetary electric field and EI is

the electric field mapped into the ionosphere down the magnetic field lines. Reproduced from

Kelley (2009).

Esw =−Vsw×Bsw (Kelley, 2009), where the subscript “sw” refers to the solar wind. When

Bz is pointing south, the interplanetary electric (indicated as Ey in Fig. 1.5) is aligned with

the dawn-to-dusk direction across the magnetosphere. Since the magnetic field lines can

usually be treated as equipotentials in steady-state conditions (not applicable in auroral

acceleration zones where parallel electric fields sometimes exist), this electric field maps

down into the ionosphere (EI in Fig. 1.5). Consequently, the same electric field drives the

ionospheric F-region plasma in the antisunward direction at the E×B speed since colli-

sions with neutrals are infrequent enough both for electron and ions. This antisunward drift

combined with the sunward convection that occurs after reconnection in the magnetotail

leads to the two cells ionospheric convection pattern that can be tracked with the Super

Dual Auroral Radar Network (SuperDARN) of HF radars from the coherent scattering of

F-region plasma irregularities (more on that in Sect. 1.3.3). A representation of the two

cells convection pattern along with ionospheric electric fields is shown in Fig. 1.6. In this

figure, Ea denotes the electric field in the auroral zone and Epc is the polar cap electric field.
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Figure 1.6: Representation of the ionospheric two cells convection pattern in the northern

hemisphere and the electric fields in the polar cap (Epc) and auroral zone (Ea). Reproduced

from Kelley (2009).

In the E-region, the ionosphere is a resistive medium due to different collision and

gyro frequencies for ions and electrons and consequently, horizontal currents can flow.

In accordance with Ohm’s law, the electrical current is linked to the electric field by the

equation

J = σ · (E+U×B) (1.1)

where σ is the ionospheric conductivity tensor, U is the neutral wind velocity and B is

the magnetic field. Ignoring the presence of neutral wind, the electric field will drive an

ionospheric current. In this case, the ionosphere acts as a load dissipating some of the

electrical energy originating from the solar wind (generator). From the continuity equation,

any divergences in ionospheric perpendicular currents will result in field-aligned currents

(FAC), also called “parallel” or “Birkeland” currents. FACs play an essential role in linking

the solar wind-magnetosphere system with the ionosphere. FACs have been categorized as

Region 1 and Region 2 currents, as shown in Fig. 1.7. This figure represents the most

stable FAC systems during quiet (a) and more active (b) magnetospheric conditions. The
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Figure 1.7: Topside view (looking from above the Earth toward the magnetic pole) of field-

aligned currents when the IMF has a southward component. The inner ring is termed Region

1 and the outer ring Region 2. Left figure (a) corresponds to a quiet magnetosphere and (b)

when it is more disturbed. Reproduced from Kelley (2009) [original source: Iijima and Potemra

(1978)].

inner ring corresponds to Region 1 currents. Region 1 currents link the poleward portion of

the auroral oval and the polar cap to the magnetosheath, solar wind or the boundary layer

near the magnetopause (Kelley, 2009, page 386). Region 2 currents link the equatorward

edge of the auroral oval with the inner magnetosphere. The presence of FACs carried by

thermal particles can be a source of plasma instabilities in the high-latitude ionosphere,

provided that the magnitude is large enough. The topic of plasma instability is introduced

in Sect. 1.2.3.

1.2 Elements of Plasma Physics

1.2.1 Debye shielding and collective effects

As mentioned previously, for a plasma to be quasineutral, there must be a nearly equal

number of positive and negative charges per unit volume. The Debye length (λD) is a char-

acteristic scale length over which a balance is achieved between the thermal particle energy

and the electrostatic potential energy resulting from any charge separation (Baumjohann
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and Treumann, 1997, chapter 2). In essence, it provides a measure of the average screening

distance of the electrostatic potential associated with a test charge. For scales larger than

the Debye length, the plasma is quasineutral because of the electrons clouding effect, while

for scale lengths smaller than λD, the plasma cannot be considered quasineutral anymore.

The Debye length is a function of temperature, T , and density, n, and can be written as

λD =

√
εokBT

ne2 (1.2)

where εo is the free space permittivity, kB is the Boltzmann constant and e is the elementary

charge.

As far as incoherent scatter radars (ISR) are concerned, the Debye length turns out to be

an important plasma characteristic parameters since it sets the minimum radar wavelength

required to observe scattering from wave fluctuations, or collective effects. In this limit

kλD � 1, or equivalently 2πλ 2
D/λ 2 � 1, the ISR spectrum would contain information

about the plasma as a whole. By contrast, the limit kλD� 1 would correspond to purely

incoherent scattering from the free electrons. In this case, the plasma would not be seen

to be quasineutral. In addition, in the low-frequency limit, ions will oscillate with the

electrons despite their much larger inertia. To that extent, one can envisage the plasma to

behave as a fluid with collective behaviors where only the effect of forces on fluid elements

is taken into account. On the other hand, in the small wavelength limit, the plasma can be

described as a collection of individual particles and one must use the kinetic theory.

1.2.2 Kinetic plasma theory

A complete microscopic description for a plasma would involve solving equations of mo-

tion and Maxwell equations for all particles and fields. Because of the enormous amount of

calculations that would be required, kinetic theory uses probability distribution functions

expressed in the velocity-configuration phase space. The number of particles per unit vol-

ume is a function of spatial coordinates (x,y,z), velocity coordinates (vx,vy,vz) and time

(t). Kinetic theory relies on the Boltzmann equation, given by

∂ f j

∂ t
+v ·

∂ f j

∂r
+a ·

∂ f j

∂v
=

(
δ f j

δ t

)
c

(1.3)
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where f j = f j(r,v, t) is the average distribution function of species j, a= q j/m j (E+v×B)

is the acceleration and m j and q j are the mass and charge of species j, respectively. The

right hand side (RHS) of Eq. (1.3) is a collision term. When collisions are negligible, then

the RHS can be set to zero and the resulting equation is called “the Vlasov equation”.

As per linear stability theory, we consider that the plasma fluctuations (perturbed quan-

tities) are small compared to the unperturbed ones. Hence, the distribution function can be

expressed as

f j = f0 j + f1 j (1.4)

where f0 j is the unperturbed average distribution function of a constant background and

f1 j is the perturbed average distribution function of species j. Similarly, the fields can be

separated into an unperturbed and a perturbed quantity such that

E = E0 +E1 (1.5)

and

B = B0 +B1 (1.6)

where E0 and B0 are the unperturbed quantities while E1 and B1 are the perturbed quanti-

ties. Substituting Eq. (1.4) into (1.3) and using the electrostatic approximation

E1 =−~∇φ1 (1.7)

where φ1 is the perturbed electrical potential, and B1 = 0, keeping only the linear terms and

assuming a quasi-neutral state with vanishing background electric field (E0 = 0), Eq. (1.3)

can be written as

∂ f1 j

∂ t
+v ·

∂ f1 j

∂r
−

q j

m j
~∇φ1 ·

∂

∂v
f0 j +

q j

m j
(v×Bo) ·

∂ f1 j

∂v
=

(
δ f1 j

δ t

)
c
. (1.8)

For electrostatic modes, a Fourier/Laplace analysis in space/time of Eq. (1.8), combined

with Poisson’s equation

∇
2
φ1 =−

1
ε0

∑
j

n jq j

∫
f1 j d3v (1.9)

yields the normal modes of the plasma through a dispersion equation relating complex fre-

quency (ω = ωR + iγ) with the wavenumber k, where ωR and γ are the real and imaginary
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part of the frequency, respectively. Before proceeding, an appropriate distribution function

must be selected.

Maxwellian distribution functions are used to represent particle populations in thermal

equilibrium. The one-dimensional Maxwellian distribution function ( f0m) as a function of

velocity component u can be written as

f0m(u) =
√

m
2πkBT

exp
(
− mu2

2kBT

)
. (1.10)

In addition, temperature anisotropies may be encountered in space plasmas when there is

a preferred direction, for instance, a strong magnetic or electric field. At times, the three-

dimensional velocity distribution function depends solely on v⊥ and v‖. As a result, the

equilibrium distribution function can be modelled as a product of two Maxwellians. In

this case, the resulting distribution is referred to as “bi-Maxwellian”. The bi-Maxwellian

distribution function ( f0bm) can also be extended in the case of a distribution drifting along

the magnetic field line at a velocity Vd , which is given by (Baumjohann and Treumann,

1997, chapter 6)

f0bm(v⊥,v‖) =
1

T⊥T 1/2
‖

(
m

2πkB

)3/2

exp

(
−

mv2
⊥

2kBT⊥
−

m(v‖−Vd)
2

2kBT‖

)
(1.11)

where v⊥ and v‖ are the perpendicular and parallel velocities, respectively. The perpen-

dicular and parallel thermal velocities are defined respectively as v‖t =
√

kBT‖/m and

v⊥t =
√

kBT⊥/m. Finally, for consistency with the kinetic definition of temperature, the

total temperature can be expressed as a function of T⊥ and T‖ (Schunk and Nagy, 2004)

T =
1
3
(T‖+2T⊥). (1.12)

In the theory of linearized waves or oscillations in a hot plasma, a function of complex

argument named “the plasma dispersion function” is often used whenever the velocity dis-

tribution function is taken to be Maxwellian. This function is defined as (Fried and Conte,

1961)

Z(ρ) = π
−1/2

∫
∞

−∞

e−t2

t−ρ
dt (1.13)
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for Im ρ > 0 and as the analytic continuation for Im ρ ≤ 0, where ρ is the argument

of the plasma dispersion function (PDF). Analytic continuation is related to the so-called

Landau contour “C” in the integral of Eq. 1.13. More information on the integration along

the Landau contour and the causality condition can be found in several plasma physics

textbooks (for example, see Krall and Trivelpiece, 1973).

1.2.3 Plasma instabilities

Several textbooks such as Treumann and Baumjohann (1997) cover the subject of plasma

instabilities extensively. For plasma instabilities to arise, there must be a positive feed-

back mechanism, or a source of free energy, which allows an initial perturbation of the

medium to grow to larger amplitudes with time. The free energy inputs can produce in-

homogeneities or gradients in the plasma configuration, or it can take the form of relative

thermal drifts between particles species, electric fields or temperature anisotropies. Con-

sequently, the plasma can attempt to redistribute this additional energy and to recover an

equilibrium state by generating plasma instabilities.

Plasma instabilities can be categorized as macroinstabilities or microinstabilitites. A

macroinstability, which can be described in terms of macroscopic (fluid) equations in the

configuration space, produce unstable arrangement of the plasma on large scales. An exam-

ple of macroinstability is the “E×B instability”, which requires an ambient perpendicular

density gradient and a perpendicular electric field in order to be triggered. Another exam-

ple is the “Kelvin-Helmholtz” instability that results from gradients in drift velocity. On

the other hand, microinstabilities occur in the velocity space and depend on the shape of

the distribution function. This thesis is mostly concerned with ion-acoustic (IA) type of

microinstabilities that includes electron-ion thermal relative drifts, ion velocity shears and

ion temperature anisotropies. In addition to IA modes, ion-cyclotron (IC) modes are also

included in the calculation of ISR spectra for magnetized plasmas (see Chap. 4).

For selected parameters that can be sources of free energy, a threshold value must be

exceeded before an instability can take place. Linear theory allows to determine whether
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a plasma is stable to small perturbation amplitudes. Stable plasmas will see their pertur-

bations eventually damped. However, when the threshold conditions are surpassed, the

wave amplitude will grow with time until some dissipation mechanisms act to quench the

plasma. To sum up, linear theory provides a tool to assess the threshold conditions for the

development of small amplitude fluctuations.

The high-latitude ionosphere is continuously provided with mass, momentum and en-

ergy of magnetospheric or solar-wind origin. As a result, a variety of plasma waves and

instabilities can be excited in the high-latitude ionosphere. Instabilities as well as other

processes create structure in the plasma density, or irregularities. In particular, it is well

established that plasma instabilities play an important role in the generation of small and

intermediate scale irregularities (scales are defined in Sect. 1.4). Irregularities can be pic-

tured as alternating regions of plasma density enhancements and depletions. These struc-

tures have scale sizes ranging from tens of kilometers down to centimeters and have been

observed at all heights. See Fejer and Kelley (1980) for a comprehensive review of ir-

regularities and Tsunoda (1988) for a review of high-latitude F-region irregularities. They

are sometimes referred to as patches, blobs, plumes or bubbles depending on the regions

and scales involved. Such irregularities can be studied using incoherent or coherent scatter

radars.

1.3 Incoherent and Coherent Scatter Radars

Both incoherent scatter radars (ISR) and coherent scatter radars (CSR) are designed to de-

tect echoes from collective scattering in the ionosphere. ISRs operate at higher frequencies

and transmit much more power than CSRs. The intent of this section is to describe how

these two techniques can be useful to study ionosphere irregularities.

1.3.1 Elements of basic radar theory

Radar systems are used extensively for the detection and location of hard targets. The EM

energy that is reflected and returned to the radar allows the determination of the target lo-
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cation (range) and also, by comparing the received echo signal with the transmitted signal,

other target-related information can be inferred. From the fundamental radar range equa-

tion, the distance factor is 1/r2 to reach the target and 1/r2 from the target back to the radar,

so the received power varies as 1/r4 (The basic radar equation can be found, for example,

in Skolnik, 2003, page 6).

Pr =
PtGAeσs

(4π)2r4 (1.14)

In Eq. (1.14), Pt and Pr are the transmitted and received power respectively, G denotes the

transmit gain, Ae is the antenna effective area, σs is the target cross-section and r is the

range. For the incoherent scatter case, the target is a volume of ionosphere plasma and

consists of multiple scatterers which “fill up” the radar beam. In this case, the ionosphere

consists of a “soft target” and the scattering will depend on the radar operating frequency.

The backscattering cross section for “beam filling” echoes can be written as σs = ηV where

η is the backscattering cross section per unit volume [m2/m3] and Vs is the scattering vol-

ume. The scattering volume V can be approximated as ≈ Ωr2∆r (Kelley, 2009, App.A),

where Ω is the beam antenna solid angle in steradians and ∆r = cτp/2 defines the range

resolution of the measurement (τp is the radar pulse length and c is the speed of light).

Since the gain of the main beam is inversely proportional to the solid angle illuminated by

the antenna G = 4π/Ω, Eq. (1.14) reduces to

Pr =
PtAeη∆r

4πr2 . (1.15)

Hence, in the case of beam filling targets, the received power varies according to 1/r2.

For coherent scatter radars, received echoes are not purely point targets, but they are not

likely to be beam filling either (in general, they tend to be extremely sensitive to the aspect

angle). As a result, we expect a variation between 1/r2 and 1/r4 depending on the nature

of turbulence (St-Maurice and Hamza, 2009). Consequently, the scattering cross-section

for coherent backscatter is typically 104–109 times greater than incoherent scattering.

1.3.2 Incoherent Scatter Radars (ISR)

Incoherent scattering is a powerful technique to estimate ionospheric macroscopic state pa-

rameters provided that the plasma is near thermal equilibrium. ISRs transmit large amounts
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of power (in the megawatt range) to the ionosphere in order to detect weak signals (in the

picowatt range) from thermal and semi-coherent plasma density fluctuations along the radar

line-of-sight. ISRs operate in the very-high frequency (VHF: 30-300 MHz) and ultra-high

frequency (UHF: 300-3000 MHz) portions of the EM spectrum. Such radar waves are al-

most unattenuated by the ionosphere however, a very small amount of energy is backscat-

tered by the electrons which act as small dipole antennas. Although most of the scattering

comes from the electrons, when the probing radar half-wavelength is larger than the Debye

length (Eq. 1.2), the presence of ions influences the motion of electrons due to electrostatic

forces and introduces some degree of coherence. In other words, electrons scatter the radar

signals, but the spectral properties are influenced by plasma waves propagating along the

radar beam. This semi-coherent scattering is also called “collective scattering”. The prin-

cipal wave components are IA waves and electron plasma (Langmuir) waves. Hence, a

typical ISR spectrum comprises of two features: the ion line and a pair of electron lines (or

plasma lines). The ion line consists of a double humped shape centered near the transmit-

ted frequency, with the two humps offset by the IA wave frequency seen by the radar. It

can be pictured as two broadened overlapping lines corresponding to Landau damped IA

waves propagating away and toward the radar probing direction (for a monostatic radar).

Figure 1.8 shows what typical ion lines look like for various plasma bulk parameters. The

electron (plasma) lines would be located at much higher frequencies (in the MHz range)

and would be much narrower.

As alluded to before, an ISR is only sensitive to plasma fluctuations matching the Bragg

conditions for scattering (more on Bragg scattering in Sect. 1.3.3). For a monostatic radar

with a probing wavenumber k0, the corresponding wave number matching Bragg condi-

tion for coherent scattering is k = 2k0 = 2π/λ where k is the Bragg wavenumber and k0 is

the radar incident wavenumber. In other words, monostatic radars detect only one spatial

Fourier component plasma density fluctuations with a wavelength equal to half the radar

incident wavelength λ = λ0/2 and propagating along the radar probing direction (or paral-

lel and anti-parallel to k).
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A large amount of information can be extracted from the ISR measured signal spec-

trum. Using a statistical approach, the theoretical spectra can be fit to the ISR raw data in

the form of autocorrelation functions in order to infer the main ionosphere state parame-

ters. For this fitting procedure to be valid, it is assumed that the plasma scattering volume

is homogeneous, near thermal equilibrium and stationary over the whole integration time.

These assumptions are not always fulfilled, for instance when the plasma is driven out

of thermal equilibrium. In other words, when the instability threshold conditions are ex-

ceeded, the calculation of ISR spectra becomes meaningless. On the other hand, when the

stability, homogeneity and stationarity conditions are met, the main inferred parameters are

the electron density, ion composition, ion and electron temperatures and the plasma drift

velocity along the radar line-of-sight. The electron density ne can be found from the total

back-scattered power, or the integral under the curve. The temperature ratio Te/Ti can be

inferred from the peak-to-valley ratio of the ion line (since the damping of IA waves de-

pends on Te/Ti). The ion temperature to mass ratio Ti/mi can be deduced from the width

of the ion line. If mi is known or assumed, then Ti and Te can be estimated. We illustrate

some effects associated with varying the previous parameters (ne,Te/Ti,Ti) on the ion line

in Fig. 1.8. These calculations were done in the case of Poker Flat ISR (449MHz). Finally,

the mean Doppler shift yields the line-of-sight plasma drift velocity. In this case, the whole

line would simply be upshifted or downshifted by the Doppler frequency without changing

the actual shape of the line.

The shape of the ISR spectrum for a stable plasma can also be modified by additional

parameters such as electron-ion relative drifts or collisions. The effect of both negative and

positive relative drifts is shown in Fig. 1.9 for the Poker Flat ISR operating at 449MHz.

In this figure, Vde is the parallel electron-ion drift and Cs is the ion-acoustic speed of the

medium. Indeed, in the presence of an electron-ion relative drift, either shoulder of the ion

feature is enhanced depending on the sign of the parallel drift.

The general expression for the ISR scattering spectrum function was independently de-

rived by several authors in the 60’s using different approaches and all leading to similar re-
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Figure 1.8: Effects of ion-to-electron temperature ratio Te/Ti (upper panel), ion temperature

Ti for a known ion mass (middle panel) and electron density ne (lower panel) on the ion line

calculated in the case of Poker Flat ISR (449MHz) and for a O+ plasma.
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Figure 1.9: Effects of a positive and negative (parallel and anti-parallel) electron drift Vde/Cs

(with respect to the ions) on the ion line calculated in the case of Poker Flat ISR (449MHz)

and for a O+ plasma. The upper panel shows how the left shoulder is enhanced with negative

drifts and the lower panel shows how the right shoulder is enhanced with positive drifts.
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sults (Dougherty and Farley, 1960, Fejer, 1960, Salpeter, 1960). Evans (1969) and Beynon

and Williams (1978) provide in-depth reviews of the development of the technique and

the basic ISR theory involved. In this work, we use the plasma kinetic formalism initially

developped by Fejer (1960) that involves the Vlasov equation to establish the equilibrium

microscopic density fluctuations. Specifically, we closely follow the detailed presentation

of Froula et al. (2010).

Afterwards, both Farley et al. (1961) and Fejer (1961) considered the effects of a uni-

form magnetic field in the calculation of the spectral power density. Indeed, they found that

the total scattered power is not affected by the magnetic field. Moreover, they showed that

the magnetic field has a significant effect on the shape of the spectrum only if the incident

radar beam is very nearly perpendicular to the magnetic field lines. For this reason, it has

been generally believed that gyroresonances effects on ISR spectra are negligible unless

the wave vector is near perpendicular to the magnetic field. The effects of a magnetic field

on ISR spectra is further discussed in Chap. 4.

1.3.3 Coherent Scatter Radars (CSR)

CSR’s operate in the high-frequency (HF: 3-30 MHz) and VHF parts of the electromagnetic

spectrum. CSR’s detect coherent scattering from enhanced non-thermal plasma fluctua-

tions or waves with amplitudes beyond thermal levels. Stated differently, it “sees” plasma

instabilities or turbulence. The three measurements of interest are the spectral power, the

Doppler shift and the Doppler spread.

As it was alluded to previously, due to conservation of momentum considerations, the

irregularity wavelength observed by a monostatic radar is one half the transmitted wave-

length. This condition is referred to as “Bragg” scattering. Irregularities tend to naturally

align themselves along the magnetic field (B0) because electrons are able to move freely

along B0 and short-circuit parallel electric fields, which is not the case for electric fields

that are perpendicular to B0. Since the optimal observing geometry for Bragg scattering is

perpendicular to B0, CSRs are very sensitive to the aspect angle. This perpendicular geom-
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etry allows reinforced scattering and consequently, the detection of strong coherent echoes.

For this reason, HF radars prove to be convenient at high-latitudes owing to the fact that

refraction can bend HF rays as they propagate through the ionosphere. Consequently, HF

rays can hit field-aligned irregularities (FAI) in a direction perpendicular to the magnetic

field. By using Doppler velocity measurements from two radars, a 2D vector quantity can

then be estimated. For example, the SuperDARN network of HF radars is commonly used

to map the high-latitude convection patterns of both hemispheres through coherent echoes

from F-region FA irregularities in the 10-20 meters band (Greenwald et al., 1995).

ISR systems can also detect non-thermal waves if they are present. For example, co-

herent echoes can often be detected when the ISR pointing direction is parallel to B0 or at

large angles with respect to the direction perpendicular to B0. In such cases, the irregular-

ities are near field-perpendicular. In this case, the power level is enhanced by more than

one order of magnitude in either or both IA peaks, well above thermal fluctuation levels.

This phenomenon is commonly named “naturally enhanced ion-acoustic line”, or NEIAL,

in the litterature. This topic is further discussed in Sect. 2.2 and Sect. 2.2.3. ISRs have also

occasionally detected F-region coherent echoes when the radar was pointing in a direction

perpendicular to B0. For example, Foster (1990) observed field-aligned coherent echoes at

300 km that looked similar to that which would be expected in the E-region (Foster, 1990,

St-Maurice, 2003). Interestingly, these field-aligned coherent echoes were located in be-

tween field lines along which NEIALs were also detected.

1.4 Small-Scale Irregularities in the High-Latitude F-Region

In this section, we further narrow the scope of the introduction to small-scale irregularities

in the high-latitude F-region in order to transition to the following chapter. This summary

is largely based on Sect. 10.3 of the textbook by Kelley (2009) and Sect. 3 of St-Maurice

and Hamza (2009). According to the former author, small-scale wavelengths are defined

to be smaller than 100 meters. This definition encompasses scales accessible to radars, i.e.

from centimeter up to decameter wavelengths, which allows them to be studied with the
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help of incoherent and coherent scatter radars. Furthermore, small-scale irregularities are

important to understand since they are known to produce amplitude and phase scintillations

of radio signals owing to diffractive scattering (Hunsucker and Hargreaves, 2002). This ef-

fect, which is particularly severe in auroral zones, results in trans-ionospheric radio signals

fading.

