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Abstract

In many real-world situations, sequential decision-making demands not only manag-
ing environmental uncertainty but also accounting for the stochastic nature of timing,
as events unravel unpredictably over time. Traditional reinforcement learning models
often struggle in these contexts, specifically in effectively learning the sojourn time
distributions and grappling with uncertainties about the environment’s dynamics.
This thesis addresses these challenges by delivering two key contributions: a novel
solver for partially observable semi-Markov decision processes (POSMDPs) and the
development of the Bayes-adaptive semi-Markov decision processes (BA-SMDPs)
framework. Both tools significantly extend reinforcement learning capabilities, cater-
ing to problems where timing is crucial.

Our first major contribution is CHRONOSPERSEUS, an innovative POSMDP solver
that combines the strengths of point-based value iteration and importance sampling to
effectively handle a wide array of problem types. We designed this solver to handle
episodic and non-episodic problems, mixed observability, discrete or continuous
observation spaces, and a mixture of fixed and stochastic continuous sojourn times.
CHRONOSPERSEUS represents a significant stride in tackling reinforcement learning
problems involving timing.

Simultaneously, we introduce BA-SMDPs, a novel Bayesian reinforcement learn-
ing framework specifically designed for optimally learning the policy in problems
of sequential decision-making under uncertainty. The heart of BA-SMDPs lies in
the intricate interplay between timing, environmental exploration, and exploitation
of current knowledge. Notably, we demonstrate that BA-SMDPs can be expressed
as POSMDPs, enabling the application of CHRONOSPERSEUS for BA-SMDPs and
thereby further broadening its utility.

Within the BA-SMDPs framework, we explore four distinct approaches: learning
the sojourn time distribution parameters from a finite set of sojourn times; learning
mixtures of known sojourn time distributions with unknown proportions; learning
mixtures of known SMDPs with unknown proportions; and learning unknown contin-
uous sojourn-time distribution parameters. Further, we contribute a conjugate prior
for the mean parameter of the inverse Gaussian sojourn-time distribution, enhancing
our ability to track the uncertainty of SMDP parameters whilst finding an optimal
policy.

This thesis substantively contributes to reinforcement learning research, particu-
larly in contexts where timing is essential. It provides a robust foundation for further
exploration, such as examining the implications of an unknown reward function
within the BA-SMDP framework. It also encourages the application of the developed
frameworks and algorithms to a wider array of complex real-world problems, inviting
both theoretical advancements and practical applications that can significantly impact

vii



July 18, 2023 8:8 World Scientific Book - 9in x 6in ThesisMain page viii

viii Bayes-Adaptive Semi-Markov Decision Processes

various societal sectors. In essence, this work proposes powerful new tools and
frameworks for reinforcement learning when timing is stochastic, opening the door to
more nuanced and effective solutions in the field.

Keywords: Bayesian reinforcement learning, Bayes-adaptive semi-Markov deci-
sion process, sequential decision making, partial observability, sojourn-time distribu-
tion.
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Résumé

Dans de nombreuses situations réelles la prise de décision séquentielle exige non
seulement de gérer l’incertitude environnementale mais aussi de tenir compte de
la nature stochastique du temps puisque les événements se déroulent de manière
temporellement imprévisible. Les modèles traditionnels d’apprentissage par renforce-
ment ont souvent des difficultés dans ces contextes, notamment en ce qui concerne
l’apprentissage efficace des distributions de temps de séjour et la prise en compte
des incertitudes relatives à la dynamique de l’environnement. Cette thèse aborde ces
défis en apportant deux contributions clés : un nouveau solveur pour les processus de
décision semi-markoviens partiellement observables (POSMDP) et le développement
d’un cadre décisionnel pour les processus de décision semi-markoviens adaptatifs
de Bayes (BA-SMDP). Ces deux outils étendent considérablement les capacités
d’apprentissage par renforcement en s’adressant aux problèmes où le temps est cru-
cial.

Notre première contribution majeure est CHRONOSPERSEUS, un solveur
POSMDP innovant qui combine les forces de l’itération de la valeur par évaluations
ponctuelles et de l’échantillonnage par importance pour traiter efficacement un
large éventail de types de problèmes. Nous avons conçu ce solveur pour traiter
les problèmes épisodiques et non épisodiques, l’observabilité mixte, les espaces
d’observation discrets ou continus, et un mélange de temps de séjour fixes et stochas-
tiques continus. CHRONOSPERSEUS représente une avancée significative dans la
résolution des problèmes d’apprentissage par renforcement impliquant le temps. Si-
multanément, nous présentons le BA-SMDP, un nouveau cadre d’apprentissage par
renforcement bayésien spécialement conçu pour l’apprentissage optimal de la poli-
tique décisionnelle dans les problèmes de prise de décision séquentielle en présence
d’incertitude. Le cœur des BA-SMDP réside dans l’interaction complexe entre
l’élément temporel, l’exploration de l’environnement et l’exploitation des connais-
sances actuelles. Nous démontrons notamment que les BA-SMDP peuvent être
exprimés comme des POSMDP, ce qui permet d’appliquer CHRONOSPERSEUS aux
BA-SMDP et d’élargir ainsi son utilité.

Dans le cadre des BA-SMDP nous explorons quatre approches distinctes :
l’apprentissage des paramètres de la distribution des temps de séjour à partir d’un
nombre fini d’échantillonnage ; l’apprentissage des proportions inconnues de l’apport
de distributions de temps de séjour connues ; l’apprentissage de mélanges de SMDP
connus avec des proportions inconnues ; et l’apprentissage des paramètres inconnus
d’une distribution de temps de séjour continus. De plus, nous apportons une loi a
priori conjuguée pour le paramètre moyen de la distribution inverse gaussienne du
temps de séjour, améliorant ainsi notre capacité de gérer l’incertitude des paramètres
du SMDP tout en trouvant une politique décisionnelle optimale.

ix
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Cette thèse apporte une contribution substantielle à la recherche sur l’apprentissage
par renforcement en particulier dans les contextes où le temps est essentiel. Elle four-
nit une base solide pour des explorations ultérieures tel que l’examen des impactes
d’une fonction de récompense inconnue dans le cadre du BA-SMDP. Elle encourage
également l’application des cadres et algorithmes existants à un plus large éventail de
problèmes complexes du monde réel, invitant à la fois à des avancées théoriques et
des applications pratiques qui peuvent avoir un impact important dans de nombreux
secteurs de la société. Fondamentalement, ce travail propose de nouveaux outils et
cadres puissants pour l’apprentissage par renforcement lorsque le temps est stochas-
tique ouvrant ainsi la voie à des solutions plus nuancées et plus efficaces dans ce
domaine.

Mots-clés: Apprentissage par renforcement bayésien, processus de décision semi-
markoviens adapté à Bayes, prise de décision séquentielle, observabilité partielle,
distribution du temps de séjour.
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1
Introduction

We regard decision making under uncertainty as one of the attributes of human
intelligence. Consequently, if we can get a computer to make decisions under
uncertainty we can feel that it is imitating one of the aspects of human intelligence.

—Bellman (1978, p. 48)

Suppose that you need to travel by bus to a destination that is four bus stops away,
and you have the option of bringing a bicycle along with you. The catch is that the
bus journey is subject to different levels of traffic intensity. In low traffic, the bus
can travel unimpeded, quickly reaching its goal; on the other hand, high traffic can
significantly delay the bus’s arrival.

0 1 2 3 4

? ? ? ?

Fig. 1.1 Waiting for the bus.

At each bus stop, you face a decision: you can either stay on the bus, hoping that
it will get to your destination more quickly despite the unknown traffic, or you can
disembark and ride your bicycle the rest of the way. Once you make the decision to
get off the bus and ride the bicycle, you are committed to this mode of transport for
the rest of your journey; there is no option to reboard the bus at subsequent stops. The
faster you get to your destination, the better; think of it as getting a higher reward for
speedy arrival. If you decide to stay on the bus, the time it will take to get the next
stop will depend on the traffic intensity. In contrast, if you decide to hop off and ride
your bicycle, the travel time will be fixed, regardless of the traffic intensity.

The challenge here is to find the best policy that will maximize your reward
(getting to your destination as quickly as possible) while taking into account your
uncertainty about the traffic conditions. In other words, how can you make the best
possible decision at each bus stop, given that you need to know how heavy the traffic
is going to be?

Now, let us make this story a bit more interesting. Imagine you have just moved
to the city and you need to become more familiar with the bus route or how the traffic
affects travel times. You know the bus stops and the traffic levels, but you need to
know how long it will take to get from one stop to the next under different traffic
conditions.

1
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In this situation, you start your journey with a lot of uncertainty. At each bus
stop, you need to decide whether to stay on the bus or ride your bike, but with a good
understanding of the travel times, this decision is easier.

So, what is the best way to navigate this situation? The answer involves a combi-
nation of making the best possible decision at each stop, given what you currently
believe about the travel times (this is the exploitation part of your knowledge), and
also learning from new experiences to improve your understanding of the travel times
for future decisions (this is the exploration part of your environment).

This process of learning and adjustment, so fundamental to our own decision-
making, serves as an insightful guide in the quest to teach machines to make intelligent
decisions. As we grapple with uncertainty and balance the known with the exploration
of the unknown, so must the algorithms we design. The more experience they
accumulate, the more refined their internal models of the world become, aiding their
decisions in the same way you would approach learning when to ride the bus and
when to ride your bike.

As Mitchell (1997, p. 2) so eloquently puts it, learning constitutes the ability
to improve one’s performance of a task through experience. Within the realm of
artificial intelligence, machine learning signifies the ambitious endeavour of devising
algorithms and computational models that empower computers to learn from data
and experience. This enables them to improve their performance on tasks, including
making informed decisions on what actions to take, without relying upon explicit
programming. However, in machine learning, the majority of research has focused on
what to do, rather than when to do it.

1.1 Timing

The ability to make predictions lies at the very heart of the artificial intelligence
problem (Schmidhuber, 2007). The crux of many planning dilemmas, including our
bus and bicycle conundrum, hinges upon the use of timing mechanisms. These mech-
anisms aid us in foreseeing the cadence of imminent events, crucial for synchronizing
strategies, decisions, and actions within our milieu. Robots, too, require a capacity for
learning timing (Maniadakis and Trahanias, 2011). Alas, transmuting a continuous
stream of observations into actionable insights for real-time decision-making proves
to be an arduous computational challenge (Schmidhuber, 2007).

Computationally, the challenge of predicting when the next event or decision epoch
boils down to discerning which fragment of a limited past ought to be employed for
formulating a prediction. If we restrict ourselves to a singular stream of binary
events (either a 0 or 1 at each time step), the sheer quantity of potential subsequences
throughout the previous n time steps is the powerset of n, which is exponential!
For instance, state-of-the-art artificial neural networks necessitate a myriad of trials,
numbering in the thousands, to learn a straightforward association separated by a mere
handful of time steps (Rivest et al., 2010). Astonishingly, at a hundred time steps apart,
the endeavour demands millions of trials, with success remaining elusive (Gers et al.,
2002). Intensifying the sampling frequency exacerbates the problem’s complexity as
much as augmenting the interval length itself. Bereft of any foreknowledge regarding
the sequence’s architecture, employing artificial neural networks for predicting a
binary event is apt to be NP-complete (Blum and Rivest, 1992), signifying a potential
need for a trial count exponential in relation to the temporal distance, as measured in
time steps, between the essential inputs and the subsequent prediction.
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In a rather delightful contrast, learning when events will occur in the natural
world appears to be quite effortless. Animals are capable of grasping stimulus-reward
associations within merely tens or hundreds of trials, spanning intervals from mere
milliseconds to several minutes (Gallistel and Gibbon, 2000). Intriguingly, as long as
the ratio between the interstimulus interval (the time between a stimulus announcing
a reward and the reward itself) and the intertrial interval (the time between two
conditioning trials) remains constant, the number of trials required for conditioning
is also constant (O.1/) (Gallistel and Gibbon, 2000). Even more fascinating is that
precise timing is already mastered when a conditioned response emerges (Balsam
et al., 2002; Balci et al., 2009)! Evolution has indeed devised ways for animals to
learn timing in a constant number of trials, irrespective of the time scale, suggesting
an alternative computational approach to learning timing. In fact, animals can encode
in their brains these temporal relations between reward and events from just a single
experience (Balsam and Gallistel, 2009). Exciting recent developments employing
new learning rules focused on timing have shown substantial improvements in learning
speed, approaching the performance of animals (Rivest and Bengio, 2011; Simen
et al., 2011; Luzardo et al., 2013, 2017; Rivest and Kohar, 2020).

Timing encompasses the following two aspects:
(a) temporal learning—the tracking of time when an event occurs (Church,

2012);
(b) temporal control—the control of when an action is performed by the agent.

Example 1.1.1 — Temporal learning. Should we take the elevator or take the stairs?
This problem requires us to have some experience to estimate how long we will have
to wait before the elevator arrives on average; we need to track when the elevator
arrives over time. We also can track how long it takes us to climb the stairs on average.
With these two averages, we can decide as soon as we arrive in the lobby to either
wait or take the stairs by selecting the minimum of the two averages.

Example 1.1.2 — Temporal control. When should we stop waiting for an elevator and
take the stairs? In this case, we are going to wait initially in the lobby for the elevator.
We are exerting control over when we will switch from one action (waiting) to another
action (taking the stairs).

Temporal learning and temporal control are indeed vital facets of the intelligence
problem. It is of paramount importance to not only contemplate the essence of what
we should do, but also considerable thought to when we ought to execute our carefully
crafted plans. While both temporal learning and temporal control are integral to the
intelligence problem, this thesis primarily focuses on temporal learning. In this thesis,
we delve into understanding how an agent can track and learn from the timing of
events in its environment. However, it’s important to note that temporal control is not
entirely overlooked. We touch upon this aspect, particularly in the context of when an
agent should switch from one action to another, though it is not the main focus of our
study.

1.2 Sequential decision processes
This optimization of a problem over time arises in many areas. It is found in engineer-
ing for the control of heating systems and landing aircraft; managing inventories of
drugs with limited shelf life; acquiring and selling assets on the market; scheduling
and routing of deliveries or information in a network. These are all sequential decision
processes. The name is aptly suited as each of these problems or processes involves
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making not only decisions but decisions made in the correct order. While sequential
decision processes can be easy to formulate (if not subtle), it is a whole different
matter to solve them.

Sequential decision processes are conventional in modern life. For instance,
the law requires two persons A and B , otherwise known as lawyers, to argue about
hypothesisH (the guilt of the accused). PersonA is paid to pretend that the probability
of H is 0, whilst person B pretends the probability of H is 1. Experiments are
performed that consist of asking witnesses questions. A sequential decision process
ensues as A and B’s further questions are influenced by previous answers as well as
whom to call to the stand next. The jury is left to decide whether to accept or to reject
the hypothesis based on their final probability estimate of H (Good, 1952, p. 112).

The theory of sequential decision processes was created to solve problems that
arise from the study of multi-stage planning, which can be described informally in
the following manner: We have a physical environment whose state at a point in time
is specified by what we call a state variable. In this environment, we have an agent—
either a person or a machine—that at certain times predetermined by the environment,
the agent must decide what action to take which in turn affects the environment; these
points in time are called decision epochs. The agent’s action will cause a transition
from one state to another, and therefore facilitates the agent’s movement through the
system as it accumulates rewards or costs. The goal of the agent is to find a sequence
of state-actions, called a policy, that will optimize the desired performance measure
such as maximizing reward or minimizing cost (Bellman, 1954, p. 503).

Following the development of sequential decision process theory, Bellman (1957b)
laid the foundations of the Markov Decision Process (MDP), which emerged as a
significant mathematical framework for handling these decision-making problems.
Bellman (1957a) introduced the idea of dynamic programming as a method to solve
MDPs, enabling the optimization of actions over time based on a known model of
the environment. This process set the stage for the field of Reinforcement Learning
(RL) in the 1980s (Sutton, 1984, 1988; Sutton and Barto, 1998). Unlike traditional
dynamic programming, RL focused on situations where the MDP was not fully known
to the agent, in particular, the state transition probabilities and the reward function.
This introduced a new layer of complexity, as the agent now needed to learn about
its environment while also trying to optimize its actions. This shift marked a critical
step in the evolution of decision-making algorithms, as it moved us closer to solving
real-world problems where uncertainty and incomplete information are the norm.

1.3 Thesis Objective
The objective of this thesis is to expand the capabilities of reinforcement learning,
enabling it to tackle more complex, real-world problems where timing plays a critical
role. Existing models have addressed Markov Decision Processes (MDPs) with time
considerations, known as Semi-Markov Decision Processes (SMDPs), and MDPs with
partial observability (POMDPs). However, the work on models that incorporate both
time and partial observability, namely Partially Observable Semi-Markov Decision
Processes (POSMDPs), has been limited. In particular, few efforts have been made to
address scenarios where time is the key observation.

Moreover, while the trade-off between exploration and exploitation has been thor-
oughly investigated in the MDP context, this essential balance has not been extensively
studied in the SMDP context. This thesis addresses these gaps by presenting new
mathematical models and algorithmic developments. The central contributions of this
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work enable reinforcement learning in time-sensitive and partially observable problem
domains, marking a significant step forward in expanding the reach of reinforcement
learning techniques into new realms of complexity and practical relevance.

1.4 Thesis Contributions
The first contribution of this thesis is the development of a novel algorithm,
CHRONOSPERSEUS, which utilizes randomized point-based value iteration with
importance sampling to solve Partially Observable Semi-Markov Decision Processes
(POSMDPs). By maintaining a set of sampled times and weighting them by their
likelihood within a single backup, CHRONOSPERSEUS significantly reduces computa-
tional complexity. Demonstrated through the lens of both episodic and non-episodic
problems, the algorithm exhibits its capacity to handle a diverse array of issues, in-
cluding mixed-observability, discrete or continuous observation space, and a mixture
of fixed and stochastic continuous sojourn times.

The second key contribution of this work is the introduction of a novel framework
in Bayesian Reinforcement Learning—the Bayes-adaptive semi-Markov decision
process (BA-SMDP). This framework provides a means for learning sojourn time
distributions, offering a dynamic approach to solving problems where timing is
paramount. The BA-SMDP framework is explored through four unique approaches:

(a) Learning the sojourn time distribution parameters using a count array to
record the number of each sojourn time occurrence for a particular .s; a; s0/
transition, where sojourn times come from a finite set;

(b) Learning the mixture of known sojourn time distributions with unknown
proportions;

(c) Learning the mixture of known SMDPs with unknown proportions; and
(d) Learning the unknown continuous sojourn-time distribution parameters.

These approaches enable optimal learning, providing a means to find the policy that
strikes the best balance between exploration and exploitation. This optimal tradeoff
allows for superior sample efficiency, thus leading to more effective decision-making
under uncertainty. Consequently, the breadth of applicability and effectiveness of
reinforcement learning in time-sensitive problem domains is substantially enhanced.

The third contribution of this work is the creation of a novel conjugate prior for the
mean parameter of the inverse Gaussian distribution. This advancement is significant
as it enables us to effectively track the uncertainty surrounding the parameter of the
inverse Gaussian distribution, a vital aspect when dealing with unknown continuous
sojourn-time distributions.

Altogether, these contributions take a step forward in the field of reinforcement
learning, specifically addressing problems involving timing.

1.5 Outline
This thesis unfolds over seven chapters. It begins with Chap. 2, where we lay the
foundation with an in-depth discussion of the Markov Decision Process. The narrative
then advances to Chap. 3, where the concept of MDP is extended to scenarios where
states are only partially observable. In Chap. 4, this knowledge base is extended to
encompass the semi-Markov decision process, a variant of MDP that accounts for
random sojourn times. Our journey then leads us to Chap. 5, where we encounter
the framework for the partially observable semi-Markov decision process (POSMDP)
and unveil our novel CHRONOSPERESUS algorithm. Chapter 6 then presents our
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pioneering Bayes-adaptive semi-Markov decision process (BA-SMDP) framework,
along with four distinct methods for managing a BA-SMDP. Our journey culminates in
Chap. 7, where we summarize the key contributions of the thesis and outline potential
paths for future research. For readers interested in a deeper dive, Appendix A contains
documented code for all the algorithms discussed in this thesis.
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2
The Markov Decision Process (MDP) Model

In this chapter, we undertake an examination of the Markov Decision Process (MDP)
framework. This framework serves as a cornerstone in the field of reinforcement
learning, particularly in cases where decisions are made sequentially under uncertain
conditions (Bellman, 1957a; Howard, 1971; Puterman, 1994; Bertsekas and Tsit-
siklis, 1996; Sutton and Barto, 2018). Our exposition commences with a careful
delineation of the MDP model, followed by a detailed exploration of the computa-
tional strategies associated with it. Furthermore, in order to highlight the constraints
of MDPs when dealing with temporal considerations, we introduce an illustrative
problem scenario—the elevator problem. This serves as an illustrative example of the
challenges associated with the integration of time in the classical MDP framework.

2.1 The Framework

We begin with the definition of an MDP, which was first introduced by Bellman
(1957b).

Definition 2.1.1 — MDP. A Markov decision process (MDP) is an 7-tuple

hS;A;K; P;R; ;N i

where
S is the Borel state space, and the elements of S are called states
A is the Borel action space, and the elements of A are called actions.

To each s 2 S, we associate a nonempty Borel-measurable subset
A.s/ � A, whose elements are the admissible actions for the agent
when the process is in state s

K is the set of admissible state-action pairs, and it is assumed to be a
Borel subset K � S �A. In other words,

K , f.s; a/ j s 2 S; a 2 A.s/g:

P.ds0 j s; a/ is the state transition Borel-measurable stochastic kernel (or condi-
tional probability measure) on S given K

R.s; a/ is the per-stage (bounded Borel-measurable) reward function given K
 is the discounting rate where  2 Œ0; 1/
N is the planning horizon. It could be finite, or N D1.

Given the model in Definition 2.1.1, the dynamics of the MDP proceed according
to Algorithm 1. This involves at each decision epoch n choosing an action an,
accruing a lump sum reward R.sn; an/ as the state changes from sn to snC1.

7



July 18, 2023 8:8 World Scientific Book - 9in x 6in ThesisMain page 8

8 Bayes-Adaptive Semi-Markov Decision Processes

Algorithm 1 Dynamics of MDP
In the beginning n D 0, the agent observes it is in state s0.
For each decision epoch n D 1; 2; : : : ; N :

(a) Based on the history

h0 D .s0/

hn D .s0; a1; : : : ; sn�1; an; sn/;

the agent performs action

an D �n.hn/ 2 A n D 1; 2; : : : ; N:

Here �n denotes a policy that the agent uses at decision epoch n.
(b) The agent obtains a reward R.sn�1; an/ for choosing action an at decision

epoch n.
(c) The state evolves randomly with transition probability

P.s0 j s; a/ D P.SnC1 D s0 j Sn D s; An D a/

to the next state snC1 that decision epoch nC 1.
(d) The agent updates its history as

hnC1 D .hn; anC1; snC1/:

If n < N , then set n to nC 1, and go back to step (a).
If n D N , then the agent receives the last reward and the process terminates.

2.2 Stochastic Kernels
A stochastic kernel is a mathematical function that defines transition probabilities
between states in a stochastic process. Essentially, given a state and an action, it
provides the probability that the process transitions to that event from the given state,
satisfying certain measure-theoretic properties.

Definition 2.2.1 — Stochastic kernel. A stochastic kernel is a function K defined on
X � B.X / such that

(a) for every x 2 X , K.x; �/ is a probability measure; and
(b) for every E 2 B.X /, K.�; E/ is measurable.

2.2.1 Discrete Spaces
If the state space S and action space A are discrete, then the stochastic kernel
P.� j s; a/ is defined by the values on the singletons P.s0 j s; a/, where

P.s0 j s; a/ D P.SnC1 D s0 j Sn D s; An D a/: (2.2.1)

Since each P.s0 j s; a/ is a probability, it must satisfy

0 � P.s0 j s; a/ � 1 8.s; a/ 2 K;8s0 2 S: (2.2.2)

Additionally, since the agent must occupy one of the states in the process,X
s02S

P.s0 j s; a/ D 1; 8.s; a/ 2 K: (2.2.3)

The stochastic matrix P is also known as transition probability matrix. The jSj2
probabilities for an action a can be represented by a square jSj � jSj matrix
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P.� j �; a/ D

26666666664

s1 s2 s0 sjSj

s1 P.s1 j s1; a/ P.s2 j s1; a/ � � � P.s
0 j s1; a/ � � � P.sjSj j s1; a/

s2 P.s1 j s2; a/ P.s2 j s2; a/ � � � P.s
0 j s2; a/ � � � P.sjSj j s2; a/

:
:
:

:
:
:

:
:
:

:
:
:

s P.s1 j s; a/ P.s2 j s; a/ � � � P.s
0 j s; a/ � � � P.sjSj j s; a/

:
:
:

:
:
:

:
:
:

:
:
:

sjSj P.s1 j sjSj; a/ P.s2 j sjSj; a/ � � � P.s
0 j sjSj; a/ � � � P.sjSj j sjSj; a/

37777777775
(2.2.4)

Each entry in the matrix must in the interval Œ0; 1� (Eq. (2.2.2)), and the sum of the
rows must be one (Eq. (2.2.3)).

2.2.2 Continuous Spaces
We will see later in Chap. 3 that a partially observable MDP (POMDP) can be
reformulated as a continuous state MDP, so this formalism that we will present now
will have some importance later.

If the state space S is continuous, then the stochastic kernel P.� j s; a/ is a
conditional density p such that

P.S j s; a/ D

Z
s02S

p.s0 j s; a/ ds0 (2.2.5)

where S denotes any measurable set in S.
Notice that we cannot just calculate the probability of landing on a point in contin-

uous space (like we did in the discrete case in Eq. (2.2.1)), because the probability of
landing on a point in a continuous space is zero. We must think of landing in an area
or a set; then, we can apply our probability measure which is essentially integrating
over that landing set.

To ensure that P.� j s; a/ is a probability measure, it is also required that

P.S j s; a/ D
Z
s02S

p.s0 j s; a/ ds0 D 1 (2.2.6)

and

P.¿ j s; a/ D 0: (2.2.7)

2.3 The Reward Function
The reward function is a scalar signal from the environment, which serves as a means
for feedback to the agent about the outcomes of its actions. The goal of the agent is to
maximize its reward by adjusting its actions accordingly.

Mathematically, the reward function R.s; a/ maps state-action pairs .s; a/ 2 K
to the real numbers R. When R.s; a/ is negative, it is often referred to as a cost
function. From the perspective of the MDP, it does not matter how the reward is
accrued between decision epochs. We only require that the reward value or expected
value be known before selecting an action, and that it is not affected by future actions.
For MDPs, it is standard to think of the reward as a lump sum received prior to the
next decision epoch (Puterman, 1994, p. 24). Later, when we look at SMDPs (Sec. 4)
and POSMDPs (Sec. 5), in addition to the lump sum, the reward can be continuously
accumulated during the sojourn time.

If the reward depends on the landing state s0 2 S, we let R.s; a; s0/ denote the
value of the reward received when starting from state s, performs action a 2 A.s/,
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and then lands in state s0. If S is a continuous state space, then the reward R.s; a/
can be computed as the expected value given by

R.s; a/ ,
Z
s02S

P.ds0 j s; a/R.s; a; s0/; (2.3.1)

or if S is a discrete space then
R.s; a/ ,

X
s02S

P.s0 j s; a/R.s; a; s0/: (2.3.2)

2.4 The Value Function
While the reward function in Sec. 2.3 tells us what is good in the immediate sense,
we need another function—the value function—which will tell us what is good in the
long run (Sutton and Barto, 1998, p. 8). The value function evaluates the expected
future reward as a function of the current state. Using the value function, the agent can
predict long-term consequences of available actions, and it can use this as a planning
tool to generate optimal decisions.

The Principle of Optimality is stated as follows by Bellman:
An optimal policy has the property that whatever the initial state and initial decisions
are, the remaining decisions must constitute an optimal policy with regard to the
state resulting from the first decisions (Bellman, 1954, p. 504).

What Bellman is requiring is the markov property.