Most intermediate-scale irregularities (scales ranging from approximately 100 m to

30 km) in the high-latitude F-region are believed to be generated by the “E×B instability”

(also named “interchange” or “gradient-drift” by some authors). As mentionned previously,

this finger type of instability requires an ambient perpendicular density gradient and a per-

pendicular electric field to be generated. However, this macroinstability is typically stable

for wavelengths smaller than 10 meters (Kelley, 2009, page 510), unless stronger perpen-

dicular electric fields than average are present. As a result, it would be difficult to detect

wavelengths smaller than 10 meters directly produced by this mechanism. In addition

to the gradient-drift, the “current convective” instability has also been invoked (Ossakow

and Chaturvedi, 1979) when in the presence of parallel electron-ion relative drifts. Since

FACs are common at high-latitudes, the current convective instability is competing with the

gradient-drift despite the fact that it requires large parallel current densities for the onset of

instability.

Small-scale irregularities (centimeters to decameters) can be the consequence of tur-

bulent mixing, in other words, the cascade of larger structures into smaller ones. In spite

of the fact that cascading processes are seen to play an important role in the generation of

decameter structures in the F-region, as seen with in-situ rockets (for example, see Kelley,

2009), it does not imply that direct growth processes are not also involved. To explain

these small-scale irregularities in terms of direct generation mechanisms, one has to turn to

microscopic instability theories.
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1.4.1 The Doppler shift

From coherent echoes, the plasma E×B drift velocity along the radar look direction can

be inferred by assuming that the irregularities are field-aligned and that their phase speed

is zero (or small) in the E×B frame of reference. Stated differently, the irregularities are

frozen into the plasma drift and are used as tracers of the plasma E×B drift velocity. This

assumption is believed to be valid at HF because the preferred instability mechanisms

(E×B instability, current-convective instability) operating at such wavelengths have low

phase velocities (Kelley, 2009, page 510). In fact, observations have been made to verify

the assumption of F-region plasma waves drifting with the plasma using ISRs and CSRs

illuminating almost the same ionospheric volumes. For example, the early work of Ruo-

honiemi et al. (1987) provided data comparison between the HF radar at Goose Bay and

the ISR at Sondre Stromfjord. The initial comparison exhibited good agreement between

the irregularities Doppler velocities (measured by HF radar) and the cosine component of

the plasma drift velocities as measured with an ISR in the F-region. A number of subse-

quent studies have addressed the FAI drift–E×B correspondence assumption using ISR or

satellite data as a comparison (see introduction of recent article by Bahcivan et al., 2013).

In several other cases, no such agreement between plasma E×B and irregularity drift veloc-

ities was obtained so that interesting questions remain about how perfect this match should

be. A number of factors are invoked to explain these differences including contamination

by E-region echoes (e.g.: Bahcivan et al., 2013), different spatial and temporal resolutions

of the instruments (Xu et al., 2001) or positional uncertainties related to refraction of radar

rays (e.g.: Ponomarenko et al., 2009).

Besides these FAI drift–E×B discrepancy factors, linear theory predicts that non-E×B

drifting F-region plasma waves or instabilities can take place near the edge of auroral arcs,

where large thermal electron drifts are possible and also, near regions of ion velocity shears

which can be associated with ion upflows (St-Maurice et al., 2007). In those situations, it

was shown that Doppler shifts of the order of the ion-acoustic speed Cs could be introduced

in the E×B moving frame. This topic will be further explored in the following chapters.
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1.4.2 The spectral width

There are two main interpretations for the spectral width. The first one is related to the

irregularity driving process. For example, if the process that drives decameter waves (e.g:

electric field) is itself structured and turbulent, there will be a mix of spectra with various

Doppler shifts. Secondly, spectra also have an inherent width associated with the lifetime

of the individual structures. For short-lived structures, the spectrum is broader. In cases for

which the electric field is uniform and constant with time, this feature can be observed.

Irregularities resulting from direct generation processes, or instabilities, could be dif-

ferentiated as having narrower Doppler spectra, indicating that the structures are more co-

herent than usual. Put another way, narrow spectra might indicate that the structures are not

associated with cascading or strong turbulent processes. In this case, the waves could be

considered to be longer lived than usual (St-Maurice et al., 2007, St-Maurice and Hamza,

2009).

This thesis is concerned with possible direct generation scenarios behind small-scale

irregularities in the high-latitude F-region. A hierarchy of electrostatic instability theories

that involve parallel thermal drifts, ion velocity shears or ion temperature anisotropies is

presented in the following chapter.



Chapter 2

Literature Survey

This chapter provides a synthesis of published work relevant to this thesis. In Sect. 2.1,

observational results from geospace and laboratory experiments that form a motivational

basis for the present study are presented. In particular, emphasis will be on observations

that support the occurence of small-scale auroral structures, intense field-aligned current

(FAC) densities, ion velocity shears and ion temperature anisotropies in the high-latitude

F-region. Subsequently, ISR detections of naturally enhanced ion-acoustic lines (NEIAL)

will be reviewed since these phenomena also constitute an important motivation for this

thesis. In Sect. 2.2, selected examples of ion temperature anisotropies produced by numer-

ical models are first discussed. Then, a summary of electrostatic plasma instability theories,

triggered by FACs, shears, anisotropies or a combination thereof, which have been invoked

to explain high-latitude F-region irregularities, is provided. Finally, in Sect. 2.3, the objec-

tives of this thesis are laid out.

2.1 Observational Motivation

Plasma instabilities play an important role in producing small structures in the terrestrial

ionosphere. In particular, current-driven electrostatic ion-acoustic (CDEIA) instabilities

are known to contribute to high-latitude F-region electrodynamics. They are affected by

many background parameters such as FAC densities, ion velocity shears or temperature

anisotropies. In this section, we describe observations of the magnitudes of FAC density,

ion velocity shear and temperature anisotropy that could be supported by the ionosphere.

2.1.1 Field-aligned currents

Average FAC densities in the ionosphere are generally believed to be on the order of a few

µA/m2 (for example, see Kelley, 2009, p.422). However, there are many examples of paral-

lel current densities derived from in-situ measurements more than two orders of magnitude

25
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larger than average values over narrow horizontal regions of several hundred meters (St-

Maurice and James, 1996, Noël et al., 2000, 2005, St-Maurice et al., 2007, and references

therein). More recent cases of spiky and intense FACs over narrow regions have been re-

ported. For example, bursts of very intense kilometer-scale FACs were frequently observed

by the Challenging Minisatellite Payload (CHAMP) when it passed through the auroral re-

gion (Rother and Lühr, 2007). In extreme cases, Rother and Lühr (2007) estimated current

densities to be in excess of 3 mA/m2. Furthermore, in-situ observations from high precision

magnetometers onboard the Ørsted satellites inferred small-scale FAC’s several 100 µA/m2

in the cusp region and over spatial scales of a few hundred meters. They also reported some

instances in excess of 1000 µA/m2 during disturbed conditions (Neubert and Christiansen,

2003). These observations suggest that very large and localized currents densities could be

discharged over small spatial scales in the high-latitude ionosphere, while large-scale av-

erage current densities can be much lower. The presence of large parallel current densities

associated with thermal electron drifts is the simplest mechanism to date that can explain

the enhancement of either ion-acoustic shoulder in the returned power spectra that are rou-

tinely seen using incoherent scatter radars (ISR) [see Fig. 1.9].

Numerous ISR observations of NEIALs along the direction of the magnetic field (e.g.:

Foster et al., 1988, Collis et al., 1991, Rietveld et al., 1991, Sedgemore-Schulthess and St-

Maurice, 2001) suggested the presence of strong and bursty field-aligned thermal relative

drifts between electrons and ions, assuming that they resulted directly from a current-driven

electrostatic ion-acoustic (CDEIA) instability. A more detailed discussion on NEIALs and

their possible generation mechanisms will be presented in Sect. 2.2.

2.1.2 Small-scale auroral structures

In addition to FACs, there exist numerous examples of small auroral arcs of widths from

a few metres to several decameters observed from ground-based high resolution optical

cameras (e.g.: Maggs and Davis, 1968, Borovsky et al., 1991, Trondsen and Cogger, 1997,

2001, Sandahl et al., 2008). The existence of thin precipitation structures have also been

deduced from rocket and satellite measurements (see introduction by Noël et al., 2000, and
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references therein). Consequently, the detection of such small-scale features suggests the

presence of steep plasma density or velocity gradients associated with their boundaries.

CSRs have also hinted at the possibility that perpendicular density gradients with length

scales as small as 100 meters can exist in association with particle precipitation (e.g.: St-

Maurice et al., 1994).

2.1.3 Ion velocity shears

In addition to density gradients and FACs, velocity shears have been known to exist in the

high-latitude ionosphere for several decades. Two types of shear have been reported. The

first type consists of spatial derivatives in field-aligned (FA) ion drift velocities. In this

case, the spatial derivative is perpendicular to the magnetic field. Since the magnetic field

is nearly vertical at high latitudes, the gradient direction is almost horizontal. Following

the same nomenclature as Koepke et al. (2007), we name the first type of shear “parallel”

since it involves ions drifting along the magnetic field lines. This type of shear could be

associated with thermal ion upflow (TIU) processes at high-latitudes. The second type of

shear consists of gradients in perpendicular drift velocities. We will refer to these shears as

“perpendicular”. For example, at high-latitudes, shears in E×B ion drifts would fall into

the second category.

In the following chapters, we consider only shears in parallel ion drifts velocities since

we were interested to find possible linkages with ion upflows and/or NEIAL phenomena.

To our knowledge, there are very few observations in the literature that consists solely of

parallel shears. Nonetheless, numerous authors have reported simultaneous and co-located

observations of both parallel and perpendicular shears. For example, shears in FA ion ve-

locities were measured with a rocket near and inside an auroral arc at F-region heights

and in the nighttime sector (Whalen et al., 1974). During that same event, large shears in

convective flow (perpendicular shears) near the poleward boundary of an intense electron

precipitation region were also brought to notice. Moreover, satellite data from Dynam-

ics Explorer 2 (DE-2) showed evidence of moderate (∼1 Hz) and intense perpendicular
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shears (∼10 Hz), associated with electrostatic waves and observed concurrently with par-

allel shears (Basu et al., 1988). Furthermore, horizontal gradients in parallel ion flow ve-

locities, co-located with perpendicular shears, at high-latitudes and in the F-region, were

evident in the study by Loranc et al. (1991), using the same satellite payload (DE-2). As

indicated by Koepke et al. (2007), the occurence of simultaneous and co-located parallel

and perpendicular shears suggests that the generation mechanisms behind one type of shear

may be involved with the other one. TIUs associated with convection velocity shears were

reported by Tsunoda et al. (1989), using the ion drift meter instrument onboard the HILAT

satellite, in the dayside polar ionosphere and at 800 km of altitude. In addition to being

related to velocity shears in the convection pattern, the reported TIU events were spatially

coincidents with intense FACs and soft electron precipitation. Another ionospheric ion up-

flow study (Lu et al., 1992), emerging from nearly simultaneous DE-1 and DE-2 datasets,

included parallel and perpendicular shears in the ion velocities. This time, the ions out-

flows were observed over the nightside auroral regions. Furthermore, Kivanc and Heelis

(1999) undertook a statistical study of DE-2 vertical and horizontal ion drift measurements

from which both parallel and perpendicular shears were evident. The maximum shears in

perpendicular drift velocities calculated over a minimum sampled scale size of 500 m was

1.4 Hz. The authors also suggested that some instability processes using the free energy

available through sheared plasma flow configurations may have contributed to ion heating

and subsequently to ion upflows.

Several perpendicular velocity shear measurements have been reported in the litera-

ture. We briefly describe some of them for completeness even though the following sec-

tions/chapters deal with perpendicular gradients in FA ion drift velocity or parallel veloc-

ity shears. For example, an intense shear in plasma convection velocities of magnitude

20 ms−1m−1(Hz) was detected by rockets at the edge of a nightside auroral arc (Kelley

and Carlson, 1977), at altitudes ranging between approximately 250−550 km, in the same

region where FACs and broadband low-frequency electrostatic waves were also reported.

Later, the largest perpendicular shears recorded in the literature were also uncovered from

a rocket experiment (Earle et al., 1989). During that rocket flight, perpendicular velocity
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shears on the order of 25 Hz, in conjunction with broadband low-frequency electrostatic

waves (10-1000 Hz), were reported in the auroral F-region. Coordinated observations from

the Chatanika ISR and the Atmosphere Explorer C (AE-C) satellite at the poleward edge

of the auroral zone, at F-region heights and in the post-midnight sector, provided evidence

of ion velocity spikes, coincident with the convection reversal region (de La Beaujardiere

et al., 1984). The maximum velocity reached 2000 m/s. These observations hint at the

presence of parallel electric fields occuring in regions of large shears in the convection flow.

Many authors have invoked large velocity shears in parallel ion beams detected with

the Fast Auroral Snapshot Explorer (FAST) satellite in the low altitude auroral acceler-

ation region as a motivation for studying plasma instability threshold conditions based

on kinetic dispersion relations that involve Maxwellian distribution functions (e.g.: Gavr-

ishchaka et al., 1999, 2000). In one instance, Amatucci (1999) calculated parallel shears

in O+ drifts to be ∼ 10Ωi, where Ωi is the ion gyrofrequency. In another case, assuming

a spatial dependence of the ion beam energy, Gavrishchaka et al. (2000) estimated that

dVdi/dx ≈ 1.3Ωi for a O+ plasma, where Vdi is the ion drift velocity. The magnitude of

these shears is enormous compared to typical perpendicular shear values measured at lower

altitudes with rockets. Assuming an O+ gyrofrequency of approximately 200 Hz, the re-

ported parallel shears would be in excess of 2000 Hz. In contrast with the observations that

were discussed in previous paragraphs, these shears correspond to ion populations which

have undergone some energization processes, bringing their energies to a few orders of

magnitude above thermal levels. As a result, we chose to disregard these types of shear

magnitudes in our calculations since they are representative of the thermal population. A

summary of the different shears that are inferred from rocket, satellite or radar experiments

is shown in Table 2.1. This table is limited to shears that have been observed in the high-

latitude ionosphere.
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Rocket Satellite Radar V ′di⊥ V ′di‖ Refs
No Hawkeye 1 No Yes No Kintner (1976)
Yes No No Yes Yes Whalen et al. (1974)
Yes No No 20Hz No Kelley and Carlson (1977)
No AE-C Chatanika Yes Yes De La Beaujardiere et al. (1984)
No AE-D No Yes No Basu et al. (1984)
No HILAT EISCAT, Yes No Basu et al. (1986)

STARE
No DE-2 No 1,10Hz Yes Basu et al. (1988)
No HILAT No Yes Yes Tsunoda et al. (1989)
Yes No No 25Hz Yes Earle et al. (1989)
No DE-2 No Yes Yes Loranc et al. (1991)
No DE-1,2 No Yes Yes Lu et al. (1992)
No DE-2 No Yes Yes Kivanc and Heelis (1999)

Table 2.1: Summary of ion velocity shears detected by rocket, satellite or radar in the high-

latitude ionosphere. V ′di⊥ is the spatial derivative in perpendicular ion drift velocity, or “perpen-

dicular” shears, and V ′di‖ is the spatial (perpendicular) derivative in parallel ion drift velocity, or

“parallel” shears.

2.1.4 Ion temperature anisotropies

In addition to FACs, density gradients and velocity shears, temperature anisotropies may

be encountered in space plasmas when there is a preferred direction, for instance, a strong

magnetic or electric field. In the high-latitude F-region, the perpendicular ion tempera-

ture is often observed to be larger than the parallel temperature (T⊥i > T‖i). At low al-

titudes, one mechanism to heat the ions is the frictional heating of ions as they convect

through the neutral gas, in presence of a DC electric field. A review of the theory rele-

vant to ion velocity distributions in the high-latitude F-region is provided by St-Maurice

and Schunk (1979). In that work, St-Maurice and Schunk (1979) found that to lowest

order, the ion velocity distributions in the high-latitude ionosphere are better represented

by bi-Maxwellian distributions than by one-temperature Maxwellians, with different ion

temperatures parallel and perpendicular to the geomagnetic field. In particular, for the po-

larization and resonant charge exchange collision models, T⊥i > T‖i, indicating that the

ion velocity distribution decreases more slowly in the perpendicular velocity plane with

increasing ion velocity than in the parallel velocity plane. A point of interest is that ion
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distribution functions can be seriously distorted in the presence of a strong enough perpen-

dicular electric field. In fact, theory predicts that when the relative ion-neutral drifts exceed

the neutral thermal velocity, the ion distribution function in velocity space becomes toroidal

in shape (St-Maurice and Schunk, 1979). For moderate values of the relative ion-neutral

drift (Vdi/n < 0.75
√

2kBTn/mn where Tn and mn are the neutral temperature and mass), the

ion distribution is better represented by a bi-Maxwellian distribution (two temperatures)

than by a Maxwellian (St-Maurice and Schunk, 1979, Raman et al., 1981).

The first experimental indication of non-Maxwellian distributions in the auroral F-

region was provided by St-Maurice et al. (1976) using a retarding potential analyser on-

board the AE-C satellite. Later, anisotropic ion temperatures with T⊥i/T‖i ≥ 2 were ob-

served in the high-latitude F-region, using the tri-static European Incoherent Scatter (EIS-

CAT) UHF system (e.g.: Perraut et al., 1984, Løvhaug and Flå, 1986, Glatthor and Hernan-

dez, 1990). In particular, using the EISCAT UHF system, Perraut et al. (1984) found that a

bi-Maxwellian ion velocity distribution was present at 312 km of altitude and during strong

electric field events. Also, Løvhaug and Flå (1986) found ion anisotropy ratios (T⊥i/T‖i) in

the auroral F-region of 1.8 for the average situation and reaching above 2.5 in some cases.

Likewise, EISCAT radar observations at a variety of aspect angles inferred ion temperature

anisotropies in excess of 2 (Winser et al., 1987, Lockwood and Winser, 1988).

Another proposed mechanism for perpendicular ion heating is associated with plasma

waves or instabilities. For example, simultaneous European Incoherent Scatter (EISCAT)

Svalbard Radar (ESR) and EISCAT VHF observations at 665 km in the dayside cusp,

showed that ion upflows can be, at times, linked with significant ion temperature anisotropy

(e.g.: Ogawa et al., 2000). For the event considered in their paper, Ogawa et al. (2000) sug-

gested that waves heated ions transversely to an anisotropy ratio of T⊥i/T‖i ∼ 2 and as

a result, drove F-region ion upflows. Furthermore, velocity shear-driven instabilities are

a plausible mechanism for perpendicular ion heating and upflows, at least in the dayside

auroral region (Tsunoda et al., 1989, Liu and Lu, 2004). As indicated in St-Maurice and

Hamza (2009), ion outflows appear to be, at times, located on the edges of arcs, coexist-
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ing with regions of intense FAC densities, according to observations reported by Tsunoda

et al. (1989), Wahlund et al. (1992a) and Kagan and St-Maurice (2005). This suggests

that sheared current-driven electrostatic ion-acoustic (CDEIA) instabilities could take place

near the edges of auroral structures, assuming that the current is borne by thermal particles

and that the instability threshold conditions are met. Also, the existence of ion temperature

anisotropies sometimes linked with ion upflow processes is an important motivation for

investigating its possible contribution in enhancing sheared CDEIA waves and possibly,

destabilizing the plasma.

Ion temperature anisotropies were also observed in laboratory experiments (Scime et al.,

2002, Spangler et al., 2002, and references therein). In particular, laboratory experiments

demonstrated that ion temperature anisotropy can significantly increase the growth rate

of shear-driven ion-acoustic (IA) waves (Teodorescu et al., 2003, Koepke et al., 2003,

Koepke, 2004) and modify its propagation angle. The increase in growth rate with ther-

mal anisotropy suggests that the plasma was unstable to smaller critical drifts. Another ex-

periment performed in the Naval Research Laboratory’s Space Physics Simulation Cham-

ber, under plasma conditions resembling those of the natural space environment, provided

measurements of perpendicular ion heating by velocity-shear driven waves (Walker et al.,

1997). In this example, a factor of two increase in the perpendicular ion temperature was

detected.

2.1.5 Ion upflow processes

The ionosphere represents a source population of ion outflows. A substantial body of lit-

terature covers the subject of FA ion upflows and/or outflows. In this section, we can

only touch upon a few examples of ion upflow processes that were linked to temperature

anisotropies, velocity shears or a combination thereof. For a more in-depth review of the

different sources of ion outflow from the high-latitude ionosphere, we refer the reader to

the review by Yau and André (1997).
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Several ion outflow events originate from the high-altitude F-region. Other mechanisms

can operate at higher altitudes to further energize the ions into conics, beams or transversely

accelerated ions (TAI) features, to name a few. As far as thermal ion upflows (TIU) are

concerned, Wahlund et al. (1992a) divided them into two categories based on EISCAT ISR

measurements in the topside auroral F-region. Type-1 TIU events (convection-driven) are

associated with strong convection electric fields, elevated and anisotropic ion temperatures,

hardly any auroral precipitation (low electron density) and altitudes below approximately

300 km. In this case, ion-neutral frictional heating due to perpendicular electric fields is

believed to be the cause of enhanced ion temperatures, ion temperature anisotropies with

T⊥i > T‖i, enhanced pressure gradients along the magnetic field lines and consequently, up-

ward motions of the expanding thermal plasma (Loranc et al., 1991, Wahlund et al., 1992a,

Loranc and St-Maurice, 1994, Kagan and St-Maurice, 2005). Furthermore, anisotropic

ion temperature with T⊥i > T‖i can contribute to the motion of ions along the field lines

through the “magnetic mirror force” (Suvanto et al., 1989, Wahlund et al., 1992a). These

proccesses are illustrated in Fig. 2.1

Type-2 TIU events (precipitation-driven) are associated with electron precipitation and

auroral arcs, elevated electron temperature, weak convection electric fields and isotropic

ion temperatures. Type-2 FA ion outflows appear to occur more frequently than type-1

events and result in larger FA ion fluxes (Wahlund et al., 1992a). Although precipitation

(and thermal expansion) is believed to play a role in driving the upflows, the exact genera-

tion mechanism for type-2 TIU is still a subject of debate.

In contrast with Wahlund et al. (1992a)’s observations, Ogawa et al. (2000) reported

observations at 665 km in the dayside cusp, from which ion upflows were associated with

significant ion temperature anisotropies, elevated and isotropic electron temperatures and

soft particle precipitation. As mentionned in the previous section, the authors concluded

that a wave-induced transverse heating source was driving the F-region upflows.

Other authors proposed that velocity shear-driven instabilities could heat ions at lower
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altitudes and subsequently, drive ion upflows (Liu and Lu, 2004). In one particular ex-

periment, strong ion upflows with FA velocities in excess of 1 km/s were observed by the

EISCAT UHF Radar, in the dayside auroral region and at heights between 500–600 km.

Indeed, the authors ruled out precipitation and Joule heating as possible direct sources for

ion upflows due to low electron temperatures, low electron densities and because of the

presence of small electric fields and low Joule heating rates. This proposed shear-driven

source mechanism strikes one as being plausible since ion upflows associated with velocity

shears had also been reported in Hilat satellite observations, in the cusp/cleft region and at

800 km altitude (Tsunoda et al., 1989, Liu and Lu, 2004).