Definition 2.4.1 — Markov property. Given a stochastic kernel �, a controlled
stochastic process .Sn; An/n2N[f0g is said to have the Markov property if for
any n, the conditional distribution of Sn given s0, a0, s1, a1, . . . , sn�1, an�1, is
the same as the distribution Sn given sn�1, an�1; that is,

P.SnC1 2 E j S0 D s0; A0 D a0; : : : ; Sn�1 D sn�1; An�1 D an�1/
DP.SnC1 2 E j Sn�1 D sn�1; An�1 D an�1/

D

Z
E

P.ds j sn�1; an�1/

where E 2 B.S/.

A stochastic process is said to have the Markov property if the conditional probability
distribution of the next state of the process depends only upon the current state and
action. In other words, the probability of the next state does not depend on the entire
history of the process, but only on the current state and action.

In the case where S is a discrete state space (with the discrete �-algebra), and a
discrete number of decision epochs,

P.SnC1 D snC1 j Sn D sn; An D an/ D P.SnC1 D snC1 j S0 D s0; A0 D a0;
: : : ; Sn D sn; An D an/

2.4.1 The General Form
The value of a state s for an MDP following a policy � is

V �.s/ , R
�
s; �.s/

�
™

immediate reward

C 

Z
s02S

P
�
ds0 j s; �.s/

�
V �.s0/

 
sum of discounted future rewards

8s 2 S; (2.4.1)

where  2 Œ0; 1� is the discount rate.
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2.4.2 Discrete states and discrete actions
The value of a state s for an MDP following a policy � is

V �.s/ D R
�
s; �.s/

�
™

immediate reward

C 
X
s02S

P
�
s0 j s; �.s/

�
V �.s0/

 
sum of discounted future rewards

8s 2 S; (2.4.2)

where  2 Œ0; 1� is the discount rate.

s a
�

s0

s0

P ,R

P ,R

Fig. 2.1 Backup diagram for the value function V � following policy � .

Figure 2.1 is an example of a backup diagram and it represents Eq. (2.4.2). It
helps to visualize the relations that form part of the update or backup operations:
these operations transfer value information back to a state (or state-action pair) from
its successor states (or state-action pairs). Each white node represents a state, and
each black node represents a state-action pair. Beginning on the left with state s, the
agent can take any action a available in s—there are three shown in the diagram—but
it will select the action corresponding to policy � (the rest of the action paths are in
gray). The environment will respond with a successor state s0—two are shown in the
diagram—according to the environment’s dynamics given by P.s0 j s; a/, along with
a reward r.s; a; s0/.

The value function for a policy (Eq. (2.4.2)) can be expressed concisely using
matrices:264 :::

V �.s/
:::

375 D
2664

:::

R
�
s; �.s/

�
:::

3775C 
2664
: : :

P
�
s0 j s; �.s/

�
: : :

3775
264 :::

V �.s0/
:::

375 (2.4.3)

or simply,

V � D R� C P �V � : (2.4.4)

Note that there is a different matrices R
�
�; �.�/

�
and P

�
� j �; �.�/

�
for each policy � .

With the notation of Eq. (2.4.4), we can write

V � D R� C P �V �

V � � P �V � D R�

.I � P �/V � D R� :
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Since P � is a stochastic matrix, then all of its associated eignvalues are less than one.
Therefore, the eignvalues of the matrix .I � P �/ are bounded by being greater than
1�  . This guarantees that .I � P �/ is invertible1 and makes it possible to compute

V � D .I � P �/�1R� : (2.4.5)
The optimal Bellman equation, or the optimal value of a state s for an MDP

following an optimal policy �� is given by

V �.s/ D max
a2A.s/

�
R.s; a/C 

X
s02S

P.s0 j s; a/V �.s0/
�

8s 2 S: (2.4.6)

Figure 2.2 gives the corresponding backup diagram for Eq. (2.4.6). We can also

s

a

a

a

max

s0

s0

P ,R

P ,R

s0

s0

P ,R

P ,R

s0

s0

P ,R

P ,R

Fig. 2.2 Backup diagram for the value function V �

express the optimal Bellman equation, or the optimal value function using matrices:
V � D max

�2…
ŒR� C P �V � �: (2.4.7)

2.5 Computational Methods
Value iteration and policy iteration are two standard approaches to solving a com-
pletely specified MDP model.

2.5.1 Value iteration
The value iteration algorithm is an application of Bower’s fixed point theorem. The
value iteration algorithm finds the stationary �-optimal policy by approximating the
fixed point of the value function?

The value iteration algorithm is due to Bellman (1957a).
If we are working with a lookup table representation, for an MDP with jSj states

and jAj actions, then value iteration requires O.jSj2jAj/ computations per iteration.
We stop the algorithm when

jjVkC1 � Vkjj1;S <
�.1 � /

2
(2.5.1)

where jjV jj1;S is the supremum norm defined by
jjV jj1;S D sup

s2S
jV.s/j: (2.5.2)

1Inverting the matrix can be accomplished with Gauss-Jordan elimination with computational complexity O.N 3/,
or Strassen’s algorithm with O.N 2:807/.
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Algorithm 2 Value iteration algorithm for the infinite horizon, Bellman (1957a)
1: Select an arbitrary value function V0 2 V , specify � > 0 and 0 <  < 1, and set
n D 0.

2: repeat
3: for s 2 S do
4: VkC1.s/ max

a2A.s/

�
R.s; a/C 

X
s02S

P.s0 j s; a/Vk.s
0/
�

5: end for
6: k  k C 1

7: until jjVkC1 � Vkjj1;S <
�.1 � /

2
8: for s 2 S do
9: ��.s/ arg max

a2A.s/

�
R.s; a/C 

X
s02S

P.s0 j s; a/VkC1.s
0/
�

10: end for

2.5.2 Policy iteration
The policy iteration algorithm, given in Algorithm 3, is due to Howard (1958). The
algorithm finds an optimal policy in a two-step iteration cycle:

(a) the policy evaluation step calculates the value function using the current
policy � ; and

(b) the policy improvement step acts greedy by selecting the action that maximizes
the value function from the previous step.

The cycle repeats until the algorithm does not make any more changes to the policy;
see Fig. 2.3. So in contrast with the value iteration algorithm, the policy iteration
algorithm computes a policy at each iteration instead of just once at the end.

� V

V ! V �

Policy Evaluation

Policy Improvement
� D greedy.V /

:::

�� V �

V
D V �

V �; ��

� D
greedy.V /

V 0; �0

Fig. 2.3 Policy iteration algorithm. Adapted from Sutton and Barto (1998).

2.6 Q-Learning
Numerical solution was considered the last resort of an incompetent mathematician.
The opposite, of course, is true. Once working in the area, it is very quickly realized
that far more ability and sophistication is required to obtain a numerical solution
than to establish the usual existence and uniqueness theorems. It is far more difficult
to obtain an effective algorithm than one that stops with a demonstration of validity.

—Bellman (1984, pp. 184–185)
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Algorithm 3 Policy iteration algorithm, Howard (1958)
1: Select an arbitrary policy � 0 2 ….
2: repeat
3: �  � 0

4: for s 2 S do F Policy Evaluation: Compute the value function of policy �
5: V �.s/ R

�
s; �.s/

�
C 

X
s02S

P.s0 j s; a/V �.s0/

6: end for
7: for s 2 S do F Policy Improvement: Select the best action for each state

8: � 0.s/ arg max
a2A.s/

�
R.s; a/C 

X
s02S

P.s0 j s; a/V �.s0/
�

9: end for
10: until � D � 0

First proposed by Watkins (1989), Q-learning is a simple learning algorithm that
an agent can use to discover how to act optimally in a Markov environment without
initially knowing the dynamics of the environment.

This learning algorithm is a numerical method for estimating a cost function or
finding an optimal policy when analytical methods are intractable.

This numerical approach is attractive especially when parts of the Markov decision
process, such as the transition probability matrix or the reward function, is unknown
but either the process can be simulated with chosen actions, or the physical system
can be observed with chosen controls. For this reason, Watkins and Dayan (1992, p.
279) calls Q-learning a model-free based approach to finding the optimal policy in a
Markov decision process.

An agent in a particular state attempts to perform an action, and evaluates its
consequences in terms of an immediate reward or cost it receives and the agent
estimates the value of the state that it is now in. By repeatedly visiting every state and
trying all the possible actions, over time, the agent gradually learns the best overall
policy judged by long-term discounted reward (Watkins and Dayan, 1992, p. 279).

For some arbitrary policy � , we can define the state-action value function or
Q-values as

Q�
�
s; �.s/

�
D R

�
s; �.s/

�
C 

X
s02S

P
�
s0 j s; �.s/

�
Q�

�
s0; �.s0/

�
: (2.6.1)

The Q-value is the total expected discounted reward in state s, performing action a,
and then following the policy � afterwards. The corresponding optimal state-action
value function is

Q�.s; a/ D Q��.s; a/ 8.s; a/ 2 K (2.6.2)

D max
a2As

�
R.s; a/C 

X
s02S

P
�
s0 j s; a

�
Q�.s0; a0/

�
: (2.6.3)

In Q-learning, the agent explores the world in an episode in a sequence of steps.
(This can be viewed as an iterative stochastic algorithm.) Once the agent receives the
reward, the episode restarts.

At step n of the episode, the agent
(a) observes the current state s
(b) selects and performs an action a
(c) observes the next state s0

(d) receives an immediate reward r
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(e) adjusts the previous Q values using a learning rate ˛n by the following

QnC1.sn; an/ D .1�˛n/Qn.s; a/C˛n
h
rn.at /C  max

a2A.snC1/
Qn.snC1; a/

i
(2.6.4)

This forms a look-up representation for all of the values Qn.s; a/.

Algorithm 4 Q-Learning, Watkins (1989)
Require: Discount factor  , and learning parameter ˛

1: Initialize an arbitrary Q-function, such as Q.s; a/ D 0, 8.s; a/ 2 K.
2: for each episode do
3: Randomly select a starting state s
4: repeat
5: Randomly select and perform action a 2 As
6: Receive immediate reward r and observe next state s0

7: Q.s; a/ Q.s; a/C ˛
h
r C  max

a02As0
Q.s0; a0/ �Q.s; a/

i
8: s  s0

9: until s is the goal state
10: end for

The Q-Learning algorithm is a stochastic iterative form of value iteration. We
can see that (2.6.4) has the form of a Robbins and Monro (1951) algorithm, which
suggests the application of stochastic approximation theory.

The Q-Learning value iteration algorithm is

QtC1.sn; an/ D .1�t /Qt .sn; an/Ct

�
r.st ; at ; stC1/C ˛ max

atC12A.stC1/
Qt .stC1; atC1/

�
(2.6.5)

where ˛ is the discount factor (Watkins and Dayan, 1992, p. 57).

2.7 Optimal Stopping Problems
An optimal stopping problem—a form of temporal control—is a sequential decision
process where an agent must determine the optimal time to halt the ongoing process.
At each decision epoch, the agent observes the current state and must decide whether
to continue or stop the process. Stopping incurs a certain cost, represented as a
negative reward. The crux of the decision is not solely about which action to take, but
critically about when to execute it. The objective is to pinpoint the optimal stopping
time that will maximize the total expected reward over the decision horizon. This
concept aligns with the notion of temporal control, which emphasizes the timing of
an action in the decision-making process.

One possible way to solve this with a Markov decision process is to augment the
state space with discrete time. However, this increases the state space dimensions
exponentially, which leads to the curse of dimensionality.2 Because of the Markovian
assumption, any information that is needed to make a decision must be in the state
information. For example, if there was information that was needed from a previous
stage, that information must be dragged along into the new state. Not only have we
increased the state space, we have also increased the computational time required to
find an optimal policy.
2This was a term Richard Bellman had coined in dynamic programming when the size of the state space grows so

large that it is no longer tractable computationally.



July 18, 2023 8:8 World Scientific Book - 9in x 6in ThesisMain page 16

16 Bayes-Adaptive Semi-Markov Decision Processes

Let us consider a relatable example that we have crafted to illustrate the concept
of an optimal stopping problem and how the state space expands with each time step.

Example 2.7.1 — Elevator Problem (MDP version). Suppose that when an agent arrives
at the lobby (on floor 1), N minutes remain before its meeting begins. If the elevator
arrives before the meeting starts, it earns reward r . However, the agent does not enjoy
waiting, so to reflect its dislike it incurs a cost c each minute it waits. The agent can
see on which floor, s, the elevator is on currently by the floor indicator above the
elevator door. It also knows the conditional probability P.Sn�1 D s0 j Sn D s;wait/,
which represents the probability that the elevator will descend to floor s0 in the next
minute given that the elevator is currently on floor s. At each minute n, the agent
must decide either to wait for the elevator, or to give up and to take the stairs; this
decision to stop or to continue is what makes this an optimal stopping problem. The
action of taking the stairs incurs a heavy cost of C units. Suppose that when the agent
arrives and pushes the elevator button, the descending elevator is on floor S . What is
the optimal policy that the agent should follow?

Solution Using dynamic programming. We can model this problem using the MDP
framework. The state space consists of the floor numbers and the time in minutes (or
the decision epoch index),

S D f1; 2; : : : ; Sgš
floor

� fN � 1;N � 2; : : : ; 2; 1; 0g 
remaining time

;

and the number of states is

jSj D S �N:

A typical state would be the pair .s; n/ 2 S, where the elevator is on floor s, and the
remaining time n until the meeting. The action space consists of two actions

A D fwait; stairsg:

The transition probability matrix is given by

P
�
.s0; n � 1/ j .s; n/;wait

�
D P.Sn�1 D s0 j Sn D s; An D wait/; (2.7.1)

and

P
�
.s0; n � 1/ j .s; n/; stairs

�
D P.Sn�1 D 1 j Sn D s; An D stairs/: (2.7.2)

The reward function is

R
�
.s; n/; a

�
D

(
r � C; .a D stairs/I
rP
�
.1; n � 1/ j .s; n/;wait

�
� c; .a D wait/;

(2.7.3)

for all s 2 f1; 2; : : : ; Sg and n 2 fN � 1;N � 2; : : : ; 2; 1; 0g. Intuitively, this follows
since if the agent chooses to take the stairs, it earns reward r but incurs the heavy
cost C . On the other hand, if the agent waits for a minute, it will incur a waiting cost
of c and will receive reward r with probability P

�
.1; n � 1/ j .s; n/;wait

�
. Thus, if

the agent waits, its net reward is rP
�
.1; n � 1/ j .s; n/;wait

�
� c. We let n D 0 be

the beginning of the problem and the last decision epoch n D N � 1 be the end of
the problem; N <1: therefore, it is a finite horizon problem. This completes our
description of the elevator problem as an MDP.

Since this is an MDP, we can use dynamic programming to determine an optimal
policy that will maximize its expected net reward (reward minus waiting costs). In
this case, the agent knows the reward r and the transition probability matrix P . We
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will assume that the amount of time between each decision epoch is one minute. To
define the value function, let
V �.s; n/ D the maximum expected net reward that the agent receives when the

elevator is on floor s from decision epoch n to N .
Due to the state space being augmented by time, this requires a slight modification to
Eq. (2.4.6); instead, we will use

V �.s; N � 1/ D max
a2A

R
�
.s; N � 1/; a

�
; (2.7.4)

and if 0 � n < N � 1,

V �.s; n/ D max
a2A

�
R
�
.s; n/; a

�
C 

X
s02S

P
�
.s0; n � 1/ j s; a/V .s0; n � 1/

�
(2.7.5)

for all s 2 f1; 2; : : : ; Sg. We will start with V.s;N � 1/, which is the last decision
that the agent can make. Substituting Eq. (2.7.3) into Eq. (2.7.4), the value function
at n D N � 1 is

V �.s; N � 1/ D max
a2A

(
r � C; .a D stairs/I
rP
�
.1;N � 2/ j .s; N � 1/;wait

�
� c; .a D wait/:

for all s 2 f1; 2; : : : ; Sg. Substituting Eq. (2.7.1) and Eq. (2.7.3) into Eq. (2.7.5), the
value function at n < N � 1 is

V �.s; n/ D max
a2A

‚
r � C; .a D stairs/I
rP
�
.1; n � 1/ j .s; n/;wait

�
� c�

(a) elevator arrives

C

X
1<s0<s

P
�
.s0; n � 1/ j .s; n/;wait/

�
V �.s0; n � 1/;

—
(b) elevator does not arrive

.a D wait/:

Intuitively, the previous equation follows since if the agent waits there are two
possibilities.

(a) The elevator arrives within the next minute: rP
�
.1; n � 1/ j .s; n/;wait

�
� c.

(b) The elevator does not arrive in the next minute: the amount of reward depends
on what will happen in future decision epochs. In this case, the net reward
from decision epoch nC 1 to N is V.s0; nC 1/. Since V.s0; nC 1/ depends
on s0, and the agent does not know which floor the elevator will be in the next
time step, we sum over the remaining floors and their associated probability to
get the expected net reward from decision epoch nC 1 to N :

P
1<s0<s P.s

0 j

s/V .s0; nC 1/.
To determine the agent’s optimal waiting policy, we work backwards from

V.S;N / until V.1; 0/ is computed. There exists an optimal policy, and it is defined
by

��.s; n/ D

(
stairs; if V �.s; n/ D r � C I
wait; otherwise:

(2.7.6)

We give a numerical example by setting N D 10, S D 5, r D 25, c D 3, C D 10,
and the state transition probability matrix as

P.s0 j s/ D

2666664

1 2 3 4 5

1 1 0 0 0 0

2
1
2
1
2
0 0 0

3 0 1
2
1
2
0 0

4 0 0 1
2
1
2
0

5 0 0 0 1
2
1
2

3777775:
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We have calculated the optimal value function V �.s; n/ along with the optimal policy
�� in Fig. 2.4. The policy �� is an example of a threshold policy: it is optimal to stop
when the value function crosses a specified level.

220 198 176 154 132 110 88 66 44 22

195 173 151 129 108 86 65 46 28 15

145 124 103 81 62 44 29 19 15 15

98 77 59 42 29 19 15 15 15 15

56 40 28 19 15 15 15 15 15 15

floor, s

elapsed time, n
0 1 2 3 4 5 6 7 8 9

1
2
3
4
5

wait stairs

��

Fig. 2.4 The optimal value function V �.s; n/ calculated for the numerical example for the elevator problem. The
optimal policy �� is shown by a threshold: if the state is to the left of the threshold, then the agent should wait; if the
state is to the right of the threshold, then the agent should take the stairs.

The Python code is provided in Appendix A.1. J
In the previous example, we saw an agent in a time-critical situation waiting for

an elevator. As each minute passes, the agent must decide based on the environment’s
current state, adding a layer of complexity to the state space. This problem not only
exemplifies optimal stopping and temporal control, but also demonstrates how the
state space grows with each decision epoch. In later sections, we will explore how the
problem can become more realistic by incorporating partial observability and random
sojourn times, further enhancing the challenge and applicability of the model. We
will use this as our running example to explore how the optimal stopping problem
can become more realistic by incorporating partial observability and random sojourn
times, further enhancing the challenge and applicability.

2.8 Bibliographic Remarks
Bellman (1957b) first coined the term Markov decision processes, of which this and
other early work is summarized in his book (Bellman, 1957a). Shapley (1953) is also
credited with fundamental work in this area of two-person stochastic games that were
very close to MDPs.

In Sec. 2.5, we discussed two computational approaches to solving MDPs. Another
computational approach is to convert Bellman’s equation as a linear programming
problem (d’Epenoux, 1960, 1963).

Backup diagrams were introduced in Sutton and Barto (1998). We will extend
these diagrams to represent other models in the next chapters.

In Sec. 2.4, the value function accumulates reward additively over time. However,
there are other value functions that accumulates over time multiplicatively, where the
reward function has an exponential function form (Bertsekas, 2022, pp. 187–190).



July 18, 2023 8:8 World Scientific Book - 9in x 6in ThesisMain page 19

3
The Partially Observable Markov Decision

Process (POMDP) Model

In this chapter, we embark on a formal introduction and definition of a Partially
Observable Markov Decision Process (POMDP) within the context of a Borel space,
serving as a generalized extension of a Markov Decision Process (MDP); see Fig. 3.1.

MDP

+ partially observability

POMDP

Fig. 3.1 The relationship between MDP and POMDP

Subsequent to the model’s delineation, we will delve into the computational
strategies applicable for solving a POMDP. Notably, we will explore the PERSEUS
algorithm, a randomized point-based value iteration method. This algorithm is
particularly significant as it lays the groundwork for addressing Partially Observable
Semi-Markov Decision Processes (POSMDPs) in Chap. 5.

Before we go further with this discussion, we will discuss the importance of
partial observability, and show how we can include it in an MDP from Chap. 2 to
yield the partially observable Markov decision process (POMDP). The belief state is
introduced, and then we discuss further the quote from Sutton and Barto along with
alternative representations of POMDPs. Lastly, we discuss exact and approximate
solutions of POMDPs and their respective algorithms from which these algorithms
form the basis of our algorithms for Chap. 5.

3.1 Partial Observability
Non-Markovian problems manifest in a variety of situations. Consider an agent
operating in an environment where it lacks perfect state information. Although the
environment itself follows Markovian properties, the agent’s observations do not
fully reveal the state of the environment, rendering it only partially observable. The
agent may infer these hidden states from past time steps, but if this information is not
available in the current state, the problem remains non-Markovian.

Example 3.1.1 — In a darkroom. Suppose you are standing in a room like Fig. 3.2.
Your friend turns out the light and places you randomly somewhere inside of the
room; you assume now that you could be starting at any one of the tiles in the room.
You remember the interior of the room (the agent knows the state space), but you do
not know where you are in the room (the agent does not know where it is in the state

19
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A

C
B D

Fig. 3.2 A tiled room grid with furniture, where tiles markedA represent a sofa, tiles markedB ,C , andD represent
tables, and empty tiles can be any of the unmarked ones. In a dark room, the observer can distinguish the different
tiles by feeling the presence or absence of furniture in them.

space). But, as you begin to move blindly from tile to tile in the room, you can feel
(observe) in that tile if there is furniture or not. This will help you distinguish the
different tiles.

(a) If there is nothing in that tile, then you know that you can be in any one of
the empty tiles.

(b) If you come across a sofa and because you know this is the only sofa in the
room, then you know with certainty that you are in tile A.

(c) If you came across a table, then you could be in either tile B , C , or D. If
you continue, and move into the next tile and feel another table, then you can
restrict your belief that you are in either tile B or C .

J
In the previous example, you are creating a conditional probability of where you

believe you are in the state space given your past observations. Partially observable
Markov processes can be thought of as an ordinary Markov decision process where
the state is the agent’s belief (or subjective probability) of being in a particular state.
An agent knows the entire state space, but it does not know exactly where it is in the
state space. Hence, the agent creates a probability distribution over the state space of
where it believes it is located within the state space from its observations.

3.2 The POMDP Model
The Partially Observable Markov Decision Process (POMDP) serves as a mathemati-
cal framework encapsulating sequential decision-making under uncertainty within
partially observable domains. As an extension of a Markov Decision Process (MDP),
it integrates partial observability into the model. The complexity of decision-making
in an MDP stems from the agent’s uncertainty about the stochastic environment’s re-
sponse to its actions. This complexity escalates in a POMDP, where not only does the
environment behave stochastically, but the agent also grapples with limited visibility
into various aspects of the environment.

Definition 3.2.1 — POMDP. A partially observable Markov decision process
(POMDP) is an 11-tuple

hS;A;K;O; P;G;G0; R; �0; ; N i (3.2.1)

where
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S is the Borel state space, and the elements of S are called states
A is the Borel action space, and the elements of A are called actions.

To each s 2 S, we associate a nonempty Borel-measurable subset
A.s/ � A, whose elements are the admissible actions for the agent
when the process is in state s

K is the set of admissible state-action pairs, and it is assumed to be a
Borel subset K � S �A. In other words,

K D f.s; a/ j s 2 S; a 2 A.s/g:

O is the Borel observation space, and the elements of O are called
observations

P.ds0 j s; a/ is the state (Borel-measurable) stochastic kernel on S given S �A
G.do j a; s0/ is the observation (Borel-measurable) stochastic kernel on O given

A � S
G0.do j s0/ is the initial observation (Borel-measurable) stochastic kernel on O

given S
R.s; a/ is the per-stage (bounded Borel-measurable) reward function given K

�0 is the (a priori) initial (belief) state distribution (�0 2 P.S/)
 is the discounting factor where  2 Œ0; 1�
N is the planning horizon. It could be finite, or N D1 if  < 1.

Kaelbling et al. (1996, 1998) introduced the POMDP into the artificial intelli-
gence community, and since then, it has become part of the standard curriculum for
introductory courses on artificial intelligence (Russell and Norvig, 2010, Sec. 17.4).

Given the model in Definition 3.2.1, the dynamics of the POMDP proceed accord-
ing to Algorithm 5. This involves at each decision epoch n choosing an action an,
accruing reward R.sn; an/ as the state changes from state sn to snC1, and partially
observing snC1 as onC1. The agent uses all the information available up to decision
epoch n, namely the observable history Qhn, to choose action an D �n. Qhn/ using
policy �n. We denote the sequence of policies that the agent uses from decision epoch
0 to n � 1 as � D .�0; �1; : : : ; �n�1/. The set of all admissible policies is denoted
….

Most of the time, the observation is independent of the previous state. If this is not
the case, then for each .s; a; s0/ transition define G.o j s; a; s0/. Then we can write

G.o j a; s0/ D
X
s2S

P.s0 j s; a/G.o j s; a; s0/: (3.2.2)

This is similar to how we define the expected reward

R.s; a/ D
X
s02S

P.s0 j s; a/R.s; a; s0/:

3.3 History
The history refers to the sequence of all past observations, actions, and resulting states
up to the current time step in the decision-making process.

In an MDP, the history is entirely observable by the agent;

MDP: h0 D .s0/

hn D .s0; a0; : : : ; sn�1; an�1; sn/

hnC1 D hn [ .an; snC1/:
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While in a POMDP, the history of the model’s dynamics is

POMDP: h0 D .�0; s0/

hn D .�0; s0; a0; o1; : : : ; sn�1; an�1; on/

hnC1 D hn [ .sn; an; onC1/:

However, with a POMDP, the states (listed in red) are not entirely observable by the
agent; the state in which the agent is in not known with certainty. Instead, the agent
sees the observable history, Qhn, which is

POMDP: Qh0 D .�0/

Qhn D .�0; a0; o1; a1; o2; : : : ; an�1; on/

QhnC1 D Qhn [ .an; onC1/:

The observable history is crucial because it’s this information that the agent uses to
infer the underlying hidden state of the environment, given that the full state is not
directly observable.

Algorithm 5 Dynamics of POMDP
In the beginning n D 0, the state s0 is simulated from an initial (belief) state distribu-
tion �0.
For decision epoch n D 1; 2; : : : ; N :

(a) Based on the observable history
Qh0 D .�0/

Qhn D .�0; a1; o1; : : : ; an; on/;

the agent performs action

an D �n.hn/ 2 A; n D 1; 2; : : : ; N:

Here, �n denotes a policy that the agent uses at decision epoch n.
(b) The agent receives a reward R.sn; an/ for performing action an in state sn.
(c) The state evolves randomly with transition probability

P.s0 j s; a/ D P.SnC1 D s0 j Sn D s; An D a/

to the next state snC1 at decision epoch nC 1.
(d) The agent records a noisy observation On 2 O of the state SnC1 according to

G.o j a; s0/ D P.On D o j An D a; SnC1 D s0/:

(e) The agent updates its observable history as
QhnC1 D . Qhn; a; o/:

If n < N , then set n to nC 1 and go back to step (a).
If n D N , then the agent receives the last reward and the process terminates.