Finally, as stated by St-Maurice et al. (2007) and St-Maurice and Hamza (2009), iono-

spheric ion outflows also appear to be, at times, located on the edges of arcs, coexisting

with regions of intense parallel current densities, at least based on observations reported by

Tsunoda et al. (1989), Wahlund et al. (1992a) and Kagan and St-Maurice (2005). Auroral

boundaries also appear to be fertile regions for the production of NEIALs. In the following

section, we review relevant NEIAL observations.

2.1.6 Naturally enhanced ion-acoustic lines (NEIAL)

Since their discovery more than 20 years ago (Foster et al., 1988, Collis et al., 1991, Ri-

etveld et al., 1991), a substantial number of papers have been published on the subject of

NEIALs. These anomalous ISR spectra involve short-lived enhancements of either or both

IA shoulders by 1-2 orders of magnitude above thermal fluctuation levels (Sedgemore-

Schulthess and St-Maurice, 2001). Examples of NEIAL observations at different altitudes

obtained with EISCAT UHF radar are provided in Fig. 2.2. Since NEIAL shoulders co-

incide with upshifted and downshifted ion-acoustic frequencies, the scattering appears to

originate from IA waves propagating away and toward the radar probing direction. NEIALs

are seen to occur with timescales of less than 50 to 100 ms (Michell and Samara, 2010), at

altitudes that could be as low as 140 km (Rietveld et al., 1991, Sedgemore-Schulthess and

St-Maurice, 2001), and as high as 1900 km (Ogawa et al., 2006). Interferometric studies

have shown that NEIALs were associated with extremely small horizontal spatial scales
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Figure 2.1: Cartoon representation of some processes associated with ion outflows. Upwelling

(upflow) can first occur from ionosphere transverse heating and subsequently, the mirror force

leads to motion upward and outflows. Ion velocity shears associated with ion upflows have also

been observed. Adapted from a presentation by Dr.M. Zettergren during the 2013 AGU Fall

Meeting.
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Figure 2.2: Sequence of five successive intervals of EISCAT UHF spectra showing enhanced ion-

acoustic lines varying on timescales shorter than the 10 s radar integration period. Reproduced

from Rietveld et al. (1991), Sedgemore-Schulthess and St-Maurice (2001)

of a few hundreds meters or less (Grydeland et al., 2004), at an altitude of 500 km. Yet,

the generation mechanism for NEIALs is still an unresolved problem and a subject of de-

bate. Nonetheless, it appears likely that several processes play a role in the production of

NEIALs, given the various ionospheric conditions, locations, altitudes and auroral mor-

phologies under which NEIALs are detected. A thorough review of NEIALs observations

made with the Millstone Hill, mainland EISCAT and EISCAT Svalbard radars (ESR) during

the first decade, is presented in Sedgemore-Schulthess and St-Maurice (2001), along with

a description of basic ISR theory and proposed generation mechanisms. Also, a summary

of recent combined high resolution optical and radar observations with ESR and Poker Flat

ISR (PFISR) is provided in the introduction of Michell and Samara (2013).

First of all, NEIALs have been observed in the nightside auroral zone, associated with
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dynamic small-scale dark auroral structures (Michell et al., 2008). This suggests that

NEIALs may be occurring in small-scale downward current regions (DCR) associated with

these dark auroral structures (Michell et al., 2008). NEIALs were also detected near the

edges of larger scale bright auroral structures (Collis et al., 1991, Sedgemore-Schulthess

and St-Maurice, 2001, Michell et al., 2009, Michell and Samara, 2010) or at the polar cap-

auroral oval boundary region (Michell et al., 2008). Michell et al. (2008) also suggested

a possible connection between NEIALs and broadband extremely low frequency (BBELF)

wave activity, as observed in-situ by satellites and rockets at higher heights in the topside,

during similar auroral morphologies and conditions. In addition, NEIAL events often coin-

cided with elevated electron temperature and ion outflow processes (Rietveld et al., 1991,

Sedgemore-Schulthess and St-Maurice, 2001). In fact, intense ion outflows associated with

NEIALs were reported by Rietveld et al. (1991), Wahlund et al. (1992a) and Forme et al.

(1995). The ionospheric conditions behind the occurence of this type of NEIALs were very

similar to the morphology of type-2 TIU events (Wahlund et al., 1992a), as described in

Sect. 2.1.5. In these cases, ISR spectra were typically asymmetric with the downshifted

line preferentially enhanced (Forme et al., 1995, Sedgemore-Schulthess and St-Maurice,

2001). By contrast, a second type of NEIALs, occuring at altitudes below 200 km, corre-

sponds to slightly enhanced electron temperatures, no ion outflows and an apparent lack of

precipitating particles of less than 1 keV (Forme et al., 1995). In this case, both IA lines

were generally seen to be enhanced.

NEIALs have also been observed in the dayside cusp with EISCAT ESR (for example,

see Sedgemore-Schulthess et al., 1999, Buchert et al., 1999, Ogawa et al., 2000, Gryde-

land et al., 2004, Blixt et al., 2005, Ogawa et al., 2006, Lunde et al., 2007, Sullivan et al.,

2008). Often in the dayside cusp, NEIALs were observed in conjunction with “flaming”,

dynamic and thin rayed auroral forms. Several of these identified features were directly

related to the presence of low energy (10–100 eV) precipitating electrons in addition to the

higher energy population producing most of auroral emissions (Blixt et al., 2005). Several

authors argued that low energy precipitation is essential for the formation of NEIAL’s in

the dayside cusp region (Blixt et al., 2005, Sullivan et al., 2008). In contrast with Forme
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et al. (1995)’s study, enhancements in both IA shoulders were often observed at high al-

titudes above the F-region peak in the dayside cusp (Grydeland et al., 2003, St-Maurice

and Hamza, 2009). Interestingly, Ogawa et al. (2000)’s experiment demonstrated an em-

pirical relation between ion upflows and NEIAL’s however, in this case, ion temperature

anisotropies were associated with the previous two phenomena.

2.1.7 Summary of observations

We can summarize previous observations of the high-latitude ionosphere as follows:

• Small-scale auroral structures having widths of a few metres to several decameters

have been observed. NEIALs were also associated with extremely small horizontal

spatial scales of a few hundreds meters or less.

• Strong and localized parallel current densities appear to exist at times despite the

presence of much lower large-scale average current densities.

• Ion velocity shears also exist, often in association with low frequency waves near

auroral arc edges and in presence of TIUs. Several authors proposed that velocity

shear-driven instabilities could contribute in heating ions at low altitudes and produce

ion upflows.

• At low altitudes where collisions with neutrals are important, ion temperature anisotropies

with T⊥i/T‖i ≥ 2 can occur due to ion-neutral frictional heating in presence of per-

pendicular convection electric fields. Type-1 TIU events are also associated with

strong convection electric fields, elevated and anisotropic ion temperatures and low

electron density.

• Ion temperature anisotropies can also be produced at higher altitudes. One proposed

mechanism is perpendicular heating in presence of waves or instabilities.

• Type-2 TIU events are associated with electron precipitation and auroral arcs, ele-

vated electron temperature, weak convection electric fields and isotropic ion tem-

peratures. NEIAL events in the auroral zone (asymmetric with downshifted line



39

enhanced) often coincided with type-2 TIU conditions. Nonetheless, there are in-

stances of ion upflows empirically linked with significant ion temperature anisotropy

and NEIAL’s above 600 km, at least in the dayside cusp.

• Ion upflows appear to be, at times, located near the edges of arcs, coexisting with

regions of intense parallel current densities. NEIAL’s were often detected near the

edges of auroral structures or at the polar cap-auroral oval boundary region.

• Laboratory experiments have shown that ion temperature anisotropy can significantly

increase the growth rate of shear-driven ion-acoustic (IA) waves.

In conclusion, the detection of NEIALs by ISRs near the edges of auroral structures, of-

ten linked with ion upflows and parallel current densities, suggests that shear-modified

CDEIA instabilities could take place in these regions. Also, the existence of ion temper-

ature anisotropies linked with type-1 TIUs, and sometimes with type-2 conditions, is an

important motivation for investigating its possible contribution in enhancing IA waves and

possibly, destabilizing the plasma.

2.2 Theoretical Motivation

2.2.1 Estimation of temperature anisotropies from theoretical considerations and numer-

ical simulations

Numerical simulations provided evidence of ion temperature anisotropies in the auroral

ionosphere. For example, Monte-Carlo studies by Winkler et al. (1992) created tempera-

ture anisotropies T⊥i/T‖i of the order of 4/3 for NO+ colliding with O. Anisotropies were

more important for O+ colliding with O. Indeed, for electric fields in excess of 50 mV/m

the resulting anisotropies T⊥i/T‖i varied between 2.86 and 1.43 depending on composition

(Winkler et al., 1992, St-Maurice, 2003). Another Monte-Carlo simulation involving O+

ions and a mixture of O and N2 neutrals resulted in an anisotropy factor up to 1.5 depending

on the electric field strength (Gaimard et al., 1998). Furthermore, temperature anisotropies

were also generated above the neutral exobase, which corresponds to the transition region
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from a weakly ionized plasma (ion-neutral collisions cannot be neglected) to a fully ion-

ized plasma (ion-neutral collisions can be neglected). In one particular instance, tempera-

ture anisotropies were obtained above the neutral exobase as a result of simulations from

a single-component (O+) time-dependent gyro-kinetic model of the high-latitude F-region

response to frictional heating, between 500 km and 2500 km (Loranc and St-Maurice,

1994). This ion upflow model simulates the response of the passage of a flux tube, un-

der various conditions, through a spatially localized heating region for which the neutral

exobase is a discontinuous boundary between fully collisional and collisionless plasmas.

In one particular case, an anisotropy factor of T⊥i/T‖i ∼ 11 was produced after 500 s and

at an altitude of 1000 km. Anisotropies with parallel enhancements were also observed.

For the case under consideration, the ion parallel temperature increased sharply after ap-

proximately 100 s following the initial exobase heating up to transient values in excess

of 2x104 K and then decreased abruptly at approximately 200 s. Nonetheless, only tem-

perature anisotropies with T⊥i > T‖i are studied in this thesis. Based on these numerical

estimations, ion temperature anisotropies with T⊥i > T‖i are plausible in the high latitude

F-region, even at altitudes high enough that collisions with neutrals can be considered to

be unimportant.

We can estimate the ion temperature anisotropy based on theoretical considerations

from St-Maurice and Schunk (1977). The complete expressions for T‖i and T⊥i are respec-

tively
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where Qk
in is the generalised ion-neutral collisional cross section and where k is an integer

(see St-Maurice and Schunk (1979) for details), mi is the ion mass and D is the magnitude

of the ion E×B drift velocity. For O+ ions colliding with their parent neutrals O (so that

mi ≈ mn), letting M2 = D2/(2kBTn/mn), the anisotropy ratio T⊥i/T‖i in the limit for which
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M� 1 reduces to
T⊥i

T‖i
≈

1+Q(2)
in /4Q(1)
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Q(2)
in /Q(1)
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(2.3)

We use the new set of cross sections extracted from more recent Monte Carlo results by

Gaimard et al. (1998). These improved cross sections lead to enhanced accuracy of the an-

alytical temperatures that are usually based on collision models that are independent of the

relative energy between colliding particles (while the Monte Carlo calculations do not have

this limitation). From Gaimard et al. (1998), Q(2)
in /Q(1)

in ≈ 1/5 for M2� 1. As a result, Eq.

(2.3) reduces to T⊥i/T‖i ∼ 5 when the ion drifts are much larger than the neutral thermal

velocity (M2� 1). Similarly, for a moderate value of M2 ' 2, Q(2)
in /Q(1)

in ≈ 1/3 according

to Gaimard et al. (1998)’s results. In this case, from Eqs (2.1)-(2.2), the anisotropy is esti-

mated to be T⊥i/T‖i ∼ 1.8.

2.2.2 Electrostatic plasma instability theories

Plasma instabilities play an important role in producing small-scale irregularities in the

high-latitude F-region. Several competing plasma instabilities, triggered by field-aligned

drifts or horizontal shears in vertical velocity, have been invoked to explain high-latitude F-

region irregularities observed by coherent or incoherent scatter radars. In this section, we

present several linear instability theories that involve parallel thermal drifts, ion velocity

shears under local analysis or ion temperature anisotropies and we explain how this thesis

generalizes previous instability theories.

First, it is well known that a two-stream instability can arise in presence of an electron-

ion relative drift across a cold unmagnetized plasma (Buneman, 1959), given that the wave-

length is larger than the marginally stable Buneman wavelength λBun given by

λBun = 2πVde/ωpe[1+(me/mi)
1/3]−3/2

where Vde is the electron drift velocity with respect to the ion fluid, ωpe is the electron

plasma frequency and me,i is the electron/ion mass. CDEIA waves can also be excited
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when electrons having a finite temperature are drifting with respect to the ions (Fried and

Gould, 1961). The CDEIA instability as it applies to the topside ionosphere was further

investigated by Kindel and Kennel (1971). If FACs are sufficiently strong, we could expect

IA waves propagating along the direction parallel to the geomagnetic field (B0) and cur-

rent, which could translate into field-perpendicular density irregularities. As pointed out

by Kindel and Kennel (1971), ion-cyclotron (IC) waves could become unstable at a lower

relative drift threshold values, especially when Te ∼ Ti. These IC waves would propagate

in a nearly perpendicular direction with respect to B0.

The role of parallel ion velocity shears in the excitation of plasma instabilities using

a fluid theory was first investigated by D’Angelo (1965). The D’Angelo’s zero frequency

purely growing mode was recently extended to small wavelengths by Chibisov et al. (2011),

using a kinetic formalism, into the so called “Ion-kinetic D’Angelo” mode. Also, Basu and

Coppi (1988, 1989) developed a fluid theory of collisional electrostatic modes destabilized

by sheared field-aligned ion velocity. The kind of waves that were destabilized are also

near zero frequency, in the E×B frame of reference, and propagating perpendicularly to

B0. This mode is referred to as “small frequency ion shear driven instability.”

The role of parallel ion velocity shears on electrostatic IA instability eigenmodes and

threshold conditions required for the onset of instability were studied by Gavrishchaka

et al. (1998, 1999), using a kinetic theory that was developed by Ganguli et al. (1988)

in the local approximation. In particular, they suggested that infinitesimally weak veloc-

ity shears could significantly lower the threshold current of the CDEIA instability even

when Ti ∼ Te. St-Maurice et al. (2007) generalized Gavrishchaka et al. (1998)’s results by

adding collisional terms and finite Larmor radius (FLR) corrections to the isotropic kinetic

dispersion relation, which were ignored by previous authors. In St-Maurice et al. (2007)

they developed a generalized kinetic-based framework using a local expansion of a drifting

Maxwellian about a particular position in space, a procedure that differs from Gavrishchaka

et al. (1998)’s approach. By taking the fluid, weakly collisional and shear-free CDEIA limit

of St-Maurice et al. (2007)’s dispersion relation, an expression for the eigenfrequency that
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is equivalent to Ossakow and Chaturvedi (1979)’s mode when ion inertia is inserted into

the current-convective fluid derivation was obtained. The eigenfrequency of this inertial

mode free of shear in the absolute frame of reference ωA
R is given by (St-Maurice et al.,

2007)

ω
A
R = k⊥ ·V⊥0 + k‖Vdi±

k‖Cs√
k2
⊥C2

s /Ω2
i

(2.4)

where k⊥ and k‖ are the perpendicular and parallel components of the wave number re-

spectively, V⊥0 is the plasma E×B drift and Cs is the ion-acoustic speed. This frequency

mode contains a mixture of parallel IA and IC modes, which could be detected with Super-

DARN radar geometries more easily than pure cyclotron modes (wavevector nearly exactly

perpendicular to the magnetic field) or pure IA modes (wavevector along B0). The signif-

icance of this result is that it is not aspect sensitive. As long as the parallel electron drifts

are large enough, radars could observe an instability for a large range of possible direc-

tions. Consequently, the presence of such non-E×B F-region plasma waves could provide

an explanation for Doppler discrepancies between FAI and E×B velocities (see Sect.1.4.1)

by contributing an additional Doppler shift in the E×B moving frame [second term of Eq.

(2.4)].

Perron et al. (2009) systematically studied the instability threshold requirements from

St-Maurice et al. (2007)’s kinetic dispersion relation for different ion to electron temper-

ature ratios. The picture that emerged from St-Maurice et al. (2007) and Perron et al.

(2009)’s results is more complicated than what was predicted by Gavrishchaka et al. (1999).

In some cases, realistic values of ion velocity shears contribute to reduce the instability

threshold relative drift, but for very specific wave vector directions that are near perpendic-

ular to B0.

More recently, Mikhailenko et al. (2006, 2012) presented a kinetic dispersion relation

equivalent to Gavrishchaka et al. (1998, 1999) and studied the ion-cyclotron branch ana-

lytically. Mikhailenko et al. (2008) added the effects of collisions to Mikhailenko et al.

(2006)’s work, but their published kinetic dispersion relation does not include the FLR ef-



44

fects uncovered by St-Maurice et al. (2007).

Gavrishchaka et al. (1998, 1999)’s work was extended by Spangler et al. (2002), who

derived a dispersion relationship for a Maxwellian plasma that included temperature anisotropy

and shears. They showed that an ion temperature anisotropy alters the frequency modes of

the sheared CDEIA instability by solving the dispersion equation numerically. They also

demonstrated that ion thermal anisotropy increases the maximum growth rate. This re-

sult was consistent with the laboratory results of Teodorescu et al. (2003). Spangler et al.

(2002)’s findings involved numerical solutions of the dispersion relationship in terms of

real frequency and growth rate, but they did not consider threshold conditions. Perron et al.

(2013) studied the instability threshold conditions with anisotropies, for the limiting case

in which collisions are neglected and FLR corrections are small. They showed that ion

temperature anisotropy may significantly lower the drift threshold required for instability,

for a large range of aspect angles and under small and realistic shears.

In order to better picture the physics involved with each kind of instability discussed

thus far, a summary of linear electrostatic plasma instability theories that could be rele-

vant to high-latitude F-region irregularities is displayed in Fig. 2.3. The instabilities are

organized along the following categories: kinetic or fluid, presence of parallel currents

densities carried by thermal populations, ion velocity shears, ion temperature anisotropies,

collisions and FLR corrections. In this figure, the instabilities grouped under “fluid” also

belong to the “kinetic” category since fluid-like modes can be obtained as a limiting case

of the kinetic treatment (see App.A for more information). Although some of these insta-

bility theories were put together from fluid equations, a kinetic-based framework must be

used if one wishes to study instability threshold conditions in situations for which Landau

damping effects are taken into account. Hence, the kinetic formulation presented in Chap.3

regroups all the instability theories discussed previously into one single generalized kinetic

framework, which includes the possibility of temperature anisotropies and the FLR effects

brought forward by St-Maurice et al. (2007). Furthermore, this thesis expands the analysis

of Spangler et al. (2002) and Perron et al. (2013) by adding collisional and FLR effects to
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Figure 2.3: Summary of linear electrostatic plasma instability kinetic (solid line) and fluid (dashed

line) theories, in presence of parallel current densities (J‖) borne by thermals (dash-double-dot

line), shears in parallel ion velocity (Vdi‖) under local analysis (dot-line), ion temperature (Ti)

anisotropies (long-dash line, dark grey area), collisions (dash-dotted line) or FLR corrections

(short-dash line, light grey area), relevant to high-latitude F-region irregularities. The sub-

region marked with a star, which corresponds to Chap.3 of the present work, generalizes all

other theories.

the anisotropic dispersion relations.

2.2.3 Theories for NEIAL’s

Several generation mechanisms have been proposed to explain NEIALs. The simplest the-

ory is the standard CDEIA (or two-stream) instability (Kindel and Kennel, 1971), which

can be triggered when a thermal electron population is streaming at a high enough veloc-

ity with respect to the ion frame (Collis et al., 1991, Rietveld et al., 1991, Sedgemore-

Schulthess and St-Maurice, 2001). The simplest source of streaming arises from parallel

electric fields that exist in auroral precipitation regions (Sedgemore-Schulthess and St-
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Maurice, 2001). One possible way to produce the required parallel electric field is the

presence of a sharp cut-off in auroral precipitation (100-200 m horizontal scale), result-

ing in a correspondingly large conductivity gradient (St-Maurice and James, 1996, Noël

et al., 2000, 2005). Electron-ion relative thermal drifts can also be produced from FA ion

upflow motions set up by perpendicular electric fields, gradients in electron temperature

or shears in the E×B drifts (Sedgemore-Schulthess and St-Maurice, 2001). This direct

excitation mechanism agrees with the numerous observations of NEIALs near the edges

of auroral arcs rather than in the middle of the arcs. The seemingly higher NEIAL’s oc-

curence rates at elevated electron temperatures and for smaller ISR operating frequencies

(or longer wavelengths) is consistent with the notion that CDEIA instabilities are more eas-

ily triggered when Te/Ti is large and at longer wavelengths (Buneman, 1959, Kindel and

Kennel, 1971, Sedgemore-Schulthess and St-Maurice, 2001). Lastly, the frequent detec-

tions of NEIALs at high altitudes, in conjunction with higher downshifted enhancement

occurences (for example, see Fig. 10 of Grydeland et al., 2004), agrees well with the sce-

nario in which thermal electrons escape near the altitude where precipitating electrons are

stopped.

The main criticism for CDEIA is the fact that the threshold current densities have to be

several hundred µA/m2, hence 2 orders of magnitude greater than the average larger-scale

currents that have been measured by space-borne instruments. Nonetheless, such large FA

currents appear to exist at times, at least locally, as mentioned in Sect. 2.1.1. Furthermore,

although this mechanism can explain the enhancement of one IA shoulder, it fails to am-

plify both peaks in close proximity in space and time. Finally, another proposed mechanism

based on streaming instabilities relies on relative drift between two ion thermal populations

(ion-ion two stream) (Wahlund et al., 1992b).

In contrast with streaming instabilities, a third theory is based on the parametric decay

of Langmuir waves into ion-acoustic waves through the “bump-on-tail” instability (Forme,

1993, Forme et al., 1995, Forme, 1999, Guio and Forme, 2006). In this case, beams of soft

non-thermal electron precipitation of the order of a few tens of eV appear to be sufficient
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to excite the required Langmuir turbulence (Sedgemore-Schulthess and St-Maurice, 2001).

An important advantage of this theory is the capacity to enhance both IA shoulders simulta-

neously. However, it is not clear how this mode-coupling mechanism could destabilize both

upshifted and downshifted IA waves (double IA excitation) from precipitation, at least at

lower altitudes, since soft electrons should be stopped by the atmosphere at approximately

250 km (St-Maurice and Hamza, 2009). A likely scenario suggested by St-Maurice and

Hamza (2009) is that CDEIA could operate at lower altitudes while higher up, runaway

electrons could take over the currents, producing Langmuir turbulence and therefore, en-

hance both peaks. However, as described previously, NEIALs with double IA excitation

were also observed at altitudes below 200 km in the nightside auroral zone (Forme et al.,

1995). Furthermore, more complex nonlinear models on the theme of cascading from en-

hanced Langmuir waves were proposed by Kontar and Pécseli (2005) and Daldorff et al.

(2007). Diaz et al. (2010, 2011) studied beam plasma instability effects on ISR spectra and

suggested that Langmuir harmonics could be detected by a properly configured ISR.

Based on numerical simulations, Bahcivan and Cosgrove (2008) suggested that en-

hanced IA waves could be being driven by electrostatic IC waves through a two-step mech-

anism. In their paper, they also considered the effect of transverse velocity shears on the IA

instability on ISR spectra from the generalized dispersion relation developed by Ganguli

et al. (1988). However, according to their simulation results the transient gradient in the

relative magnetic field aligned drift as driven by the electrostatic IC wave had a negligible

effect on the amplitude of IA oscillations. Additionally, they considered the role of ion

temperature anisotropy in the growth of shear-modified IA waves based on the work of

Spangler et al. (2002) and Teodorescu et al. (2003). Since the shear effect as part of elec-

trostatic IC wave oscillations was not significant for a large range of angles, they concluded

that ion temperature anisotropy needs to be addressed independently from the shear effect

using an advanced higher-dimensional numerical simulation code.
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2.3 Objectives and Outline

2.3.1 Objectives

The observations and theoretical considerations described in this chapter support the notion

that intense and localized FACs that could be in excess of 1000 µA/m2, ion velocity shears

on the order of 1-20 m s−1 m−1(Hz) and ion temperature anisotropies T⊥i/T‖i on the order

of 2-5 can be sustained in the high-latitude F-region. In addition to these observations, the

generation of NEIALs is still an unresolved research topic. The clear detection from VHF

and UHF radars of coherent echoes when the wavevector is not perpendicular to the mag-

netic field (not field-aligned) suggests that unexpectedly large FACs or shears are present at

times. Therefore, it appears relevant to include additional physics by exploring the possible

contribution of temperature anisotropies in lowering the threshold requirements for sheared

CDEIA instabilities in the high-latitude F-region where collisions exist at lower altitudes.

We chose to analyze marginally stable conditions because plasma destabilisation is already

a challenging task by itself. Moreover, as far as E-region radar observations are concerned,

there is a tendency for the phase speed of the largest amplitude irregularities to saturate at

the drift threshold, at least for structures less than 10 m in size (St-Maurice and Hamza,

2009).

In terms of plasma instabilities, there is a requirement to generalize previous electro-

static theories, as shown in Fig. 2.3, into a single kinetic-based dispersion relation that

includes the possibility of temperature anisotropies and the FLR effects brought forward

by St-Maurice et al. (2007). We restricted the scope of this thesis to FA current densi-

ties borne by thermal particles before considering more complex situations involving non-

thermal populations.

The first important objective of this thesis was to investigate whether ion temperature

anisotropy could lower the threshold conditions of ion shear CDEIA instabilities in both a

collisionless and collisional F-region. To this end, we generalized the electrostatic kinetic

dispersion relationship presented by St-Maurice et al. (2007) to a bi-Maxwellian plasma



49

and we derived analytical expressions for the threshold relative drift and ion velocity shears

in the fluid limit. Moreover, we explored kinetic threshold solutions at a higher ion to

electron temperature ratio, which could better represent F-region plasmas, by numerically

solving the new kinetic dispersion relation that includes the ion temperature anisotropy.

Another objective was to study the effects of both ion velocity shears and temperature

anisotropies on the ISR spectrum density function to determine whether this additional

physics could enhance the IA spectrum. To accomplish this, we derived the ISR spectral

density function for stable, magnetized and collisionless plasmas, using a bi-Maxwellian

distribution function and following the kinetic approach presented in Froula et al. (2010).

We computed ISR spectra under various ion temperature anisotropies and velocity shears.

2.3.2 Outline of the remainder of this thesis

• Chapter 3: In this chapter, we first generalize the electrostatic kinetic dispersion

relationship of St-Maurice et al. (2007) to a bi-Maxwellian plasma and we derive an-

alytical expressions for the threshold relative drift and ion velocity shears in the fluid

limit. We then assess how CDEIA threshold conditions in the long wavelength limit

are affected by the inclusion of ion velocity shears and ion temperature anisotropies.

Finally, we discuss some implications in terms of the production of plasma irregular-

ities in the F-region and their possible observation with coherent scatter radars. The

content of this chapter has led to the following articles:

– P.J.G. Perron, J.-M. Noël, J.-P. St-Maurice and K. Kabin, Ion temperature anisotropy

effects on the dispersion relation and threshold conditions of a sheared current-

driven electrostatic ion-acoustic instability with applications to the collisional

high-latitude F-region, J. Plasma Phys., submitted 9 January 2014.

– P.J.G. Perron, J.-M. Noël, K. Kabin and J.-P. St-Maurice, Ion temperature anisotropy

effects on threshold conditions of a shear-modified current driven electrostatic

ion-acoustic instability in the topside auroral ionosphere, Ann. Geophys. 31
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(3), 451-457, 2013, doi:10.5194/angeo-31-451-2013.

• Chapter 4: In this chapter, we explore the possible contribution of additional physics

(ion velocity shears and temperature anisotropy) in modifying the incoherent scatter

spectral density function. First, we study the effects of ion temperature anisotropy on

the shear-free spectrum when ion gyroresonances are taken into account. Then, we

investigate possible spectral modifications due to the presence of ion velocity shears.

We discuss the conditions under which these calculations are valid and we explain the

implications of these results in terms of enhanced IA spectra that could be observed

with ISRs. This chapter corresponds to the following manuscript in preparation:

– P.J.G. Perron, J.-M. Noël, J.-P. St-Maurice and K. Kabin, An assessment of how

incoherent scatter radar spectra can be enhanced by small shears associated with

large drift velocity gradient scale lengths, Manuscript in prep. for J. Geophys.

Res. or Ann. Geophys.

• Chapter 5: This chapter summarizes the main results and proposes a plan for addi-

tional research to undertake.

As a final note, although the following paper is not related to the content of this thesis, the

research and writing was completed during the PhD sponsorship period:

• P.J.G. Perron, On the requirement of space weather situational awareness to achieve

effects in a joint, interagency, domestic and arctic environment, Canadian Military

Journal, submitted 14 August 2013 (Expected to be published in Fall 2014).



Chapter 3

Ion Temperature Anisotropy Effects on the Dispersion Relation

and Threshold Conditions of sheared CDEIA Instabilities in the

High-Latitude F-Region

In this chapter, we generalize the electrostatic kinetic dispersion relation presented by St-

Maurice et al. (2007) to a bi-Maxwellian plasma and we investigate how CDEIA marginal

stability conditions (zero growth rate) in the long wavelength limit are affected by ion

velocity shears and temperature anisotropies. In Sect. 3.1, we present the main deriva-

tion features leading to the final kinetic dispersion relation that includes ion temperature

anisotropy, FLR corrections and collisions, following the same procedure as set out in St-

Maurice et al. (2007). In Sect. 3.2, we study the fluid limit and we compare the results

with previous theories. In Sect. 3.3, instability threshold conditions that we obtained from

the generalized kinetic dispersion relation at higher perpendicular ion to electron tempera-

ture ratios are described. Finally, in Sect. 3.4, we summarize the main results and discuss

some implications in terms of F-region irregularity observations of coherent echoes by

ionospheric radars.

3.1 The Generalized Kinetic Derivation with Ion Temperature Anisotropy

In this section, we introduce the derivation leading to the anisotropic kinetic dispersion

relation. We follow the same procedure that was laid out in St-Maurice et al. (2007). In

other words, we perform a spatial expansion of a drifting bi-Maxwellian distribution in

the weak shear limit and we use the local approximation (kx = 0). In this model, the drift

velocity is aligned with the geomagnetic field B0 and the gradient in the drift velocity (i.e.

the shear) is perpendicular to B0, in the x-direction. The wave vector k lies in the y−z plane

at an angle θ with respect to the direction perpendicular to B0. The geometry of this model

is shown in Fig. 3.1. We have also restricted the study to shears in ion drift velocity (V ′di)

in order to relate to actual ionospheric observations associated with ion upflows processes.

51
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Figure 3.1: Geometry of the model. The drift velocity is aligned with the geomagnetic field B0

and the gradient in the drift velocity is perpendicular to B0, in the x direction. The wave vector

k lies in the y− z plane at an angle θ with respect to the direction perpendicular to B0. The

perpendicular and parallel components of k are k⊥ and k‖.

Moreover, realistic electron velocity shears appear to have a negligible effect on the shear-

free solutions (Perron et al., 2013, and references therein). Furthermore, we assume that

the electron temperature is isotropic and that the modes are electrostatic. Similarly to St-

Maurice et al. (2007)’s approach, collisional effects are described with a Bhatnagar-Gross-

Krook (BGK) particle conserving collision model (Bhatnagar et al., 1954, Froula et al.,

2010). The simple BGK collision operator is primarily used to represent electron-neutral

or ion-neutral collisional effects and, in some cases, electron–ion collisions (Froula et al.,

2010, page 59). As a result, the RHS of Boltzmann equation (1.3) takes the form(
δ f j

δ t

)
c
=−ν j

[
f1 j−

n1 j

n j
f0 j(v)

]
(3.1)

where f j is the average distribution function of species j, ν j is the collision frequency of

species j and n j is the number density of species j.

3.1.1 Derivation of the kinetic dispersion relation

We follow the same steps as St-Maurice et al. (2007), emphasising the new contributions

that originates from the use of an anisotropic bi-Maxwellian distribution function. Starting

from the linearized Boltzmann-Poisson system of equations in Fourier-Laplace space, the
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dispersion relation for electrostatic modes in a magnetized and collisional plasma is given

by
Hi(k,ω)

1+Ui(k,ω)
+

He(k,ω)

1+Ue(k,ω)
+1 = 0. (3.2)

The jth component susceptibility is

H j(k,ω) =
ω2

p j

k2

∫ +∞

−∞

dv
∫ +∞

0
ik ·

∂ f ′0 j

∂v
eib j(ξ )dξ (3.3)

where b j(ξ ) = −k · (r− r′)+ ξ (ω + iν j) and ξ = t − t ′. In the previous equations, k =

(k2
⊥+k2

‖)
1/2 is the wave number, ωp j is the jth species plasma frequency and ω is the wave

frequency. The function U j, which arises from the inclusion of the BGK collision model

(Eq. 3.1) in Boltzmann equation, is given by

U j(k,ω) =−
ν j

n j

∫ +∞

−∞

dv
∫ +∞

0
f ′0 je

ib j(ξ ) dξ . (3.4)

For the remainder of this section, we drop the subscript j to simplify the equations. In order

to account for possible differences between thermal velocities in the directions parallel and

perpendicular to the magnetic field, we select a bi-Maxwellian distribution drifting along

z for f0 j. As mentionned previously, we use the local approximation with a plane wave

ansatz in the y− z plane and we expand the drifting bi-Maxwellian around a particular

position in space to first order in x and in the weak shear limit. In this case, the vertical

drift is a function of the horizontal position x and we write

f ≈ f0bm(x)+∆x
∂ f0bm

∂x
≈ f0bm + f0bm∆xV ′d

(
m

kBT‖
(v‖−Vd)

)
(3.5)

where f0bm denotes a bi-Maxwellian distribution function, V ′d = ∂Vd/∂x is the shear in the

vertical drift velocity (Vd), T‖ is the temperature in the direction parallel to z and kB is the

Boltzmann constant. In the calculation of the H j functions, we evaluate k ·∂ f ′0 j/∂v using

the method of integration over unperturbed trajectory and the characteristics of the motion.

Keeping only the linear (average) contribution we get

ky
∂ f
∂vy

=

[
− m

kBT⊥
kyv⊥sin(Ωξ +φ)−

(
m
kB

)2 1
T‖T⊥

V ′d(vz−Vd)
kyv2
⊥

2Ω

]
f0bm (3.6)

where φ is the velocity initial angle in the x− y plane and Ω = qB/m is the gyrofrequency.

After having performed the Bessel decomposition in the exponential of the phase term and
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the angular and time (ξ ) integrations, Eq. (3.3) can now be expressed as

H =
ω2

p

k2 2π

∫ +∞

−∞

dv‖
∫

∞

0
v⊥ dv⊥∑

n

m/kBT‖
(

A+
T‖
T⊥

nΩ

)
J2

n (k⊥v⊥/Ω) f0bm

ω−|k‖|v‖−nΩ+ iν
(3.7)

where A = |k‖|(v‖−Vd)
(

1− 1
2

k⊥
|k‖|

mv2
⊥V ′d

kBT⊥Ω

)
. The v⊥ integration gives

H =
ω2

p

k2

(
m

2πkBT‖

)3/2

× (3.8)

∑
n

∫ +∞

−∞

dv‖

|k‖|(v‖−Vd)

[
Γn(b)− k⊥

|k‖|
V ′d
Ω

Γ∗n(b)
]
+

T‖
T⊥

nΩΓn(b)

ω−|k‖|v‖−nΩ+ iν
×

exp

(
− m

2kBT‖
(v‖−Vd)

2

)

where b = k2
⊥v2
⊥t/Ω2 = k2

⊥ρ2
L is the argument of the exponentially scaled modified Bessel

function of the first kind
[
Γn(b) = In(b)e−b], ρL =

√
kBT⊥
mΩ2 is the Larmor radius and

v2
⊥t = kBT⊥/m is the perpendicular thermal velocity. Note that b is different than the vari-

able b j used in Eqs. (3.3)–(3.4). The expression Γ∗n, which results from the integration of

the second term in Eq. (3.7) and accounts for additional FLR contributions (St-Maurice

et al., 2007), is given by

Γ
∗
n(b) =

[
(1−b)In(b)+bI′n(b)

]
e−b. (3.9)

For small Larmor radius corrections, or b = k2
⊥ρ2

L � 1, Γ∗n becomes ≈ Γn. The anisotropy

effects appear in Eq. (3.8) through the additional ratio T‖/T⊥ that multiplies the third term

of the integrand. Furthermore, we note that the relevant temperature in the denominator of

the H function is the parallel one (T‖).
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3.1.2 The final kinetic dispersion relation

Integrating in v‖ along the Landau contour, we can express the susceptibility for the ions

(Hi) in terms of the plasma dispersion function Z, which gives

Hi =
1

k2λ 2
Di⊥

[
T⊥i

T‖i
+∑

n
Γn(bi)

(
1√

2|k‖|v‖ti

)
× (3.10)

[
nΩi

(
1− T⊥i

T‖i

)
+ω

T⊥i

T‖i

]
Z
(

ω + iνi−nΩi√
2|k‖|v‖ti

)
−

∑
n

Γ
∗
n(bi)

T⊥i

T‖i

k⊥V ′di
|k‖|Ωi

[
1+

ω + iνi−nΩi√
2|k‖|v‖ti

Z
(

ω + iνi−nΩi√
2|k‖|v‖ti

)]]
.

where λDi⊥ is the ion perpendicular Debye length, Ωi = qiB/mi is the ion gyrofrequency

and bi = k2
⊥v2
⊥ti/Ω2

i = k2
⊥ρ2

Li. Also, in this expression, the charge for ions is assumed to

be equal to 1 since we have ionospheric applications in mind with O+ as being the major

constituent. For the electron susceptibility, since we are considering low-frequency waves

(ω �Ωe), or equivalently ρLe =
√

vte/Ωe→ 0, we get

He =
1

k2λ 2
Di⊥

T⊥i

Te

[
1+
(

ω− k‖Vde + iνe√
2|k‖|vte

)
Z
(ω− k‖Vde + iνe√

2|k‖|vte

)]
. (3.11)

The expressions for Ui and Ue are respectively

Ui =
iνi√

2|k‖|v‖ti

[
∑
n

Γn(bi)Z
(

ω + iνi−nΩi√
2|k‖|v‖ti

)]
(3.12)

and

Ue =
iνe√

2|k‖|vte
Z
(ω− k‖Vde + iνe√

2|k‖|vte

)
. (3.13)

In Eqs. (3.10)–(3.13), the parallel and perpendicular thermal velocities for ions (electrons)

are respectively v‖ti,e =
√

kBT‖i,e/mi,e and v⊥ti,e =
√

kBT⊥i,e/mi,e, Vde is the electron par-

allel drift velocity with respect to the ion frame of reference (or electron-ion relative drift)

and finally, νi,e is the ions (electrons) collision frequency with the neutrals. Indeed, the ion

temperature anisotropy modifies the ion susceptibility (Hi) expression through the correc-

tion term nΩi(1− T⊥i/T‖i). Moreover, anisotropy acts to enhance Hi since each term is

multiplied by T⊥i/T‖i. By contrast, the electron susceptibility (He) does not depend on ion

anisotropy. For shear-free situations (V ′di → 0) and small Larmor radius corrections such
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that k⊥ρLi� 1, the linear dispersion relation for electrostatic waves in anisotropic magne-

tised hot plasmas is recovered (e.g. Stix, 1992, chap. 11).

3.2 The Fluid-Like Limit

3.2.1 Fluid-like dispersion relation

In this section, we begin by studying the fluid-like limit of the ky = 0 finite-Larmor-radius

kinetic and anisotropic electrostatic dispersion relation. Following standard procedures,

we apply the small electron and large ion argument polynomial expansion to the plasma

dispersion functions Z and we use the small Debye-length approximation (kλDi⊥ → 0).

Consequently, for the n = 0 mode, T‖i/Te� 1 and to leading order in bi, Eq. (3.2), along

with Eqs. (3.10)–(3.13), reduces to

ω (ω + iνi)− k2
‖C

2
s +Aibs (ω + iνi)

2 +
k⊥|k‖|C2

s
Ωi

V ′di

(
1−2bi−2Aibs

(ω+iνi)
2

k2
‖C

2
s

)
(3.14)

+i
√

π

(
ω+iνe−|k‖|Vde√

2|k‖|vte

)
(ω + iνi)(ω + iνibi) = 0.

where Ai = T⊥i/T‖i, bs = k2
⊥C2

s /Ω2
i = bi/τ and where τ = T⊥i/Te (in the fluid-like limit

C2
s ≈ kBTe/mi.) Details on the procedure to derive the fluid-like dispersion are provided in

Appendix A. The resulting collisional fluid dispersion equation (3.14) can be compared to

its isotropic version (see Eq. (3.18) of St-Maurice et al., 2007).

Equation (3.14) generalizes several cases, which were considered in previous publica-

tions. Firstly, when FLR corrections are small (k⊥ρLi � 1) and collisions are neglected,

we recover the fluid dispersion studied by Perron et al. (2013). If we drop the influence of

temperature anisotropy (Ai→ 1), and collisional and FLR effects, the fluid-like results of

Gavrishchaka et al. (1998) are retrieved. For shear-free and isotropic situations (V ′di = 0 and

Ai→ 1), Vde ∼Cs is required to destabilize the plasma, a threshold condition in agreement

with the CDEIA instability (Kindel and Kennel, 1971). Finally, for sheared, collisional and

isotropic conditions, if we approach the zero frequency limit and for propagation angles

almost perpendicular to the magnetic field, Eq. (3.14) reduces to Basu and Coppi (1988,
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1989)’s minimum shear condition for the onset of the ion shear-driven instability, which

they derived directly a using fluid treatment.

3.2.2 Threshold conditions for a collisional, sheared and anisotropic plasma

In this section, we derive expressions for the threshold drift (Vde/Cs) and ion shear (Si =

V ′di/Ωi) associated with the fluid-limit of the generalized kinetic expression for zero growth

rate conditions. For simplicity, we further define a new shear parameter as

ζi = k⊥Si/|k‖| = Si/tanθ where tanθ = |k‖|/k⊥. Taking the real part of Eq. (3.14) yields

the following expression for the ion shears at threshold

ζi =
1− (ωR/k‖Cs)

2(1+Aibs)+Aibs(νi/k‖Cs)
2 + εt

1−2bi−2Aibs(ωR/k‖Cs)2 +2Aibs(νi/k‖Cs)2 (3.15)

where

εt = ε
ωRνi

(k‖Cs)2 (1+bi)

(
ωR

k‖Cs
− Vde

Cs

)
+νet (3.16)

and

νet = ε
νe

k‖Cs

[
(ωR/k‖Cs)

2− τbs(νi/k‖Cs)
2
]

(3.17)

and

ε =

√
πme

2mi
� 1. (3.18)

Similarly, taking the imaginary part gives the following expression for the threshold drift

Vde

Cs
=

ωR

|k‖|Cs
+

ωRνi/(kCs)
2

ε

2Aibs(1−2ζi)+1
(ωR/kCs)2−bi(νi/kCs)2 −νer (3.19)

where

νer =
νe

νi

νi

kCs

ωR

|k‖|Cs

bi +1
(ωR/k‖Cs)2−bi(νi/k‖Cs)2 . (3.20)

Note that the previous equations for the ion shears and threshold drift are coupled through

the term εt (see Eq. 3.16). Equations (3.15)–(3.20) are generalizations of the equations

published by St-Maurice et al. (2007). As stated by these authors, unless shear contribu-

tions are large and positive, adding collisions to the fluid sheared CDEIA modes tends to

put a larger requirement on the threshold conditions in terms of the relative drift. This re-

sult is expected since collisions generally produce a dampening effect on waves. There is
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a significant difference between the collisionless and collisional cases because of the am-

plification produced by the 1/ε factor in Eq. (3.19). In the present study, the anisotropy

factor multiplies four terms in the ion shear threshold expression (3.15), in addition to the

1/ε term (second) in the critical relative drift equation (3.19).

We further examine the effects of ion temperature anisotropy on the fluid-like thresh-

old conditions by plotting them for different values of the wave vector angle θ and for

Ai = T⊥i/T‖i = 1,2,5 and 10. For all calculations, we used O+ as the major ion constituent

with mi/me = 29166. In Perron et al. (2009), they presented a detailed analysis of insta-

bility threshold conditions corresponding to the isotropic case (T⊥i/T‖i = 1), in the kinetic

and collisional regime. In this thesis, since we are primarily interested in comparing thresh-

old conditions in the presence of temperature anisotropy with the isotropic case, we chose

to present curves of threshold velocity shears as a function of relative drifts for different

anisotropy ratios (Ai = 1,2,5 and 10). For a more comprehensive analysis of the instability

threshold conditions as a function of the wave vector angle, for Ai=1 and under various ion

to electron temperature ratios, we refer the reader to the publication by Perron et al. (2009).

In Fig. 3.2, we present the threshold conditions for the fluid sheared CDEIA instabil-

ity in a collisional plasma for different values of anisotropies. Similarly to previous work,

rather than solving for the frequency as a function of shears and drift parameters, the wave

frequency and the gyrofrequency were fixed to ωR/kCs = 0.5 and Ωi/kCs = 2 respectively,

and the associated threshold shears and drifts were calculated for different values of θ ,

using Eqs. (3.15)–(3.20). These input parameters were chosen in order to compare with

previous results of St-Maurice et al. (2007) and Perron et al. (2009, 2013). Also, setting

Ωi/kCs = 2 ensures that bs remains smaller than 1, for consistency with the n = 0 ion-

acoustic mode and with the FLR correction (St-Maurice et al., 2007). In Fig. 3.2, the y-axis

shows how the threshold conditions change with ion shear, while the x-axis represents the

corresponding threshold values of Vde/Cs. Each curve is traced by sweeping over the aspect

angle θ from 90◦ to 0◦. The angle θ is equal to 90◦ when the wavevector is parallel to B0

and 0◦ when perpendicular to it. It should be mentioned that there is a specific angle that
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Frequency ion to electron mass ratio Ion Gyrofrequency

ω/kCs = 0.5 mi/me = 29166 Ωi/kCs = 2

Ion collision frequency Electron to ion collision frequency ratio Angles

νi/Ωi = 0.01 νe/νi = 10 0◦ < θ = atan(|k‖|/k⊥)< 90◦

Table 3.1: Summary of parameters that have been kept constant for the calculation of instability

threshold conditions for Fig. 3.2.

does not yield a solution because of the presence of a singularity. This singularity, which

will be shown graphically hereafter, was discussed extensively in St-Maurice et al. (2007).