3.4 Belief State
In Sec. 3.1, we explored the concept of partial observability, where an agent can only
infer the state s 2 S from its observable history, as detailed in Sec. 3.3. Therefore, to
optimally navigate a partially observable environment and select appropriate actions,
an agent necessitates a memory of past observations.
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S0start

O0

A0 S1

O1

A1 S2

O2

� � �

Fig. 3.3 Graphical model of POMDP. The states Si are hidden from the agent, while the observations Oi are
observable. The agent’s actions are Ai . The solid arrows! represent the direct influence from one element to
another, while the dashed arrows Ü represent indirect influence. For example, action A0 is directly influenced by
observationO0 because this is the information that is available to the agent, while state S0 is indirectly influencing
A0 since the agent has to infer in which state it is in currently from observationO0.

A naı̈ve approach would be for the agent to remember its sequence of sojourn
times, observations, and actions. However, this sequence can grow unbounded over
time, which is not practical with finite memory. Instead, we can summarize this
information with sufficient statistics (Stratonovich, 1960; Aoki, 1965; Åström, 1965;
Dynkin, 1965; Aoki, 1967; Åström, 1969; Sawaragi and Yoshikawa, 1970). A statistic
is said to be sufficient when no other statistic calculated from the same sample provides
any additional information to the parameter value being estimated (Fisher, 1922, p.
310). With these sufficient statistics that summarize the observable history, we can
construct a probability distribution of where the agent is in the state space; we call
this probability distribution over the state space a belief state.

Definition 3.4.1 — Belief state. A belief state � is a probability distribution over the
state space S.

If the state space S D fs1; s2; : : : ; sjSjg is a finite set, then the belief state � is defined
by

� D

26664
�.s1/

�.s2/
:::

�.sjSj/

37775 ,

26664
P.S D s1/
P.S D s2/

:::

P.S D sjSj/

37775 :
To ensure that � is a probability distribution,

�.si / � 0 8si 2 S;

and
jSjX
iD1

�.si / D 1:

Definition 3.4.2 — Belief Simplex 4. If the state space S D fs1; s2; : : : ; sjSjg is a
finite set, then the belief (probability) simplex in RjSj, denoted by4, is the set of
belief states � 2 RjSj such that �.si / � 0 and

P
i �.si / D 1 for i D 1; 2; : : : ; jSj.

If the state space S is a finite set, then the belief simplex4 is an .jSj�1/-dimensional
manifold in jSj-dimensional space. For example, when there are only two states
(jSj D 2), the belief simplex is the set of points

4 D

�
� D

�
�.s1/

�.s2/

� ˇ̌̌̌
�.s1/ � 0; �.s2/ � 0; �.s1/C �.s2/ D 1

�
: (3.4.1)

This can be represented graphically as the interval Œ0; 1� � R (see Fig. 3.4).
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0 0:3 1

�
0

1

� �
0:3

0:7

� �
1

0

�
s1

Fig. 3.4 Belief simplex for two states, S D fs1; s2g, with three belief states shown as examples.

When there are three states (jSj D 3), the belief simplex is the set of points

4 D

8<:� D
24�.s1/�.s2/

�.s3/

35 ˇ̌̌̌ˇ̌ �.s1/ � 0; �.s2/ � 0; �.s3/ � 0; �.s1/C �.s2/C �.s3/ D 1
9=; :

(3.4.2)
Graphically, a triangle represents the simplex for three states (see Fig. 3.5). Since this

1 1

12410
0

35 2401
0

35

2400
1

35

241=31=3
1=3

35s1 s2

s3

Fig. 3.5 Belief simplex for three states, S D fs1; s2; s3g, with four belief states shown as examples.

is a triangular two-dimensional flat in R3, we use a triangle to represent the belief
simplex in later sections of this chapter.
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3.5 Belief Update
After taking action a and receiving observation o, the agent updates its belief in which
state it is now using Bayes’ Theorem:

�.s0 j a; o/ D P.SnC1 D s0 j �n D �; An D a;On D o/

D
P.�n D �; An D a;On D o; SnC1 D s0/

P.�n D �; An D a;On D o/

D
P.�n D �; An D a;On D o; SnC1 D s0/X

s002S
P.�n D �; An D a;On D o; SnC1 D s00/

D

X
s2S

�.s/P.SnC1 D s0 j Sn D s; An D a/P.On D o j An D a; SnC1 D s0/X
s002S

X
s2S

�.s/P.SnC1 D s00 j Sn D s; An D a/P.On D o j An D a; SnC1 D s00/

D

X
s2S

�.s/P.s0 j s; a/G.o j a; s0/X
s002S

X
s2S

�.s/P.s00 j s; a/G.o j a; s00/

D

G.o j a; s0/
X
s2S

�.s/P.s0 j s; a/X
s002S

G.o j a; s0/
X
s2S

�.s/P.s00 j s; a/

Thus, the belief update is

�.s0 j a; o/ D

G.o j a; s0/
X
s2S

P.s0 j s; a/ �.s/

P.o j �; a/
8s0 2 S; (3.5.1)

where the denominator

P.o j �; a/ D
X
s02S

G.o j a; s0/
X
s2S

P.s0 j s; a/ �.s/ (3.5.2)

is a normalization factor.

1 1

1

�

s1 s2

s3

1 1

1

�.� j a; o1/

�.� j a; o2/
s1 s2

s3

a; o1

a; o2

Fig. 3.6 Belief simplex for a three-state S D fs1; s2; s3g two-observation O D fo1; s2g POMDP. This shows
how the agent’s initial belief � changes once it selects an action a and observes an observation.
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Algorithm 6 Controller for an Online Agent (POMDP)
In the beginning n D 0, the state s0 is simulated from an initial (belief) state distribu-
tion �0.
For decision epoch n D 1; 2; : : : ; N :

(a) Based on the current belief state �, the agent performs action

an D �n.�n/ 2 A n D 1; 2; : : : ; N;

according to policy �n that the agent uses at decision epoch n.
(b) The agent receives a reward R.sn; an/ for performing action an in state sn.
(c) The state evolves randomly with transition probability

P.s0 j s; a/ D P.SnC1 D s0 j Sn D s; An D a/

to the next state SnC1 at decision epoch nC 1.
(d) The agent records a noisy observation On 2 O of the state SnC1 according to

G.o j a; s0/ D P.On D o j An D a; SnC1 D s0/:

(e) With the selected action a and the observation o received, the agent updates
its belief state

�.s0 j a; o/ D

G.o j a; s0/
X
s2S

�.s/P.s0 j s; a/X
s002S

G.o j a; s00/
X
s2S

�.s/P.s00 j s; a/
8s0 2 S;

where the initial belief �0 is given in the model.
(f) If n < N , then set n to nC 1 and go back to step (a).

If n D N , then the agent receives the last reward and the process terminates.

3.5.1 Reward-based POMDP (R-POMDP)
The belief state is a sufficient statistic of the history hn D .�0; a1; o1; : : : ; an; on/.
However, it is important to note that the history may not encapsulate all available
information. The immediate reward R.s; a; s0/, which depends on the underlying
state, may hold significant insights about the state. As argued by Izadi and Precup
(2005), rewards may carry valuable information that is not captured in the observation,
and this information can aid in differentiating between states.

This point is further underscored by a question-answer exchange recorded in
Kaelbling et al. (1996). During the discussion, the idea of rewards providing additional
information was raised. Kaelbling responded by suggesting that the reward could be
integrated into the state space, thereby preserving the original problem’s formulation
while still leveraging the information contained in the reward.

� 0.s0 j a; o; r/ D P.SnC1 D s0 j �n D �; An D a;On D o;Rn D r/

D
P.�n D �; An D a;On D o;Rn D r; SnC1 D s0/

P.�n D �; An D a;On D o;Rn D r/

D

X
s2S

�.s/P.s0 j s; a/G.o j a; s0/R.r j s; a; s0/X
s02S

X
s2S

�.s/P.s0 j s; a/G.o j a; s0/R.r j s; a; s0/
(3.5.3)
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where

R.r j s; a; s0/ D

(
1; if r D R.s; a; s0/I
0; otherwise.

(3.5.4)

When (3.5.3) is used for the belief state update, it is called a reward-based POMDP
(R-POMDP) (Izadi and Precup, 2005, p. 595–596).

3.6 The Value Function
When dealing with POMDPs, the concept of the value function becomes particularly
crucial. Unlike MDPs, where the value function is directly associated with the fully
observable state s 2 S, POMDPs require a different approach. Given the agent’s
inability to observe s directly, it relies on a sufficient statistic �.s/ derived from the
observable history to infer the state’s probability. Consequently, the agent’s planning
process becomes more effectively grounded in the belief state.

The value of a belief � for a POMDP following a policy � is

V �.�/ D R
�
�; �.�/

�
C 

X
o2O

P
�
o j �; �.�/

�
V �

�
�.� j �.�/; o/

�
(3.6.1)

where the next belief vector �
�
� j �.�/; o

�
is defined by Eq. (3.5.1) and P

�
o j �; �.�/

�
is defined by Eq. (3.5.2). The reward function RW4 ! R is

R.�; a/ D
X
s2S

�.s/R.s; a/: (3.6.2)

Figure 3.7 gives the corresponding backup diagram for Eq. (3.6.1). In comparison to
the MDP backup diagram in Fig. 2.1 (on p. 11), the state of that the value function
changes from s to � and we include the observation probability transition G.

� a
�

�0

�0

P ,G,R

P ,G,R

Fig. 3.7 Backup diagram for the value function V � following policy � .

Thus, Eq. (3.6.1) fully expanded is written as

V �.�/ D
X
s2S

�.s/R
�
s; �.s/

�
C 

X
o2O

X
s02S

G
�
o j �.�/; s0

�
X
s2S

�.s/P
�
s0 j s; �.s/

�
V �

�
�.� j �.�/; o/

�
: (3.6.3)
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The optimal value function V � is

V �.�/ D max
a2A.s/

�
R.�; a/C 

X
o2O

P.o j �; a/V �
�
�.� j a; o/

��
(3.6.4)

where the next belief vector � 0 D �.� j a; o/ is defined by the belief update rule in
Eq. (3.5.1), P.o j �; a/ is defined by Eq. (3.5.2), and R.�; a/ is defined by Eq. (3.6.2).
Figure 3.7 gives the corresponding backup diagram for Eq. (3.6.1).

�

a

a

a

max

�0

�0

P ,G,R

P ,G,R

�0

�0

P ,G,R

P ,G,R

�0

�0

P ,G,R

P ,G,R

Fig. 3.8 Backup diagram for the value function V � following policy ��.

Thus, Eq. (3.6.4) can be expressed as

V �.�/ D max
a2A.s/

�X
s2S

�.s/R.s; a/C 
X
o2O

X
s02S

G.o j a; s0/X
s2S

�.s/P.s0 j s; a/V �
�
�.� j a; o/

��
(3.6.5)

When Eq. (3.6.5) holds for every belief state � in the belief simplex4, then the
solution is guaranteed to be optimal.

3.7 Exact Solution Algorithms
Since the belief simplex 4 is continuous, the value function V.�/ in Eq. (3.6.5) is
computationally intractable to calculate pointwise for every belief state � 2 4. To
circumvent this, Sondik (1971) made the following assumption. Consider a two-state
S D fs1; s2g POMDP. In Fig. 3.9(a), we represent the belief state on the horizontal
axis, while on the vertical axis will be the value function. The agent knows the value
with absolute certainty when with absolute certainty it knows in which state it is; see
Fig. 3.9(b).

Assumption 3.7.1 — Sondik (1971). The value is linearly propositional to how certain
the agent believes in which state it is.

In other words, linear interpolation that fills in the values between the two known
values; see Fig. 3.9(c). The line segment that connects the two values in Fig. 3.9(c) is
an example of what Sondik (1971) called an ˛-vector.

In general, we give the following definition.
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1

V

0
�.s1/

1

V

0
�.s2/

(a) Beginning to graph the
value function over the belief
simplex

1

V

0
�.s1/

V.s2/
V.s1/

1

V

0
�.s2/

V.s1/
V.s2/

(b) The agent knows what the
value is when it knows with ab-
solute certainity in which state it
is.

1

V

0
�.s1/

V.s2/
V.s1/

1

V

0
�.s2/

V.s1/
V.s2/

(c) The assumption is that the two
values are connected by a linear
function.

Fig. 3.9 An example of an ˛-vector for a two-state S D fs1; s2g POMDP

Definition 3.7.2 — ˛-vector. An ˛-vector represents an jSj-dimensional hyperplane
that defines the value function for a particular action a 2 A over a bounded region
of the belief simplex. In this work, we represent ˛-vectors in matrix form:

˛ D

26664
˛.s1/

˛.s2/
:::

˛.sjSj/

37775 D
26664
V.s1/

V .s2/
:::

V .sjSj/

37775 :
While we have generally refer to V as the value function, we can also think of V as a
set of ˛ vectors:

V D f˛1; ˛2; : : : ; ˛mg: (3.7.1)

The optimal value function at a particular belief state � is the inner product of � with
the ˛-vector in set V that will yield the highest value, which is

V �.�/ D max
˛2V
h�; ˛i (3.7.2)

D max
˛2V

X
s2S

�.s/˛.s/; (3.7.3)

and the corresponding optimal policy ��W � ! a is

��.�/ D arg max
i2f1;2;:::;mg

h�; ˛i i (3.7.4)

D arg max
i2f1;2;:::;mg

X
s2S

�.s/˛i .s/; (3.7.5)

where each ˛i has a corresponding action associated with it.
With the example in Fig. 3.9, we can define the ˛-vector as

˛ D

�
V.s1/

V .s2/

�
:

Given a belief

� D

�
�.s1/

�.s2/

�
;

we can calculate the value by

V.�/ D h�; ˛i D
�
�.s1/ �.s2/

� �˛.s1/
˛.s2/

�
D �.s1/˛.s1/C �.s2/˛.s2/:
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��a1a2

V

0
�.s2/

1

˛1.s1/

˛1.s2/

˛2.s1/

˛2.s2/

V �

˛1˛2

�

V �.�/

Fig. 3.10 Example of a POMDP with two states S D fs1; s2g and two actions A D fa1; a2g. In this example,
there are two ˛-vectors, ˛1 and ˛2, which correspond to action a1 and action a2 respectively. The horizontal
axis shows only �.s2/, but since jSj D 2, the belief simplex 4 is a one-dimensional interval Œ0; 1�, and so
�.s1/ D 1� �.s2/. The optimal value function V � is shown with a thick line, and the optimal policy �� is shown
below the graph of V with which regions of the belief space correspond to the optimal action.

Sondik (1971) was the first to realize that the value function of a finite-horizon
POMDP is piecewise linear and convex. With this insight, Sondik expressed the value
function as a set of linear vectors, which he called ˛-vectors.

Smallwood and Sondik (1973) provided algorithms for solving a POMDP for the
finite horizon case, while later, Sondik (1978) considered the infinite horizon case
with discounted rewards.

In general, using exact solution methods for long planning horizons with POMDPs
is computational intractable (Papadimitriou and Tsitsiklis, 1987).1 The exact POMDP
value iteration algorithm is given in Algorithm 7.2

Algorithm 7 Exact POMDP Value Iteration, Sondik (1971), Monahan (1982)
1: function EXACTBACKUP
2: �a;�  ˛a;� D R.s; a/ F Step 1: Generate initial sets.
3: �a;o  ˛

a;o
i .�/ D 

P
s02S P.s

0 j s; a/G.o j a; s0/˛0i .�
0/ 8˛0i 2 V

0

4: �a D �a;� ˚ �a;o1 ˚ �a;o2 ˚ � � � F Step 2: Create �a for all a 2 A
5: V D [a2A�

a F Step 3: Take the union of all �a sets.
6: end function

In practice, the set of vectors in V may be larger than necessary; many of the
vectors may be dominated by other vectors in the set (h˛i ; �i <

˝
j̨ ; �

˛
8�) or by a

combination of other vectors. These redundant vectors can be removed from the
set without affecting the quality of the solution, but the removal operation can be
computationally expensive requiring the solving of a linear programming problem.

3.8 Approximate Solution Algorithms

From Sec. 3.7, we know that solving a POMDP is computationally intractable, and so
we turn to approximate solutions to solve POMDPs for real-world problems such as
patient care management (Hauskrecht and Fraser, 2000), robotics (Porta et al., 2005),
and spoken dialog systems (Young et al., 2013).

1The term exact means that there is no approximation in the Bellman backup, unlike the approximations we will use
in Sec. 3.8. This exact method however is not immune to numerical round off and finite precision effects.
2Given two ˛-vectors, the cross sum is the pairwise addition of ˛-vectors; that is, given vectorsA D

�
a1 � � � an

�>
and B D

�
b1 � � � bn

�>
, then A˚B D

�
a1 C b1 � � � an C bn

�>
.
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3.8.1 Point-based value iteration (PBVI)

Instead of planning over the entire belief simplex like exact value iteration in Sec. 3.7,
point-based value iteration reduces the computational load by using only a finite set
of belief states B from the belief simplex. A naı̈ve approach for selecting the belief
states is to sample uniformly from the belief simplex or perhaps to use a regular mesh
(Drake, 1962; Lovejoy, 1991); for instance, as depicted by the mesh within the belief
simplex shown in Fig. 3.11.

1 1

1

s1 s2

s3

Fig. 3.11 Belief simplex for three states, S D fs1; s2; s3g, with a regular mesh of belief states.

Although the naı̈ve approach offers a straightforward strategy for discretizing
the belief simplex, it may incorporate some belief states that the agent is unlikely to
encounter within the environment. Consequently, calculating the value function with
these unlikely belief states is an unnecessary computational burden. An alternative
sampling scheme offers a solution by simulating the POMDP using randomly sampled
actions and observations. This approach emphasizes the collection of belief states
more likely to appear within the belief simplex during a POMDP simulation. These
sampled belief states then serve as the basis for executing value iteration to ascertain
the optimal value function. This concept proved integral to developing the first Point-
Based Value Iteration (PBVI) algorithm, pioneered by (Pineau et al., 2003). The
general outline of PBVI can be found in Algorithm 8.

Algorithm 8 General form of point-based value iteration, Pineau et al. (2003)
1: while stopping criterion not reached do
2: Collect belief states � 2 4 and put into set B
3: Update the value function V over the finite belief state set B
4: end while

In PBVI, it begins with an initial belief, typically the agent’s initial state. The
algorithm then performs a series of backups and expansions. During the backup
process, the value function is updated for the current set of belief points. During
the expansion process, the algorithm selects a new belief point that is the furthest
from the current set, based on a distance metric. The utilization of this distance
metric facilitates the analysis of the value function approximation error, deriving from
the sampled belief points. The new belief point is added to the current set, and the
process is repeated. This strategy ensures a balanced trade-off between the quality
of the approximation and the computational complexity with very few belief points
(sometimes less than the number of states) (Pineau et al., 2006).
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This exploratory approach allows PBVI to cover a wide range of belief states that
the agent could possibly experience, improving the robustness and performance of the
policy. However, belief selection in PBVI requires significant computational effort,
and the size of the value function is directly tied to the size of the belief set, making it
less efficient for larger problems.

3.8.2 Perseus
The PERSEUS algorithm is a point-based value iteration algorithm developed by
Spaan and Vlassis (2005), and it proceeds in two steps as specified in Algorithm 9:
first, it collects the beliefs, and then approximates the value function using the backup
operator.

Algorithm 9 PERSEUS, Spaan and Vlassis (2005)
1: function PERSEUS(n; �0; V0; �)
2: B  COLLECTBELIEFS(n; �0)
3: V 0  V0
4: repeat
5: V  V 0

6: V 0  UPDATE(B; V )
7: until jjV � V 0jj1;B < �
8: return V
9: end function

In the method of belief point selection in Algorithm 10, unlike PBVI that employs
a heuristic selection process, PERSEUS follows a more stochastic path. It randomly
generates trajectories across the belief simplex, leading to a diverse selection of
belief points that could potentially offer a more encompassing approximation of the
reachable belief space.

Algorithm 10 COLLECTBELIEFS

1: function COLLECTBELIEFS(n; �0)
2: B  f�0g F Initialization
3: repeat
4: Randomly select the belief state � 2 B
5: Randomly select an action a 2 A
6: Randomly select o 2 O according to P.o j �; a/ using Eq. (3.5.2)
7: Calculate �.� j a; o/ according to Eq. (3.5.1)
8: B  B [ f�.� j a; o/g F Add new belief to set B
9: until jBj D n

10: return B
11: end function

The second distinction emerges in the update process—Algorithm 11—of the
value function. PBVI, in its systematic fashion, updates the value at all belief
points for every iteration of the value function. Conversely, PERSEUS focuses on a
subset of belief points at each epoch, picked out by a randomized sampling process
(Line 4). This process iterates until every belief point’s value sees an improvement.
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Interestingly, an update to the ˛-vector at one belief point (Line 5) often induces value
improvements for nearby belief points, leading to their subsequent removal from the
sampling set (Line 9).

Algorithm 11 UPDATE

1: function UPDATE(B; V )
2: B 0  B , V 0  ¿ F Initialization
3: while B 0 ¤ ¿ do
4: Randomly select a belief � 2 B 0

5: ˛  BACKUP(V; �) F Backup defined by Eq. (3.8.8)
6: if h�; ˛i < V.�/ then F V.�/ D max

˛02V

˝
�; ˛0

˛
7: ˛  arg max

˛02V

h�; ˛0i F If ˛ is not better, get ˛0 from old set V

8: end if
9: B 0  B 0 X f& 2 B 0 j h&; ˛i � V.&/g F Keep beliefs not improved by ˛.

10: V 0  V 0 [ f˛g F Adds ˛ to set V 0

11: end while
12: V  V 0

13: return V
14: end function

These methodological contrasts between PBVI and PERSEUS reflect a shift in
strategic focus. PERSEUS leans towards a more random approach, promoting simplic-
ity in concept but demonstrating effectiveness in empirical results (Spaan and Vlassis,
2005; Pineau et al., 2006).

Now, we will go through the creating the BACKUP for PERSEUS as this will be a
similar approach that we will follow when creating our CHRONOSPERSEUS solver
for POSMDPs in Chap. 5. Recall that the Bellman equation for POMDP is

V �.�/ D max
a2A.s/

�
R.�; a/C 

X
o2O

P.o j �; a/V �
�
�.� j a; o/

��
: (3.6.4)

Using Eq. (3.7.2),

V �
�
�.� j a; o/

�
D max

˛2V
h�.� j a; o/; ˛i ; (3.8.1)

and substituting this into Eq. (3.6.4) becomes

V �.�/ D max
a2A.s/

�
R.�; a/C 

X
o2O

P.o j �; a/max
˛2V
h�.� j a; o/; ˛i

�
(3.8.2)

D max
a2A.s/

�
R.�; a/C 

X
o2O

P.o j �; a/max
˛2V

X
s02S

�.s0 j a; o/˛.s0/
�
: (3.8.3)
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Replacing the belief update �.s0 j a; o/ with Eq. (3.5.1) yields

V �.�/ D max
a2A.s/

264R.�; a/C X
o2O

������
P.o j �; a/max

˛2V

X
s02S

G.o j a; s0/
X
s2S

�.s/P.s0 j s; a/

������
P.o j �; a/

˛.s0/

375
D max
a2A.s/

�
R.�; a/C 

X
o2O

max
˛2V

X
s02S

G.o j a; s0/
X
s2S

�.s/P.s0 j s; a/˛.s0/
�

D max
a2A.s/

"
R.�; a/C 

X
o2O

max
˛2V

X
s2S

�.s/
X
s02S

G.o j a; s0/P.s0 j s; a/˛.s0/ 
˛.s0ja;o/

#
D max
a2A.s/

�
R.�; a/C 

X
o2O

max
˛2V
h�; ˛.� j a; o/i

�
: (3.8.4)

The reward R.�; a/ can be expressed as an inner product

R.�; a/ D
X
s2S

�.s/R.s; a/ D h�; R.�; a/i : (3.8.5)

Then, Eq. (3.8.4) becomes

V �.�/ D max
a2A.s/

�
h�; R.�; a/i C 

X
o2O

max
˛2V
h�; ˛.� j a; o/i

�
and by the distributive property of the inner product

h!; i C h!; �i D h!; C �i (3.8.6)

we can factor out � to get

V �.�/ D max
a2A.s/

"*
�; R.�; a/C 

X
o2O

max
˛2V

˛.� j a; o/

+#
(3.8.7)

(Spaan and Vlassis, 2005). The backup can be written as

BACKUP.V; �/ D arg max
˛.�j�;a/Wa2A;˛2V

h�; ˛.� j �; a/i (3.8.8)

where

˛.s j �; a/ D R.s; a/C 
X
o2O

arg max
˛.�ja;o/W˛2V

h�; ˛.� j a; o/i 8s 2 S; (3.8.9)

and

˛.s j a; o/ D
X
s02S

G.o j a; s0/P.s0 j s; a/˛.s0/ 8s 2 S: (3.8.10)

Let jV j denote the number of ˛ vectors are in the set V . The complexity of
computing Eq. (3.8.10) is O.jSj2/ since it needs to be calculated for every .s; s0/
tuple, and it is done for every ˛ 2 V , hence computing all ˛.� j a; o/ for every a 2 A
and o 2 O requiresO.jV j�jSj2�jAj�jOj/. The complexity of computing Eq. (3.8.9)
requires the computation of all relevant ˛.� j a; o/, but then the summation and inner
products require only O.jSj � jOj/ operations, and another O.jSj/ operations to
add the reward (vector). [This is considering it as a vector operations.] Lastly, the
backup (Eq. (3.8.8)) requires for all ˛.� j �; a/ anotherO.jSj/ operations for the inner
product. Therefore, the full complexity of this point-based backup requires

O.jV j � jSj2 � jAj � jOj C jSj � jAj � jOj/: (3.8.11)
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However, a full backup for the sampled belief state set B will not require jBj times
the complexity of a single point-based backup, because ˛.� j a; o/ are independent of
the current belief state � (the ˛.� j a; o/ vectors can be cached and reused for backups
over other belief states � 2 B). Thus, executing a backup for jBj belief states over a
single value function V , where we compute every ˛.� j a; o/ only once and cache the
result, requires only

O.jV j � jSj2 � jAj � jOj C jBj � jSj � jAj � jOj/: (3.8.12)
The algorithm requires an initial value function V0 upon which to iterate. To

conceive of an initial value function V0 guaranteed to be below the optimal value
function V �, we assume for each decision epoch n that the agent collects the smallest
reward min.s;a/2KR.s; a/, even though it is not necessarily possible that the agent
can land in state s repeatedly. By making this assumption, we avoid having to
find a feasible policy � that returns the minimum cumulative discounted reward,
which would require extensive computations (equivalent in computation to finding
the maximum discounted expected reward). Thus, we set

Rmin , min
.s;a/2K

R.s; a/ (3.8.13)

and
amin , arg min

.s;a/2K
R.s; a/: (3.8.14)

Then, the sum of discounted minimum reward (following not necessarily a feasible
policy) at each decision epoch n is

Rmin C Rmin C 
2Rmin C � � � D Rmin.1C  C 

2
C � � � /;

which forms a geometric series, so

Rmin

1X
nD0

n D Rmin

�
1

1 � 

�
;

for  2 .0; 1/.
We create a single vector ˛min in which each component s 2 S is

˛min.s/ D
Rmin

1 � 
; (3.8.15)

and ˛min has an associated action amin. Then, the initial value function V0 is the set
that consists of the single vector ˛min:

V0 D f˛ming (3.8.16)
(Zhang and Zhang, 2001, Lemma 3).

3.9 Optimal Stopping Problems Revisited
Recall from Sec. 2.7 that an optimal stopping problem—a form of temporal control—
is a sequential decision process where an agent must determine the optimal time to
halt the ongoing process. We previously studied the elevator problem in Example 2.7.1
(p. 16), which involved an agent waiting for an elevator to arrive for a meeting. This
problem, originally formulated as an MDP, showcased temporal control as the agent
had to decide optimally when to continue waiting or opt for an alternative action.
Having determined an optimal policy for this scenario, we now extend the problem’s
complexity by introducing partial observability. In this new context, the agent is
uncertain about the functioning status of the elevator, thus further highlighting the
element of temporal control as the agent navigates the uncertainty in deciding the
optimal timing of actions.
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Example 3.9.1 — Elevator Problem (POMDP version). Suppose that an agent arrives at
the lobby (on floor 1) N minutes before its meeting begins. If the elevator arrives
before the meeting starts, it earns reward r . However, the agent does not enjoy waiting,
so to reflect its dislike it incurs a cost c each minute it waits. The agent can see on
which floor, s, the elevator is on currently by the floor indicator above the elevator
door. The agent does not know with certainty if the elevator is working (w D 1) or
not (w D 0); the elevator works 75% of the time.

We can model this problem using the POMDP framework. The state space consists
of the floor numbers, the time in minutes (or the decision epoch index), and whether
or not the elevator is working,

S D f1; 2; : : : ; Sgš
floor

� f0; 1; : : : ; N � 1gœ
remaining time

� f0; 1g•
working

;

and the number of states is

jSj D S �N � 2:

A typical state would be the triple .s; n; w/ 2 S, where the elevator is on floor s, the
remaining time n until the meeting, and the functioning state of the elevator w. The
action space consists of two actions,

A D fwait; stairsg:

While the state space has only doubled in size when compared to the MDP version
(Example 2.7.1), we must remember that we are now operating within a continuous
belief space due to the partial observability of the elevator system. Our agent must
maintain a belief—a continuous probability distribution—over all possible states. This
shift from a discrete state space to a continuous belief space brings about a significant
increase in the complexity of the problem. This phenomenon is commonly referred
to as the “curse of dimensionality,” which denotes the increase in computational
complexity as the dimensionality of the state space (or in our case, the belief space)
increases. Despite these challenges, POMDPs provide a more realistic model for
many decision-making scenarios, such as our elevator problem, where certain aspects
of the system state are not directly observable.

3.10 Mixed observability and MOMDPs
Ong et al. (2010) introduces the idea of mixed observable Markov decision processes
(MOMDPs). Unlike partial observability where the state is not observed but instead
an observation is generated by a probability distribution, mixed observability occurs
when the state space is neither fully hidden nor fully observable by the agent. The
state space can be decomposed into finite subspaces in which certain state subspaces
are fully observable, while other state subspaces are not observable or hidden from
the agent. This means that subspaces of the state space can form part of a subspace or
the entirety of the observation space O.

We have already encountered a MOMDP in the Elevator Example 3.9.1. The state
space

S D

observableº
f1; 2; : : : ; Sgš

floor

�

observable
¼
f0; 1; : : : ; N � 1gœ

remaining time

�

hidden¶
f0; 1g•
working

;
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is a cross product of three subspaces, of which the floor subspace and the remaining
time subspace are fully observable to the agent, while the working subspace is not.
The observation space is

O D f1; 2; : : : ; Sgš
floor

� f0; 1; : : : ; N � 1gœ
remaining time

;

and it is clear that jOj < jSj. (Note that O š S since .s; n/ 2 O while .s; n; w/ 2 S .)

3.11 Bibliographic Remarks

The significance of observation in Bayesian statistics was underscored by Savage
(1954, Chap. 6). Savage’s advocacy for the Bayesian perspective in statistics was
considered contentious at the time. Notably, he extended his exploration to tackle a
two-state partially observable problem, referred to as partition problems in Chap. 7 in
his textbook.

Over the years, POMDPs have been the subject of extensive research under
various nomenclatures. The concept of observable history has also been termed as
the information vector by other authors, for instance, Bertsekas (2017, p. 185).

Ross et al. (2008b) delved into online planning algorithms specifically designed
for POMDPs, contributing further to the literature. For a comprehensive review of the
state-of-the-art algorithms for solving and approximating POMDPs up to 2012, we
refer the reader to Spaan (2012). We also recommend an excellent recent textbook on
POMDPs from the controlled sensing community by Krishnamurthy (2016).

Sutton and Barto (2018) introduce POMDP as a Bayesian approach that uses belief
states and a belief update rule (similar to Eq. (3.5.1)). However, they believe that “this
approach is popular in theoretical work and has many significant applications, but its
assumptions and computational complexity scale poorly and we do not recommend it
as an approach to artificial intelligence” (Sutton and Barto, 2018, p. 467). Although,
it seems that POMDPs were important enough to be included in the state-of-the-
art reinforcement learning monograph (Spaan, 2012). We would like to stress that
POMDP is a model and not a computational approach to finding the optimal policies.
The assumption that Sutton and Barto refers to is the Markov property. The Markov
property requires information that is required to make an optimal decision be encoded
in the state. If the decision is dependent on the history, then the state will need to drag
the history into the state in order to maintain Markovness, and thus increasing the
curse of dimensionality. Sutton’s work in relaxing the Markov assumption to just say
k previous steps has lead to predictive state representations.

Littman and Sutton (2002) developed the predictive state representation model, or
PSR, which is a class of model that represents the state of a dynamical system as a
set of predictions about future events based on previously observed evidence. PSRs
define the state vector in terms of actions the agent can take and observations that the
agent can see. It describes a distribution over observations, from which the agent can
get a sample, thus revealing information about the distribution described by the state.
Littman and Sutton (2002) had shown that from a finite POMDP could be constructed
a linear PSR with a number of tests no larger than the number of states in the minimal
POMDP.

In reference to POMDPs computational complexity, Papadimitriou and Tsitsiklis
(1987) showed that in the worst case scenario, an optimal exact policy computation
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for a finite-horizon POMDP is PSPACE-complete3, and Madani et al. (2003) showed
for an infinite-horizon POMDP is uncomputable/undecidable. Indeed, this is quite a
difficult problem, but this has not deterred the artificial intelligence community. It
is difficult to solve POMDPs exactly, but there continues to be a growing tract of
research in approximate solutions.

3PSPACE-complete is a complexity class representing decision problems that can be solved using an amount of
memory that is polynomial in the input length, i.e.,requiring polynomial space. It is believed to include problems that
are potentially more difficult than NP-complete ones. Importantly, any other problem solvable in polynomial space
can be transformed into a PSPACE-complete problem in polynomial time, making this class a robust representative of
problems solvable in polynomial space.
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4
The Semi-Markov Decision Process (SMDP)

Model

The Markov Decision Process (MDP) model and the problems that we have encoun-
tered in Chap. 2 assume that decisions happen at regular intervals of time. However,
there are situations where actions selected may lead to random amount of time before
another action can be taken. In those cases, it may be useful to extend the MDP to
include continuous time, by treating the time between decision epochs as a random
variable conditional on the agent’s state and its action it selects. This type of process
is called a semi-Markov decision process (SMDP).

MDP

continuous time +

SMDP

Fig. 4.1 The relationship between MDP and SMDP

4.1 The Framework
We define a semi-Markov decision process (SMDP) in a Borel space, which is a
generalization of an MDP, in the following definition.

Definition 4.1.1 — SMDP. A semi-Markov decision process (SMDP) is an 7-tuple

hS;A;K;Q;R; ˇ;N i (4.1.1)

where
S is the Borel state space, and the elements of S are called states
A is the Borel action space, and the elements of A are called actions.

To each s 2 S , we associate a nonempty Borel-measurable subset
A.s/ � A, whose elements are the admissible actions for the
agent when the process is in state s

K is the set of admissible state-action pairs, and it is assumed to be a
Borel subset K � S �A. In other words,

K D f.s; a/ j s 2 S; a 2 A.s/g:

Q.�; s0 j s; a/ is the sojourn time-state (Borel-measurable) stochastic kernel on
R>0 given K

R.s; a/ is the per-stage (bounded Borel-measurable) reward function given
K

39
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ˇ is the positive discounting rate
N is the planning horizon. It could be finite, or N D1.

Algorithm 12 Dynamics of SMDP
In the beginning n D 0, the agent observes it is in state s0.
For each decision epoch n D 1; 2; : : : ; N :

(a) Based on the history

h0 D .t0; s0/

hn D .t0; s0; a1; t1; : : : ; sn�1; an; tn; sn/;

the agent performs action

an D �n.hn/ 2 A n D 1; 2; : : : ; N:

Here �n denotes a policy that the agent uses at decision epoch n.
(b) The agent obtains a rewardR.sn; an/ for choosing action an at decision epoch

n.
(c) The state evolves randomly with sojourn time-state transition probability

Q.�; s0 j s; a/ D P.TnC1 � Tn � �; SnC1 D s0 j Sn D s; An D a/

to the next state SnC1 that decision epoch nC 1.
(d) The agent updates its history as

hnC1 D .hn; anC1; tnC1; snC1/:

If n < N , then set n to nC 1, and go back to step (a).
If n D N , then the agent receives the last reward and the process terminates.

MDP:
t0 t1 t2 t3 tn tnC1

� D 1
time

� � �

SMDP:
t0 t1 t2 t3 tn tnC1

� � f .� j s; a; s0/
time

� � �

Fig. 4.2 The difference between MDPs and SMDPs for sojourn times. The sojourn time for an MDP is constant
whereas the sojourn time for an SMDP is a random amount of time that follows some probability distribution.

We assume that state transitions and actions performed take place at discrete times
called decision epochs, but unlike MDPs, the sojourn time—the random amount
of time it takes to transition from one state to the next—follows a non-exponential
probability distribution; see Fig. 4.2. We will denote the sojourn time by � . The state
s 2 S and action a 2 A.s/ at any time t are denoted by s.t/ and a.t/, respectively,
and stay constant between decision epochs. We will use the following notation:

tn is the time of the nth decision epoch. By convention, t0 D 0;
sn D s.tn/ where s.t/ D s.tn/ for t 2 Œtn; tnC1/; and
an D a.tn/ where a.t/ D a.tn/ for t 2 Œtn; tnC1/.

We illustrate these terms with Fig. 4.3. The sojourn time-state stochastic kernel
specifies the joint probability distribution of the sojourn time and the next state, which
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:::

State

: : :

: : :

Time

a1

a2

a3

�0

�1

�2

S0

S1

S2

S3

Decision epoch n D 0 n D 1 n D 2 n D 3

t0 t1 t2 t3

State s.t0/ D 0s.t1/ D 1 s.t2/ D 2 s.t3/ D 3

Action a1 D a.t1/ a2 D a.t2/ a3 D a.t3/

Fig. 4.3 SMDP dynamics

is given by

Q.�; s0 j s; a/ , P.TnC1 � Tn � �; SnC1 D s0 j Sn D s; An D a/: (4.1.2)

By specifying (4.1.2) as a joint probability distribution, the framework does not
assume necessarily that the sojourn time � and the next state s0 are independent.1 Note
that the sojourn time-state stochastic kernel also specifies the state (Borel-measurable)
stochastic kernel on S given K, since

lim
�!1

Q.�; s0 j s; a/ D P.SnC1 D s0 j Sn D s; An D a/ D P.s0 j s; a/; (4.1.3)

which explains its absence from the framework (4.1.1). If Q.�; s0 j s; a/ is continu-
ous and piecewise differentiable with respect to the sojourn time � , then its partial
derivative exists, which is

q.�; s0 j s; a/ ,
d

d�
Q.�; s0 j s; a/ (4.1.4)

D
d

d�
ŒP.s0 j s; a/F.� j s; a; s0/�

D P.s0 j s; a/
d

d�
ŒF.� j s; a; s0/�

D P.s0 j s; a/f .� j s; a; s0/: (4.1.5)

We will generally use the sojourn time-state transition probability Q.�; s0 j s; a/
because it is able to model not only discrete distributions for � , but continuous and
mixed distributions as well.

1This assumption of � and s0 independence is made in Puterman (1994, p. 532) in Eq. (11.1.2) where Q.�; s0 j
s; a/ D P.s0 j s; a/F .� j s; a/.
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The conditional cumulative distribution function of � given s, a, and s0 is

F.� j s; a; s0/ , P.TnC1 � Tn � � j Sn D s; An D a; SnC1 D s0/

D
P.TnC1 � Tn � �; SnC1 D s0; Sn D s; An D a/

P.Sn D s; An D a; SnC1 D s0/

D
P.TnC1 � Tn � �; SnC1 D s0 j Sn D s; An D a/P.Sn D s; An D a/

P.SnC1 D s0 j Sn D s; An D a/P.Sn D s; An D a/

D
P.TnC1 � Tn � �; SnC1 D s0 j Sn D s; An D a/

P.SnC1 D s0 j Sn D s; An D a/

D
Q.�; s0 j s; a/

P.s0 j s; a/
:

(4.1.6)

We can similarly show that the conditional probability density function of � given s,
a, and s0 is

f .� j s; a; s0/ D
q.�; s0 j s; a/

P.s0 j s; a/
: (4.1.7)

Assuming that P.s0 j s; a/ > 0, Eq. (4.1.6) implies that

Q.�; s0 j s; a/ D P.s0 j s; a/F.� j s; a; s0/: (4.1.8)

Thus, we can view Q.�; s0 j s; a/ as a scaled cumulative distribution function (which
is scaled/multiplied by P.s0 j s; a/).

�

P.s0 j s; a/

Q.�; s0 j s; a/

(a) � is a discrete random variable

�

P.s0 j s; a/

Q.�; s0 j s; a/

(b) � is a continuous random variable

Fig. 4.4 IllustratingQ.�; s0 j s; a/ and the conditional cumulative distribution function of � .

There are two special cases of SMDPs.
(a) Continuous-time Markov decision process. This process occurs when the

sojourn times between decision decision epochs are exponentially distributed
with rate ˇ.s; a; s0/ (or mean 1=ˇ.s; a; s0/); that is,

F.� j s; a; s0/ D 1 � e�ˇ.s;a;s
0/� (4.1.9)

and

f .� j s; a; s0/ D ˇ.s; a; s0/e�ˇ.s;a;s
0/� : (4.1.10)

(b) Discrete-time Markov decision process. This process has decision epochs
occurring at every � 0 time unit. For some fixed � 0 for all .s; a/ 2 K,

F.� j s; a; s0/ D

(
0; � � � 0I

1; � > � 0:
(4.1.11)
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Discrete-time Markov decision processes were discussed in Chap. 2, and arise regu-
larly in practice since many decisions are made on a weekly, monthly, or annual basis.
In contrast, it is not common for decisions to be made at exponentially-distributed
sojourn times (Howard, 1963, p. 626).

In order to ensure that there are only a finite number decision epochs in a finite
amount of time, we make the following assumption:

Assumption 4.1.2 There exists a sojourn time � > 0 and � > 0 such thatZ
s02S

Q.�; ds0 j s; a/ � 1 � � 8.s; a/ 2 K:

This assumption was introduced by Ross (1970a, p. 157). Essentially, it says that

Assumption 4.1.3 Given a state s0 2 S,

0 < N�.s0 j s; a/ <1 8.s; a/ 2 K:

In other words, Assumption 4.1.3 says that the expected sojourn time between state s
and state s0 under action a is finite.

4.2 Probability Distributions for Sojourn Time
This section introduces three probability distributions suitable for modelling sojourn-
time: the deterministic, the inverse Gaussian, and the truncated Gaussian distributions.
These distributions have been selected for their positive support, making them appro-
priate candidates for time duration representations in our context.

4.2.1 The Deterministic Distribution
The probability mass function of a random variable X that follows the deterministic
distribution is

fX .x j c0/ D

(
1; if x D c0I
0; otherwise

(4.2.1)

where c0 2 .�1;1/ is a constant. The cumulative distribution function is

FX .x j c0/ D

(
0; if x < c0I
1; if x � c0:

(4.2.2)

Even though it is deterministic, Eq. (4.2.1) and Eq. (4.2.2) satisfies the definition of
being a distribution of a random variable; hence, it is a degenerate case.

4.2.2 The Inverse Gaussian Distribution
The inverse Gaussian distribution is a long-tailed distribution that is positively skewed,
unimodal, with positive support; see Fig. 4.6. Schrödinger (1915) first encountered
it while he was investigating the distribution of when a Brownian motion particle
with positive drift first passes a set threshold. It has since been found to be a useful
distribution for modelling life-span and reaction-time studies.

The probability density function of a random variable X that follows the inverse
Gaussian distribution is

fX .x j �; �/ D

r
�

2�x3
exp

�
�
�.x � �/2

2�2x

�
; 8x > 0; (4.2.3)
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c0

1

fX .x/

x

(a) The probability density function

1

FX .x/

xc0

(b) The cumulative probability function

Fig. 4.5 The deterministic distribution

0:5 1 1:5 2

1

2

3 � D 0:2

� D 0:5

� D 1

� D 30

� D 10

� D 5

x

fX .x/

(a) � D 1 for six values of �

0:2 0:4 0:6 0:8 1 1:2 1:4

2

4

6 � D 0:2

� D 0:5

� D 1

� D 5

x

fX .x/

(b) � D 1 for four values of �

Fig. 4.6 The inverse Gaussian probability density distribution

where the location parameter � > 0 is the mean of the distribution and � > 0 is the
shape parameter2 (Tweedie, 1957, Eq. (1b)). A random variable X that follows an
inverse Gaussian distribution will be denoted by X � IG.�; �/. The standard inverse
Gaussian random variable follows IG.1; 1/.

In terms of the standard Gaussian cumulative distribution function (with expected
value of 0 and variance 1) given by

ˆ.x/ D
1
p
2�

Z x

�1

e�
1
2u
2

du; (4.2.4)

the cumulative distribution function of a random variable X that follows the inverse
Gaussian distribution is given by

FX .x j �; �/ D ˆ

�r
�

x

�
x

�
� 1

��
C e2�=�ˆ

�
�

r
�

x

�
x

�
C 1

��
(4.2.5)

(Shuster, 1968; Chhikara and Folks, 1974).
For a random sample X1, X2, . . . , Xn from IG.�; �/, the maximum likelihood

estimators of � and � are
O� D NX (4.2.6)

and
O� D

n
nX
iD1

�
1

Xi
�
1

NX

� D n
nX
iD1

1

Xi
�
n

NX

; (4.2.7)

2A shape parameter affects solely the shape of the distribution, in contrast with a location parameter that shifts the
distribution or a scale parameter that shrinks or stretches the distribution.
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where

NX D
1

n

nX
iD1

Xi ; (4.2.8)

(Tweedie, 1957, Eq. (13) and Eq. (14)). The variance is �2X D �
3=�. However, the

maximum likelihood estimate of the variance O�3= O� is biased.

4.2.2.1 Estimation of the inverse Gaussian parameters
The uniformly minimum-variance unbiased estimator3 (UMVUE) is given by

Q� D O� D NX (4.2.9)
and

Q� D
n � 3

nX
iD1

�
1

Xi
�
1

NX

� D n � 3
nX
iD1

1

Xi
�
n

NX

(4.2.10)

(Iwase and Setô, 1983, Table 1).

4.2.2.2 Generating inverse Gaussian samples
The method of inverse Gaussian variate generation is based on Michael et al. (1976)
who uses the following �2

.1/
-distribution transformation of Shuster (1968, Theorem 1)

V D g.X/ D
�.X � �/2

�2X
� �2.1/: (4.2.11)

For each �2 variate, v, we solve for x and find the two roots of the resulting quadratic
equation:

x1 D �C
�2v

2�
�
�

2�

q
4��v C �2v2 (4.2.12)

and

x2 D
�2

x1
: (4.2.13)

Now, it remains to choose between the two roots for our inverse Gaussian variate. A
Bernoulli trial is performed where the final inverse Gaussian variate, x, is selected by

x D

(
x1 with probability �

�Cx1

x2 with probability 1 � �
�Cx1

.
(4.2.14)

Based on Box and Muller (1958), the Gaussian variate requires two uniform variates,
and an additional uniform variate for the Bernoulli trial. Thus, the complexity of this
algorithm requires three uniform variates for every inverse Gaussian variate generated.
We summarize our discussion with Algorithm 13. PyTorch code is provided in
Appendix A.2.

4.2.3 The Gaussian Distribution
The Gaussian probability density function is

fX .x j �; �
2/ D

1p
2��2

exp
�
�
.x � �/2

2�2

�
(4.2.15)

and the cumulative distribution function is

ˆ
�x � �

�

�
, FX .x j �; �

2/ D
1
p
2�

Z x

�1

e�
1
2u
2

du: (4.2.16)

3A uniformly minimum-variance unbiased estimator is an unbiased estimator that has the lower variance than any
other unbiased estimator for all possible values of the parameter. It is not necessarily unique.
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Algorithm 13 Generating an inverse Gaussian variate, Michael et al. (1976)
1: function RANDOMIG(�, �)
2: ´ � N .0; 1/ F Generate a standard Gaussian variate.
3: ´ ´2 F Square it so becomes a �2

.1/
variate.

4: x  �C
�2´

2�
�
�

2�

q
4��´C �2´2

5: y � U.0; 1/ F Generate a uniform variate on Œ0; 1�.
6: if y �

�

�C x
then

7: x  
�2

x
8: end if
9: return x

10: end function

4.2.4 The Truncated Gaussian Distribution
The truncated Gaussian distribution is a derived Gaussian distribution where the
support is bounded below, or bounded above, or both.

The probability density function of a random variable X that follows the truncated
Gaussian distribution is

fX .x j �; �
2; a; b/ D

fX .x j �; �
2/

ˆ

�
b � �

�

�
�ˆ

�a � �
�

� 8x 2 Œa; b�; (4.2.17)

where � is the mean, �2 is the variance, fX .� j �; �2/ is Gaussian distribution
were it not truncated as defined in Eq. (4.2.15), and ˆ.�/ is the standard Gaussian
cumulative distribution function defined in Eq. (4.2.16) (Robert, 1995, p. 123). A
random variable X that follows a truncated Gaussian distribution will be denoted by
X � N .�; �2; a; b/. Note that X � N .�; �2/ would denote a Gaussian distribution
unless the additional truncated points a and b are specified.

The cumulative distribution function of a random variable X that follows the
truncated Gaussian distribution is given by

FX .x j �; �
2; a; b/ D

˚
0; if x 2 .�1; a/I

ˆ

�x � �
�

�
�ˆ

�a � �
�

�
ˆ

�
b � �

�

�
�ˆ

�a � �
�

� ; if x 2 Œa; b�I

1; if x 2 .b;1/:

(4.2.18)

Example 4.2.1 — X � N .�; �2; 0;1/. The truncated Gaussian distribution where the
support is Œ0;1/.

lim
b!1

b � �

�
D1

which means that

lim
b!1

ˆ

�
b � �

�

�
D 1

Then Eq. (4.2.15) becomes

fX .x j �; �
2; 0;1/ D

fX .x j �; �
2/

1 �ˆ
�
�
�

�

� 8x 2 Œ0;1/; (4.2.19)
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and Eq. (4.2.16) becomes

FX .x j �; �
2; 0;1/ D

„
0; if x 2 .�1; 0/I

ˆ
�x � �

�

�
�ˆ

�
�
�

�

�
1 �ˆ

�
�
�

�

� ; if x 2 Œ0;1/:
(4.2.20)

J

4.3 Reward Structure
We assume that the reward function R.s; a/ is given as part of the SMDP model. Let
R.s; a/ denote the expected total discounted reward between two decision epochs,
given that the agent is in state s 2 S and it chooses to perform action a 2 A.s/, then

R.s; a/ D r1.s; a/–
(a)

immediate
reward

C

Z
s02S

Z 1
0

�Z �

0
e�ˇt r2.t j s; a; s0/ dt

�
Q.d�; ds0 j s; a/

•
(b)

expected discounted reward reward from s to s0 over � amount of time

: (4.3.1)

The reward function is comprised of two parts:
(a) the lump sum reward r1.s; a/ that is received immediately upon the agent

performing action a in state s; and
(b) the continuous reward rate r2.� j s; a; s0/ that is received by the agent contin-

uously over the sojourn time � from state s to s0 under action a.
Note that R.s; a/ depends on the discount rate ˇ that is also given as part of the
model.

If the state space S is discrete, and Q is differentiable and separable into P and
F , then

R.s; a/ D r1.s; a/C
X
s02S

P.s0 j s; a/

Z 1
0

�Z �

0
e�ˇt r2.t j s; a; s0/ dt

�
F.d� j s; a; s0/: (4.3.2)

It is common to assume that r2.t j s; a; s0/ D r2.s; a; s0/ is a constant rate. If this
is the case, then

R.s; a/ D r1.s; a/C
X
s02S

P.s0 j s; a/ r2.s; a; s
0/

Z 1
0

�Z �

0
e�ˇt dt

�
F.d� j s; a; s0/

D r1.s; a/C
X
s02S

P.s0 j s; a/ r2.s; a; s
0/

Z 1
0

1 � e�ˇ�

ˇ
F.d� j s; a; s0/

D r1.s; a/C
1

ˇ

X
s02S

P.s0 j s; a/ r2.s; a; s
0/

Z 1
0
.1 � e�ˇ� /F.d� j s; a; s0/

D r1.s; a/C
1

ˇ

X
s02S

P.s0 j s; a/ r2.s; a; s
0/

�Z 1
0

F.d� j s; a; s0/

�

Z 1
0

e�ˇ�F.d� j s; a; s0/
�

D r1.s; a/C
1

ˇ

X
s02S

P.s0 j s; a/ r2.s; a; s
0/

�
1 �

Z 1
0

e�ˇ�F.d� j s; a; s0/
�

(4.3.3)

D r1.s; a/C
1

ˇ

X
s02S

P.s0 j s; a/ r2.s; a; s
0/

�
1 �

Z 1
0

e�ˇ�f .� j s; a; s0/ d�
�
: (4.3.4)
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4.4 Laplace Transform
In Eq. (4.3.4), the integral

R1
0

e�ˇ�f .� j s; a; s0/ d� can be calculated using a Laplace
tranform formula of the sojourn time probability density function. The next three
examples cover distributions that we will use in this thesis.