The selected collision frequencies for the case under study, which are representative

of F-region situations below approximately 400 km, are also identical to those of previous

work by Perron et al. (2009). The parameters that were fixed for this study are summarized

in Table 3.1.

Note that we neglected the small −Vde/Cs term in Eq. (3.16) when computing the

threshold conditions in the fluid-like limit. This contribution turned out to be non-negligeable

only for small frequencies, when ω/kCs . 0.1 (St-Maurice et al., 2007, Perron et al., 2009).

In the same fashion as the collisionless case, the validity of Eqs. (3.15)–(3.20) was con-

firmed by solving the kinetic dispersion relation (3.2), along with Eqs. (3.10)–(3.13), at low

temperature ratios (τ) and within |Si|. 1. The exact numerical solutions were in excellent

agreement with the analytical solutions for Ai = 1,2,5 and 10, in the limit τ . 0.01. For

consistency with the numerical solutions of the kinetic dispersion relation (see Sect. 3.3),

we traced those threshold curves that correspond to intermediate and large angles θ in red.

The red traces of Fig. 3.2 clearly show that anisotropies push the threshold loci up to

higher drift requirements for intermediate and large angles, as expected from Eq. (3.19)
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(except for the Ai = 10 curve that behaves differently). However, as the aspect angle ap-

proaches 0◦ (direction perpendicular to B0), past the singularity, threshold drifts and shears

become small in spite of collisions. In fact, the small angle portion (black traces) of Fig. 3.2

exhibits solutions restricted to very narrow angular intervals (fractions of a degree) that

deviates from perpendicularity by less than 10◦. It was suggested by St-Maurice et al.

(2007) that these solutions were equivalent to the small frequency ion shear driven insta-

bility (Basu and Coppi, 1988, 1989). Interestingly, in the collisional regime, increasing the

anisotropy lowers the narrow angles minima to smaller shear requirements. For instance,

an anisotropy of Ai = 2 acts to reduce the shear threshold from Si ≈ 0.22 to 0.15. To better

present how the threshold conditions vary with the wave vector angle, we have plotted the

threshold shear and drift separately in the upper and lower panel of Fig. 3.3, respectively,

as a function of angle θ . The minima in threshold drift at θ ∼ 5◦ are clearly visible in

the lower panel. The corresponding threshold shears in the upper panel are associated with

Si . 0.22. Based on this case, we are led to conclude that ion temperature anisotropies

reduce the threshold drift minima of the small frequency ion shear driven modes to smaller

shear requirements.

3.2.3 The weakly collisional shear-free and anisotropic limit

In their paper, St-Maurice et al. (2007) explored the regime ζi→ 0, ωR > νi and for which

the wave vector direction is sufficiently far from perpendicularity (k⊥/k‖� 1). They ob-

tained an eigenfrequency expression equivalent to Ossakow and Chaturvedi (1979)’s mode

when ion inertia is inserted into their fluid equations. From Eq. (3.15), we consider the

same limiting case for which ζi → 0, ωR > νin and k⊥/k‖ � 1. The resulting frequency

mode that allows ion temperature anisotropy in the frame of reference moving with the ions

is given by

ωR =
|k‖|Cs√

1+(T⊥i/T‖i)k2
⊥C2

s /Ω2
i

. (3.21)

Assuming that Cs = 1500 ms−1 in the F-region, the second term in the denominator of

Eq. (3.21) is large compared to 1 (for waves with λ ∼ 10 m), so that Eq. (3.21) can be
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Figure 3.2: Threshold conditions for the fluid sheared CDEIA instability in an anisotropic,

collisional O+ plasma using Eqs. (3.15)–(3.20). Threshold values of Si as a function of Vde/Cs

are traced for Ai = T⊥i/T‖i from 1 (solid), 2 (dashed), 5 (dotted) and 10 (dashed-dotted).

The near vertical threshold curves in red correspond to oblique waves with 30◦ . θ . 60◦, θ

decreasing from top to bottom. The threshold curves in black are associated with small angles

(θ . 30◦). Parameters that were fixed for this study are summarized in Table 3.1.
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Figure 3.3: Variation of the threshold shear Si (upper panel) and drift Vde/Cs (lower panel) with

the wave vector angle for the fluid sheared CDEIA instability in an anisotropic, collisional O+

plasma using Eqs. (3.15)–(3.20). Threshold conditions are traced for Ai = T⊥i/T‖i from 1 (solid),

2 (dashed), 5 (dotted) and 10 (dashed-dotted). The threshold curves in black are associated to

small angles (except for Ai = 10 that behaves differently). Parameters that were fixed for this

study are summarized in Table 3.1.
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simplified to

ωR ≈
|k‖|
k⊥

T‖i
T⊥i

Ωi. (3.22)

This result suggests that under shearless and weakly collisional conditions, ion temperature

anisotropy plays a role in setting the Doppler frequency shift that could be detected with

SuperDARN HF radars. Equation (3.22) predicts a lowering of frequency shift for larger

anisotropies.

From Eq. (3.19), the electron drift requirement (with respect to the ion frame) under the

same conditions becomes
Vde

Cs
=

ωR

|k‖|Cs
+

νi

ωR

1+2Aibs

ε
(3.23)

where, as in previous sections, Ai = T⊥i/T‖i. From Eq. (3.23) we conclude that ion temper-

ature anisotropy can play an important role in determining the threshold conditions of the

weakly collisional shear-free CDEIA mechanism since ε is a small quantity.

3.2.4 The small frequency anisotropic ion shear-driven instability

We now consider the zero-frequency ion-shear driven instability that was studied by Basu

and Coppi (1989), allowing for the possibility of ion temperature anisotropy with T⊥i 6= T‖i.

From Eq. (3.15), in the limit where νi�ωR or ωR→ 0, we obtain the following expression

for the shear required to destabilize the plasma

V ′di
Ωi

=
|k‖|
k⊥

1+Ai(νi/Ωi)
2(k⊥/|k‖|)2

1+2Ai(νi/Ωi)2(k⊥/|k‖|)2 . (3.24)

From Eq. (3.24), Ai lowers the shear threshold requirement by a small amount. However,

for small angles such that |k‖| � k⊥, temperature anisotropy has no effect on the shear

threshold values since in this case, V ′di/Ωi ≈ |k‖|/2k⊥. While the threshold shears might

be small near zero frequency for |k‖| � k⊥, the relative drift requirements might be large,

given that some of the denominators in Eq. (3.19) are close to zero. As indicated by St-

Maurice et al. (2007), the small frequency regime must be explored more carefully in the

limit of small aspect angles |k‖| � k⊥ before drawing definitive conclusions.
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From Eq. (3.24), if we assume that the second term in the denominator is much larger

than unity
[
2Ai(νi/Ωi)

2(k⊥/|k‖|)2� 1
]
, we obtain the following expression for the thresh-

old shear
V ′di
Ωi

=
|k‖|
k⊥

+
T⊥i

T‖i

(
νi

Ωi

)2 k⊥
|k‖|

. (3.25)

This assumption might not prove to be consistent since νi/Ωi can be very small for F-region

conditions. As a curiosity and for comparison purposes with the work of Basu and Coppi

(1989), the minimum shear condition can be obtained by differentiating Eq. (3.25) with

respect to |k‖|/k⊥ and setting the resulting expression equal to zero, which gives

tanθ =
|k‖|
k⊥

=
νi

Ωi

√
T⊥i

T‖i
(3.26)

As a result, the minimum shear threshold condition of Basu and Coppi (1989), allowing for

the presence of ion temperature anisotropy, is recovered(
V ′di
Ωi

)
min

= 2
νi

Ωi

√
T⊥i

T‖i
. (3.27)

3.2.5 The collisionless sheared and anisotropic limit

3.2.5.1 Fluid-like threshold conditions without neglecting FLR corrections

Starting from Eq. (3.15), the collisionless limit (ν→ 0) yields the following eigenfrequency

ωR = |k‖|Cs

√
1−ζi

1+Aibs(1−2ζi)
. (3.28)

Similarly, Eq. (3.19) reduces to
Vde

Cs
=

ωR

|k‖|Cs
(3.29)

allowing us to express the critical drift required for instability as a function of ion shears

and anisotropy
Vde

Cs
=

√
1−ζi

1+Aibs(1−2ζi)
. (3.30)

Expressions (3.28)–(3.30) generalize the results of Spangler et al. (2002) and Perron et al.

(2013) through the inclusion of FLR corrections. The contribution due to FLR effects is the
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factor (1−2ζi) that multiplies Aibs in the denominator of Eq. (3.28) and (3.30). This correc-

tion, which arises only in presence of shears, matters mostly for near-perpendicular modes.

Depending on the sign of the ion shears (ζi) and the angle of propagation (tanθ = |k‖|/k⊥),

the threshold drift required for the onset of instability may be elevated or reduced. Sim-

ilarly to the collisional case, there will be a specific angle that will not yield a solution

because of the presence of a singularity. The new contribution due to anisotropy comes

from the product of (1−2ζi) with Aibs. In addition to shifting the singularity at a slightly

different angle, the anisotropy factor is capable of lowering the threshold drift under small

shear values.

In Fig. 3.4, we present the threshold conditions for the sheared CDEIA instability in a

collisionless plasma for the same values of anisotropies as before (Ai = 1,2,5 and 10). On

the left hand side of Fig. 3.4, the threshold loci below Vde/Cs = 1 correspond to oblique

waves with aspect angles in the approximate range 30◦ . θ . 50◦, θ decreasing from top

to bottom. The new contribution due to FLR corrections [factor (1− 2ζi) in Eq. (3.30)]

corresponds to the threshold loci on the right hand side, which display aspect angles in the

range θ . 10◦, decreasing from top to bottom. These “small angles” curves are traced in

black in Fig. 3.4. The range of Si was reduced to . 0.1 in order to better display the thresh-

old variations with Ai. The validity of Eqs. (3.28)–(3.29) was confirmed by solving the

kinetic dispersion equation (3.2), along with Eqs. (3.10)–(3.11), at low temperature ratios

τ and within |Si|. 1. The exact numerical solutions were in excellent agreement with the

analytical solutions for Ai = 1,2,5 and 10, in the limit τ . 0.01, as expected.

Inspecting the vertical loci (red curves) on the left hand side of Fig. 3.4, there is a small

decrease of critical drift as the anisotropy factor is increased from 1 to 10, similarly to pre-

vious results with no FLR effects (Perron et al., 2013). For intermediate angles and for the

parameters considered herein, this anisotropy effect is not significantly sensitive to shears

since the threshold curves remain almost parallel to each other. Although FLR corrections

bring the threshold drift requirements up to higher values for small angles (close to per-

pendicularity), temperature anisotropy, combined with positive shears, act to reduce the
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Figure 3.4: Threshold conditions for the fluid sheared CDEIA instability in an anisotropic,

collisionless (νi = νe = 0) O+ plasma using Eqs. (3.28)–(3.29). Other parameters that were

fixed for this calculation are presented in Table 3.1. The line scheme is the same as in Fig. 3.2.

The near vertical threshold curves on the left hand side (red) correspond to oblique waves with

30◦ . θ . 50◦, θ decreasing from top to bottom. The threshold curves on the right hand side

(black) correspond to small angles θ . 10◦ decreasing from top to bottom.
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small angle threshold loci (black curves) by a significant amount. For example, a shear of

Si ≈ 0.1 is capable of lowering Vde by a factor of almost 2, assuming that Cs remains con-

stant. Nevertheless, in this case, the threshold drift requirement is still high (Vde/Cs ≈ 7.5)

and it is more likely that waves propagating at intermediate angles would become unstable

before waves propagating almost perpendicularly to the magnetic field.

To better see the variation of threshold drift with ion temperature anisotropy, we con-

sider two examples where we fix the propagation angle. Equation (3.30) is plotted in the

upper panel of Fig. 3.5 for θ = 47◦ and in the lower panel for θ = 1◦. The normalized

critical drift Vde/Cs is traced as a function of Ai for negative (Si = −0.05), zero (Si = 0)

and positive (Si = 0.05) shears. The upper panel curve exhibits a lowering of critical drift

requirement as a function of Ai in presence of negative shear. This reduction in thresh-

old drift is expected by inspection of Eq. (3.30). For comparison purposes, the zero-shear

curve, which is identical to the one presented in Perron et al. (2013), is also traced in the

upper panel. While still considering the intermediate angle (θ = 47◦) case, we see that a

combination of anisotropies and positive shears are capable of lowering the threshold drift

when Ai . 5. For example, an anisotropy ratio of ∼ 2 reduces the critical relative drift in

the presence of a small positive or negative shear. When considering wave propagation

very close to perpendicularity (lower panel), in this case θ = 1◦, both positive and nega-

tive shears enhance the decrease in the critical relative drift, especially when Ai is larger

than approximately 1.5. This decrease is shown to be more significant for positive shears.

In fact, in this particular case, Vde/Cs is decreased from approximately 3.2 to 0.6 as Ai is

doubled from 1 to 2. As a result, we are led to conclude that despite the fact that FLR

corrections increase the threshold drift requirements for wave propagation near perpendic-

ularity to B0, ion temperature anisotropy is capable, at least in some cases, of reducing the

critical drift Vde below the classical CDEIA threshold condition which is the ion-acoustic

speed of the medium Cs (Kindel and Kennel, 1971).
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Figure 3.5: Variation of critical relative drift as a function of ion temperature anisotropy for the

fluid sheared CDEIA instability in collisionless O+ plasma with Ωi/kCs = 2. Equation (3.30) is

plotted in the upper panel for θ = 47◦ and in the lower panel for θ = 1◦. Vde/Cs as a function

of Ai = T⊥i/T‖i is traced for Si from -0.05 (solid), 0 (dashed) and 0.05 (dashed-dotted).
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3.2.5.2 Fluid-like threshold conditions when neglecting FLR effects

This section corresponds to a study published by Perron et al. (2013). We only summarize

the main findings here. In that paper, we studied instability threshold conditions for the lim-

iting case in which collisions are neglected (νi,e→ 0, or equivalently Ui,e→ 0), and finite

Larmor radius corrections are small (k⊥ρLi = k⊥v2
⊥ti/Ω2

i � 1), so that Γ∗n ≈ Γn. These con-

ditions could resemble topside F-regions, at high enough altitudes where collisions could

be neglected, but below approximately 1000 km. In this limit, the kinetic dispersion pre-

sented by Spangler et al. (2002) is recovered. In their paper, Spangler et al. (2002), who

added thermal anisotropy effects to Gavrishchaka et al. (1998) dispersion relation, derived

a fluid-like mode after having performed the large ion and small electron argument expan-

sions. They concluded that the fluid-like dispersion relation for ion-acoustic waves in an

anisotropic plasma does not depend explicitly on ion temperature anisotropy. They essen-

tially obtained an expression equivalent to the isotropic case except that the relevant elec-

tron temperature was the parallel electron temperature. However, in Perron et al. (2013),

it was shown that a new fluid-like expression that depends explicitly on ion temperature

anisotropy can be derived by keeping higher order terms in the expansion. The aforemen-

tioned paper also showed that anisotropy factors lower the critical drift requirement for

instability in the quasi-fluid limit. It can be shown that in the fluid limit, the critical relative

drift becomes
Vde

Cs
=

√
1−ζi√

1+bsAi
. (3.31)

Indeed, the inclusion of ion anisotropy lowers the critical drift by a relatively small correc-

tion (
√

1+bsAi) in the denominator. The term bsAi can be re-written as (T⊥i/T‖i)k2
⊥Te/Ω2

i .

Clearly, the anisotropy ratio (T⊥i/T‖i) contributes to lower the instability critical drift, al-

though this effect will be more important when the wave vector is closer to the perpendic-

ular direction than parallel (so that k⊥ is not small). Since the balance of imaginary terms

leads to Vde/Cs = ωR/|k‖|Cs (see Eq. 3.29), the fluid-like dispersion in this limit can be

expressed as
ωR

|k‖|Cs
=

√
1−ζi√

1+bsAi
. (3.32)
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By neglecting the new contribution (
√

1+bsAi), we recover an expression similar to the

one published in Spangler et al. (2002), namely

ωR

|k‖|
=

√
kBTe

mi
(1−ζi). (3.33)

Since Spangler et al. (2002) also considered electron temperature anisotropy, the relevant

electron temperature in their expression is the parallel electron temperature.

3.3 Instability Threshold Conditions from the Kinetic Dispersion Relation

In this section, we investigate how the ion temperature anisotropy ratio Ai = T⊥i/T‖i in-

fluences the kinetic threshold curves for an ion to electron temperature ratio that is more

representative of F-region conditions than the fluid-like limit considered hereinbefore by

numerically solving the kinetic dispersion relation (3.2), along with Eqs. (3.10)–(3.13).

Similarly to the fluid study, we consider the long wavelength limit for which kλDi⊥→ 0.

We first proceed by investigating the threshold conditions in the collisionless case before

moving to a collisional situation. More details on the numerical procedure used to find

zeros of the kinetic dispersion relation are provided in Appendix B.

3.3.1 Analysis of kinetic threshold conditions in the collisionless limit

3.3.1.1 Without neglecting FLR corrections

In Fig. 3.6, we present the threshold conditions for the sheared CDEIA instability in a col-

lisionless O+ plasma with νi = νe = 0, for different anisotropy ratios Ai and for a realistic

perpendicular ion-to-electron temperature ratio of τ = 0.5. The remaining input parame-

ters are the same as the previous section (see Table 3.1). Figure 3.6 is comprised of two

branches of solutions. The existence of the two branches in the kinetic regime is consistent

with previous results from Perron et al. (2009). The first class of solutions corresponds

to modes that are very sensitive to shears with nearly perpendicular wavevectors. We fol-

low the same nomenclature as Perron et al. (2009) and name this group “lower branch”

solutions because of their lower threshold drift requirements. The second class, which we
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Figure 3.6: Threshold conditions for the sheared CDEIA instability in an anisotropic, collisionless

O+ plasma using the kinetic dispersion relation (3.2), with Eqs. (3.10)–(3.13), for τ = T⊥i/Te =

0.5. Other input parameters are as per Table 3.1. The line scheme is the same as in Fig. 3.4.

The red traces correspond to the upper branches solutions (large angles, decreasing from top

to bottom, except for the folded portions at Vde/Cs > 100) and the black curves correspond to

solutions for smaller angles (decreasing from top-left to bottom-right).

name “upper branch” solutions, refer to the modes that have more substantial deviations

from perpendicularity and greater sensitivity to drifts. To differentiate these modes graph-

ically in a manner consistent with the fluid study, upper branches solutions are traced in

red and lower branches, in black. Note that there is only one set of red curves. Indeed,

the latter curves are folded back to values of Vde/Cs in excess of 300, for angles close to

perpendicularity. This folding of the red traces is not apparent in Fig. 3.6 since it occurs

at Si much larger (and negative) than -1. Nonetheless, since we are seeking to lower the

drift requirements for possible instabilities, this portion of the red traces that involves large

threshold drifts is of little physical interest. As far as near-perpendicular modes are con-

cerned, the lower branches (black traces) are the only relevant ones.

In general, increasing the temperature ratio τ results in larger threshold drift require-

ments because of Landau damping. However, the lower branches are relatively insensitive

to τ since they are still associated with significantly smaller drifts. In comparison with
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previous results (Perron et al., 2013), this is a new effect due to FLR contributions. For

example, considering the isotropic case (Ai = 1), a shear of Si = 0.2 lowers Vde/Cs from

approximately 100 to 10 (with respect to Si = 0). Furthermore, Fig. 3.6 exhibits a lowering

of both the upper and lower branches to smaller drifts as Ai is increased from 1 to 10. For

instance, an anisotropy ratio of 2 lowers the normalized critical drift (Vde/Cs) by 50% for

near-perpendicular modes. Nonetheless, in this case, large shears with Si ∼ 0.2 are still

required to achieve reasonable threshold relative drifts on the order of Vde ∼ 5-10Cs. From

this, we can conclude that for a temperature ratio typical of F-region with τ = 0.5, Ai re-

duces the instability critical relative drift provided the wave speed ω/k is on the order of

0.5Cs and especially for modes propagating close to perpendicular to B0.

3.3.1.2 Neglecting FLR corrections

An example of kinetic threshold condition calculation in this limit is provided in Perron

et al. (2013). Indeed, we showed that, in some cases, anisotropy significantly reduces the

threshold drift for a large range of aspect angles, provided the wave speed is a fraction of

the ion-acoustic speed (ω ∼ 0.5kCs). For example, an anisotropy factor of 2 lowered the

electron drift by a factor of approximately 50 (or approximately 40%) for τ = 0.5, even

with small or no shears.

3.3.2 Kinetic threshold conditions for a collisional plasma

In Fig. 3.7, we present the threshold conditions for the sheared CDEIA instability in a col-

lisional O+ plasma for τ = 0.5 for the same parameters as before (Table 3.1). Similarly

to the collisionless case (Sect. 3.3.1), two branches of solutions exist in the kinetic regime.

The “lower branch” solutions are traced in black and the “upper branch” ones in red.

In the same way as the collisionless scenario, increasing the temperature ratio τ pushes

the threshold loci up to higher drifts. Interestingly, in contrast with the fluid regime, the
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Figure 3.7: Threshold conditions for the sheared CDEIA instability in an anisotropic, collisional

O+ plasma using the kinetic dispersion relation (3.2), with Eqs. (3.10)–(3.13), for τ = 0.5.

Parameters that were held constant are as per Table 3.1. The line scheme is the same as in

Fig. 3.6. The red traces correspond to the upper branche solutions (large angles, decreasing from

top to bottom, except for the folded portions at Vde/Cs > 100) and the black curves correspond

to solutions for smaller angles (decreasing from top to bottom).
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effect of anisotropy on the “upper branches” mode is to lower the threshold drift require-

ments. For example, the critical relative drift Vde/Cs in zero-shear situations is decreased

from approximately 150 to 100 as Ai is increased from 1 to 2. Assuming that Cs ∼ 1500

m/s, thermal electron drifts on the order of 150 km/s would still be required at threshold, a

value that seems very high but not impossible based on recent reported FAC density mea-

surements (assuming a plasma density of n = 1× 1011m−3, a relative drift of 150 km/s

would be equivalent to a current density of ∼ 2.4 mA/m2). Therefore, for a temperature

ratio typical of the F-region and for collisional situations, ion temperature anisotropy can

lower the threshold drift required for the onset of CDEIA modes, with substantial deviation

from perpendicularity.

In contrast with the “upper branches”, the lower branch solutions are relatively insen-

sitive to τ , although the drift threshold minima are shifted up to slightly higher shears

as compared with the fluid case (Fig. 3.2). Nonetheless, in a fashion similar to the fluid

regime, increasing the anisotropy lowers the narrow angle minima of the small frequency

ion shear driven mode to smaller shear requirements (the near-horizontal black curves are

shifted to smaller values of Si as Ai is increased). For example, minimal critical drifts could

be achieved in presence of anisotropies Ai ∼ 2− 10 and shears Si ∼ 0.1− 0.4. Assum-

ing a gyrofrequency of Ωi ∼ 300 s−1, V ′di ∼ 30-120 m s−1 m−1 would still be required

at threshold, a shear magnitude that appears to be larger than what has been observed to

date in the high-latitude ionosphere. In the following section, we will investigate whether

smaller shear threshold requirements for instability can be obtained by reducing the wave

frequency since the fluid study indicated that the threshold conditions of the low-frequency

ion shear-driven instability were mainly controlled by shears.