Example 4.4.1 — Deterministic distribution. The moment-generating function of a
random variable X that follows a deterministic function with constant parameter
c0 2 .�1;1/ is

MX .t/ D E.etX / D
Z 1
�1

etxfX .x/ dx D etc0 : (4.4.1)

Assuming that c0 is positive, we can calculateZ 1
0

e�ˇ�fX .� j c0/ d� (4.4.2)

using the moment-generating function for the deterministic distribution by changing
the variable t by �ˇ in Eq. (4.4.1) yieldsZ 1

0

e�ˇ�fX .� j c0/ d� D e�ˇc0 : (4.4.3)

We can also simplify the reward function R.s; a/. If the reward rate r2.� j s; a; s0/ D
r2.s; a; s

0/ is a constant, and the sojourn times for each triple .s; a; s0/ follows a
deterministic distribution with respective parameter c0.s; a; s0/, then we can rewrite
Eq. (4.3.4) as

R.s; a/ D r1.s; a/C
1

ˇ

X
s02S

P.s0 j s; a/r2.s; a; s
0/.1 � e�ˇc0.s;a;s

0//: (4.4.4)

J
Example 4.4.2 — Inverse Gaussian distribution. Since we are looking at a nonnegative
random variable X , the Laplace transform E.e�sX / for s � 0 exists. We can view the
moment-generating function as a two-sided Laplace transform (Gut, 2009, p. 63). The
moment-generating function of a random variable X that follows an inverse Gaussian
distribution with parameters � and � is

MX .t/ D E.etX / D
Z 1
�1

etxfX .x/ dx D exp

"
�

�

 
1 �

s
1 �

2�2t

�

!#
(4.4.5)

(Tweedie, 1957, Eq. (8b); Chhikara and Folks, 1989, Eq. (3.13), p. 27). We can
calculate Z 1

0

e�ˇ�fX .� j �; �/ d� (4.4.6)

using the moment-generating function for the inverse Gaussian distribution by chang-
ing the variable t to �ˇ in Eq. (4.4.5) yieldsZ 1

0

e�ˇ�fX .� j �; �/ d� D
Z 1
0

e�ˇ�
r

�

2��3
exp

�
�
�.x � �/2

2�2�

�
d�

D exp

"
�

�

 
1 �

s
1C

2�2ˇ

�

!#
: (4.4.7)

We can also simplify the reward function R.s; a/. If the reward rate r2.� j s; a; s0/ D
r2.s; a; s

0/ is a constant, and the sojourn times for each triple .s; a; s0/ follows an
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inverse Gaussian distribution IG
�
�.s; a; s0/; �.s; a; s0/

�
with their respective mean

and shape parameters, then we can rewrite Eq. (4.3.4) as

R.s; a/ D r1.s; a/C
1

ˇ

X
s02S

P.s0 j s; a/ r2.s; a; s
0/ 

1 � exp

"
�.s; a; s0/

�.s; a; s0/

 
1 �

s
1C

2�.s; a; s0/2ˇ

�.s; a; s0/

!#!
: (4.4.8)

J
Example 4.4.3 — Truncated Gaussian distribution. The moment-generating function of
a random variable X that follows a truncated Gaussian distribution N .�; �2; a; b/ is

MX .t/ D E.etX /

D

Z 1
�1

etxfX .x/ dx

D exp
�
�t C

�2t2

2

�2664ˆ
�
b � �

�
� �t

�
�ˆ

�a � �
�
� �t

�
ˆ

�
b � �

�

�
�ˆ

�a � �
�

�
3775 (4.4.9)

Replacing tx with �ˇ� ,

Z 1
�1

e�ˇ�fX .� j �; �2/ D exp
�
�2ˇ2

2
� �ˇ

�2664ˆ
�
b � �

�
C �

�̌
�ˆ

�a � �
�
C �

�̌
ˆ

�
b � �

�

�
�ˆ

�a � �
�

�
3775

(4.4.10)
If we consider the truncated Gaussian distribution N .�; �2; 0;1/, then

lim
b!1

ˆ

�
b � �

�

�
D 1; (4.4.11)

and Eq. (4.4.10) becomesZ 1
�1

e�ˇ�fX .� j �; �2/ D exp
�
�2ˇ2

2
� �ˇ

�2641 �ˆ
�
�
�

�
C �

�̌
1 �ˆ

�
�
�

�

�
375 (4.4.12)

Then we can rewrite Eq. (4.3.4) as

R.s; a/ D r1.s; a/C
1

ˇ

X
s02S

P.s0 j s; a/ r2.s; a; s
0/

�

1 � exp
�
�2ˇ2

2
� �ˇ

�2641 �ˆ
�
�
�

�
C �

�̌
1 �ˆ

�
�
�

�

�
375
�

: (4.4.13)

J
We assume continuous-time discounting at rate ˇ > 0. This means that the present

value of one reward unit received at time � units in the future equals e�ˇ� (Puterman,
1994, p. 540). By setting e�ˇ �1 D  , where  denotes the discrete-time discount
factor, we see that the continuous-time discounting rate of ˇ D � ln./.
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4.5 Value Function for SMDP
Recall for discrete-state MDPs, the value of state s evaluated for a given policy � is

V �.s/ D R
�
s; �.s/

�
C

X
s02S

P
�
s0 j s; �.s/

�
V �.s0/ (4.5.1)

and Bellman’s optimality equation

V �.s/ D max
a2A.s/

(
R.s; a/C

X
s02S

P.s0 j s; a/V �.s0/

)
: (4.5.2)

We can adapt this for an SMDP by making the following changes: Set R.s; a/ to
Eq. (4.3.1) and the discount factor as

.s; a; s0/ D

Z 1
0

e�ˇ�F.d� j s; a; s0/:

Then, the SMDP version of Eq. (4.5.1) is

V �.s/ D R
�
s; �.s/

�
C

X
s02S

P
�
s0 j s; �.s/

�Z 1
0

e�ˇ�F
�
d� j s; �.s/; s0

�
V �.s0/

(4.5.3)

D R
�
s; �.s/

�
C

X
s02S

Z 1
0

e�ˇ�Q
�
d�; s0 j s; �.s/

�
V �.s0/ (4.5.4)

and Bellman’s optimality equation of Eq. (4.5.2) for SMDP is

V �.s/ D max
a2A.s/

(
R.s; a/C

X
s02S

P.s0 j s; a/

Z 1
0

e�ˇ�F.d� j s; a; s0/V �.s0/
)

(4.5.5)

D max
a2A.s/

(
R.s; a/C

X
s02S

Z 1
0

e�ˇ�P.s0 j s; a/F.d� j s; a; s0/V �.s0/
)

D max
a2A.s/

(
R.s; a/C

X
s02S

Z 1
0

e�ˇ�Q.d�; s0 j s; a/V �.s0/
)

(4.5.6)

where R.s; a/ is given by Eq. (4.3.1).
If S is continuous (non-empty uncountable Borel subset of a complete, separate

metric) space then,

V �.s/ D sup
a2A.s/

(
R.s; a/C

Z
s02S

Z 1
0

e�ˇ�Q.d�; ds0 j s; a/V �.s0/
)

(4.5.7)

D sup
a2A.s/

(
R.s; a/C

Z
s02S

Z 1
0

e�ˇ�P.ds0 j s; a/F.d� j s; a; s0/V �.s0/
)

(4.5.8)
where

R.s; a/ D r1.s; a/C

Z
s02S

Z 1
0

�Z �

0

e�ˇtr2.t j s; a; s0/ dt
�
Q.d�; ds0 j s; a/

(4.5.9)

D r1.s; a/C

Z
s02S

Z 1
0

�Z �

0

e�ˇtr2.t j s; a; s0/ dt
�
P.ds0 j s; a/F.d� j s; a; s0/:

(4.5.10)
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Example 4.5.1 — Two-State SMDP. Let S D fs1; s2g, A.s1/ D fa1; a2g, and A.s2/ D
fa1g. We specify the transition probabilities for the embedded MDP as

P.� j �; a1/ D

� s1 s2

s1 0:5 0:5

s2 0:1 0:9

�
and P.� j �; a2/ D

�s1 s2
s1 0 1

s2 0 0

�
:

A graphical representation of the semi-Markov decision process with the transition
probabilities labelled is shown in Fig. 4.7.

s1 s2

0:5

0:1

0:5 0:9

(a) Action 1

s1 s2
1

(b) Action 2

Fig. 4.7 A graphical representation of the semi-Markov decision process with two states and two actions given in
Example 4.5.1.

We assume that the sojourn times follow an inverse Gaussian distribution with the
mean parameters given by

�.�; a1; �/ D

�s1 s2
s1 2 3

s2 4 5

�
and �.�; a2; �/ D

�s1 s2
s1 6 7

s2 8 9

�
;

and the shape parameters given by

�.�; a1; �/ D

� s1 s2

s1 4 9

s2 16 25

�
and �.�; a2; �/ D

� s1 s2

s1 36 49

s2 64 81

�
:

The lump sum rewards are given by

r1.�; a1/ D

�
s1 0

s2 �1

�
and r1.�; a2/ D

�
s1 �1

s2 0

�
;

and the continuous reward rates are

r2.�; a1; �/ D

�s1 s2

s1 5 �1

s2 1 10

�
and r2.�; a2; �/ D

�s1 s2
s1 6 7

s2 9 12

�
:

We assume a discount rate ˇ D 0:3, and define

m.s; a; s0/ D

Z 1
0

e�ˇ�f .� j s; a; s0/ d�;

which can be calculated by Eq. (4.4.7). Henceforth, calculations will be carried out to
a precision of four decimal places. In matrix form,

m.�; a1; �/ D

� s1 s2

s1 0:5887 0:4517

s2 0:3466 0:2659

�
and m.�; a2; �/ D

� s1 s2

s1 0:2040 0:1566

s2 0:1201 0:0922

�
:

We now evaluate R.s; a/ using Eq. (4.3.4). For example,

R.s1; a1/ D r1.s1; a1/C
1

ˇ

�
P.s1 j s1; a1/r2.s1; a1; s1/

�
1 �m.s1; a1; s1/

�
CP.s2 j s1; a1/r2.s1; a1; s2/

�
1 �m.s1; a1; s2/

��
D 0C

1

0:3
Œ0:5.5/.1 � 0:5887/C 0:5.�1/.1 � 0:4517/�

D 2:5136
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The rest of the calculations are similar, and so in matrix form, we have

R.�; a1/ D

�
s1 2:5136

s2 21:2402

�
and R.�; a2/ D

�
s1 18:6805

s2 0

�
:

The Bellman optimality equations are

V �.s1/ D max

„
R.s1; a1/C P.s1 j s1; a1/m.s1; a1; s1/V

�.s1/ .a D a1/

CP.s2 j s1; a1/m.s1; a1; s2/V
�.s2/;

R.s1; a2/C P.s1 j s1; a2/m.s1; a2; s1/V
�.s1/ .a D a2/

CP.s2 j s1; a2/m.s1; a2; s2/V
�.s2/

D max

„
2:5136C 0:5.0:5887/V �.s1/ .a D a1/

C0:5.0:4517/V �.s2/

18:6805C 0.0:2040/V �.s1/ .a D a2/

C1.0:1566/V �.s2/

D max

(
2:5136C 0:2944V �.s1/C 0:2259V

�.s2/ .a D a1/

18:6805C 0:1566V �.s2/ .a D a2/
(4.5.11)

and

V �.s2/ D R.s2; a1/C P.s1 j s2; a1/m.s2; a1; s1/V
�.s1/

C P.s2 j s2; a1/m.s2; a1; s2/V
�.s2/

D 21:2402C 0:1.0:3466/V �.s1/C 0:9.0:2659/V
�.s2/

D 21:2402C 0:0347V �.s1/C 0:2393V
�.s2/: (4.5.12)

We let �1 denote the deterministic policy that uses action a1 in s1, and �2 that
uses action a2 in s1. For �1, we can find V �1 using the following fixed-point iteration

s1  0

s2  0

V �1.s1/ 2:5136C 0:2944V �.s1/C 0:2259V
�.s2/

V �1.s2/ 21:2402C 0:0347V �.s1/C 0:2393V
�.s2/;

which yields

V �1.�/ D

�
s1 12:6869

s2 28:5006

�
:

For �2,

s1  0

s2  0

V �2.s1/ 18:6805C 0:1566V �.s2/

V �2.s2/ 21:2402C 0:0347V �.s1/C 0:2393V
�.s2/;

which yields

V �2.�/ D

�
s1 23:2189

s2 28:9811

�
:

By substituting the values back into the Bellman optimality equations, Eq. (4.5.11)
and Eq. (4.5.12), we see that �2 is the optimal policy, and therefore,

V �.�/ D

�
s1 23:2189

s2 28:9811

�
:

J
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4.6 Optimal Stopping Problems Revisited
We discussed the elevator problem in Examples 2.7.1 (p. 16) and 3.9.1 (p. 36),
described it is as an MDP and POMDP, and found an optimal policy for it.

Example 4.6.1 — Elevator Problem (SMDP version). Suppose that when an agent arrives
at the lobby (on floor 1), N minutes remain before its meeting begins. If the elevator
arrives before the meeting starts, time � < N , then it earns a lump reward re�ˇ� ,
where ˇ is the agent’s discounting rate. The agent can see on which floor, s, the
elevator is on currently by the floor indicator above the elevator door. It also knows
the conditional probability Q.�; s0 j s/, which represents the probability that the
elevator will descend to floor s0 in � amount of time given that the elevator is currently
on floor s. The action of taking the stairs incurs a heavy cost of C units. Suppose that
when the agent arrives and pushes the elevator button, the descending elevator is on
floor S . What is the optimal policy that the agent should follow?

Solution Using dynamic programming. We can model this problem using the SMDP
framework. The state space consists of the floor numbers

S D f1; 2; : : : ; Sg;

and the number of states is

jSj D S:

The action space consists of two actions

A D fwait; stairsg:

The sojourn time-state transition probability matrix is given by

Q.�; s0 j s; a/ D Q.�; s0 j s/ D P.TnC1 � Tn � �; SnC1 D s0 j Sn D s/:

There is only one decision to be made which occurs as soon as the agent arrives
in the lobby and sees what floor the elevator is on: either it will wait or it will
immediately take the stairs. Thus, there is only one decision epoch, and hence it is a
finite horizon problem. If the agent decides to take the stairs, there is no discounting
of the lump reward r it receives; it only has to pay the heavy cost penalty C . Thus,
the agent’s reward for choosing to take the stairs is

r � C: (4.6.1)

On the other hand, if the agent decides to wait, there are two possibilities:
(a) the elevator arrives � < N before the meeting, which means that the dis-

counted lump reward the agent receives should be re�ˇ� . However, we do not
know � , but � follows the sojourn-time state transition probability Q. Thus,
the expected discounted reward if the elevator arrives before the meeting isZ N

0

re�ˇ�Q.d�; 1 j s/ D r
Z N

0

e�ˇ�Q.d�; 1 j s/: (4.6.2)

(b) the elevator arrives � � N after the meeting, the agent will have to take the
stairs, which means the reward is re�ˇN � C ; this occurs with probabilityR1
N
Q.d�; 1 j s/. Thus, the expected discounted reward if the elevator arrives

after the meeting starts is

.re�ˇN � C/
Z 1
N

Q.d�; 1 j s/: (4.6.3)
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Table 4.1 Optimal policy for the nu-
merical example of the elevator problem

Floor, s V �.s/ ��.s/

5 15 Stairs
4 15 Stairs
3 16.9691 Wait
2 22.9365 Wait
1 24.4998 Wait

Combining Eq. (4.6.1)–(4.6.3), the reward function is

R.s; a/ D

‚
r � C; .a D stairs/I

r

Z N

0

e�ˇ�Q.d�; 1 j s/
�
elevator arrives withinN minutes

C .re�ˇN � C/
Z 1
N

Q.d�; 1 j s/
�

elevator arrives afterN minutes

; .a D wait/;

for all floors s 2 f1; 2; : : : ; Sg. This completes our description of the elevator problem
as an SMDP.

Since this is an SMDP, we can use a dynamic programming approach to this
problem. This is quite simple since the problem has only one decision epoch, which
means that the optimal value function reduces to

V �.s/ D max
a2A

R.s; a/:

We can now determine the optimal policy ��.s/ the agent should follow. Once
the agent enters the lobby and sees that the elevator is on floor s, it should take the
stairs if

r � C > r

Z N

0

e�ˇ�Q.d�; 1 j s/C .re�ˇN � C/
Z 1
N

Q.d�; 1 j s/:

We give a numerical example by setting N D 10, S D 5, r D 25, C D 10 (these
values were the same from Example 2.7.1), ˇ D 0:01 and the sojourn-time state
transition probability as Q.�; 1 j s/ D F.� j � D s; � D s2/ where F is the inverse
Gaussian cumulative distribution function defined by Eq. (4.2.5). The calculations are
provided in Table 4.1.

J
Contrasting with the MDP version in Example 2.7.1, the number of states is

smaller in the SMDP version: S < S �N .

4.7 Q-Learning for SMDP
Recall from Sec. 2.6, for a discrete state space S and a finite action space A, Watkins
(1989) defines the state-action value function Q corresponding to the policy � as

Q�.s; a/ D R.s; a/C 
X
s02S

P.s0 j s; a/V �.s0/ (4.7.1)
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� D 5

x

fX .x/

Fig. 4.8 Probability density functions for the numerical example of the elevator problem.

or equivalently,

Q�.s; a/ D R.s; a/C 
X
s02S

P.s0 j s; a/Q�
�
s0; �.s0/

�
: (4.7.2)

The corresponding optimal state-action value function Q� is

Q�.s; a/ D R.s; a/C 
X
s02S

P.s0 j s; a/max
a02A

Q�.s0; a0/: (4.7.3)

An online agent can approximate the state-action value function by sampling the
reward R.s; a; s0/ during its transition from state s to s0 under action a by

QkC1.s; a/ D Qk.s; a/˜
old value

C˛k

266664
temporal difference¥

R.s; a; s0/C  max
a02A

Qk.s0; a0/�
temporal difference target

�Qk.s; a/˜
old value

377775 ;
(4.7.4)

where k is the number of times the agent has visited state s and performed a, and ˛k
is the learning rate.

Bradtke and Duff (1995) defines the optimal state-action value function Q� for an
SMDP as

Q�.s; a/ D R.s; a/C
X
s02S

Z 1
0

e�ˇ�Q.d�; ds0 j s; a/max
a02A

Q�.s0; a0/; (4.7.5)

or equivalently,

Q�.s; a/ D R.s; a/C
X
s02S

P.s0 j s; a/

Z 1
0

e�ˇ�F.d� j s; a; s0/max
a02A

Q�.s0; a0/;

(4.7.6)
where R.s; a/ is defined by Eq. (4.3.2). This leads to the Q-Learning rule for SMDPs

QkC1.s; a/ D Qk.s; a/C˛k

"
1 � e�ˇ�

ˇ
r2.s; a; s

0/C e�ˇ� max
a02A

Qk.s0; a0/ �Qk.s; a/

#
(4.7.7)
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This leads to the following Q-Learning rule for SMDPs

QkC1.s; a/ D Qk.s; a/C ˛k
�
R.s; a; s0/C e�ˇ� max

a02A
Qk.s0; a0/ �Qk.s; a/

�
(4.7.8)

where

R.s; a; s0/ D R1.s; a/C
1 � e�ˇ�

ˇ
R2.s; a; s

0/;

R1.s; a/ is the lump sum reward, and R2.s; a; s0/ is the total reward accumulated
from state s to s0. The Q-Learning algorithm of an SMDP is given in Algorithm 4.7.

Algorithm 14 Q-Learning for SMDP, Bradtke and Duff (1995)
1: Select an arbitrary Q-function, arbitrary state s 2 S, ˛ 2 .0; 1/, ˇ 2 .0; 1/.
2: repeat
3: Take an arbitrary action a 2 A.s/
4: Observe immediate reward r , sojourn time � and next state s0

5: Q.s; a/ Q.s; a/C ˛
�
1 � e�ˇ�

ˇ
r C e�ˇ� max

a02A.s0/
Q.s0; a0/ �Q.s; a/

�
6: s  s0

7: until s is terminal

4.8 Bibliographic Remarks
Semi-Markov processes, first examined by Lévy (1956) and developed as regenerative
stochastic processes by (Smith, 1955), laid the groundwork for subsequent stud-
ies. The decision process variant of semi-Markov processes emerged independently
through the work of Howard (1963) and Jewell (1963a). In this thesis, our attention is
primarily directed towards the discounted reward version of SMDPs. However, it is
worth noting that average reward SMDPs, as discussed in Ross (1970b), play a vital
role in the analysis of episodic problems.

Another approach that is used in reinforcement learning to extend MDPs to SMDPs
is options. Options in reinforcement learning refer to temporally extended actions or
sequences of actions that an agent can choose to follow. They allow the agent to plan
over longer time horizons by abstracting away lower-level decision-making, thereby
facilitating learning and planning in complex environments (Precup, 2000).
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5
The Partially Observable Semi-Markov

Decision Process (POSMDP) Model

In this chapter, we define a partially observable semi-Markov decision process
(POSMDP) in a Borel space, which is an extension of a semi-Markov MDP (SMDP)
and a partially observable MDP (POMDP). Once we define the model, one of the sig-
nificant contributions of this work is presented: we introduce a novel algorithm called
CHRONOSPERSEUS to solve POSMDPs by combining point-based value iteration
and importance sampling.

Two well-known extensions to MDPs are semi-Markov MDP (SMDP) (Howard,
1963; Jewell, 1963a,b; de Cani, 1964) and partially observable MDP (POMDP)
(Aoki, 1965; Åström, 1965), which we examined earlier in Chap. 4 and Chap. 3,
respectively. The former allows transitions to have sojourn time distributions, while
the latter allows for partially observable states (incomplete state information). In
reinforcement learning, SMDPs are primarily used with options (Sutton et al., 1999;
Precup, 2000), where the underlying MDP of the micro-actions defines the transitions
of macro-actions. The SMDP, in that case, represents a temporal compression of the
underlying MDP. In contrast, POMDPs are computationally expensive (Papadimitriou
and Tsitsiklis, 1987; Madani et al., 1999), as the solvers usually construct a policy
over a belief state space that must cover all the combinations of states.

A POSMDP can be considered a generalization of an SMDP or a POMDP. In the
case of generalizing the SMDP, partial observability is introduced so that the agent
cannot know with certainty in which state it is. Generalizing the POMDP involves
introducing random sojourn time between decision epochs. By choosing either the
SMDP or POMDP to generalize, we can arrive at the POSMDP; see Fig. 5.1.

MDP

continuous time + + partial observability

SMDP

partial observability +

POMDP

+ continuous time

POSMDP

Fig. 5.1 The relationships between MDP, SMDP, POMDP, and POSMDP.

POMDPs are not widely used in practice due to their computational complexity
(Papadimitriou and Tsitsiklis, 1987; Madani et al., 1999; Sutton and Barto, 2018).
Nevertheless, progress has been made in the development of approximate solutions
methods, such as point-based value iteration by Pineau et al. (2003) and the subsequent
introduction of PERSEUS by Spaan and Vlassis (2005).

57
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This progress in POMDP solution methods opens new opportunities for addressing
more complex problems. Cognitive agents, as well as many scheduling and mainte-
nance problems, could naturally benefit from the ability to solve problems that mix
both partial observability and rich temporal transitions. The partially observable semi-
Markov decision process (POSMDP) extends POMDP by incorporating stochastic
sojourn time between transitions. As demonstrated later, this sojourn time can further
be used in the belief state update. White (1976) initially proposed the finite-horizon
discrete-time POSMDP model, with his algorithm for computing the optimal cost
and optimal policy based on POMDP procedures by Sondik (1971). Half a decade
later, Wakuta defined the infinite-horizon continuous-time POSMDP model with
the average-cost criterion (Wakuta, 1981) and the discounted-cost criterion (Wakuta,
1982). The definition and notation of POSMDP that we present in Section 5.1 is
influenced by Wakuta (1982), Hernández-Lerma (1989), and Yu (2006).

While Zhang and Revie (2017) developed a POSMDP solver based on PERSEUS,
their algorithm relied on slow numerical integration techniques to handle the value
function, necessitating integration of the sojourn-time distribution for every transition
at every iteration. In contrast, we introduce importance sampling to use the col-
lected belief and sojourn-time samples more efficiently. Using this approach reduces
computational time from hours to seconds. This leads us to one of the significant
contributions of this thesis, which is our importance sampling point-based POSMDP
solver called CHRONOSPERSEUS that we will present in Sec. 5.11 with its compu-
tational complexity. This solver enables the incorporation of temporal properties
into POMDPs without the increased complexity arising from expanding state space
dimensions to account for temporal information, allowing us to apply this to more
realistic, complex problems.

The remainder of this chapter is organized as follows. First, in Sec. 5.1 we intro-
duce formally the framework, the notation, and the dynamics for the POSMDP model.
Then, we discuss how we handle concepts of time in Sec. 5.2, partial observability in
Sec. 5.3. In Sec. 5.4, we highlight the difference of the history of the process versus
the observable history in POSMDP leading to the construction of the belief state in
Sec. 5.5. In Sec. 5.6, we discuss the reward and the assumptions required to ensure
the reward function is well-defined. For the value function of a POSMDP in Sec. 5.7,
we show that depending on the approach taken, either extending the POMDP model
with the addition of continuous time or extending the SMDP model with the addition
of partial observability, that we arrive at two versions of the POSMDP value function.
In Sec. 5.8, we show how we can rewrite the POSMDP as a POMDP, but this does not
require the belief update to know the sojourn time. We believe that the sojourn time is
important information that can be incorporated into the belief, which in turn affects
the agent’s optimal decision. Instead, we show that the POSMDP can be rewritten
as a continuous belief state SMDP, where the belief update includes the sojourn
time. We cover background mathematical concepts such as the basics of Monte Carlo
integration in Sec. 5.9 so that we can use the importance sampling technique. Then,
we present how to rewrite the POSMDP to SMDP in Sec. 5.10. Finally, we describe
in Sec. 5.11 the main contribution of this chapter—the CHRONOSPERSEUS algorithm.
In Sec. 5.12 , we conclude the chapter with some solved POSMDP applications using
CHRONOSPERSEUS: an optimal stopping problem involving waiting for a bus, and
maintenance of water filters in the real world based on parameters from Zhang and
Revie (2017).
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5.1 The Framework
Definition 5.1.1 — POSMDP. A partially observable semi-Markov decision process
(POSMDP) is an 11-tuple

hS;A;K;O;Q;G;G0; R; �0; ˇ;N i (5.1.1)

where
S is the Borel state space, and the elements of S are called states
A is the Borel action space, and the elements of A are called ac-

tions. To each s 2 S , we associate a nonempty Borel-measurable
subset A.s/ � A, whose elements are the admissible actions for
the agent when the process is in state s

K is the set of admissible state-action pairs, and it is assumed to be
a Borel subset K � S �A. In other words,

K D f.s; a/ j s 2 S; a 2 A.s/g:

O is the Borel observation space, and the elements of O are called
observations

Q.d�; ds0 j s; a/ denotes the sojourn time-state (Borel-measurable) stochastic
kernel on R>0 � S given S �A

G.do j a; s0/ is the observation (Borel-measurable) stochastic kernel on O
given A � S

G0.do j s0/ denotes the initial observation (Borel-measurable) stochastic
kernel on O given S

R.s; a/ is the per-stage (bounded Borel-measurable) reward function
given K

�0 is the (a priori) initial (belief) state distribution (�0 2 P.S/)
ˇ is the discounting rate where ˇ 2 Œ0; 1�.
N is the planning horizon. It could be finite, or N D1 if  < 1.

Given the model in Definition 5.1.1, the dynamics of the POSMDP proceed
according to Algorithm 15. This involves at each decision epoch n choosing an action
an, accruing reward R.sn; an/ as the state changes from sn to snC1 in �n amount
of time, and partially observing snC1 as onC1. The agent uses all the information
available up to decision epoch n, namely the observable history Qhn, to choose action
an D �n. Qhn/ using policy �n. With the dynamics of the POSMDP specified by
Algorithm 15, we denote the sequence of policies that the agent uses from decision
epoch 0 to n � 1 as � D .�0; �1; : : : ; �n�1/. The set of all admissible policies is
denoted ….

Environment

Agent

policy, �

action a

state s
observation o

reward r

time t

Fig. 5.2 A POSMDP agent interacting with its environment.
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Algorithm 15 Dynamics of POSMDP
In the beginning n D 0, the state s0 is simulated from an initial (belief) state distribu-
tion �0.
For each decision epoch n D 1; 2; : : : ; N :

(a) Based on the observable history

h0 D .�0/

hn D .�0; a1; t1; o1; : : : ; an; tn; on/;

the agent performs action

an D �n.hn/ 2 A n D 1; 2; : : : ; N:

Here �n denotes a policy that the agent uses at decision epoch n.
(b) The agent obtains a rewardR.sn; an/ for choosing action an at decision epoch

n.
(c) The state evolves randomly with sojourn time-state transition probability

Q.�; s0 j s; a/ D P.TnC1 � Tn � �; SnC1 D s0 j Sn D s; An D a/ (5.1.2)

to the next state snC1 that decision epoch nC 1.
(d) The agent records a noisy observation On 2 O of the state SnC1 according to

G.o j a; s0/ D P.On D o j An D a; SnC1 D s0/:

(e) The agent updates its history as

hnC1 D .hn; anC1; tnC1; snC1/:

If n < N , then set n to nC 1, and go back to step (a).
If n D N , then the agent receives the last reward and the process terminates.

S0start

O0

T0

A0 S1

T1

O1

A1 S2

T2

O2

� � �

�0 �1

Fig. 5.3 Graphical model of POSMDP. The states Si are hidden from the agent, while the observations Oi and
times Ti are observable. The sojourn times are �i and the agent’s actions are Ai . The solid arrows! represent the
direct influence from one element to another, while the dashed arrows Ü represent indirect influence. For example,
actionA0 is directly influenced by time T0 and observationO0 because this is the information that is available to the
agent, while state S0 is indirectly influencing action A0 since the agent has to infer in which state it is in currently
from time T0 and observationO0.

5.2 Time

Unlike POMDPs where the sojourn times are constant, the sojourn times are random
in a POSMDP; see Fig. 5.4.
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POMDP:
t0 t1 t2 t3 tn tnC1

� D 1
time

� � �

POSMDP:
t0 t1 t2 t3 tn tnC1

� � f .� j s; a; s0/
time

� � �

Fig. 5.4 The difference between POMDPs and POSMDPs for sojourn times. The sojourn time for an POMDP
is constant whereas the sojourn time for an POSMDP is a random amount of time that follows some probability
distribution.