3.3.3 Reduction in threshold conditions when lowering the wave frequency under isotropic

and anisotropic conditions

In Fig. 3.8, we present the kinetic threshold conditions corresponding to the “lower branches”

as we reduce the wave frequency, under isotropic and anisotropic conditions with Ai =2

and for τ =0.5. A summary of input parameters used here is provided in Table 3.2. In
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Figure 3.8: Reduction in threshold shear (associated with drift minima) when lowering the wave

frequency under isotropic Ai =1 (solid) and anisotropic conditions with Ai = T⊥i/T‖i =2 (dashed),

and for τ =0.5. Si as a function of Vde/Cs is traced only for the lower branches solutions with

θ . 35◦ for ω/kCs =0.5 (black), 0.3 (red) and 0.1 (dark blue). The cyclotron and collision

frequency parameters are as per Table 3.2.

Fig. 3.8, we show Si as a function of Vde/Cs for ω/kCs =0.5 (black), 0.3 (red) and 0.1 (dark

blue) and for Ai = 1 (solid) and 2 (dashed). As expected, the decrease in frequency brings

the threshold drift minima closer to zero shear. Additionally, a plausible ion temperature

anisotropy of Ai = 2 contributes to the reduction in shear thresholds, although by a smaller

amount as the wave frequency approaches zero. For example, threshold shears Si <0.1 can

be attained for wave frequencies ω/kCs . 0.3 with ion anisotropies on the order of Ai ∼ 2.

Hence, for Ωi ∼ 300 s−1, our study suggests that V ′di < 30 m s−1 m−1 could be required at

threshold. As we lower the frequency to ω/kCs =0.1, the blue trace shows that the effects

of anisotropy on the threshold conditions becomes vanishingly small. Interestingly, this

effect is in line with what would be expected from the fluid expression (3.24) in spite of the

fact that our calculations are not exactly complying with νi� ωR.
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Frequencies ion to electron mass ratio Ion Gyrofrequency

ω/kCs = 0.5,0.3,0.1 mi/me = 29166 Ωi/kCs = 2

Ion collision frequency Electron to ion collision frequency ratio Angles

νi/Ωi = 0.01 νe/νi = 10 0◦ < θ = atan(|k‖|/k⊥). 35◦

Table 3.2: Summary of input parameters considered in Sect. 3.3.3.

3.3.4 Physical significance of varying the ion temperature anisotropy ratio

In this section, we discuss the physical significance of varying the ion temperature anisotropy

ratio (Ai = T⊥i/T‖i). A similar consideration was presented by Spangler et al. (2002) and

described in terms of real frequency and growth rate. In our calculations, we used normal-

ization parameters that differ from those of Spangler et al. (2002) since we were interested

in comparing our results with those of St-Maurice et al. (2007). The numerical solutions for

the critical drift were normalized with the total ion-acoustic speed, using the total ion tem-

perature expression Ti = (T‖i +2T⊥i)/3 (See Appendix B for more details). This permitted

the expression of the kinetic dispersion relation in terms of dimensionless quantities such

as τ = T⊥i/Te and Ai. Also, for given dimensionless input parameters, this normalization

procedure allowed the comparison of solutions under various anisotropies while assuming

that the total ion-acoustic speed remains constant.

In our computation of threshold conditions in the kinetic regime, we have held the per-

pendicular ion to electron temperature ratio τ constant while varying the anisotropy ratio

Ai. Indeed, from Eq. B.2 (Appendix B), increasing Ai while keeping τ constant would be

equivalent to reducing T‖i and increasing T⊥i as well as Te, assuming that Cs remains con-

stant. The increase in T⊥i affects the ion susceptibility Hi (Eq. 3.10), in addition to Ui (3.12),

through the argument of the modified Bessel function bi = k2
⊥v2
⊥ti/Ω2

i . However, since bi

is small for the ion-acoustic branch that we have considered herein, the effect of increasing
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T⊥i on the instability threshold conditions should be also small, at least for large values of

the wave vector angle. On the other hand, the effect of reducing T‖i on Hi enters through the

denominator of the argument of the plasma dispersion function Z. Furthermore, by taking

the limit for which kλDi⊥→ 0, or equivalently kλDe,i‖→ 0, we can express the dispersion

relation such that Hi/(1+Ui)+He/(1+Ue) = 0. In this case, the relevant scaling factor

between Hi and He becomes Ai/τ = Te/T‖i. Therefore, we are led to a conclusion similar

to Spangler et al. (2002) in that the lowering of instability threshold conditions might be

explained, at least partly, by the reduced ion Landau damping that would be expected in a

plasma with a lower parallel ion temperature with respect to the electron temperature.

We investigated the effects of varying the ion temperature anisotropy Ai = T⊥i/T‖i while

keeping the ratio Ai/τ = Te/T‖i constant on the kinetic threshold conditions. Put another

way, the perpendicular ion to electron temperature ratio τ was increased by the same factor

as Ai. This allows the verification of the contribution of Te/T‖i in reducing the instability

threshold conditions in presence of anisotropy. In Fig. 3.9, the threshold values of Si as

a function of Vde/Cs are traced for both the lower branches (black) with θ . 25◦ and the

upper branches (red) for Ai = 1,τ = 0.25 (solid); Ai = 2,τ = 0.5 (dash); and Ai = 4,τ = 1

(dot). As expected, under this restriction, increasing Ai does not contribute significantly

in reducing Vde/Cs for modes propagating in directions far from perpendicular to B0 (red

curves). Depending on the angle, the threshold drift is slightly upshifted or downshifted

near Vde/Cs ∼ 100. On the other hand, for θ . 25◦ (black curves), the effect of increasing

Ai is similar to the results of Sect. 3.3.2. Indeed, increasing Ai leads to a reduction of the

drift minimum to smaller shear requirements. Therefore, we are led to conclude that for

directions close to perpendicular to the geomagnetic field, the increase in T⊥i plays a role

more important than reducing the ratio T‖i/Te in setting the conditions for instability.

3.4 Summary and Relevance to HF radar observations of ionospheric ir-
regularities

In this chapter, we presented a new generalization of sheared and current-driven electro-

static ion-acoustic instability that includes ion temperature anisotropy, collisions and FLR
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Figure 3.9: Effects of varying the ion temperature anisotropy Ai = T⊥i/T‖i while keeping the

ratio Ai/τ = Te/T‖i constant on the kinetic threshold conditions for ω/kCs = 0.5. Ion velocity

shears Si as a function of Vde/Cs is traced for both the lower branches (black) with θ . 25◦ and

the upper branches (red) for Ai = 1,τ = 0.25 (solid); Ai = 2,τ = 0.5 (dash); and Ai = 4,τ = 1
(dot). The cyclotron and collision frequencies are as per Table 3.2

corrections. This theory generalizes several mechanisms that have been proposed for the

direct generation of decameter waves in the F-region.

We derived the final dispersion relation by considering electrostatic fluctuations and we

used the local approximation (kx = 0) in the weak shear limit. Also, we assumed quasi-

neutrality, isotropic electron temperature, zero electron velocity shears and we allowed the

ion temperature to be different in the direction parallel, T‖i, and perpendicular, T⊥i, to the

magnetic field. Then, we investigated how the instability threshold conditions are affected

by this new anisotropy consideration in the long wavelength (kλDi⊥→ 0) limit. The main

findings are summarized.
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3.4.1 In the topside F-region

In the topside ionosphere where we can neglect the influence of collisions, we have seen

that, under fluid-like conditions, both ion temperature anisotropy and shears are capable

of lowering the instability threshold drift requirements for oblique modes below the ion-

acoustic speed of the medium

Vde =Cs

√
1−ζi√

1+bsAi
.

When FLR effects are included and for realistic anisotropy ratios, the instability appears

to favor modes that are not propagating in a direction close to perpendicular to B0. This

mechanism might contribute to the excitation of non field-aligned ion-acoustic waves that

could be observed with ISRs, provided that the FAC densities are large enough.

As Te increases to a realistic value of 2T⊥i, the kinetic study showed that ion temper-

ature anisotropy reduces the instability threshold drifts for a large range of intermediate

aspect angles with respect to the direction perpendicular to the magnetic field. When FLR

corrections are taken into account, anisotropies lower the threshold drift requirements for

waves propagating almost perpendicularly to the geomagnetic field. Nevertheless, large ion

velocity shears are required in order to attain threshold relative drifts on the order of

Vde ∼ 5-10Cs.

3.4.2 In the collisional F-region

In general, due to the dampening effect of collisions, the critical relative drifts are increased

by approximately one order of magnitude. However, small drift and shear threshold condi-

tions can be obtained in spite of collisions. In this case, the instability is restricted to very

narrow angular intervals, close to the direction perpendicular to the geomagnetic field. This

mode appears to be related to the small frequency ion shear driven instability discussed by

Basu and Coppi (1988, 1989). In the fluid limit, anisotropies play a role in lowering the

threshold conditions solely for modes close to being field-aligned, or propagating in a direc-
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tion near perpendicular to the geomagnetic field. In fact, temperature anisotropies reduce

the narrow angle threshold drift minima to smaller shear requirements.

When considering the weakly collisional shear-free and anisotropic limit

(ζi → 0, ωR > νi) for which the wave vector direction is sufficiently far from perpendic-

ularity (k⊥/k‖� 1), we have shown that the resulting inertial low frequency mode in the

absolute frame and in presence of ion temperature anisotropy is

ω
A
R = k⊥ ·V⊥0 + k‖Vdi±

|k‖|Cs√
1+(T⊥i/T‖i)k2

⊥C2
s /Ω2

i

.

For SuparDARN applications at 10 meters, assuming that Cs ∼ 1500 ms−1 in the F-region,

the expression (3.34) can be simplified to

ω
A
R = k⊥ ·V⊥0 + k‖Vdi±

|k‖|
k⊥

T‖i
T⊥i

Ωi. (3.34)

Hence, under shearless and weakly collisional conditions, ion temperature anisotropy with

T⊥i > T‖i would lower the Doppler frequency shift that could be detected with SuperDARN

HF radars. Once again, its aspect angle is such that the Doppler shift compared to the mov-

ing plasma is a substantial fraction of the ion acoustic speed. This mode would therefore

not be seen to be drifting with the bulk perpendicular plasma flow. This mode would still

require large parallel relative drifts [see Eq. (3.23)].

For a temperature ratio typical of F-region (T⊥i/Te = 0.5), the anisotropy plays a role

in lowering the threshold conditions of both the CDEIA mode, with substantial deviation

from perpendicularity, and the small frequency ion shear-driven modes near perpendicular

to the geomagnetic field. We found that increasing the ion temperature anisotropy low-

ers the narrow angle threshold drift minima to smaller shear requirements. Moreover, the

threshold drift minima are further reduced to very small shear conditions for waves oscil-

lating a lower frequencies. As a result, our study showed that V ′di < 30 ms−1m−1 could

be required at threshold, assuming that Ωi ∼ 300 s−1, for wave frequencies ω/kCs . 0.3

and with ion anisotropies of the order Ai ∼ 2. These modes have a ideal geometry to be

observed with the Super Dual Auroral Radar Network (SuperDARN) array of HF radars,
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which are pointing almost perpendicularly to the geomagnetic field. Nonetheless, these

modes would be very aspect sensitive since they are restricted to very narrow angular in-

tervals. In those situations, the Doppler shifts in the E×B moving frame would indeed be

small (∼ 45 s−1 for λ = 10 m and Cs ∼ 1500 ms−1). Nevertheless, this could account for

discrepancies between the line-of-sight drifts and the line-of-sight component of the E×B

drift of the order of several hundreds ms−1. To our knowledge, there has not been a defini-

tive experimental study of this possibility.

In closing, ion temperature anisotropy modifies the dispersion and threshold conditions

of sheared and collisional CDEIA waves and instabilities. These instabilitites could take

place, for instance, near the edges of auroral arcs, in presence of ion upflows and large par-

allel current densities. More importantly, realistic ion temperature anisotropies contribute

to reduce the instability threshold velocity shears that are associated with relative drift min-

ima for modes propagating almost perpendicularly to the geomagnetic field. Small shear

thresholds that seem to be sustainable in the ionospheric F-region are obtained for low-

frequency waves. Hence, this instability in the presence of ion temperature anisotropy

might play a role in the direct generation of near field-aligned irregularities in the colli-

sional F-region.



Chapter 4

Effects of Ion Temperature Anisotropy and Shears on

Theoretical Incoherent Scatter Radar (ISR) Spectra in the

Topside High-Latitude F-Region

In the previous chapter, it was shown that ion temperature anisotropy modifies the dis-

persion and threshold conditions of sheared CDEIA instabilities. In collisional situations,

ion temperature anisotropies contribute for the most part to reduce the threshold condi-

tions of modes restricted to a very narrow angular interval and propagating in a direction

near perpendicular to the geomagnetic field. Hence, this instability could play a role in

the direct generation of near field-aligned irregularities that could potentially be observed

with coherent HF radars. However, higher up in the topside ionosphere, we showed that

the presence of ion temperature anisotropies (or at least the variation in the parallel ion to

electron temperature ratio) lowers in some cases the threshold drift requirements for waves

that are not necessarily field-aligned. In these cases, the instability would be propagating

in oblique directions or close to being parallel to the magnetic field. This reduction in

threshold conditions is particularly relevant for the present thesis since we are interested in

possible generation mechanisms behind coherent ion-acoustic echoes, or NEIAL’s, which

are more often than not observed along the magnetic field or at large angles compared to

the perpendicular. Therefore, owing to our interest in lowering the threshold conditions and

to simplify the analysis, we chose to neglect the damping of small density fluctuations due

to collisions.

In this chapter, we explore the possible contribution of additional physics (ion velocity

shears and temperature anisotropy) in modifying the spectral density function (SDF). Al-

though our original motivation is related to possible additional contributions in the CDEIA

generation mechanism of NEIALs, using the linear theory only permits the computation of

the SDF for a stable plasma. Nevertheless, these theoretical tools allow us to gain more

insight on the extent for which the ISR spectrum can be affected by additional physics be-

82
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fore the onset of microturbulences. In the process, we will investigate how the presence

of a magnetic field affects ISR spectra especially for small aspect angles. In contrast with

Chap. 3, we do not restrict our study to the IA branch. In other words, the argument of the

exponentially scaled modified Bessel function of the first kind k2
⊥ρ2

Li is not limited to� 1,

so that we ought to keep additional terms in the summation. First, we study the effects of

ion temperature anisotropy on the shear-free SDF when ion gyroresonances are taken into

account. Then we investigate possible spectral modifications that are due to the presence

of ion velocity shears.

4.1 Basic Theory

In this section, we follow the kinetic approach for the theoretical calculation of ISR spectra

given by Froula et al. (2010). The scattered power Ps within frequency range dω and solid

angle dΩ is proportional to the spectral density function S(k,ω)

PsdωdΩ ∝ n0eS(k,ω) (4.1)

where n0e is the unperturbed electron density. The SDF is defined as

S(k,ω) = lim
γ→0,V→∞

2γ

V

〈
|ne(k,ω− iγ)|2

ne0

〉
(4.2)

where k is the difference between scattered and incident wavevectors (k = ks−ki), ω is the

frequency shift of the scattered radiation from the incident radiation (ω = ωs−ωi), γ is the

wave growth rate, V is the scattering volume and ne(k,ω− iγ) is the Fourier transform in

space and Laplace transform in time of the fluctuating electron density. The brackets denote

the ensemble average. Hence, the net scattering comes from the plasma fluctuations, which

can be related to the Fourier-Laplace transform of the electron density.

4.1.1 Unmagnetized spectrum

The term “unmagnetized” does not mean that the unperturbed ion motion is not gyrating

aroung magnetic field lines, but rather that the external magnetic field does not interfere



84

with the characteristics of the ion density fluctuations through ion gyroresonances (Raman,

1980). In taking the ensemble averages, the most probable initial velocity distribution

functions, f0i(v,0) and f0e(v,0), are used as weighting factors. An expression for the

fluctuating density, ne(k,ω−iγ), can be derived by performing a Fourier-Laplace transform

of the Vlasov equation (Eq. 1.8). If the charges are initially uncorrelated, the cross terms

in the ensemble average are zero (Froula et al., 2010, page 53), and then

S(k,ω) =
2π

k

∣∣∣1− χe

ε

∣∣∣2 fe0

(
ω

k

)
+

2πZ
k

∣∣∣χe

ε

∣∣∣2 fi0

(
ω

k

)
(4.3)

where Z is the ion charge, ε = 1+ χe(k,ω)+ χi(k,ω) is the longitudinal dielectric func-

tion in an unmagnetized plasma and χ j is the permittivity of species j. The first term is

the electron component and the second term corresponds to the ion component. The col-

lective effects are contained in the longitudinal dielectric function ε . The SDF will be

enhanced significantly when |ε|2 is small, or at the natural resonances of the plasma. In the

unmagnetized case, these resonances correspond to the electron plasma frequency and the

ion-acoustic resonance. It should be emphasised that the previous expression for S(k,ω) is

also valid for initial nonequilibrium velocity distributions provided that the plasma is close

to equilibrium (Froula et al., 2010, page 53). For example, we can include the effects of a

relative drift between populations or temperature anisotropy as long as the calculations for

the SDF are done for a stable plasma.

4.1.2 Magnetized spectrum with ion gyroresonances

Assuming the plasma is initially close to equilibrium and the charges of which are uncor-

related, the SDF for a magnetized O+ plasma (with a charge Z = 1) can be expressed as

(Froula et al., 2010, p.284)

S(k,ω) = 2 lim
γ→0

γ

(∣∣∣∣1− He

ε

∣∣∣∣2 ∫ ∞

−∞

dv∑l J2
l (k⊥ρLe) fe0(v)

(ω− k‖v‖− lΩe)2 + γ2 + (4.4)

∣∣∣∣He

ε

∣∣∣∣2 ∫ ∞

−∞

dv∑m J2
m(k⊥ρLi) fi0(v)

(ω− k‖v‖−mΩi)2 + γ2

)
where J(k⊥ρL j) is the Bessel function of the first kind and ρL j is the jth species Larmor

radius. The longitudinal dielectric function is ε = 1+He(k,ω)+Hi(k,ω) and H j is the

permittivity of species j in a magnetized plasma.
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Incident wavelength Magnetic field Plasma density

λ0 ≈ 1.34 m B = 0.6×10−4 T ne = 1×1011 m−3

Electron temperature Ion to electron mass ratio Collision frequencies

Te = 2000 K mi/me = 29166 νe = νi = 0

Table 4.1: Summary of parameters that have been kept constant in the calculation of ISR

spectra for EISCAT VHF at 224MHz.

4.1.3 Comparison of magnetized and unmagnetized spectra

Calculations of ISR spectra were done for EISCAT VHF radar, located near Tromsø,

at a latitude of ∼ 66◦. Among the incoherent scatter radars operating at high-latitudes,

the signal emitted by EISCAT VHF has the longest wavelength. Since IA waves are

more easily destabilized at longer wavelengths, this choice should provide interesting ex-

amples of ISR spectra that are more enhanced than spectra corresponding to larger fre-

quencies (smaller wavelengths). In the case of EISCAT VHF, the incident wavelength is

λ0 = c/ f0 = 300/224 ≈ 1.34 m. As we discussed in Chap. 1, for a monostatic radar with

a probing wavelength λ0, the corresponding wavelength matching Bragg condition for co-

herent scattering is λ = λ0/2. Hence, EISCAT VHF radar is looking at waves modes

propagating along the radar line-of-sight having a wavelength of ≈ 0.67 m. A summary of

parameters that were fixed for our calculations in this chapter are presented in Table 4.1.

It is generally believed that the effects of the magnetic field are important only when

the radar probing direction is almost perpendicular to the magnetic field B0 (for example,

see Farley et al., 1961, Froula et al., 2010). For perpendicular directions, gyroresonance

effects would be recognized through the appearance of Bernstein modes modulating the

spectrum. This is illustrated in Fig. 4.1 where we compare the theoretical SDF for the

EISCAT VHF radar in unmagnetized and magnetized Maxwellian O+ plasmas at several

wave vector angles. Indeed, the shape of the spectrum in a magnetized plasma begins to
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Figure 4.1: Comparison of theoretical EISCAT VHF 224MHz normalized SDF in unmagnetized

(blue) and magnetized Maxwellian plasmas at θ = 30◦ (dash grey), 5◦ (gold), 2◦ (purple) and

1.7◦ (aquamarine). Equation (4.3) was used to compute the unmagnetized spectrum (blue) and

Eq. (4.4) for the magnetized ones. Other input parameters are as per Table 4.1.

deviate significantly from the unmagnetized case when θ = 5◦. The Bernstein modes are

noticeable at θ = 2◦ and are clearly evident for smaller angles.

4.2 Ion Temperature Anisotropy Effects on ISR Spectra

4.2.1 Derivation of the spectral density function S(k,ω) for bi-Maxwellian plasmas with

ion gyroresonances

Using a drifting Maxwellian distribution function for the electrons

f0e(v) =
(

m
2πkBTe

)3/2

e−mv2
⊥/2kBTee−m(v‖−Vd)

2/2kBTe (4.5)

and a bi-Maxwellian for the ions

f0i(v) =
(

m
2πkB

)3/2 1

T⊥iT
1/2
‖i

e−mv2
⊥/2kBT⊥ie−mv2

‖/2kBT‖i (4.6)
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the previous integrals of the electron and ion components in Eq. 4.4 can be re-written

respectively as∫
∞

−∞

dv∑l J2
l (k⊥ρLe) fe0(v)

(ω− k‖v‖− lΩe)2 + γ2 = (4.7)

(
βe

π

)3/2 ∫ 2π

0
dφ

∫
∞

0
v⊥dv⊥∑

l
J2

l (k⊥ρLe)e−βev2
⊥

∫
∞

−∞

dv‖e
−βe(v‖−Vde)

2

(ω− k‖v‖− lΩe)2 + γ2

where βe = me/2kBTe = 1/2v2
te, ρLe =

√
vte/Ωe, and∫

∞

−∞

dv∑m J2
m(k⊥ρLi) fi0(v)

(ω− k‖v‖−mΩi)2 + γ2 = (4.8)

β⊥i

√
β‖i

π3/2

∫ 2π

0
dφ

∫
∞

0
v⊥dv⊥∑

m
J2

m(k⊥ρLi)e−β⊥iv2
⊥

∫
∞

−∞

dv‖e
−β‖iv2

‖

(ω− k‖v‖− lΩe)2 + γ2

where β‖i = mi/2kBT‖i = 1/2v2
‖ti, β⊥i = mi/2kBT⊥i = 1/2v2

⊥ti and ρLi =
√

v⊥ti/Ωi. Using

the usual identity for the integrals of Bessel functions (Watson, 1944, p.396), Eq. (4.4)

becomes

S(k,ω) = 2 lim
γ→0

γ

(∣∣∣∣1− He

ε

∣∣∣∣2
√

βe

π
∑

l
Γ(be)

∫
∞

−∞

dv‖e
−βe(v‖−Vde)

2

(ω− k‖v‖− lΩe)2 + γ2 (4.9)

+

∣∣∣∣He

ε

∣∣∣∣2
√

β‖i
π

∑
m

Γ(bi)
∫

∞

−∞

dv‖e
−β‖iv2

‖

(ω− k‖v‖−mΩi)2 + γ2

)

where be = k2
⊥ρ2

Le and bi = k2
⊥ρ2

Li = k2
⊥v2
⊥ti/Ω2

i is the argument of the exponentially scaled

modified Bessel function of the first kind, following the same nomenclature as in Chap. 3.