The time of the nth decision epoch is denoted by the random variable

Tn D

(
0 n D 0

Tn�1 C �n�1 n D 1; 2; 3; : : : ;
(5.2.1)

in which the observed time of Tn is denoted by tn. The sojourn time from state s to
state s0 is a nonnegative real-valued random variable �n D TnC1 � Tn that follows

F.� j s; a; s0/ D

Z
s02S

Q.�; ds0 j s; a/: (5.2.2)

From Eq. (5.2.2), we assume implicitly that a sojourn time �n does not affect the next
sojourn time �nC1.

5.3 Partial observability
For partial observability, we following the same structure that we introduced in
POMDPs in Sec. 3.1. We do not change the notion of partial observability with the
introduction of random sojourn time between decision epochs. In Definition 5.1.1,
the observation is independent of the previous state. If the observation depends on
more information, such as .s; a; �; s0/, then we could define G.o j s; a; �; s0/ as

G.o j a; s0/ D
X
s2S

Q.�; s0 j s; a/G.o j s; a; �; s0/: (5.3.1)

5.4 History
While in a POSMDP, the history of the model’s dynamics is

POSMDP: h0 D .�0; s0/

hn D .�0; s0; a0; o1; : : : ; sn�1; an�1; on/

hnC1 D hn [ .sn; an; onC1/;

it is not entirely observable by the agent; the state in which the agent is in not known
with certainty. Instead, the agent sees the observable history, Qhn, which is

POMDP: Qh0 D .�0/

Qhn D .�0; a0; o1; a1; o2; : : : ; an�1; on/

QhnC1 D Qhn [ .an; onC1/:
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A realization of this process is

.s0; o0; a0; �0; s1; o1; a1; �1; s2; o2; a2; �2; : : :/ 2 .S �O �A �R>0/
1 , �:

However, we are not able to rely on the unobservable states s0, s1, s2, : : : ; so we use
the concept of observable histories. The space of observable histories until the nth

decision epoch is defined by

Hn D

(
P.S/ �O; n D 0I

Hn�1 �A �R>0 �O; n D 1; 2; 3; : : : :
(5.4.1)

Thus, the element h0 D .�0; o0/ 2 H0 is an initial observed history, and an element
hn 2 Hn is called an observed history up to n, and it is denoted by

hn D .�0; o0; a0; �0; o1; a1; �1; : : : ; on�1; �n�1“
hn�1

; an�1; �n; on/ (5.4.2)

D .hn�1; an�1; �n; on/: (5.4.3)

5.5 Belief state
A state variable is the minimally dimensioned function of observable history that is
necessary and sufficient to compute the decision function, the transition function, and
the contribution function (Powell, 2011, p. 179). The agent can only partially observe
the state s 2 S by inferring from its past observations. Thus, in order for an agent to
choose optimally its actions in a partially observable environment, memory of its past
observations is required.

A naı̈ve approach would allow the agent to remember its sequence of sojourn times,
observations, and actions. However, this sequence can grow unbounded over time,
which is not practical with finite memory. Instead, this information is summarized
using sufficient statistics (Stratonovich, 1960; Aoki, 1965; Åström, 1965; Dynkin,
1965; Aoki, 1967; Åström, 1969; Sawaragi and Yoshikawa, 1970). A statistic is said
to be sufficient when no other statistic calculated from the same sample provides
any additional information to the parameter value being estimated (Fisher, 1922, p.
310). With these sufficient statistics that summarize the observable history, we can
construct a probability distribution of where the agent is in the state space; we call
this probability distribution over the state space a belief state. We follow a similar
structure that for the belief state that was introduced with POMDPs in Sec. 3.4.

Definition 5.5.1 — Belief state. A belief state � is a probability distribution over the
state space S.

If the state space S D fs1; s2; : : : ; sjSjg is a finite set, then the belief state � is defined
by

� D

26664
�.s1/

�.s2/
:::

�.sjSj/

37775 ,

26664
P.S D s1/
P.S D s2/

:::

P.S D sjSj/

37775 :
To ensure that � is a probability distribution,

�.si / � 0 8si 2 S; and
jSjX
iD1

�.si / D 1:
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This probability distribution encodes the agent’s subjective probability of its
location in the environment’s state space from its history.

�n.si / D P.Sn D si j �n�1; an�1; �n; on/ (5.5.1)
We can update the belief state in two ways: with or without observing the sojourn

time � .

5.5.1 The Belief Update without Sojourn Time
We consider the case where the sojourn time � is not observed or not part of the
information used to update the belief state. By doing this, we will show that the belief
update remains the same as the belief update for a POMDP (Eq. (3.5.1)). Recall from
Sec. 3.4, the belief update for POMDP is

�.s0 j a; o/ D

G.o j a; s0/
X
s2S

�.s/P.s0 j s; a/

P.o j �; a/
8s0 2 S; (3.5.1)

where the denominator
P.o j �; a/ D

X
s02S

G.o j a; s0/
X
s2S

P.s0 j s; a/ �.s/ (3.5.2)

is a normalization factor.
By replacing the state transition probability distribution P with the sojourn-

time state transition probability distribution Q, and if the transition time � is not
observed/utilized, the belief update for a POSMDP is given by

�.s0 j a; o/ D

G.o j a; s0/
X
s2S

�.s/

Z 1
0

Q.d�; s0 j s; a/

P.o j �; a/
(5.5.2)

D

G.o j a; s0/
X
s2S

�.s/P.s0 j s; a/

1

¼Z 1
0

F.d� j s; a; s0/

P.o j �; a/
(5.5.3)

D

G.o j a; s0/
X
s2S

P.s0 j s; a/

P.o j �; a/
(5.5.4)

where the denominator

P.o j �; a/ D
X
s02S

G.o j a; s0/
X
s2S

�.s/

Z 1
0

Q.d�; s0 j s; a/ (5.5.5)

D

X
s02S

G.o j a; s0/
X
s2S

�.s/P.s0 j s; a/

Z 1
0

F.d� j s; a; s0/
œ

1

(5.5.6)

D

X
s02S

G.o j a; s0/
X
s2S

�.s/P.s0 j s; a/ (5.5.7)

is a normalization factor. Thus, the belief update (including the normalization factor)
would remain unchanged from the POMDP belief update. However, incorporating
this information into the agent’s decision-making process aligns more closely with
the Bayesian approach, as different transitions may have distinguishable sojourn time
distributions that can aid in discerning the current state.
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5.5.2 The Belief Update with Sojourn Time
We consider the case now where the sojourn time � is observed or is part of the
information used to update the belief state.

Theorem 5.5.2 Given an action a the agent performed, a sojourn time � , and an
observation o seen, the belief update for a particular state s0 is

�.s0 j a; �; o/ D

G.o j a; s0/
X
s2S

Q.�; s0 j s; a/�.s/X
s002S

G.o j a; s00/
X
s2S

Q.�; s00 j s; a/�.s/
:

Proof By definition,

�.s0 j a; �; o/ , P.s0 j �; a; �; o/:
Applying the conditional rule

P.A j B/ D
P.A;B/

P.B/
;

we have

�.s0 j a; �; o/ D P.s0 j a; �; o/ D
P.a; �; o; s0/

P.a; �; o/
D

P.a; �; o; s0/X
s002S

P.a; �; o; s00/
: (5.5.8)

Using the multiplication rule P.A;B/ D P.A j B/P.B/, we have
P.s; a; �; o; s0/ D P.o j s; a; �; s0/P.s; a; �; s0/

and applying the multiplication rule again to the second term,
P.s; a; �; o; s0/ D P.o j s; a; �; s0/›

G.oja;s0/

P.�; s0 j s; a/š
Q.�;s0js;a/

P.s; a/—
�.s/

:

Since the observation o only depends on action a and the next state s0,
P.o j s; a; �; s0/ D G.o j a; s0/;

and by definition P.�; s0 j s; a/ D Q.�; s0 j s; a/ (see Eq. (5.1.2)) and P.s; a/ D
P.a j s/P.s/ D �.s/ since P.a j s/ D 1 for the selected action a (the policy is
deterministic), and P.s/ D �.s/ (our Bayesian estimate). Thus,

P.s; a; �; o; s0/ D G.o j a; s0/Q.�; s0 j s; a/�.s/
and

P.�; a; �; o; s0/ D
X
s2S

P.s; a; �; o; s0/ D G.o j a; s0/
X
s2S

Q.�; s0 j s; a/�.s/: (5.5.9)

Substituting Eq. (5.5.9) into Eq. (5.5.8) yields the required result. J
We can further decomposed the belief update function when Q.�; s0 j s; a/ is

given as P.s0 j s; a/ and F.� j s; a; s0/ by

�.s0 j a; �; o/ D

G.o j a; s0/
X
s2S

Q.�; s0 j s; a/ �.s/

P.o j �; a; �/
8s0 2 S (5.5.10)

D

G.o j a; s0/
X
s2S

P.s0 j s; a/F.� j s; a; s0/ �.s/

P.o j �; a; �/
8s0 2 S;

(5.5.11)
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where the denominator

P.o j �; a; �/ D
X
s02S

G.o j a; s0/
X
s2S

Q.�; s0 j s; a/ �.s/ (5.5.12)

D

X
s02S

G.o j a; s0/
X
s2S

P.s0 j s; a/F.� j s; a; s0/ �.s/ (5.5.13)

is a normalization factor similar to Wakuta (1982).
Note that this is similar to the belief update for POMDP; for instance, Eq. (5.5.11)

is the same as Eq. (3.5.1), with the addition of the sojourn-time cumulative probability
distribution F.t j s; a; s0/ in the numerator and the denominator. This is important as
Eq. (5.5.11) allows the agent to use the observed transition time to better estimate its
real underlying state. Our solver is using this more complete approach.

5.6 Reward
We follow the same structure that we introduced with SMDPs in Sec. 4.3, and modify
it to allow the reward function to take a belief state instead of a state as one of its
parameters. Let R.s; a/ denotes the expected total discounted reward between two
decision epochs, given that the agent is in state s and it chooses to perform action a,
which is expressed by

R.s; a/ D r1.s; a/–
(a)

immediate
reward

C

Z
s02S

Z 1
0

�Z �

0
e�ˇt r2.t j s; a; s0/ dt

�
Q.d�; ds0 j s; a/

•
(b)

expected discounted reward reward from s to s0 over � amount of time

: (4.3.1)

Note that the discount rate ˇ is given as part of the model. The reward function can
be thought of as two parts:

(a) the lump sum reward r1.s; a/ that is received immediately upon the agent
performing action a in state s; and

(b) the continuous reward rate r2.� j s; a; s0/ that is received by the agent contin-
uously over the sojourn time � from state s to s0 under action a.

Since the agent cannot observe the state s 2 S directly, we can rewrite Eq. (4.3.1) for
a given belief � 2 4 and action a 2 A as

R.�; a/ D

Z
s2S

�.ds/R.s; a/; (5.6.1)

or if it is a discrete set of states, it can be written as

R.�; a/ D
X
s2S

�.s/R.s; a/: (5.6.2)

To ensure that the expected rewards are well-defined, we need a few assumptions.
Time is the safeguard that prevents everything from happening at once. So, we borrow
the following assumption for SMDPs by Ross (1970a, p. 157) that allows only a finite
number of decision epochs during a finite sojourn time.

Assumption 5.6.1 There exists a sojourn time � > 0 and � > 0 such thatZ
s02S

Q.�; ds0 j s; a/ � 1 � � 8.s; a/ 2 K:
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In other words, Assumption 5.6.1 says that for every (admissible) state-action pair
.s; a/ 2 K, there is a positive probability of at least � that the transition time to state
s0 will be greater than � .

We also impose the condition that the per-stage reward R.s; a/ is bounded for
every state-action pair .s; a/ 2 K.

Assumption 5.6.2 There exists a constant M such that for ˇ D 0,

sup
.s;a/2K

jR.s; a/j < M:

This assumption is satisfied if r1 and r2 in Eq. (4.3.1) are bounded, and

E.�n j Sn D s; An D a/ <1 8.s; a/ 2 K:

In other words, we would like each expected sojourn time E.�n/ to be bounded.
Therefore, we make the following assumption.

Assumption 5.6.3

sup
.s;a/2K

E.�n j Sn D s; An D a/ <1:

5.7 The Value Function for POSMDP
The value function for POSMDP can be derived using previous models we have
encountered. We can get the POSMDP value function by taking the

(a) POMDP value function and inserting continuous time; or
(b) SMDP value function and inserting partial observability.

5.7.1 From POMDP to POSMDP

MDP

continuous time + + partial observability

SMDP

partial observability +

POMDP

+ continuous time

POSMDP

Fig. 5.5 The relationship between POMDP and POSMDP.

Recall from Sec. 3.6, the Bellman equation for a POMDP is

V �.�/ D max
a2A.s/

�X
s2S

�.s/R.s; a/C
X
o2O

X
s02S

G.o j a; s0/X
s2S

�.s/P.s0 j s; a/V �
�
�.� j a; o/

��
(3.6.5)

for all belief states � in the belief simplex 4. When Eq. (3.6.5) holds for every
belief state in the belief simplex, we are ensured the solution is optimal. If we were
to compute the value function over the continuous belief space, belief by belief, it
may seem intractable. However, Sondik (1971) shows that in this case, the POMDP
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optimal value function is convex, and that it can be parameterized by a finite set of
hyperplanes.

In order to adapt Eq. (3.6.5) for a POSMDP, the discount factor must take the
sojourn time probability F.d� j s; a; s0/ into account. It thus becomes

.s; a; s0/ D

Z 1
0

e�ˇ�F.d� j s; a; s0/ (5.7.1)

and let R.s; a/ be defined by Eq. (4.3.1). Then, the POSMDP version of Eq. (3.6.5) is

V �.�/ D max
a2A.�/

h X
s2S

�.s/R.s; a/

š
Reward

C

X
o2O

X
s02S

Observation Probability¸
G.o j a; s0/

X
s2S

�.s/ P.s0 j s; a/˜
State Probability

Z 1
0

Exponential Discount³
e�ˇ� F.d� j s; a; s0/™

Sojourn Time Probability

Next State Valueº
V �
�
�.� j a; �; o/

� i
•

Discounted Expected Future Rewards

(5.7.2)

or equivalently using Eq. (5.1.2),

V �.�/ D max
a2A.�/

h X
s2S

�.s/R.s; a/

š
Reward

C

X
o2O

X
s02S

Observation Probability¸
G.o j a; s0/

X
s2S

�.s/

Z 1
0

Exponential Discount³
e�ˇ� Q.d�; s0 j s; a/™
Joint State sojourn-time Probability

Next State Valueº
V �
�
�.� j a; �; o/

� i
‘

Discounted Expected Future Rewards

:

(5.7.3)

By including the sojourn time into the belief state, as opposed to including it as part of
the state-space, we reduce the state space size at the cost of increasing the complexity
of Eq. (5.7.2) or Eq. (5.7.3). In Zhang and Revie (2017), they rely upon numerical
integration techniques for the sojourn-time integral at each step. Instead, we use the
collected belief states and sampled sojourn times through importance sampling to
evaluate the integral. This will be discussed further in Section 5.10.

5.7.2 From SMDP to POSMDP

MDP

continuous time + + partial observability

SMDP

partial observability +

POMDP

+ continuous time

POSMDP

Fig. 5.6 The relationship between SMDP and POSMDP.



July 18, 2023 8:8 World Scientific Book - 9in x 6in ThesisMain page 68

68 Bayes-Adaptive Semi-Markov Decision Processes

Recall from Sec. 4.5, the Bellman equation for a discrete-state infinite-horizon
discounted SMDP is

V �.s/ D max
a2A.s/

(
R.s; a/C

X
s02S

Z 1
0

e�ˇ�Q.d�; s0 j s; a/V �.s0/
)

(4.5.6)

where R.s; a/ is given by Eq. (4.3.1). However, when we transform the state space S
to belief state space4, we transform it from a discrete space to a continuous space.
Since the belief simplex4 is continuous (non-empty uncountable Borel subset of a
complete, separate metric) space, then using Eq. (4.5.8) we get

V �.�/ D sup
a2A.s/

(
R.�; a/C

Z
�024

Z �D1

�D0

e�ˇ�Q.d�; d� 0 j �; a/V �.� 0/
)

(5.7.4)

and

R.�; a/ D r1.�; a/C

Z
�024

Z �D1

�D0

�Z tD�

tD0

e�ˇtr2.t j �; a; � 0/ dt
�
Q.d�; d� 0 j �; a/

(5.7.5)

5.8 Reduction of POSMDP to POMDP
We begin with the POSMDP value function

V �.�/ D max
a2A.s/

�
R.�; a/C 

X
o2O

P.o j �; a/V
�
�.� j a; o/

��
D max
a2A.s/

�
R.�; a/C 

X
o2O

P.o j �; a/max
˛2V
h�.� j a; o/; ˛i

�
D max
a2A.s/

�
R.�; a/C 

X
o2O

P.o j �; a/max
˛2V

X
s02S

˛.s0/�.s0 j a; o/
�

D max
a2A.s/

264
R.�; a/C 

X
o2O

������
P.o j �; a/max

˛2V

X
s02S

˛.s0/

G.o j a; s0/
X
s2S

�.s/

Z 1
0

e�ˇ�Q.d�; s0 j s; a/

������
P.o j �; a/

375
D max
a2A.s/

"
R.�; a/C 

X
o2O

max
˛2V

X
s02S

˛.s0/G.o j a; s0/
X
s2S

�.s/

Z 1
0

e�ˇ�Q.d�; s0 j s; a/
#

D max
a2A.s/

2664R.�; a/C 
X
o2O

max
˛2V

X
s2S

�.s/
X
s02S

˛.s0/G.o j a; s0/

Z 1
0

e�ˇ�Q.d�; s0 j s; a/

–
˛.sja;o/

3775
D max
a2A.s/

�
R.�; a/C 

X
o2O

max
˛2V
h�; ˛.� j a; o/i

�
The backup can be written as

BACKUP.V; �/ D arg max
˛.�j�;a/Wa2A;˛2V

h�; ˛.� j �; a/i (5.8.1)

where for all s 2 S

˛.s j �; a/ D R.s; a/C 
X
o2O

arg max
˛.�ja;o/W˛2V

h�; ˛.� j a; o/i ; (5.8.2)
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and

˛.s j a; o/ D
X
s02S

˛.s0/G.o j a; s0/

Z 1
0

e�ˇ�Q.d�; s0 j s; a/ (5.8.3)

D

X
s02S

˛.s0/G.o j a; s0/

Z 1
0

e�ˇ�P.s0 j s; a/F.d� j s; a; s0/

D

X
s02S

˛.s0/G.o j a; s0/P.s0 j s; a/

Z 1
0

e�ˇ�F.d� j s; a; s0/: (5.8.4)

The algorithm requires an initial value function V0 upon which to iterate. To
conceive of an initial value function V0 guaranteed to be below the optimal value
function V �, we assume for each decision epoch n that the agent collects the smallest
reward min.s;a/2KR.s; a/, even though it is not necessarily possible that the agent
can land in state s repeatedly. By making this assumption, we avoid having to
find a feasible policy � that returns the minimum cumulative discounted reward,
which would require extensive computations (equivalent in computation to finding
the maximum discounted expected reward). Thus, we set

Rmin , min
.s;a/2K

R.s; a/ (5.8.5)

and
min , min

.s;a/2K
.s; a/ (5.8.6)

Then, the sum of discounted minimum reward (following not necessarily a feasible
policy) at each decision epoch n is

Rmin C minRmin C 
2
minRmin C � � � D Rmin.1C min C 

2
min C � � � /;

which forms a geometric series, so

Rmin

1X
nD0

nmin D
Rmin

1 � min
;

for  2 .0; 1/. The initial value function V0 would then be defined by

˛min.s/ D
Rmin

1 � min
; 8s 2 S; (5.8.7)

and
V0 D f˛ming: (5.8.8)

For a POSMDP, the discount factor depends on the triple .s; a; s0/, which is given
by

.s; a; s0/ D

Z 1
0

e�ˇ�F.d� j s; a; s0/: (5.8.9)

If F is an inverse Gaussian distribution, thenZ 1
0

e�ˇ�F.d� j �; �/ D exp

"
�

�

 
1 �

r
1C

2�2ˇ

�

!#
: (5.8.10)

From Eq. (5.8.7),

˛min.s/ D
Rmin

1 � .s; a/

D
Rmin

1 �
X
s02S

P.s0 j s; a/.s; a; s0/
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Then,

Rmin D

1X
nD0

n min
.s;a/2K

R.s; a/

D

1X
nD0

min
.s;a/2K

..s; a//nR.s; a/

D min
.s;a/2K

R.s; a/

1X
nD0

..s; a//n

D min
.s;a/2K

R.s; a/

1 � .s; a/

D min
.s;a/2K

R.s; a/

1 �
X
s02S

P.s0 j s; a/.s; a; s0/

To ensure that the denominator of Rmin is not undefined, we have the following
lemma.

Lemma 5.8.1

0 �
X
s02S

P.s0 j s; a/.s; a; s0/ < 1:

Proof By Assumption 5.6.1, � > 0. Since we are considering the discounted POSMDP
case, then ˇ > 0 and

0 < e�ˇ� < 1:

Multiplying through by the likelihood function f .� j s; a; s0/,

0 < e�ˇ�f .� j s; a; s0/ < f .� j s; a; s0/;

and integrating over .0;1/ with respect to time yields

0 <

Z 1
0

e�ˇ�f .� j s; a; s0/ d� <
Z 1
0

f .� j s; a; s0/ d�
�

1

0 <

Z 1
0

e�ˇ�f .� j s; a; s0/ d� < 1

0 <

Z 1
0

e�ˇ�F.d� j s; a; s0/
�

.s;a;s0/

< 1:

Thus, 0 < .s; a; s0/ < 1. Continuing, we have

0 < .s; a; s0/ < 1;

and multiplying through with P.s0 j s; a/;

0 � P.s0 j s; a/.s; a; s0/ < P.s0 j s; a/: (5.8.11)

The (nonstrict) inequality on the left hand side of Eq. (5.8.11) is due to the case when
P.s0 j s; a/ D 0. Then, summing over all landing states s0 2 S,

0 �
X
s02S

P.s0 j s; a/.s; a; s0/ <
X
s02S

P.s0 j s; a/;
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and since
X
s02S

P.s0 j s; a/ D 1 by Eq. (2.2.3),

0 �
X
s02S

P.s0 j s; a/.s; a; s0/ < 1;

as required. J

5.9 Monte Carlo Integration
Before we move on to the reduction of POSMDP to SMDP, we will introduce a
little bit of background knowledge about the Monte Carlo method and importance
sampling. While Monte Carlo integration can apply to higher-dimensional integrals,
we will concern ourselves with one-dimensional integrals since this is what we will
need in Sec. 5.10. We follow the presentation given in Hammersley and Handscomb
(1964, Sec. 5.2).

5.9.1 Näıve Monte Carlo
Consider the integral

� D

Z b

a

f .x/ dx; (5.9.1)

where the function f W Œa; b� ! R is square integrable; that is,
R b
a
jf .x/j2 dx < 1

and therefore, � exists.
If x1; x2; : : : ; xN are random numbers that are independent and uniformly sampled

along the interval .a; b/, then the quantities f .xn/ are independent random variates
with expected value � . An unbiased estimator of � is

O� D
1

N

NX
nD1

f .xn/; (5.9.2)

which we will refer to as the naı̈ve Monte Carlo estimator of � , and its variance is

1

N

Z b

a

�
f .x/ � �

�2 dx D
�2

N
: (5.9.3)

The standard error of O� is

� O� D
�
p
N
: (5.9.4)

The factor
p
N in the denominator implies that in order to halve the error we must

take four times as many samples. In practice, the standard error would be unknown,
and so we can estimate � by using the sample standard deviation s, which is given by

s D

r
NX
nD1

�
f .xn/ � O�

�2
N � 1

D

u

NX
nD1

f .xn/
2
�

 
NX
nD1

f .xn/

!2
N

N � 1
: (5.9.5)
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5.9.2 Importance Sampling
The objective of importance sampling is to concentrate the distribution of the sample
points in the parts of the interval that have some importance or area under the curve
instead of spreading them out uniformly, thus reducing the variance on the estimated
value.

We have

� D

Z b

a

f .x/ dx D
Z b

a

f .x/

g.x/
g.x/ dx D

Z b

a

f .x/

g.x/
dG.x/; (5.9.6)

for any functions g and G satisfying

G.x/ D

Z x

a

g.y/ dy: (5.9.7)

Let us restrict g to be a positive-valued function such that

G.b/ D

Z b

a

g.y/ dy D 1: (5.9.8)

Then, G.x/ is a distribution function for x 2 Œa; b�. Based on generating a sample x1,
x2, . . . , xN from the probability density function g, Eq. (5.9.6) can be approximated
by

O� D
1

N

NX
nD1

f .xn/

g.xn/
; (5.9.9)

and the variance is

�2f=g D

Z b

a

�
f .x/

g.x/
� �

�2
dG.x/: (5.9.10)

Example 5.9.1 We will numerically integrate the Laplace transform of the inverse
Gaussian distribution (from Example 4.4.2, on p. 48). Let

I D

Z 1
0

e�ˇxfX .x j �; �/ dx; (5.9.11)

where fX .x j �; �/ is the inverse Gaussian probability density function defined by
Eq. (4.2.3). We can rewrite Eq. (5.9.11) as

I D

Z 1
0

e�ˇxfX .x j �; �/
fX .x j �; �/

fX .x j �; �/ dx D
Z 1
0

e�ˇx dFX .x j �; �/:

(5.9.12)
From Eq. (5.9.12), we see that if we observe x1, x2, . . . , xn from the probability
density function fX .x j �; �/, then we can approximate Eq. (5.9.11) by

OI D
1

N

NX
nD1

e�ˇxn : (5.9.13)

To demonstrate this numerically, we set ˇ D 0:3, � D 3, and � D 9. We take 16
random inverse Gaussian variates,1 and evaluate Eq. (5.9.13). The calculation is
set out in Table 5.1: we find that OI D 0:4739 by Eq. (5.9.13) and I D 0:4517 by
Eq. (4.4.7) so that j OI � I j D 0:0222, whilst the standard error is

s
p
N
D

s
3:9736 � .7:5821/2

16

15
p
16

D
0:1593

4
D 0:0398;

in good agreement. J
1Actually, we extracted one Gaussian variate and one uniform variate from a printed table of randomly generated

numbers (RAND Corporation, 1955) to create one inverse Gaussian variate in accordance with Algorithm 13.
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Table 5.1 Monte Carlo integration of
R1
0 e�ˇxf .x j �;�/ dx, where ˇ D 0:3, � D 3, and

� D 9.

n ´n � N .0; 1/ yn � U.0; 1/ xn � IG.3; 9/ e�ˇxn

1 �1:276 0:1009 1:4588 0:6456

2 �1:218 0:7325 5:9780 0:1664

3 �0:453 0:3376 2:3113 0:4999

4 �0:350 0:5201 2:4519 0:4792

5 0:723 0:3586 1:9821 0:5518

6 0:676 0:3467 2:0355 0:5430

7 �1:099 0:3548 1:6069 0:6175

8 �0:314 0:7680 3:5954 0:3401

9 �0:394 0:9590 3:7644 0:3233

10 �0:633 0:9117 4:3149 0:2740

11 �0:318 0:3929 2:4975 0:4727

12 �0:799 0:2749 1:8990 0:5657

13 �1:664 0:4537 1:1870 0:7004

14 1:391 0:5420 1:3712 0:6627

15 0:382 0:4805 2:4073 0:4857

16 0:733 0:6489 4:5663 0:2541

Average 0:4739

True Value 0:4517

5.10 Reduction of POSMDP to SMDP
In this case, the partially observable nature of the POSMDP is reduced to a fully
observable SMDP model.