The previous integrals for the electron and ion components can be re-written, respectively,

as ∫
∞

−∞

dv‖e
−βe(v‖−Vde)

2
(

βe
k2
‖

)
(v‖
√

βe− (ω− lΩe)
√

βe/k‖)2 +(γ
√

βe/k‖)2
(4.10)

and ∫
∞

−∞

dv‖e
−β‖iv2

‖

(
β‖i
k2
‖

)
(v‖
√

β‖i− (ω−mΩi)
√

β‖i/k‖)2 +(γ
√

β‖i/k‖)2
. (4.11)

Using the following identity (Froula et al., 2010, p.386)∫
∞

−∞

f (v)dv
(v− zRe)2 + z2

Im
=

π

zIm
f (zRe) (4.12)
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the integration over v‖ gives

S(k,ω) =

√
2π

k‖vte

∣∣∣∣1− He

ε

∣∣∣∣2 ∑
l

Γ(be)e
−
(

ω−k‖Vde−lΩe
√

2k‖vte

)2

+

√
2π

k‖v‖ti

∣∣∣∣He

ε

∣∣∣∣2 ∑
m

Γ(bi)e
−
(

ω−mΩi√
2k‖v‖ti

)2

.

(4.13)

For ω � Ωe or ρLe → 0, the spectrum in the ionosphere is affected only by ion gyrores-

onances since the electron Larmor radius is very small compared with the probing wave-

length (Raman, 1980). In this case, the l 6= 0 terms in Eq. (4.13) become negligeable,

Γ0(be)→ 1, and we write

S(k,ω) =

√
2π

k‖vte

∣∣∣∣1− He

ε

∣∣∣∣2 e
−
(

ω−k‖Vde√
2k‖vte

)2

+

√
2π

k‖v‖ti

∣∣∣∣He

ε

∣∣∣∣2 ∑
m

Γ(bi)e
−
(

ω−mΩi√
2k‖v‖ti

)2

(4.14)

This result is equivalent to the expression that was derived by Shume (2000) using a differ-

ent approach. However, Shume (2000) studied the effects of temperature anisotropies on

the ISR gyro lines and did not consider anisotropy effects on the ion line.

4.2.2 Electrostatic dispersion relation for bi-Maxwellian plasmas

As indicated before, the electrostatic dispersion relation in a magnetized hot plasma, which

corresponds to the zeros of the dielectric function, is given by

ε = 1+He(k,ω)+Hi(k,ω) = 0. (4.15)

From Eqs. (3.10) and (3.11), by taking the collisionless (νi,e→ 0) and shear-free (Si→ 0)

limit, the ion susceptibility becomes

Hi =
1

k2λ 2
Di⊥

[
T⊥i

T‖i
+∑

n
Γn(bi)

(
ω√

2|k‖|v‖ti

)(nΩi

ω

(
1− T⊥i

T‖i

)
+

T⊥i

T‖i

)
Z
(

ω−nΩi√
2|k‖|v‖ti

)
(4.16)

where, in this case, bi = k2
⊥v2
⊥ti/Ω2

i , and the electron susceptibility is

He =
1

k2λ 2
Di⊥

T⊥i

Te

[
1+
(ω− k‖Vde√

2|k‖|vte

)
Z
(ω− k‖Vde√

2|k‖|vte

)]
. (4.17)
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4.2.3 Computation of ISR spectra for stable plasmas under various ion temperature

anisotropies

Inspecting Eq. (4.14), it appears that ion temperature anisotropy will contribute to S(k,ω)

through the dielectric function ε in the denominators of both terms. Also, the relevant

temperature in the argument of the modified Bessel function of the first kind, bi, is the per-

pendicular temperature, T⊥i, whereas the relevant thermal velocity in the denominator of

the second term (as well as in the denominator of the exponential) is the parallel tempera-

ture.

We undertook the computation of the EISCAT VHF (224MHz) SDF for different anisotropies

(Ai = 1,2 and 3) and in a direction close to parallel to the magnetic field, in this case

θ = 80◦. In all our computations of Eqs. (4.14) and (4.16), we included terms in the sum-

mation of Bessel functions up to order n = 200. This proved to be sufficient since the terms

become vanishingly small for n & 50.

An example of ISR spectrum calculation is shown in the upper panel of Fig. 4.2. Indeed,

for the same total ion temperature, Ti, both IA peaks are enhanced as the anisotropy ratio

increases. This is probably due to the fact that, by increasing T⊥i/T‖i, we are effectively re-

ducing the ratio T‖i/Te. This explanation goes along with the expected reduced ion Landau

damping associated with a lower parallel ion temperature with respect to the electron tem-

perature. Since we have ISR observations in mind, this example raises the question of how

to properly interpret ISR data acquired along a particular line of sight. The distribution

function being anisotropic, the ”temperature” should also change with the radar probing

direction. In the following section, we compare this result with unmagnetized spectra that

would be associated with the effective temperature along the radar line of sight.
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Figure 4.2: Variation of the EISCAT VHF 224MHz normalized SDF in a magnetized Maxwellian

plasma with the ion temperature anisotropy ratio Ai = T⊥i/T||i. Equation (4.4) is traced in the

upper panel for Ai from 1 (solid), 2 (dashed) and 3 (dotted). The equivalent effective ion

temperature Ti f [Eq. (4.18)] is also indicated in the upper panel. In the lower panel, the SDF

in an unmagnetized plasma [Eq. (4.3)] is plotted for Ti from 1000K (solid), 618.1K (dashed)

and 454.4K (dotted). In both panels, θ = 80◦ and Vde/Cs = 0. Other parameters are as per

Table 4.1.
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4.2.4 Using the critical angle to remove the ambiguity between effective and total ion

temperatures

In their analysis, Raman et al. (1981) neglected ion gyroresonance effects in presence of

a magnetic field assuming that the radar probing direction was more than 15◦ away from

perpendicularity. In other words, they considered both the electrons and the ions to be

“unmagnetized”. In this case, they showed that SDF’s for bi-Maxwellian ion velocity dis-

tributions are functionally similar to Maxwellian distributions, with the effective ion tem-

perature, Tif, along the radar line-of-sight replacing the true ion temperature (Raman et al.,

1981). The effective ion temperature along the line of sight is related to the parallel and

perpendicular temperatures via the following equation (Raman et al., 1981)

Ti f = T‖icos2
φ +T⊥isin2

φ (4.18)

where φ is the angle between k and B0. From Eqs. (1.12) and (4.18), we find that Ti = Tif

when φ = φc = 54.7◦ or equivalently, when the aspect angle (with respect to the direction

perpendicular to B0) is θ = 35.3◦. This critical angle proves to be useful since the ambi-

guity between the effective temperature and the true (average) temperature can be removed.

In the lower panel of Fig. 4.2, we plotted the SDF in an unmagnetized plasma [Eq. (4.3)]

using the equivalent effective ion temperatures, Ti f , that are associated with θ = 80◦. Sur-

prisingly, comparing the ISR spectrum in the upper panel with the one in the lower panel,

we find that they are effectively similar. We have verified this result for several aspect an-

gles that are large enough. Consequently, we confirm that the assumption made by Raman

et al. (1981) is in fact valid, namely that ion gyroresonance effects can be neglected even

for a bi-Maxwellian plasma, at least when the radar probing direction is far from orthogo-

nal to B0.

This previous result is presented differently in Fig. 4.3 where we computed the SDF

for Ai = 1 and 2, but this time, at the critical angle. Indeed, this example shows that the

presence of ion temperature anisotropy is in fact unimportant at the critical angle since the

radar is measuring the same total ion temperature. In the following section, we explore
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Figure 4.3: Theoretical EISCAT VHF 224MHz normalized SDF in a magnetized Maxwellian

plasma [Eq. (4.4)] at the critical angle θ = 35.3◦. The blue curve corresponds to an isotropic

ion temperature with Ti = T⊥i = T||i = 1000K. The red-dashed trace corresponds to an anisotropy

ratio of Ai = 2 with Ti = 1000K, T⊥i = 1200K and T||i = 600K. Other parameters are as per

Table 4.1.

whether an anisotropic plasma could influence the spectrum for small aspect angles.

4.2.5 Effects of ion temperature anisotropies on ISR spectra for small aspect angles

Figure 4.4 shows the normalized SDF [Eq. (4.4)] at θ = 2◦. The blue curve corresponds

to an isotropic ion temperature with Ti = T⊥i = T||i = 1000K. The green trace corresponds

to an anisotropy ratio of Ai = 2 with Ti = 1000K,T⊥i = 1200K, T||i = 600K and with an

effective ion temperature of Ti f = 1199.3K. The red line corresponds to an isotropic ion

temperature with Ti = T⊥i = T||i = Ti f = 1199.3K. By comparing the green and red curves,

it is evident that, for angles close to perpendicular to B0, the spectrum “seen” by the radar

(green) would be very different than the expected spectrum associated with the effective

ion temperature. In this case, the effect of ion temperature anisotropy is to enhance the

contribution from the gyroresonances. This enhancement in the Berstein modes might be

an indication that the plasma could become unstable under the Harris instability mechanism
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Figure 4.4: Theoretical EISCAT VHF 224MHz normalized SDF in a magnetized Maxwellian

plasma [Eq. (4.4)] at θ = 2◦. The blue curve corresponds to an isotropic ion temperature with

Ti = T⊥i = T||i = 1000K. The green trace corresponds to an anisotropy ratio of Ai = 2 with

Ti = 1000K,T⊥i = 1200K, T||i = 600K and with an effective ion temperature of Ti f = 1199.3K.

The red line corresponds to an isotropic ion temperature with Ti = T⊥i = T||i = Ti f = 1199.3K.

Other parameters are as per Table 4.1.

in an anisotropic plasma (Harris, 1959, 1961). Indeed, McCune (1965) had shown that the

plasma can be unstable when the perpendicular temperature is larger than the parallel one

(T⊥ > T‖) (see also the review by Hall et al., 1965). This type of instability occurs near

cyclotron frequency and its harmonics. We chose not to investigate this effect any further

since there are very few ISR applications or observations near perpendicularity to B0 to our

knowledge.

4.3 Ion Velocity Shears Effects on ISR spectra

In this section, we investigate how the presence of ion velocity shears could modify the

shape of ISR spectra. It was suggested by Gavrishchaka et al. (1998) that the critical drift

for the CDEIA instability is reduced significantly if there is a transverse gradient in the rel-

ative magnetic field aligned drift. However, it has been shown in St-Maurice et al. (2007)

and Perron et al. (2009) that the situation is more complicated than previously claimed for
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realistic shears and that instability threshold conditions are highly variable depending on

wave vector angle. At any rate, the ion susceptibility function Hi is modified by shears

and it appears worthwhile to study how it might affect the shape of ISR spectra for stable

modes. To this end, we must first determine the range of validity associated with the theo-

retical assumptions used to calculate the SDF for a weakly inhomogeneous plasma.

The local approximation allows the derivation of linear susceptibilities that are in-

dependent of position x for weakly inhomogeneous plasmas. According to Gary and

Schwartz (1980), the local approximation in the case of velocity gradients requires that

λ = 2π/k < ε
−1
Vd j

where εVd j = (1/Vd j)dVd j/dx is the inverse “drift velocity gradient” scale

length. Stated differently, the condition Lsk > 1 must be satisfied, which means that the

spatial scale length (Ls) associated with the hydrodynamic drift velocity gradient must be

larger than the probing radar half-wavelength Ls > λ . In order to observe plasma collective

effects, the probing half-wavelength must be larger than the Debye length. Hence, the pre-

vious condition can be further refined such that Ls > λ > λDi. Finally, in accordance with

the local theory, the wave vector is aligned in a plane perpendicular to the spatial inhomo-

geneity (kx = 0). This assumption would translate into having a radar looking in a direction

perpendicular to the gradient in field-aligned drift velocity.

Since we assume that the plasma is initially close to equilibrium, we neglect the effects

of correlations in the initial state (Froula et al., 2010, page 53). This assumption also re-

quires that the radar averaging integration time be larger than plasma characteristic time

scales such that T � 1/ωpe (Froula et al., 2010, page 57). In a manner consistent with the

local approximation, we assume that the shears are small. Therefore, in taking the ensem-

ble average, we use a Maxwellian velocity distribution as the most probable initial state of

the velocity weighting factor.

Swartz et al. (1988) investigated the spectral effects of large perpendicular velocity

shears, unresolved within the radar scattering volume or time integration, in an attempt

to find an alternative explanation to non-Maxwellian interpretation of spectral shapes. In
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other words, they simulated an ISR spectrum that included the effects of unresolved shears.

As pointed out by St-Maurice (2003), the main criticism for this study was the likely wrong

assumption that Maxwellians provided valid description of the radar cross section in sit-

uations of mesoscale turbulence. A similar proposal was made by Knudsen et al. (1993)

in an effort to explain large ion temperature anisotropies observed with EISCAT. In this

case, the authors suggested that turbulent plasma flows with peak amplitudes of ∼ 2km/s

unresolved within the scattering volume or time integration can explain the ion temperature

amplitudes and anisotropy. Once again, this work was criticized based on the premise that

a Maxwellian is an adequate starting point for the description of the velocity distribution

(St-Maurice, 2003). Nevertheless, these papers showed that mesoscale shears affect ISR

scattering through a convolution of spectra over a range of differing velocities.

In contrast with the previous studies, we consider smaller shears that are associated

with larger gradient scale lengths. To be on the safe side, the velocity gradient scale length

should be larger than the scales associated with the scattering volume, so that the homo-

geneity assumption is almost fullfiled. In ballpark numbers, the gradient should be larger

than a few tens of km, depending on the altitude and range gate under consideration. In

addition, for our analysis to be valid, the shears must be small enough for the plasma to

be described with Maxwellian distribution functions. In addition, the shears and the drift

velocities ought to be small enough for the plasma to remain stable, allowing the computa-

tion of SDF locally. In other words, we investigate how the presence of large-scale velocity

gradients could influence the properties of S(k,ω) before the onset of microturbulences.

4.3.1 Electrostatic dispersion relation for sheared and Maxwellian plasmas

In this section, we limit our study to the case where νi,e → 0, or equivalently Ui,e → 0,

Ai = T⊥i/T‖i → 1 and for which the argument of the modified Bessel function is small
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(k⊥ρLi = k⊥v2
ti/Ω2

i � 1), so that Γ∗n ≈ Γn. As a result, Eq. (3.10) is reduced to

Hi =
1

k2λ 2
Di

[
1+∑

n
Γn(bi)

(
ω√

2|k‖|vti

)
Z
(

ω−nΩi√
2|k‖|vti

)
− (4.19)

∑
n

Γn(bi)
k⊥V ′di
|k‖|Ωi

(
1+

ω−nΩi√
2|k‖|vti

Z
(

ω−nΩi√
2|k‖|vti

))]
The previous equation can be further simplified using the fact that ∑n Γn(bi) = 1. Hence,

the ion susceptibility becomes

Hi =
1

k2λ 2
Di

[
1−

k⊥V ′di
|k‖|Ωi

+∑
n

Γn(bi)

(
ω√

2|k‖|vti
Z
(

ω−nΩi√
2|k‖|vti

)
− (4.20)

k⊥V ′di
|k‖|Ωi

(
ω−nΩi√

2|k‖|vti

)
Z
(

ω−nΩi√
2|k‖|vti

))]
.

From Eq. (4.17), in the isotropic limit (Ti = T⊥i = T‖i), the electron susceptibility reads

He =
1

k2λ 2
Di

Ti

Te

[
1+
(ω− k‖Vde√

2|k‖|vte

)
Z
(ω− k‖Vde√

2|k‖|vte

)]
. (4.21)

The dispersion relation is obtained by setting the dielectric function equal to zero: ε =

1+Hi +He = 0. Before proceeding to compute ISR spectra, we first search for minima

in the magnitude of the dielectric function ε that could be associated with ISR spectra en-

hancements.

In the regime relevant to ISR spectra (in this case, the Bragg scale corresponds to

λ ≈ 0.67 m), after having studied the morphology of the dielectric function ε , we found

that no zeros could be obtained at least for the shear magnitudes considered here. This

means that shears alone are not sufficient to destabilize the plasma. Nonetheless, the ε

function contains minima that are in some cases associated with realistic shear values. We

first study the behavior of the dielectric function at several angles of the wave vector with-

out the presence of a relative drift. In Fig. 4.5, we plotted the logarithm of the magnitude

of the dielectric function ε as a function of real frequency ω and shears Si = V ′di/Ωi, at

θ = 60◦ (upper panel), θ = 50◦ (middle panel) and θ = 40◦ (bottom panel), using Eqs.

(4.20)-(4.21). Indeed, despite the fact that the minima are located in regions where the

shears are large with Si & 0.3, the magnitude of ε is lowered for a large range of shears
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at ω/kCs ∼ 1.5. This reduction in |ε| should lead to an enhancement of the SDF at this

frequency as compared with shearless situations. We also note that minima are moved to

lower shears as the aspect angle θ decreases.

As the wave vector angle is further reduced, the minima are moved to regions for which

the shears can be as small as Si . 0.3. This is illustrated in Fig. 4.6 where the logarithm

of |ε| is plotted for θ = 30◦ (upper panel), θ = 20◦ (middle panel) and θ = 10◦ (bottom

panel). At these aspect angles, we should expect greater enhancement of IA shoulders in

presence of shears Si . 0.3. This will be investigated in the following section.

In Fig. 4.7, we plotted the logarithm of |ε| for very small aspect angles that correspond

to directions that are almost perpendicular to the geomagnetic field: θ = 5◦ (upper panel),

3◦ (middle panel) and 2◦ (bottom panel), still using Eqs. (4.20)–(4.21). Interestingly, an

important minima corresponding to zero frequency is now present in the region for which

Si . 0.2. Hence, we should expect an enhancement of the zero Doppler portion of the

ISR spectrum when looking in directions close to perpendicular to B0. This might be

related to the zero-frequency shear-driven waves near perpendicularity that were discussed

in Chap. 3.

4.3.2 Computation of ISR spectra for stable plasmas under various ion velocity shears

From Eq. (4.14), the SDF in the isotropic limit (Ti = T⊥i = T‖i) becomes

S(k,ω) =

√
2π

k‖vte

∣∣∣∣1− He

ε

∣∣∣∣2 e
−
(

ω−k‖Vde√
2k‖vte

)2

+

√
2π

k‖vti

∣∣∣∣He

ε

∣∣∣∣2 ∑
m

Γ(bi)e
−
(

ω−mΩi√
2k‖vti

)2

(4.22)

where bi = k2
⊥v2

ti/Ω2
i and where Hi and He are given by Eqs. (4.20)–(4.21). Figure 4.8

shows an example of computation of ISR spectra for various small shears at the low-

frequency range that corresponds to the ion line (IA fluctuations). The spectra are still

double-humped similarly to the shearless version. For the same set of bulk plasma param-

eters such as Te, Ti or ne, the area under the curve is increased by a factor of 2.57 as Si is

varied from 0 to 0.3, indicating stronger total scattered power. Since the dielectric function
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Figure 4.5: Search for minima in the the logarithm of the magnitude of the dielectric function

(ε = 1+Hi +He) in presence of ion velocity shears Si = V ′di/Ωi. Calculations were done for a

Maxwellian plasma, in the case of EISCAT VHF 224MHz, at θ = 60◦ (upper panel), θ = 50◦

(middle panel) and θ = 40◦ (bottom panel), using Eqs. (4.20)–(4.21). Other parameters are as

per Table 4.1.
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Figure 4.8: Effects of ion velocity shears on the theoretical EISCAT VHF 224MHz normalized

SDF for a Maxwellian plasma at θ = 50◦. Eq. (4.4) is traced for Si =V ′di/Ωi from 0 (solid), 0.1
(dashed), 0.2 (dotted) and 0.3 (dash-dot). Other input parameters are as per Table 4.1.

ε is in the denominator of the ion term [second term of Eq. (4.22)], an increase in the scat-

tered power is expected when |ε| → 0, that is, near the IA resonances of the plasma which,

in this case, are modifed by shears. In addition, the spectral peaks are slighly upshifted and

the peak-to-valley ratio is also augmented along with shears. The enhancement in the peak-

to-valley ratio could lead to an overestimation of the electron-to-ion temperature ratio Te/Ti

when fitting the spectrum with a shearless dielectric function (this will be further explored

in Sect. 4.3.3). Similarly, the increase in spectral width could lead to an overestimation of

the ion temperature to mass ratio Ti/mi, or simply the ion temperature for equal ion masses.

To explain these ISR spectrum modifications due to shears, we have solved numerically

the dispersion relation, ε = 1+Hi +He = 0 along with Eqs. (4.20)–(4.21), in terms of real

frequency ωR/kCs and damping rate γ/kCs (imaginary frequency). These roots are indi-

cated on Fig. 4.8 and associated with each spectral peak using an arrow. Indeed, the real

frequencies are upshifted as compared with the shearless spectrum and coincide well with

spectral peaks. Moreover, the damping rates are weaker (smaller negative value) than the

shearless case. This might explain the deepening of the valley between the two spectral
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Figure 4.9: Effects of positive ion velocity shears on the theoretical EISCAT VHF 224MHz

normalized SDF for a Maxwellian plasma at θ = 50◦. Equation (4.4) is traced as a contour plot

for 0≤ Si =V ′di/Ωi ≤ 0.4. Other input parameters are as per Table 4.1.

peaks.

In Fig. 4.9, we show the effects of positive ion velocity shears on the normalized SDF

at θ = 50◦ by tracing Eq. (4.4) as a contour plot for 0 ≤ Si = V ′di/Ωi ≤ 0.4. The spectral

peaks enhancement with positive shears is clearly visible, in addition to the upshift in peak

frequency. In contrast with these results, Fig. 4.10 shows how the SDF is modified by neg-

ative shears under the same conditions. In this case, we notice a flattening of the spectrum

for larger negative shears. This result is consistent with the fact that Hi (and |ε|) increases

with negative shears as per Eq. (4.20).

In Fig. 4.11, we show how the SDF varies with the wave vector angle. In this ex-

ample, we fixed the shears to Si = V ′di/Ωi = 0.1 and we plotted Eq. (4.4) for 10◦ ≤ θ =

atan(|k‖|/k⊥) ≤ 80◦. This contour plot shows that the effects of shears are increasingly

important for directions close to perpendicular to B0. This can be understood from the

fact that in Eq. (4.20), the normalized shear values Si = V ′di/Ωi are multiplied by the ratio
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normalized SDF for a Maxwellian plasma at θ = 50◦. Equation (4.4) is traced as a contour plot

for 0≤ Si =V ′di/Ωi ≤ 0.4. Other input parameters are as per Table 4.1.

k⊥/|k‖|. Hence, the contribution of shears on ion susceptibility becomes larger in direc-

tions closer to perpendicular to the magnetic field.

In Fig. 4.12, we present another example of computed ISR spectra at a smaller wave

vector angle (θ = 30◦) in an attempt to find greater enhancements/modifications of the

SDF. The normalized SDF (Eq. 4.22) is traced at θ = 30◦ and for Si = V ′di/Ωi from 0

(solid), 0.1 (dashed), 0.2 (dotted) and 0.25 (dash-dot). As shown in Fig. 4.6, we should

expect significant spectral enhancements when Si ∼ 0.25 since this region is nearing a min-

ima of the dielectric function ε . In this case, for the same set of parameters (Te, Ti or ne),

the area under the curve is increased by a factor of 15.18 as Si is varied from 0 to 0.25.