Recall the Bellman equation for a POSMDP,

V �.�/ D max
a2A.�/

�
R.�; a/C

X
o2O

X
s02S

G.o j a; s0/

X
s2S

�.s/P.s0 j s; a/

Z 1
0

e�ˇ�F.d� j s; a; s0/V �
�
�.� j a; �; o/

�#
:

The difficulty with calculating the integralZ 1
0

e�ˇ�f .� j s; a; s0/V �
�
�.� j a; �; o/

�
d�

in the Bellman equation for a POSMDP is that the value of the next belief
V �
�
�.� j a; �; o/

�
is dependent on the sojourn time � . This means that unlike

the integral in Eq. (5.7.2) whereZ 1
0

e�ˇ�f .� j s; a; s0/V �
�
�.� j a; o/

�
d�

D V �
�
�.� j a; o/

� Z 1
0

e�ˇ�f .� j s; a; s0/ d�;

we cannot use the Laplace transform like we did in Sec. 4.4.
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To approximate the integral

�.�; s; o; a; s0/ D

Z 1
0

e�ˇ�f .� j s; a; s0/V �
�
�.� j a; �; o/

�
d�; (5.10.1)

we use the Monte Carlo method with importance sampling as described in Sec. 5.9.
Suppose we have a set C whose elements �1; �2; : : : ; �jC j are independent sojourn

time samples from the probability density function D. An unbiased estimator of
�.s; o; a; s0/ is

O�.�; s; o; a; s0/ D
1

jC j

jC jX
nD1

e�ˇ�n
f .�n j s; a; s

0/

D.�n/
V �
�
�.� j a; �n; o/

�
(5.10.2)

where the function D.�n/ given by

D.�n/ D
X
s2S

X
a2A

X
s02S

w.s; a; s0/f .�n j s; a; s
0/ (5.10.3)

is a mixture distribution of each sojourn-time distribution for each s; a; s0 and the
weights w.s; a; s0/ reflect the proportion of samples that came from each distribution.
Note that the weights must sum to one; that is,X

s2S

X
a2A

X
s02S

w.s; a; s0/ D 1: (5.10.4)

Example 5.10.1 — Mixture of Two Inverse Gaussian Distributions. Suppose we sample
�1; : : : ; �12 from an inverse Gaussian distribution IG.3; 9/, and �13; : : : ; �16 from
another inverse Gaussian distribution IG.5; 25/. The probability density function
of the mixture of these two inverse Gaussian distributions is D.�n/ D w1f .�n j

� D 3; � D 9/ C w2f .�n j � D 5; � D 25/, where w1 D 12
16
D 75% and

w2 D
4
16
D 25%.

1 2 3 4 5 6 7 8 9 10

0:1

0:2

0:3

� D 3; � D 9

� D 5; � D 25

�

f .�/

Fig. 5.7 Two inverse Gaussian probability density distributions IG.3; 9/ and IG.5; 25/ with the sampled points
�1; : : : ; �16 along the � -axis in Example 5.10.1.

If we wish to estimate the integralsZ 1
0

e�ˇ�f .� j � D 3; � D 9/ d� (5.10.5)

and Z 1
0

e�ˇ�f .� j � D 5; � D 25/ d�; (5.10.6)

based on our sample �1; : : : ; �16, for integral (5.10.5) the estimator is

1

16

16X
nD1

e�ˇ�n
f .�n j � D 3; � D 9/

D.�n/
; (5.10.7)
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and for integral (5.10.6) the estimator is

1

16

16X
nD1

e�ˇ�n
f .�n j � D 5; � D 25/

D.�n/
: (5.10.8)

The calculation is set out in Table 5.2 (on p. 93). J
By replacing the integral (5.10.1) with the approximation (5.10.2) in the Bellman

equation for POSMDP, we have

V �.�/ D max
a2A.�/

�
R.�; a/C

X
o2O

X
s02S

G.o j a; s0/
X
s2S

�.s/P.s0 j s; a/

1

jC j

jC jX
nD1

e�ˇ�n
f .�n j s; a; s

0/

D.�n/
V �
�
�.� j a; �n; o/

�#
:

We bring
1

jC j

jC jX
nD1

e�ˇ�n

D.�n/
to the beginning of the second term since it does not depend

on state s or observation o, yielding

V �.�/ D max
a2A.�/

"
R.�; a/C

1

jC j

jC jX
nD1

e�ˇ�n

D.�n/

X
o2O

X
s02S

G.o j a; s0/X
s2S

�.s/P.s0 j s; a/f .�n j s; a; s
0/V �

�
�.� j a; �n; o/

��
;

and by Eq. (5.5.13),

V �.�/ D max
a2A.�/

"
R.�; a/C

1

jC j

jC jX
nD1

e�ˇ�n

D.�n/

X
o2O

P.o j �; a; �n/V
�
�
�.� j a; �n; o/

�#
:

(5.10.9)
Next, we will write a concise backup operation by following the procedure similar

to POMDPs in Sec. 3.8.2 to express the value function as a finite set of ˛ vectors.
Using Eq. (3.7.2) in Eq. (5.10.9), we can express the value of the next belief as an
inner product as

V �.�/ D max
a2A.�/

"
R.�; a/C

1

jC j

jC jX
nD1

e�ˇ�n

D.�n/

X
o2O

P.o j �; a; �n/max
˛2V
h�.� j a; �n; o/; ˛i

#
:

(5.10.10)
Expressing the inner product as a sum by Eq. (3.7.3), we have

V �.�/ D max
a2A.�/

"
R.�; a/C

1

jC j

jC jX
nD1

e�ˇ�n

D.�n/

X
o2O

P.o j �; a; �n/

max
˛2V

X
s02S

˛.s0/�.s0 j a; �n; o/
�

(5.10.11)
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and using Eq. (5.5.11) for the value of the next belief allows us to cancel out P.o j
�; a; �n/ so that

V �.�/ D max
a2A.�/

"
R.�; a/C

1

jC j

jC jX
nD1

e�ˇ�n

D.�n/

X
o2O

(((((((
P.o j �; a; �n/

max
˛2V

X
s02S

˛.s0/

G.o j a; s0/
X
s2S

�.s/P.s0 j s; a/f .�n j s; a; s
0/

(((((((
P.o j �; a; �n/

375
D max
a2A.�/

"
R.�; a/C

1

jC j

jC jX
nD1

e�ˇ�n

D.�n/

X
o2O

max
˛2V

X
s02S

˛.s0/G.o j a; s0/X
s2S

�.s/P.s0 j s; a/f .�n j s; a; s
0/
�
:

Observe that this approach allows the elimination of the computationally expensive
term P.o j �; a; �n/. Rearranging the order of the summations and the terms so that
we have an ˛-vector yields,

V �.�/ D max
a2A.�/

"
R.�; a/C

1

jC j

jC jX
nD1

e�ˇ�n

D.�n/

X
o2O

max
˛2V

X
s2S

�.s/X
s02S

˛.s0/G.o j a; s0/P.s0 j s; a/f .�n j s; a; s
0/

–
˛.sja;�n;o/

375
D max
a2A.�/

"
R.�; a/C

1

jC j

jC jX
nD1

e�ˇ�n

D.�n/

X
o2O

max
˛2V

X
s2S

�.s/ ˛.s j a; �n; o/

#
(5.10.12)

and ultimately, by Eq. (3.7.3), we arrive at the final optimal value function equation

V �.�/ D max
a2A.�/

"
R.�; a/C

1

jC j

jC jX
nD1

e�ˇ�n

D.�n/

X
o2O

max
˛2V
h�; ˛.� j a; �n; o/i

#
(5.10.13)

This expression represents the approximate form of the POSMDP value function that
we will employ in the CHRONOSPERSEUS algorithm. It is noteworthy that the integral
of the sojourn time, which was previously situated in one of the inner summation loops
in Eq. (5.7.2) or Eq. (5.7.3), now resides in the outer summation loop in Eq. (5.10.12)
as a result of importance sampling.

5.11 ChronosPerseus
We now introduce one of the main contributions of the thesis—the
CHRONOSPERSEUS algorithm. This algorithm represents an extension of point-
based value iteration, enhanced with importance sampling, specifically designed
for POSMDPs. As delineated in Algorithm 16, CHRONOSPERSEUS operates in
two stages: initially, it collects belief and sojourn time samples; subsequently, it
approximates the value function using the backup operator. Distinctions between
CHRONOSPERSEUS and the original PERSEUS algorithm (see Algorithm 9 on p. 32),



July 18, 2023 8:8 World Scientific Book - 9in x 6in ThesisMain page 77

The POSMDP Model 77

used for solving POMDPs, are highlighted in red. These adaptations incorporated
into CHRONOSPERSEUS, specifically addressing the importance sampling related
to sojourn times, have effectively broadened its applicability to POSMDPs. By do-
ing so, it has contributed to making these complex processes more computationally
manageable.

Algorithm 16 CHRONOSPERSEUS

1: function CHRONOSPERSEUS(n, �0, V0, �)
2: .B; C ;w/ COLLECTBELIEFS(n; �0)
3: V 0  V0
4: repeat
5: V  V 0

6: V 0  UPDATE(B;C ;w; V )
7: until jjV � V 0jj1;B < �
8: return V
9: end function

The first step, as outlined in Algorithm 17, is to let the agent explore the envi-
ronment and collect a finite set of beliefs B , a finite set of sojourn times C , and
the weights w.s; a; s0/ that reflect the proportion of samples that came from each
state-action-state transition; after these are collected, they remain fixed for the rest of
the algorithm.

Algorithm 17 COLLECTBELIEFS

1: function COLLECTBELIEFS(n; �0)
2: B  f�0g, C  ¿, w  0 F Initialization
3: repeat
4: Randomly select the belief state � 2 B
5: Generate state s from the multinomial distribution with weights �
6: Randomly select an action a 2 A
7: Randomly select state s0 according to P.� j s; a/
8: Generate a random sojourn-time � according to f .� j s; a; s0/
9: C  C [ f�g F Add � to set C

10: w.s; a; s0/ w.s; a; s0/C 1 F Update counts
11: Randomly select o 2 O according to P.o j �; a; �/ using Eq. (5.5.13)
12: Update �.� j a; �; o/ according to Eq. (5.5.11)
13: B  B [ f�.� j a; �; o/g F Add new belief to set B
14: until jBj D n
15: w  

w

jjwjj
F Normalize w; jjwjj D

X
s2S

X
a2A

X
s02S

w.s; a; s0/.

16: return B , C , and w
17: end function

In the second step, as outlined in Algorithm 18, from the initial value function
V0, the algorithm will continue to perform backups until a convergence criterion is
achieved such as

jjV � V 0jj1;B , max
�2B
jV.�/ � V 0.�/j < �: (5.11.1)
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Algorithm 18 UPDATE

1: function UPDATE(B;C ;w; V )
2: B 0  B , V 0  ¿ F Initialization
3: while B 0 ¤ ¿ do
4: Randomly select a belief � 2 B 0

5: ˛  BACKUP(V;C ;w; �) F Backup defined by Eq. (5.11.2)
6: if h�; ˛i < V.�/ then F V.�/ D max

˛02V

˝
�; ˛0

˛
7: ˛  arg max

˛02V

h�; ˛0i F If ˛ is not better, get ˛0 from old set V

8: end if
9: B 0  B 0 X f& 2 B 0 j h&; ˛i � V.&/g F Keep beliefs not improved by ˛.

10: V 0  V 0 [ f˛g F Adds ˛ to set V 0

11: end while
12: V  V 0

13: return V
14: end function

The initial value function, V0, must be chosen carefully to ensure that it is lower
than the optimal value function V �. In PERSEUS, V0 is initialized by setting all of

its components each to
1

1 � 
min
.s;a/2K

R.s; a/, where  represents the discount factor.

By following a similar argument by Zhang and Zhang (2001), we can modify the
discount factor  to � that represents the exponential discount in a POSMDP. This
leads us to our next theorem.

Theorem 5.11.1 Let M D min
.s;a/2K

R.s; a/. The initial value function V0 is a single

˛-vector with

V0.s/ D
M

1 � �
8s 2 S;

where

� D

„
min

1�n�jC j

e�ˇ�n

D.�n/
; if M � 0I

max
1�n�jC j

e�ˇ�n

D.�n/
; if M < 0:

Proof Since S and A are finite sets, the per-stage minimum reward M exists by
Assumption 5.6.2.

If M D 0, then this is trivial: set ˛.s/ D 0 for all s 2 S.

For M > 0, we start with Eq. (5.10.9), for any belief state �. Let �n D
e�ˇ�n

D.�n/
,

and 0 < � < 1. Since M is positive, we would like the discount to be as small as
possible. So, we define

� D min
1�n�jC j

�n; n� D arg min
1�n�jC j

�n; and � D �n�;
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so that

V.�/ � max
a2A.�/

24R.�; a/C 1

jC j

jC jX
nD1

�
X
o2O

P.o j �; a; �/V
�
�.� j a; �; o/

�35
D max
a2A.�/

"
R.�; a/C �

X
o2O

P.o j �; a; �/V
�
�.� j a; �; o/

�#
� max
a2A.�/

�
M C �

�
M

1 � �

��
DM C

�M

1 � �

D
M

1 � �
D V0:

If M < 0, then it is a negative reward, and so the discount should be as large as
possible, so

� D max
1�n�jC j

�n; n� D arg max
1�n�jC j

�n; and � D �n�:

J
We can now write a concise backup operation that generates a new ˛ vector for a

specific belief �; that is,

BACKUP.V; C;w; �/ D arg max
˛.�j�;a/Wa2A;˛2V

h�; ˛.� j �; a/i (5.11.2)

where for all s 2 S,

˛.s j �; a/ D R.s; a/C
1

jC j

jC jX
nD1

e�ˇ�n

D.�n/

X
o2O

arg max
˛.�ja;�n;o/W˛2V

h�; ˛.� j a; �n; o/i ;

(5.11.3)
and

˛.s j a; �n; o/ D
X
s02S

G.o j a; s0/P.s0 j s; a/f .�n j s; a; s
0/ ˛.s0/: (5.11.4)

The complexity of computing Eq. (5.11.4) isO.jSj2/ since it needs to be calculated
for every .s; s0/ tuple, and it is done for every ˛ 2 V , hence computing all ˛.� j a; �; o/
for every a 2 A, � 2 C , and o 2 O, requires O.jV j � jSj2 � jAj � jC j � jOj/.
The complexity of computing Eq. (5.11.3) requires the computation of all relevant
˛.� j a; �; o/, but then the summation and inner products require only O.jSj � jC j �
jOj/ operations and another O.jSj/ operations to add the reward (vector). Lastly, the
BACKUP (Eq. (5.11.2)) requires for all ˛.� j �; a/ another O.jSj/ operations for the
inner product. Therefore, the complexity of the BACKUP operation requires

O.jV j � jSj2 � jAj � jC j � jOj/: (5.11.5)

Given there are no more beliefs than observed sojourns time, jBj � jC j, the complex-
ity of an UPDATE iteration is therefore

O.jV j � jSj2 � jAj � jC j2 � jOj/: (5.11.6)
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Algorithm 19 Controller for an Online Agent (POSMDP)
In the beginning n D 0, the state s0 is simulated from an initial (belief) state distribu-
tion �0.
For each decision epoch n D 1; 2; : : : ; N :

(a) Based on the current belief state �, the agent performs action

an D �n.�n/ 2 A; n D 1; 2; : : : ; N;

according to policy �n that the agent uses at decision epoch n.
(b) The agent obtains a rewardR.sn; an/ for choosing action an at decision epoch

n.
(c) The state evolves randomly with sojourn time-state transition probability

Q.�; s0 j s; a/ D P.TnC1 � Tn � �; SnC1 D s0 j Sn D s; An D a/

to the next state SnC1 that decision epoch nC 1.
(d) The agent records an exact time � according to

F.� j s; a; s0/

(e) The agent records a noisy observation On 2 O of the state SnC1 according to

G.o j a; s0/ D P.On D o j An D a; SnC1 D s0/:

(f) With the selected action a, and the observation o and time � observed, the
agent updates its belief state as

�.s0 j a; �; o/ D

G.o j a; s0/
X
s2S

�.s/Q.�; s0 j s; a/X
s002S

G.o j a; s00/
X
s2S

�.s/Q.�; s00 j s; a/
8s0 2 S;

or

�.s0 j a; �; o/ D

G.o j a; s0/
X
s2S

�.s/P.s0 j s; a/f .� j s; a; s0/X
s002S

G.o j a; s00/
X
s2S

�.s/P.s00 j s; a/f .� j s; a; s0/
8s0 2 S;

where the initial belief �0 is given in the model.
(g) If n < N , then set n to nC 1, and go back to step (a).

If n D N , then the agent receives the last reward and the process terminates.

5.12 Applications

We now showcase the application of CHRONOSPERSEUS to two compelling exam-
ples. The first example is an episodic, relatable scenario we frequently experience
in our daily life, where waiting time influences an individual’s belief and subse-
quent decision-making. In this simplified scenario, an agent travels on a bus with
an unknown traffic intensity and has the option to abandon the bus and ride their
bicycle at any bus stop. The second example is a real-world application concerning
routine maintenance of a water filtration system, initially presented with a continuous
observation space by Zhang and Revie (2017).

These two examples will illustrate how CHRONOSPERSEUS can effectively solve
real POSMDP problems with mixed observability, a combination of observable
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continuous and discrete random sojourn times, discrete or continuous observation
spaces, and episodic or non-episodic tasks.

Example 5.12.1 — Bus Problem. Suppose an agent wishes to travel by bus with a
bicycle attached to the bus rack. The agent faces four bus stops before reaching
the final destination and encounters three levels of traffic intensity i (low i D 1,
medium i D 2, and high i D 3) that remain constant throughout the journey. The
traffic intensity i is unknown to the agent. At each bus stop s, the agent has the
option to either remain on the bus or disembark and ride its bicycle directly to the
destination (the last stop); there is no option to reboard the bus at subsequent stops.
Reaching the destination leads to a (lump sum) reward, but the longer it takes, the
more discounted it will be. Suppose the agent decides to continue. In that case, the
next state will be s C 1 with sojourn time � according to the probability density
function f

�
�; .s C 1; i/ j .s; i/

�
. If the agent chooses to take the bike, it takes a fixed

time to reach the destination depending on the current stop s. What is the optimal
policy that will maximize the agent’s discounted reward while minimizing travel time,
taking into account their belief about traffic intensity?

0 1 2 3 4

? ? ? ?

Fig. 5.8 The agent waiting for the bus in Example 5.12.1.

Solution Intuitively, we would expect that the agent should ride the bus long enough
to deduce which traffic intensity level:

(a) if the traffic intensity is low, then the agent would ride the bus to the end;
(b) if the traffic intensity is high, then the agent would disembark at the next stop

and ride the bike to the end; and
(c) if the traffic intensity is medium, then the agent would have to balance the

advantage of riding the bus versus riding the bike.
With this intuition in mind, we can model this problem formally using the

POSMDP framework. The state space consists of the bus stops and the three levels of
traffic intensity,

S D

observableº
f0; 1; 2; 3; 4gš

bus stops

�

hidden¸
f1; 2; 3g˜

traffic

;

or
S D f.0; 1/; .0; 2/; .0; 3/;

.1; 1/; .1; 2/; .1; 3/;

.2; 1/; .2; 2/; .2; 3/;

.3; 1/; .3; 2/; .3; 3/;

.4; 1/; .4; 2/; .4; 3/g;

which means the number of states is

jSj D 5 � 3 D 15:
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A typical state would be the pair .s; i/ 2 S, where the bus is at stop s and the traffic
intensity is i . We will assume that the traffic intensity remains i throughout the entire
bus ride; that is,

.0; i/! .1; i/! .2; i/! .3; i/! .4; i/:

The action space consists of two actions

A D fbus; bikeg:

The observation space consists of the bus stops that the agent observes,

O D f0; 1; 2; 3; 4g„ ƒ‚ …
bus stops

:

Now that we have defined the state and action spaces, we turn our attention to the
observation space. In this problem, the observation space differs from the state space,
O ¤ S , which leads to the issue of mixed observability (Ong et al., 2010). This means
that while the agent can perfectly observe its location s, it cannot directly observe the
traffic intensity i . We will address this issue as we develop the observation transition
function.

If the agent decides to continue riding the bus, the traffic intensity i does not
change, but the bus stop changes from s to s C 1. If the agent decides to ride the bus
to the last bus stop, then the problem resets probabilistically by placing the agent at
bus stop 0 and randomly selecting the traffic intensity with equal probability; this
is reflected in the probability P

�
.0; i 0/ j .4; i/; bus

�
D

1
3

. To illustrate this visually,
a state transition diagram for the bus action is given in Fig. 5.9 on p. 84. Thus, the
transition probability matrices for continuing to ride the bus are

P
�
.�; i/ j .�; i/; bus

�
D

266664
s0D0 s0D1 s0D2 s0D3 s0D4

sD0 0 1 0 0

sD1

sD2 0

sD3 0 0 1

sD4
1
3

0 0

377775
and

P
�
.�; i 0 ¤ i/ j .�; i/; bus

�
D

266664
s0D0 s0D1 s0D2 s0D3 s0D4

sD0 0 0

sD1

sD2

sD3 0 0

sD4
1
3

0 0

377775
for all traffic intensities i 2 f1; 2; 3g.

If at stop s ¤ 4, the agent decides to disembark from the bus and ride the bike
to the final stop, the traffic intensity i does not change, but the bus stop changes
directly from s to s D 4. Again, when the last stop is reached, the problem resets
probabilistically by placing the agent at bus stop 0 independently of the selected action,
and randomly selecting a new traffic intensity i with equal probability. Visually, this
can be illustrated with a state diagram for the bike action, which is given in Fig. 5.10
on p. 85. Thus, the transition probability matrices for disembarking from the bus and
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riding the bike are

P
�
.�; i/ j .�; i/; bike

�
D

266664
s0D0 s0D1 s0D2 s0D3 s0D4

sD0 0 0 1

sD1

sD2

sD3 0 0 1

sD4
1
3

0 0

377775
and

P
�
.�; i 0 ¤ i/ j .�; i/; bike

�
D

266664
s0D0 s0D1 s0D2 s0D3 s0D4

sD0 0 0

sD1

sD2

sD3 0 0

sD4
1
3

0 0

377775
for all traffic intensities i 2 f1; 2; 3g.

If the agent continues to ride the bus, the sojourn time distributions f
�
� j

.s; i/; bus; .s0; i/
�

follow an inverse Gaussian distribution (Eq. (4.2.3)) with parame-
ters conditional on the bus stops and traffic intensity given by

�
�
.�; 1/; bus; .�; 1/

�
D

266664
s0D0 s0D1 s0D2 s0D3 s0D4

sD0 0 1 0 0 0

sD1 0 0 2 0 0

sD2 0 0 0 1 0

sD3 0 0 0 0 2

sD4 455 0 0 0 0

377775
(i D 1)

low intensity

(5.12.1)

�
�
.�; 2/; bus; .�; 2/

�
D

266664
s0D0 s0D1 s0D2 s0D3 s0D4

sD0 0 3 0 0 0

sD1 0 0 3 0 0

sD2 0 0 0 4 0

sD3 0 0 0 0 5

sD4 455 0 0 0 0

377775
(i D 2)

medium intensity

(5.12.2)

�
�
.�; 3/; bus; .�; 3/

�
D

266664
s0D0 s0D1 s0D2 s0D3 s0D4

sD0 0 5 0 0 0

sD1 0 0 5 0 0

sD2 0 0 0 15 0

sD3 0 0 0 0 20

sD4 455 0 0 0 0

377775
(i D 3)

high intensity

(5.12.3)

�
�
.s; i/; bus; .s0; i 0 ¤ i/

�
D 0 (5.12.4)

and

�
�
.s; i/; bus; .s0; i/

�
D �

�
.s; i/; bus; .s0; i/

�2
:

The graphs of the sojourn time distributions for riding the bus from stop to stop at
each traffic intensity are shown in Fig. 5.11. We can see that the time it takes from
stop to stop in low traffic is relatively short compared to the long times between stops
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Fig. 5.9 State transition diagram for the agent’s selection of action a D bus in Example 5.12.1. The problem begins
at stop s D 0 with a randomly selected initial intensity i . The bus action allows the agent to travel from one bus stop
to the next while the traffic intensity remains constant until it reaches the end of the bus line. At this point, the agent
is returned to the beginning of the bus line for a new randomly selected intensity.

in high traffic; the mean total time is 20 minutes in low traffic whereas the mean total
time in high traffic is 105 minutes. Note that technically we cannot have � D 0 in the
matrices because the inverse Gaussian distribution is defined for � > 0. This is not an
issue since the corresponding probability P.s0 j s; a/ D 0, hence, Q.�; s0 j s; a/ D 0.

If the agent decides to disembark from the bus and use its bicycle, then the sojourn
time distribution follows a deterministic function f

�
� j .s; i/; bike; .s0; i/

�
. If c0 is a

constant, then the probability mass function is

f
�
� j c0

�
.s; i/; bike; .s0; i/

��
D

(
1; if � D c0

�
.s; i/; bike; .s0; i/

�
I

0; otherwise;
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Fig. 5.10 State transition diagram for the agent’s selection of action a D bike in Example 5.12.1. Riding the bike
leads directly to the last stop, at which point, it is returned to the beginning of the bus line for a new randomly selected
intensity.

where

c0
�
.�; i/; bike; .�; i/

�
D

266664
s0D0 s0D1 s0D2 s0D3 s0D4

sD0 0 0 30

sD1 25

sD2 20

sD3 0 0 12

sD4 455 0 0

377775 (5.12.5)

and

c0
�
.s; i/; bike; .s0; i 0 ¤ i/

�
D 0:

Since CHRONOSPERSEUS uses an infinite planning horizon, we need to ensure
rewards from one trip (episode) from s D 0 to s D 4 does not the affect the value for
the next trip (episode), which creates effectively a large discount when the environment
resets probabilistically. This technique turns this episodic task into a non-episodic
task, allowing CHRONOSPERSEUS to work seamlessly for episodic and non-episodic
tasks. We assume continuous-time discounting at a rate of ˇ D 0:02. This means
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(a) Low traffic intensity
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(b) Medium traffic intensity
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(� D 10; � D 1000)

Stop 1! 2

Stop 2! 3

(� D 25; � D 6250)
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(� D 45; � D 20 250)

x

f .x/

(c) High traffic intensity

Fig. 5.11 The sojourn time distributions for the action a D bus.

that the present value of one reward unit received at time � units in the future equals
e�0:02� D  . To get a discount factor of  D 0:0001, we set � D 455 between
s D 4 to s D 0; this is the entry for �

�
.4; �/; bus; .0; �/

�
in (5.12.1)–(5.12.3) and

c0
�
.4; �/; bike; .0; �/

�
in Eq. (5.12.5).

The cumulative distribution function is

F
�
� j c0

�
.s; i/; bike; .s0; i/

��
D

(
0; if � < c0

�
.s; i/; bike; .s0; i/

�
I

1; if � � c0
�
.s; i/; bike; .s0; i/

�
:

The sojourn time-state transition function is defined by

Q
�
�; .s0; i/ j .s; i/; a

�
D P

�
.s0; i/ j .s; i/; a

�
F
�
� j .s; i/; a; .s0; i/

�
D P

�
.s0; i/ j .s; i/; a

� Z �

0

f
�
t j .s; i/; a; .s0; i/

�
dt

Given the landing state .s0; i/, regardless of which action a was selected, the agent
with certainty would observe bus stop s0. Remember, it is the traffic intensity i that is
hidden from the agent, but this does not influence what bus stop s0 is observed; it is
deterministic what bus stop is observed depending on whether the agent decides to
continue to ride the bus or take the bicycle. This leads to the observation probability
matrix given by

G
�
� j a; .�; i/

�
D

266664
oD0 oD1 oD2 oD3 oD4

s0D0 1 0 0

s0D1 0

s0D2

s0D3 0

s0D4 0 0 1

377775 8i 2 f1; 2; 3g:
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Now, we will setup the reward function. Set the lump sum reward r1
�
.s; i/; a

�
D 0

and continuous reward rate as r2
�
.s; i/; a; .s0; i 0/

�
D �1 in Eq. (4.3.4) (on p. 47) .