This example shows that a velocity shear of Si ∼ 0.2 is sufficient to enhance both spectral

peaks by an order of magnitude. In addition, the spectral peaks are upshifted significantly

and the peak-to-valley ratio is also increased by a significant amount. The upshifts in real

frequency are in good agreement with the roots of the dispersion relation obtained numer-

ically and indicated in Fig. 4.12. Also, the deepening of the valley between the spectral
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Figure 4.11: Theoretical EISCAT VHF 224MHz normalized SDF in a Maxwellian plasma for

which Si =V ′di/Ωi = 0.1. Equation (4.4) is traced as a contour plot for 10◦≤ θ = atan(|k‖|/k⊥)≤
80◦. Other input parameters are as per Table 4.1.

peaks is consistent with the damping rates, except at Si = 0.25. In this case, we notice

that the damping rate is increasing (larger negative value), suggesting that the plasma is

becoming more stable. A close look at the upper panel of Fig. 4.6 shows that at Si = 0.25,

some portions of the spectrum correspond to a region slightly past the minimum in |ε| (this

can be seen by tracing a horizontal line at Si = 0.25).

In summary, the previous figures suggest that under proper conditions, small perpen-

dicular shears in parallel ion drift velocities, associated with “large” gradient scales, could

be a meachanism leading to double peaks enhancement in ISR spectra, or NEIALs. Never-

theless, such spectra would be difficult to observe since they would be very sensitive to the

aspect angle, in other words, the radar probing direction would need to be at an oblique an-

gle of approximately 30−40◦ with respect to the direction perpendicular to B0 in order to

detect an order of magnitude enhancement in spectral power. Despite the fact that NEIALs

have been observed at oblique angles (for example, with Milestone Hill radar), more often

than not, they are detected when the radar is looking almost parallel to the geomagnetic
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Figure 4.12: Effects of ion velocity shears on the theoretical EISCAT VHF 224MHz normalized

SDF for a Maxwellian plasma at θ = 30◦. Equation (4.4) is traced for Si =V ′di/Ωi from 0 (solid),

0.1 (dashed), 0.2 (dotted) and 0.25 (dash-dot). Other input parameters are as per Table 4.1.

field. Furthermore, in accordance with the local approximation, the radar probing direction

needs to be perpendicular to the velocity gradient direction (since kx = 0). In addition to

this severe constraint in observational geometry, these calculations would be valid in cases

for which the velocity gradient scale length is larger than the scale length associated with

the scattering volume. Also, as stated previously, these calculations are based on linear

theory and consequently, are valid for a stable plasma. It is likely that NEIAL phenomena

observed with ISRs involve non-linear physics as well. In spite of all these constraints, this

is a first important step toward understanding how small velocity gradients could influence

the ISR spectral properties before the onset of microturbulences.

4.3.3 Possible errors in interpreted plasma parameters when fitting with standard Maxwellian

dielectric functions

Having computed a few examples of ISR spectra in presence of shears, we are facing the

following question: if we apply the standard Maxwellian interpretation for retrieving the
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Figure 4.13: Example of fitting an ISR spectrum [neS(k,ω)] modified by a small shear (Si = 0.01)

with a standard Maxwellian dielectric function at θ = 30◦. The blue + represent simulated data

points in presence of shears (Te = 2000K,ne = 1×1011m−3). The red curve is the fitted spectrum

with Te = 2016K,ne = 1.06x1011m−3 Other input parameters are as per Table 4.1.

plasma parameters from incoherent scatter radars, what sorts of errors would one encounter

by assuming that the ion susceptibilities are not effected by shears? To simplify this pre-

liminary analysis, the parameters that were solved for in the process of obtaining a least

square fit are the electron number density, ne, and the electron temperature, Te. Since we

have kept the ion temperature constant, this is equivalent to varying the electron to ion tem-

perature ratio, Te/Ti. The ion composition mi, which is assumed to be known, was also kept

constant. We have used the Matlab nonlinear curve-fitting solver in the least-squares sense

(lsqcurvefit), as part of the optimization toolbox. The tolerance on the objective function

(TolFun) and the lower bound on the step size (TolX) were set to 1× 10−12. To ensure

convergence of the solver, we have run a few simulations for very small values of shear

(Si = 0.01,0.02 and 0.07).

Figure 4.13 is an example of fitting a standard ISR spectrum based on Maxwellian di-

electric functions to neS(k,ω) in presence of a very small shear Si = 0.01. In this case,
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Figure 4.14: Example of fitting an ISR spectrum [neS(k,ω)] modified by a small shear (Si = 0.02)

with a standard Maxwellian dielectric function at θ = 30◦. The blue + represent simulated data

points in presence of shears (Te = 2000K,ne = 1×1011m−3). The red curve is the fitted spectrum

with Te = 2057K,ne = 1.13x1011m−3 Other input parameters are as per Table 4.1.

the electron temperature is overestimated to 2016K (compared to 2000K) and the electron

number density is overestimated to 1.06× 1011m−3 instead of 1.00× 1011m−3. Although

the fitted spectrum leads to small differences in interpreted parameters, this calculation

for small shears indicate that both ne and Te/Ti would be overestimated. In Fig. 4.14, we

present another example for Si = 0.02. In this case, the electron temperature would be

overestimated by ∼ 3% and the number density by 13%. This case shows that significant

overestimation in ne can be obtained even in presence of very small shears. Assuming that

Ωi = 300s−1, this corresponds to V ′di = 6s−1.

We performed another simulation for Si = 0.07 (results not plotted). We obtained over-

estimations 8% in Te and 52% in ne. Our preliminary results suggest that under realistic

shears, the plasma density derived with standard Maxwellian interpretation is the parame-

ter that could be most severely overestimated (more than ∼ 50%). In future work, we will

allow the ion temperature to vary during the least square fitting process in order to obtain a
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more accurate estimation of possible errors.

4.4 Summary and conclusions

We have studied separately the contribution of ion temperature anisotropy and velocity

shears in modifying or enhancing the EISCAT VHF ISR spectrum density. For smaller

wavelengths that are relevant to ISR observations, we had to keep the cyclotron terms in

the summation of Bessel functions for a magnetized plasma. Under this regime, we con-

firmed that these terms blend in to produce spectra that are similar to the unmagnetized

case.

After having derived the spectral density function, S(k,ω), for bi-Maxwellian plasmas

while taking into account ion gyroresonances (in a magnetized plasma), we found that both

IA peaks are enhanced when the perpendicular ion temperature increases with respect to

the parallel one, at least when the angle is far from orthogonality. However, we also showed

that ion temperature anisotropy is in fact unimportant when the radar is pointing at the crit-

ical angle for which the total ion temperature is equal to the effective temperature. We

concluded that the enhancement in IA shoulders is due to the expected reduced ion Lan-

dau damping associated with a lower parallel ion temperature with respect to the electron

temperature. In addition, when the radar is looking in directions near perpendicular to the

geomagnetic field, we found that the presence of ion temperature anisotropy with T⊥i > T‖i

leads to an enhancement in the Bernstein modes modulating the spectrum. In the end, we

did not find any significant contribution from ion temperature anisotropies in enhancing the

ion component of ISR spectra in a magnetized plasma. To our knowledge, such study had

never been undertaken before. This work confirms that ion gyroresonance effects can be

safely neglected even for a bi-Maxwellian plasma, at least when the radar probing direction

is far from orthogonal to B0.

Then, we considered the effects of ion velocity shears on the shape of ISR spectra.

To this end, we first discussed the regime in parameter space that would allow using the

dielectric function for sheared and Maxwellian plasmas in the calculation of ISR spectra.
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Afterwards, we searched for minima in the morphology of the dielectric function, ε , that

could be associated with ISR spectral enhancements. This allowed to investigate the con-

ditions that would allow the greatest enhancements in the ion line portion of ISR spectra.

We found that, in the limit for which the spatial scale length associated with the hydrody-

namic drift velocity gradient is larger than the Bragg wavelength, small ion velocity shears

can, in somes cases, lead to double peaks enhancement in spectral power by an order of

magnitude. This effect is more important when the radar probing direction is closer to per-

pendicular than parallel to B0. However, such enhancements would be difficult to observe.

For one thing, they would be very sensitive to the aspect angle. Also, to be consistent with

the assumptions stemming from the local approximation, the radar probing direction would

need to be perpendicular to the velocity gradient direction. Finally, such calculations would

be valid in cases for which the velocity gradient scale length is larger than the scale length

associated with the scattering volume. Nevertheless, this study provides new insights on

the extent for which ISR spectra can be affected by small parallel velocity shears before the

onset of microinstabilities.



Chapter 5

Summary, Conclusions and Future Work

5.1 Summary and Conclusions

In general, the aim of this thesis was to further our understanding of possible direct genera-

tion mechanisms behind small-scales irregularities in the high-latitude F-region, which can

be observed with incoherent or coherent scatter radars. In particular, we considered the con-

tribution of parallel current densities, ion velocity shears and ion temperature anisotropies

in the triggering of plasma instabilities and the subsequent occurence of irregularities since

these processes are known to exist at high latitudes.

Space weather affects the properties of the terrestrial ionosphere. The effects of space

weather are even more important at high-latitudes since the ionosphere is strongly coupled

with the magnetosphere and the solar wind. In particular, the high-latitude F-region can

be host to phenomena such as energetic particles precipitating along the magnetic field

lines, intense field-aligned currents, perpendicular electric field and E×B drifts, ion up-

flows/outflows and field-aligned structures.

The presence of field-aligned currents carried by thermal particles, ion velocity shears

and temperature anisotropies can be sources of plasma instabilities in the high-latitude

ionosphere and in turn, it can lead to small-scale irregularities. Therefore, we were faced

with the following question: in terms of observations, what magnitudes of parallel current

densities, ion velocity shears and temperature anisotropies could the ionosphere support?

From the literature review, we showed that very intense and localized field-aligned current

densities in excess of 1000 µA/m2 exist sometimes at high latitudes, despite the presence

of much lower large-scale average parallel current densities. With ion outflows also being

an important part of high-latitude processes, perpendicular shears in parallel ion velocities

on the order of 1− 20 ms−1m−1(Hz) seem to be sustainable. In addition, ion temperature
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anisotropies with T⊥i/T‖i on the order of 2-5 can be expected at times in the high-latitude

F-region.

The detection of naturally enhanced ion-acoustic lines near the edges of auroral struc-

tures, often linked with ion upflows and parallel current densities, suggests that shear-

modified CDEIA instabilities could take place in these regions. Also, the increase of IA

waves growth rate with temperature anisotropy, as reported in laboratory experiments, sug-

gests that anisotropic plasmas could be unstable to smaller critical drifts.

Based on these observations, the following scientific questions provided an important

motivation for this thesis: Can ion temperature anisotropies and velocity shears lower the

threshold requirements for current-driven electrostatic ion-acoustic (CDEIA) instabilities

in the high-latitude F-region? Also, what magnitudes of current densities (or relative drifts),

shears, and temperature anisotropies does the theory predict for the onset of instabilities?

Similarly, could this additional physics lead to enhanced incoherent scattering from ion-

acoustic waves in the high-latitude F-region, which could possibly be detected with inco-

herent scatter radars?

After having generalized the electrostatic kinetic dispersion relation of St-Maurice et al.

(2007) to a bi-Maxwellian plasma and studied the instability threshold conditions, we ar-

rived at the following main conclusions:

• At altitudes high enough so that collisions with neutrals can be neglected, we found

that ion temperature anisotropy lowers the threshold conditions for a large range of

intermediate wave vector angles. This lowering of instability threshold conditions is

likely caused by the reduced ion Landau damping that would be expected in a plasma

with a lower parallel ion temperature with respect to the electron temperature.

• In the collisional F-region, the critical relative drifts are increased by approximately

one order of magnitude due to the dampening effect of collisions. However, small

drift and shear threshold conditions can be obtained in spite of collisions. In this
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case, the instability is restricted to very narrow angular intervals, close to the direc-

tion perpendicular to the geomagnetic field. We found that realistic ion temperature

anisotropies reduce these instability threshold drift minima to smaller shear require-

ments, for modes propagating almost perpendicularly to the geomagnetic field. For

directions close to perpendicular to the geomagnetic field, it appears that the increase

in T⊥i plays a role more important than reducing the ratio T‖i/Te in setting the condi-

tions for instability.

• In terms of possible observations of coherent echoes, our study showed that V ′di <

30 ms−1m−1 could be required at threshold, assuming that Ωi ∼ 300 s−1, for wave

frequencies ω/kCs . 0.3 and with ion anisotropies of the order Ai ∼ 2. These modes

have an ideal geometry to be observed with SuperDARN radars that are pointing

almost perpendicularly to the geomagnetic field. Nonetheless, these modes would

be very sensitive to the aspect angle, since they are restricted to very narrow angular

intervals. In those situations, the Doppler shifts in the E×B moving frame would

be on the order of ∼ 45 s−1, for λ = 10 m and assuming Cs ∼ 1500 ms−1. This

instability mechanism could account, in some cases, for discrepancies between the

line-of-sight drifts and the line-of-sight component of the E×B drift of the order of

several hundreds ms−1.

Another objective was to study the effects of ion velocity shears and temperature anisotropies

on the ISR spectrum density function S(k,ω) to determine whether this additional physics

could enhance the IA spectrum. After having derived the ISR spectral density function for

stable, magnetized, collisionless and bi-Maxwellian plasmas, we computed ISR spectra un-

der various ion temperature anisotropies and velocity shears. Our study led to the following

conclusions:

• In a plasma for which ion gyroresonances effects are not neglected, we showed that

ion temperature anisotropy is in fact unimportant when the incoherent radar is point-

ing at the critical angle for which the total ion temperature is equal to the effective

temperature. The enhancement in ion-acoustic shoulders when the radar is looking

in directions close to parallel to the magnetic field is likely due to the reduced ion
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Landau damping associated with a lower parallel ion temperature with respect to the

electron temperature. When the radar is looking in directions near perpendicular to

the magnetic field, the presence of ion temperature anisotropy leads to enhancement

in the Bernstein modes modulating the spectrum. We confirmed that ion gyroreso-

nance effects can be safely neglected even for a bi-Maxwellian plasma, at least when

the radar probing direction is far from orthogonal to the geomagnetic field.

• In the limit for which the spatial scale length associated with velocity shears is larger

than the Bragg wavelength, small ion velocity shears can, in somes cases, lead to

double peaks enhancement in spectral power by an order of magnitude. This effect

is more important when the radar probing direction is closer to perpendicular than

parallel to the magnetic field. This fact notwithstanding, such enhancements would

be sensitive to the radar probing direction, Also, in a manner consistent with the local

approximation used to derive S(k,ω), the radar probing direction would need to be

perpendicular to the velocity gradient direction. Nevertheless, this study provides

new insights on the extent for which ISR spectra can be affected by small parallel

velocity shears before the onset of microinstabilities.

In the end, the ion temperature anisotropy is an important parameter that needs to be

considered in the studies of sheared and collisional low-frequency CDEIA waves and in-

stabilities in the high-latitude F-region, especially at small aspect angles. Such instabilities

could play a role in the direct generation of field-aligned irregularities in the collisional F-

region that could be observed with coherent radars. On the other hand, our study suggests

that temperature anisotropies do not play a significant role in enhancing spectra that would

be expected from incoherent scatter radars. This mechanism did not provide any additional

contribution to the possible generation of coherent echoes, or NEIALs. Yet, even “small”

ion velocity shears seem to be capable under the right conditions of producing significant

enhancements in ISR spectra, especially for directions closer to perpendicular to the geo-

magnetic field. Although not a mechanism of choice to explain observations of NEIALs,

it could lead to an overestimation of the interpreted electron to ion temperature ratio Te/Ti

and the electron density ne when using standard ISR fitting procedures.
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5.2 Future Work

The following are suggestions for additional work related to plasma instability threshold

conditions:

• The kinetic model could be generalized to include density gradients in the local ap-

proximation. Such density gradients would be representative of actual geophysical

density gradients occuring near the edges of auroral arcs.

• Compare threshold conditions predicted from linear theory with outputs obtained

from the recent electrodynamical model of de Boer et al. (2010). This model com-

putes systematically the temperatures (including their anisotropies), densities, colli-

sion frequencies, electric fields, vertical electron and ion drifts, as well as ion velocity

shears.

• Seek for unusual Doppler shifts, Doppler widths or aspect angles in SuperDARN

data, especially near the edges of regions with sharp convection changes. After hav-

ing separated ground and E-region echoes, study the geophysical conditions behind

the occurence of these unusual F-region echoes. The presence of very narrow spectra

(less than 50 ms−1 for instance) that are not E×B drifting might be due to the local

mechanisms discussed in this thesis.

The following are suggestions for additional work related to incoherent scatter radar

spectra:

• To include collisions in the calculation of the spectrum density function S(k,ω).

• To study how the spectrum density function vary with wavenumbers, which would be

representative of different incoherent scatter radars. Also, when fitting ISR spectra

using the standard Maxwellian interpretation, allow a third parameter (in this case Ti)

to vary in order to obtain a more accurate estimation of possible errors.
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• Perform a Monte Carlo simulation including ion velocity shears and compare ISR

spectra with those predicted from linear theory.

• Attempt to obtain ISR observations in presence of sheared ion upflows (for small

shears). The radar pointing direction would need to be perpendicular to the velocity

gradient direction.
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Appendix A

More on the Procedure to Derive the Fluid Dispersion Relation

The fluid-like dispersion relation (Eq. 3.14) was not derived using fluid theory, but rather by

simplifying the kinetic dispersion relation (Eqs. 3.2 and 3.10–3.13). This allows to retain

some Landau growth/damping effects and to calculate the instability threshold conditions.

For ion-acoustic waves, this is done by taking the long-wavelength limit (kλDe→ 0) since

ion Landau damping increases as the wavelength approaches the Debye length. In addition,

to further minimize ion Landau damping kinetic effects, the phase velocity has to be much

larger than the background ion thermal velocity |ω/k| � vti and smaller than the electron

thermal velocity |ω/k−Vde| � vte in order to fall within the positive slope of the electron

distribution (thus allowing energy transfer from thermal particles to the wave).

Following standard procedure, we apply the small electron and large ion argument Tay-

lor expansion to the plasma dispersion function Z. In this study, since the relevant tem-

perature in the argument the plasma dispersion function Z is the parallel temperature,

T‖i, this procedure is equivalent to the condition T‖i � Te. In this case, the plasma dis-

persion function can then be approximated with Z(zi) ≈ −1/zi− 1/2z3
i for the ions and

Z(ze) ≈ i
√

π − 2ze for the electrons, where zi,e is the argument of the Z function for the

ions/electrons. There is no wave-particle interaction term in the form of i
√

πσze−z2
in

the ion plasma dispersion function since the imaginary part is positive (Fried and Conte,

1961). In order to recover the fluid limit, we considered cases for which bi � 1, so that

only the n = 0 mode survives the sum over the modified Bessel functions. The modified

Bessel function can then be further approximated by the relation I0(bi) ≈ 1− bi. Finally,

the function Ue has been neglected, since
√

Te
me

>>
√

Ti
mi

, as a result of the small electron

inertia (me << mi).
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Appendix B

Numerical Analysis of the Kinetic Dispersion Relation

In this appendix, we provide additional information on the numerical analysis procedure

that was undertaken to find the instability threshold conditions. The electrostatic dispersion

relation corresponds to the zeros of the dielectric function. The plasma dielectric ε is a com-

plex function that depends on complex frequency: ε(k,ωR,γ) = εR(k,ωR,γ)+ iεi(k,ωR,γ).

It can be expanded with respect to the real frequency at vanishing growth rate such that

ε ∼ εR(ωR)+ iεi(ωR)+ iγ
∂εR

∂ω
|γ=0. (B.1)

When calculating the threshold conditions, which correspond to zero growth (γ = 0), the

real and imaginary parts of the dielectric function must be equal to 0 (εR = εi = 0).

B.1 Dimensionless Quantities

For all numerical calculations, the wave frequency ωR/kCs, gyrofrequency Ωi/kCs, col-

lision frequencies (νi/Ωi and νe/νi), perpendicular ion over electron temperature ratio τ

and the ion temperature anisotropy ratio Ai were held fixed and provided as input parame-

ters. Also, we used O+ as the major ion constituent with mi/me = 29166. The associated

threshold shears and drifts were calculated for different values of θ by searching for the nu-

merical roots of the aforementioned system of equations. The two unknowns in normalized

form are the ion velocity shear ζi = k⊥V ′di/|k‖|Ωi = Si/tanθ and the vertical electron drift

(with respect to the ion frame) Vde/Cs. These normalisation parameters differ from those of

Spangler et al. (2002) since we were interested in comparing our results with St-Maurice

et al. (2007)’s results. When finding roots of the kinetic dispersion relation, the critical drift

numerical solutions were normalized with the total ion-acoustic speed, using the total ion

temperature expression Ti = (T‖i +2T⊥i)/3. Hence, the isothermal ion-acoustic speed can
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be formulated as a function of parallel and perpendicular thermal velocities

Cs = v‖ti

√
Ai

(
1
τ
+

1
3

(
1
Ai

+2
))

(B.2)

= vte

√
me

mi

√
1+

τ

3

(
1
Ai

+2
)

= v⊥ti

√
1
τ
+

1
3

(
1
Ai

+2
)

from which the following dimensionless quantities were expressed as

bi =
k2
⊥kBT⊥i

Ω2
i mi

= cos2θ

(
kCs
Ωi

)2
[

1[
1
τ
+ 1

3

(
1
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+2
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.

B.2 Computer Analysis

The Matlab “fsolve” subroutine, as part of Matlab Optimisation Toolbox, was used to find

the zeros of the system of nonlinear equations. An initial guess needs to be provided to the

optimisation algorithm. Several additional optimization options (e.g.: maximum number of

function evaluations, number of iterations, etc.) can be provided when the solver failed to

converge to a solution. In addition, the tolerance parameters were set to a higher precision

than default values. In most cases, the tolerance on the objective function (TolFun) and the

lower bound on the step size (TolX) were set to 1×10−15.

The subroutine “Faddeeva” (FFT-based) was used to compute the exponentially scaled

complex complementary error function W (z) = exp(−z2)erfc(−iz) where erfc(x) is the

complex complementary error function (W (z) is also named Fadeeva function, especially
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in the Russian litterature). The plasma dispersion function Z can then be expressed as

Z(z) = i
√

π[erfc(z)]. (B.3)

The accuracy of the function was improved by increasing the optional parameter N (second

argument), which defines the number of expansion terms, from N = 12 (default value) to

500. The accuracy of the Faddeeva subroutine, which includes the analytical continuation

in the lower imaginary plane, was confirmed by comparing with the original calculation

tables of Fried and Conte (1961).

The nth order modified Bessel functions of the first kind In(b) were computed using the

Matlab “besseli” subroutine. In the calculation of derivatives of Bessel functions I′n(b), the

following recursion relation was used

I′n(b) = In+1(b)+
n
b

In(b). (B.4)

B.3 Morphological study of the function to determine the initial guess

The reason behind the morphological study was to examine how the dielectric function

behaves at a given angle of the wave vector. Numerical solutions were validated by vi-

sualising the morphology of the dielectric function. Furthermore, it allowed to locate the

minima of the function in order to provide better initial guess to the optimisation algorithm.

The natural logarithm of the modulus of the dielectric function was plotted (surface plot)

as a function of ion shears and relative drifts. Figures 4.5 to 4.7 provide examples of mor-

phological study of the function ε although, in this case, ln|ε| is plotted as a function of

shears and frequency.
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• P.J.G. Perron, J.-M. Noël, J.-P. St-Maurice and K. Kabin, Effects of ion temperature

anisotropy and shears on PFISR theoretical incoherent scatter spectrum of stable

CDEIA modes in the topside auroral F-region, 2013 American Geophysical Union

(AGU) Fall Meeting, San Francisco, California, US, 9-13 December 2013.
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• P.J.G. Perron, J.-M. Noël and J.-P. St.-Maurice, Electron shears and low frequency

oscillations in a collisional ionosphere, Eos Trans. AGU, 85(17), Jt. Assem. Suppl.,

Abstract SM53B-10, 2004.



134
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