Using Examples 4.4.1 (on p. 48) and 4.4.2 (on p. 48) for the Laplace transform of the
inverse Gaussian distributionZ 1

0

e�ˇ�f
�
� j .s; i/; a; .s0; i 0/

�
d�;

the reward function is

R
�
.s; i/; a

�
D �

1

ˇ

X
.s0; i 0/2S

P
�
.s0; i 0/ j .s; i/; a

��
1 �M

�
.s; i/; a; .s0; i 0/

��
where

M
�
.s; i/; a; .s0; i 0/

�
D

˚
exp

�
�ˇc0

�
.s; i/; bike; .s0; i/

��
; if a D bikeI

exp
�
�.s;bus;s0/
�.s;bus;s0/

�
1 �

q
1C 2�.s;bus;s0/2ˇ

�.s;bus;s0/

��
; if a D bus:

(5.12.6)
The lump sum reward is

r1
�
.4; i/; a

�
D

(
100; 8i 2 f1; 2; 3g; a 2 AI
0; otherwise,

(5.12.7)

and the continuous reward rate is

r2.�; �; �/ D 0: (5.12.8)

The agent begins at bus stop 0, and since this is fully observable, but the traffic
level intensity is not, the agent assumes that the three traffic intensities are equally
likely; that is,

�0
�
.�; i/

�
D

266664
sD0

1
3

sD1 0

sD2 0

sD3 0

sD4 0

377775 8i 2 f1; 2; 3g:

The resulting policy using CHRONOSPERSEUS is depicted in Fig. 5.12. Fig-
ure 5.12(a) reveals that if the agent possesses sufficient evidence to infer the traffic
was medium or high, it is more advantageous to ride the bicycle (with an expected
time of 30 minutes) than to remain on the bus (expected times of 45 and 105 minutes,
respectively). In the absence of initial information, the optimal strategy is to stay
on the bus for at least one stop (expected time of 5 minutes) before considering
disembarking (the exact centre of the simplex would be a red dot for the bus action).
Upon reaching the first stop (Fig. 5.12(b)), medium and high traffic intensities diverge
significantly in remaining expected time, making the bicycle a more appealing option
solely under high traffic. The expected remaining time is 25 minutes for the bicy-
cle, and 15, 40, and 95 minutes for the low, medium, and high traffic, respectively.
However, the bicycle action must be weighed against the average of the three traffic
intensity’s expected discounting weighted by the agent’s belief. Figures 5.12(c) and
5.12(d) present the optimal action at stops 2 and 3, given the current belief about the
traffic intensities. It is important to note that the action decision boundary may appear
different due to the consideration of belief-weighted exponential discounting over
stochastic inverse-Gaussian distributed sojourn time instead of assuming a negative
reward per time unit with no discounting. J
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Fig. 5.12 Optimal policy for the bus problem at each bus stop, illustrated using a regular mesh of belief states repre-
senting the agent’s confidence in traffic intensity. A red dot � indicates that the optimal action for the corresponding
belief is to continue riding the bus, while a blue dot � signifies that the optimal action for the respective belief is to
disembark from the bus and ride the bicycle.

In the previous example, we demonstrated the capability of CHRONOSPERSEUS to
efficiently solve a problem involving time without expanding the state space to account
for elapsed time. Such an expansion would have required a state space featuring an
elapsed time dimension of no less than 5 � 3 � T , where T � 125, for a single state
per time unit. Instead, we have seamlessly integrated various durations into sojourn
time distributions, permitting the belief to be updated directly in accordance with the
distribution’s likelihood given the observed transitions.

Using CHRONOSPERSEUS, we see that POSMDPs are not more complicated to
solve than their POMDP counterparts. Instead, like using SMDPs in options (Sutton
et al., 1999; Precup, 2000), it allows for the compression of the temporal properties of
the problem. This simplifies not only the creation of the model, but also its evaluation
by avoiding the explosion of the state space. This approach also allows us to easily
mix various temporal distributions and solve episodic problems as efficiently as
non-episodic problems.

The following example underscores the adaptability of CHRONOSPERSEUS in
managing continuous observations. As examined by Zhang and Revie (2017), an
industrial application of POSMDPs was employed to maintain rapid gravity filters
within municipal drinking water treatment plants. These filters are crucial in purifying
water and providing communities with safe and clean drinking water. The maintenance
process of these filters encounters multiple challenges, such as the inability to directly
observe a filter’s condition and the necessity for efficient maintenance planning.
Accurate determination of the condition demands thorough inspections, which are
time-consuming and temporarily disrupt the functionality of the filters.

Example 5.12.2 — Filter Maintenance. Filters can be classified into four states

S D f1 D good; 2 D acceptable; 3 D poor; 4 D awfulg:
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Unlike in Example 5.12.1, the state of the filter is (fully) hidden and it must be inferred
with uncertain observations. To extend the longevity and reliability of the filters, there
are four maintenance actions, which are

A D f1 D do nothing; 2 D backwash; 3 D dose chemicals; 4 D replaceg:

An observation to infer the state of the filter is to measure turbidity. Turbidity is the
amount of cloudiness or haziness of a fluid caused by suspended particles: this is
measured by a nephelometer, which shines a light beam through the water sample
and measures how much light is reflected into a detector (often located at 90ı from
the source beam). The turbidity of the incoming water into the filter and the turbidity
of the outgoing water from the filter are measured. If the outgoing to incoming water
turbidity ratio is close to zero, then the filter is in a good state. However, if the ratio is
closer to one, the filter is likely to be in a poor or awful state. Hence, the observation
space is given by the continuous interval O D Œ0; 1�.

good

0

awful

1

Fig. 5.13 The observation space serves as a scale of the current state of the filter.

The probability transition matrices are

P.� j �; 1/ D P.� j �; 2/ D

2664
s0D1 s0D2 s0D3 s0D4

sD1 0:1043 0:7413 0:1493 0:0051

sD2 0 0:1043 0:7413 0:1544

sD3 0 0 0:1043 0:8957

sD4 0 0 0 1

3775;

P.� j �; 3/ D

2664
s0D1 s0D2 s0D3 s0D4

sD1 1 0 0 0

sD2 0:50 0:50 0 0

sD3 0:25 0:70 0:05 0

sD4 0:20 0:55 0:20 0:05

3775;
and

P.� j �; 4/ D

2664
s0D1 s0D2 s0D3 s0D4

sD1 1 0 0 0

sD2 1 0 0 0

sD3 1 0 0 0

sD4 1 0 0 0

3775:
The sojourn times for actions 1, 2, and 3 are fixed, whereas �.s0 j s; 1/ D 78:7433,
�.s0 j s; 2/ D 85:3052, and �.s0 j s; 3/ D 3. The sojourn time for action 4 follows a
truncated Gaussian distribution with mean � D 10, standard deviation � D 1:5, and
�.s0 j s; 4/ > 0; in other words,

f .� j s; a D 4; s0/ D

˚
1

1:5
�

'

�
� � 10

1:5

�
1 �ˆ

�
�
10

1:5

� ; if � > 0I

0; otherwise,

(5.12.9)
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where

'.x/ D
1
p
2�

exp
�
�
1

2
x2
�

(5.12.10)

is the standard normal probability density function, and ˆ is its corresponding cumu-
lative distribution function defined by Eq. (4.2.16).

To deal with continuous observations, we discretize the interval Œ0; 1� into j
evenly spaced numbers, which yields a finite set of observations O (jOj D j ). The
observation transition probability is

G.o j a; s0/ D G.o j a/ D
fB
�
o j �.a/; �.a/

�X
o02O

fB
�
o0 j �.a/; �.a/

�
where fB

�
o j �.a/; �.a/

�
is the beta probability density function defined by

fB
�
o j �.a/; �.a/

�
D
�
�
�.a/C �.a/

�
�
�
�.a/

�
�
�
�.a/

�o�.a/�1.1 � o/�.a/�1; (5.12.11)

�.�/ is the gamma function, and the parameters are

�.�/ D

2664
aD1 2

aD2 6

aD3 18

aD4 18

3775 and �.�/ D

2664
aD1 18

aD2 18

aD3 18

aD4 6

3775:
The beta probability density functions are shown in Fig. 5.14.

0:1 0:2 0:3 0:4 0:5 0:6 0:7 0:8 0:9 1

2

4

6

8
a D 1

a D 2 a D 3 a D 4

x

fB.o/

Fig. 5.14 The beta probability density functions used for the observation transition probabilities in Example 5.12.2.

The lump sum reward is

r1.s; �/ D

2664
aD1 0

aD2 �100

aD3 �200

aD4 �500

3775 8s 2 S;

and the continuous reward rate is

r2.�; �; s
0/ D

2664
aD1 aD2 aD3 aD4

sD1 500 500 �100 �100

sD2 250 250 �100 �100

sD3 �300 �300 �100 �100

sD4 �500 �500 �100 �100

3775 8s0 2 S:
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The initial ˛-vector is

˛.�/ D

2664
sD1 �106

sD2 �106

sD3 �106

sD4 �106

3775:
The initial belief �0 is that the filter is good; that is,

�0.�/ D

2664
sD1 1

sD2 0

sD3 0

sD4 0

3775:
Running CHRONOSPERSEUS on the problem with discount rate ˇ D 0:01 gener-

ates the set

V D

8̂̂̂̂
ˆ̂<̂
ˆ̂̂̂̂:

2664
aDbackwash

V.good/ 46351:3242

V.acceptable/ 31551:5723

V.poor/ �71:0176

V.awful/ �11550:9883

3775;
2664

aDdose

43257:2109

41467:2891

40529:1953

40172:0430

3775;
2664

aDdose

43404:0859

41505:2148

40516:1875

40159:6211

3775;
2664

aDdose

43690:0625

41519:4531

40405:4766

40057:0312

3775;

2664
aDdose

V.good/ 43987:1328

V.acceptable/ 41352:2109

V.poor/ 40036:6328

V.awful/ 39764:9141

3775;
2664

aDdose

43567:4844

41526:0000

40470:0547

40112:9766

3775;
2664

aDdose

44235:8906

40804:3320

39155:7461

39067:2930

3775;
2664

aDdose

43890:7227

41438:7500

40201:9414

39896:9844

3775;
2664

aDdose

V.good/ 44127:5703

V.acceptable/ 41123:7617

V.poor/ 39652:8359

V.awful/ 39461:3516

3775;
2664

aDdose

44061:6992

41249:8320

39859:4453

39625:1172

3775;
2664

aDdose

43800:3984

41489:0391

40313:0742

39984:2852

3775;
2664

aDdose

44187:7969

40967:9141

39406:7695

39265:6484

3775;
2664

aDreplace

V.good/ 40504:4414

V.acceptable/ 40504:4414

V.poor/ 40504:4414

V.awful/ 40504:4414

3775
9>>>>>>=>>>>>>;
;

where V comprises 13 ˛-vectors with their corresponding actions labelled at the
top, while the states are labelled along the rows. Zhang and Revie (2017) utilized
jBj D 5000 sampled belief points and 40 iterations, taking approximately 16 hours
to complete the calculations on an Intel Core i5-4590 CPU at 3.30 GHz. In contrast,
CHRONOSPERSEUS, using the same number of belief points and iterations, finished
the computation in under 40 seconds on an Intel Core Xeon Silver 4210 CPU at 2.20
GHz and Nvidia GeForce RTX 2080 Super 8 GB. The original paper did not specify
the number of observation bins, so we chose 100 for our simulation.

Table 5.3 (on p. 94) presents a selection of belief points and their corresponding
optimal values and actions, comparing the results from CHRONOSPERSEUS to those
of Zhang and Revie. The beliefs in Table 5.3 were chosen by Zhang and Revie and
were also included in the sampled belief set B used by CHRONOSPERSEUS. The
column begins with beliefs corresponding to a filter believed to be in good condi-
tion and proceeds to acceptable, poor, and finally, awful condition. We observe that
CHRONOSPERSEUS opts to backwash for a filter believed to be in good condition,
while Zhang and Revie recommends do-nothing action. The accumulated reward
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for backwashing is greater than that for doing nothing: R.1; 1/ D 27249:43, while
R.1; 2/ D 28594:38. The additional time during the backwash allows for the ac-
cumulation of continuous rewards, offsetting the initial negative reward of �100
from backwashing compared to the time allowed for the do-nothing action. The
accumulated reward must account for the risk of producing poor water quality, such
as reaching the poor or awful states. As a result, we believe that CHRONOSPERSEUS
has selected the appropriate action. J

It appears that Zhang and Revie (2017) may have selected the truncated Gaussian
distribution due to its support on .0;1/. The inverse Gaussian distribution could
be used as an alternative to the truncated Gaussian distribution for modelling the
lifetime of the rapid gravity filter. The advantage of using the inverse Gaussian is that
the distribution addresses a broader class of lifetime distributions, and the physical
interpretation of the first passage time distribution leads to its natural application to
studying lifetime (Chhikara and Folks, 1977, p. 467).

We showed with these examples that CHRONOSPERSEUS can address real-world
POSMDP problems with continuous observation spaces. This algorithm, when
coupled with importance sampling and GPU implementation, significantly accelerates
computations by several orders of magnitude. Such enhancements permit more
iterations, extending the planning horizon. The adjustment of CHRONOSPERSEUS to
handle continuous observations, as exemplified by the turbidity measurements in filter
maintenance scenarios, substantiates its potential in optimizing maintenance planning
and managing associated challenges. The incorporation of importance sampling for
time variables in CHRONOSPERSEUS further streamlines the computation process,
minimizing the duration required to determine an optimal policy from hours to just a
few seconds.

5.13 Conclusion
The operations research community has extensively utilized the partially observable
semi-Markov decision process (POSMDP) for decades to facilitate planning under
uncertainty, as demonstrated in diverse tasks such as maintenance scheduling. How-
ever, the potential of POSMDP extends beyond traditional operations research and
it is equally valuable in the field of artificial intelligence. The POSMDP model can
capture not only the agent’s interaction with the environment but also the temporal
aspect of the system, specifically addressing the challenge of how long it takes for the
agent to transition between hidden states.

To this end, we developed a novel POSMDP solver—CHRONOSPERSEUS—that
combines PERSEUS and importance sampling to efficiently solve a POSMDP where
the transition time is observable. The solver can handle various problem types, such as
episodic and non-episodic, with mixed-observable, discrete, or continuous observation
space, and a mixture of fixed and stochastic continuous sojourn times.

Furthermore, we demonstrated the effectiveness of the solver by showing how
it can learn a policy on a POSMDP where time is the only available information to
resolve the partially observable state. This scenario is prevalent in many real-world
problems, and our proposed solver provides significant advantages in decision-making
and planning under uncertainty.
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Table 5.3 Sample of belief points, their corresponding optimal values and actions

CHRONOSPERSEUS Zhang and Revie (2017)
Belief state, � Optimal Value Optimal Action Optimal Value Optimal Action�
0:9972 0:0028 0:0000 0:0000

�>
46309.8867 2 46316.40 1�

0:9965 0:0035 0:0000 0:0000
�>

46299.5234 2 46306.04 1�
0:8714 0:1286 0:0000 0:0000

�>
44448.0742 2 44454.43 2�

0:8160 0:1840 0:0000 0:0000
�>

43628.1680 2 43634.51 2�
0:0031 0:6803 0:3165 0:0001

�>
41197.9805 3 41215.31 3�

0:0001 0:0390 0:9457 0:0152
�>

40560.6250 3 40574.81 3�
0:0000 0:0003 0:8488 0:1509

�>
40504.4453 4 40498.43 4�

0:0000 0:0000 0:0000 1:0000
�>

40504.4414 4 40385.84 4
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Decisions made in the face of uncertainty pervade the life of every individual and
organization. Even animals might be said continually to make such decisions, and
the psychological mechanisms by which men decide may have much in common
with those by which animals do so.

—Savage (1954, p. 6)

This chapter explores the Bayesian approach to model-based reinforcement learning,
which maintains probability distributions over unknown model parameters and updates
them as new observations are received. The primary focus in this approach is the
exploration versus exploitation trade-off: should the agent explore the environment
in search of larger rewards or exploit its current knowledge about the location of
the largest reward? The concept of optimal learning involves finding an equilibrium
between these two crucial aspects.

Bayesian reinforcement learning (BRL) allows modelling the uncertainty of pa-
rameters in a Markov decision process (MDP) (Duff, 2002) and a partially observable
Markov decision process (POMDP) (Ross et al., 2008a). To achieve this, BRL models
uncertainty by explicitly maintaining a probability distribution over quantities such as
model parameters, the value function, or its gradient (Duff, 2002). The uncertainty is
expressed through a prior distribution over unknown model parameters, and learning
occurs by updating the posterior distribution based on the agent’s experiences in
the environment (Martin, 1967; DeGroot, 1970; Duff, 2002). For optimal learning
in MDPs, the strategy considers all potential state-action-state transitions and their
associated rewards. This necessitates augmenting the original state space of the MDP
with counts of experienced transitions. The application of dynamic programming on
this augmented state space enables the consideration of all possible trajectories and
states of knowledge throughout the environment. This approach yields an optimal
learning policy that balances reward acquisition and knowledge collection.

Time is critical to cognitive agents making decisions, as planning not only involves
determining what to do, but also when to do it (Maniadakis and Trahanias, 2011;
Rivest and Kohar, 2020). For instance, agents need a time model to decide when
to give up waiting for a bus, when to perform maintenance on machinery, or when
an autonomous robotic vacuum cleaner should return to its base before running out
of battery life. However, in MDPs or POMDPs, these models are not concerned
with how long it takes to perform an action. While the learning of sojourn times in
traditional reinforcement learning has already been studied (Bradtke and Duff, 1995),
BRL has overlooked this problem.

While the agent moves discretely in the state space within an MDP framework—
facilitating the consideration of all possible state transitions—the scenario becomes
more complex in semi-Markov decision processes (SMDPs). In SMDPs, the agent

95
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does not necessarily move discretely in time. This raises questions like, does it move
in 1 second, 1.5 seconds, or 1.2 seconds? How do we consider all the possible times
like we did with the state transitions?

Our goal is to extend the BRL framework from MDP to the more general SMDP,
where the sojourn time is not necessarily exponentially distributed. We introduce a
new mathematical model, the Bayes-adaptive semi-Markov decision process (BA-
SMDP), which improves the SMDP domain knowledge through interaction with the
environment and learns an optimal policy that balances the trade-off between model
improvement and reward gain. The BRL approach for SMDPs offers three potential
advantages:

(a) Prior knowledge can be encoded into the appropriate prior distributions to
speed up learning;

(b) The risk of low reward return can be modelled and incorporated to obtain
robust policies (perform well across a range of situations, even in the presence
of uncertainties, variations, or changes in the environment or the underlying
model); and

(c) An online-learning policy for an reinforcement learning agent that has an
optimal tradeoff between exploration and exploitation of the agent’s model.

The last point of solving the exploration versus exploitation problem for SMDPs in a
reinforcement learning setting forms the focus of this chapter.

First, we review the principles of Bayesian learning in Sec. 6.3. In Sec. 6.6, we
look at how the reinforcement community solved the exploration versus exploitation
issue for case of the MDP with unknown model parameters (the state transition
probabilities). Then, a contribution of this thesis, we extend Sec. 6.6 in Sec. 6.7 for
an SMDP with unknown model parameters (the state transition probabilities and the
sojourn time distribution). The difference between the MDP and the SMDP approach
is that the SMDP requires continuous model parameters. We look at four scenarios
where we can use approximations or knowledge about the model to avoid the curse of
dimensionality.

6.1 Tracing the Roots: The Evolution of Bayesian Reinforcement Learn-
ing and Bayes-Adaptive Models
The Bayesian approach to dealing with uncertainty gained traction in the 1940s
and 1950s, thanks to key contributions by Wald (1945, 1947), Arrow et al. (1949),
and Savage (1954). Wald introduced the sequential probability ratio test, which
laid the groundwork for sequential hypothesis testing, and lead to his 1947 seminal
work on a general theory of statistical decisions. Next, Arrow et al. extended
the minimax work of von Neumann (1928) in game theory to sequential decision
problems, demonstrating that minimax solutions in this context aim to minimize
the maximum possible cost or risk associated with a sequence of decisions, thereby
applying the minimax concept to decision-making under uncertainty. While we may
take the Bayesian approach for granted today, Savage’s textbook was considered
controversial and ignited the “neo-Bayesian revival” (Fienberg, 2006) when it was
published. In The Foundations of Statistics, he developed a comprehensive axiomatic
system for subjective probability and decision-making under uncertainty, providing a
rigorous basis for Bayesian methods. This work was later expanded upon by Raiffa
and Schlaifer (1961) to present a unified theory of statistical decision-making under
uncertainty suitable for applications. The Kalman (1960) filter, another early example
of a Bayesian method, tracks and predicts the state of a system over time. The filter’s
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recursive nature and ability to handle uncertainty is a forerunner to the sequential
decision-making framework in BRL.

While the groundbreaking work of these pioneers significantly advanced the field
of Bayesian statistics, the global conflict that spurred the race for nuclear weapons
and the development of modern digital computers emerged as another crucial factor.
These computational advancements enabled the implementation of resource-intensive
Bayesian techniques, such as the Monte Carlo Method (Metropolis and Ulam, 1949;
Metropolis et al., 1953), further propelling the evolution and adoption of Bayesian
approaches.

The foundations of BRL can be traced back to the mid-1950s, well before the
formalization of Reinforcement Learning by Sutton (1984). Bellman (1956) applied a
dynamic programming approach, using what is now known as a likelihood function
to quantify the uncertainty of an unknown parameter. While his focus may have been
on the “sequential design of experiments,” the early ideas of Markov decision pro-
cesses (MDPs) were already emerging. Bellman aimed to find an optimal policy that
maximized the expected (undiscounted) reward in a finite horizon while incorporating
parameter information into the state space. He later formally introduced MDPs in
1957.

At the time, Bellman (1954) considered states to be physical states of the system,
but later developments expanded this view. Bellman (1961b) introduced the notion
of an information pattern, which in contemporary terms is known as an information
state (which we denote by �). This concept aids in determining initially unknown
parameters. By merging the physical state s with the information state � , Bellman
created the construct .s; �/, which has been referred to as the hyperstate by Duff
(2002, p. 3). Bellman acknowledged that incorporating the entire history of the
process as an information state was an obvious choice, but “one can do much better
than this and substantially compress the vast amount of data” (Bellman, 1961b, p. 41).
At this time, due to Bellman, reinforcement learning was known as adaptive control
processes.

In their work on partially observable Markov decision processes (POMDPs), Aoki
(1965) and Åström (1965) demonstrated that it was possible to construct a belief
state space using recursive Bayesian updates to track information about an unknown
physical state. This approach effectively incorporated observations to infer state
probabilities without the need to include the entire history of the system in the state
representation. A great summary of the work up until the 1960s is Martin (1967).

The genesis of reinforcement learning can be traced back to the work of Sutton
(1988) on temporal difference learning and the development of Q-Learning by Watkins
(1989). Both these foundational techniques were primarily concerned with learning
point estimates of parameters. The introduction of Bayesian thinking into the realm of
reinforcement learning, however, did not occur until Dearden et al. (1998) presented
Bayesian Q-Learning. This adaptation addressed the conundrum of exploration versus
exploitation by maintaining a probability distribution over Q-values to guide action
selection. For a comprehensive review of Bayesian Reinforcement Learning (BRL),
we direct the reader to Ghavamzadeh et al. (2015).

In the present work, our primary interest lies in the contributions of Martin (1967)
and Duff (2002). These researchers focused on MDPs with unknown state transition
probabilities and incorporated probability distributions on the parameters to record
the uncertainty as evidence accumulated. This conceptualization was subsequently
expanded to the POMDP context by Ross et al. (2008a, 2011).
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6.2 The Exploration versus Exploitation Dilemma
As mentioned in the opening of the chapter, the exploration versus exploitation
dilemma revolves around the agent deciding if it should be greedy and collect the
reward it knows about already, or search the environment for an even greater reward.
The �-greedy schedule is a prevalent heuristic employed by the reinforcement learning
community to address the exploration versus exploitation dilemma. The �-schedule
incorporates the following two components:

(a) Exploration: With probability �, where � 2 .0; 1/, the agent chooses a
random action. This exploratory approach enables the agent to examine the
environment and gather information about less-explored state-action pairs,
which may lead to the discovery of better long-term policies.

(b) Exploitation: With probability 1 � �, the agent opts for the action associated
with the highest reward according to its current knowledge of the environment.
This is the greedy action, which aims to maximize the agent’s immediate
reward.

The parameter � regulates the trade-off between exploration and exploitation: a
larger value of � fosters exploration, while a smaller value emphasizes exploitation.
In practice, the value of � can be held constant or permitted to decay over time
according to a schedule. The schedule will dictate how quickly the value � will
decrease, including linear decay, exponential decay, or more sophisticated adaptation
schemes based on the agent’s performance (Thrun, 1992). By carefully designing the
schedule, the reinforcement learning agent can achieve more efficient learning and
better long-term performance.

In standard reinforcement learning, such as Q-Learning (see Sec. 2.6), agents
can effectively learn about their environment when they can sample actions and
rewards repeatedly with minimal cost. For example, agents can try various moves and
strategies in computer games like Go or chess (Silver et al., 2018) without incurring
high costs. However, when exploration becomes too costly or time-consuming,
sampling efficiency is essential. In high-cost environments, such as autonomous
vehicle control or medical treatment plans, mistakes can lead to severe consequences,
including serious injuries or human fatalities. In these cases, learning from fewer
samples and minimizing the risks associated with exploration become imperative.
Addressing the exploration versus exploitation dilemma is one approach to improving
sampling efficiency.

Considering all possibilities for learning about the environment and collecting re-
wards is necessary to achieve an optimal balance between exploration and exploitation.
As the planning horizon stretches, the number of possibilities increases exponentially,
necessitating clever approximations in the state space to circumvent Bellman’s curse
of dimensionality.

6.3 Bayesian Learning
We learn by changing our probability distribution on the basis of experience.

—Bellman (1978, p. 85)

Bayesian Learning is an approach to how we quantify our uncertainty about a random
variable, and how to update our uncertainty in light of new information or evidence.

Suppose we have a partially observable random variable S in which we can infer
by observing a related random variable O . We proceed in the following manner:



July 18, 2023 8:8 World Scientific Book - 9in x 6in ThesisMain page 99

Bayes-Adaptive SMDPs 99

(a) We begin with some probability distribution over the random variable S , P.S/,
called the prior distribution. This prior distribution provides an expressive
mechanism to encode knowledge about S before observing any data.

(b) We select a likelihood P.S j O/ that represents the dependence between S
and O .

(c) We observe the observation O D o.
(d) Using Bayes’ Theorem, we update the probability distribution over S given

that we observed O D o by

P.S j O D o/ D
P.o j S/P.S/R

P.o j S 0/P.S/ dS 0
; (6.3.1)

or in other words,

posterior D
likelihood � prior

evidence
: (6.3.2)

This new updated probability distribution over S is called the posterior
distribution.

(e) When there is another observation, the posterior distribution becomes the prior
distribution, and step (d) is repeated to find the new posterior distribution.

6.4 The Dirichlet Distribution
The Dirichlet distribution is used in Bayesian statistics to model uncertainty in proba-
bilities or proportions, serving as conjugate priors for multinomial distributions. This
enables computationally efficient updates when dealing with count data. Given �i , the
number of times event ei has occurred over n trials, the probabilities pi of each event
follows a Dirichlet distribution; that is, .p1; : : : ; pk/ � Dir.�1; : : : ; �k/. The Dirich-
let distribution represents the probability that a discrete random variable follows some
discrete probability distribution .p1; : : : ; pk/ given the counts .�1; : : : ; �k/ observed
over n D

Pk
iD1 �i trials.

A random variable X that follows a Dirichlet distribution with parameters

�1; �2; : : : ; �k > 0 (6.4.1)

has a probability density function given by

fX .p1; : : : ; pk j �1; : : : ; �k/ D
�.�1 C �2 C � � � C �k/

�.�1/�.�2/ � � ��.�k/

kY
iD1

p
�i�1
i (6.4.2)

where �.�/ is the gamma function, and the support is

p1 C p2 C � � � C pk D 1; (6.4.3)

and

pi � 0; for i 2 f1; : : : ; kg: (6.4.4)

The expected value of pi is

E.pi / D
�i

�1 C �2 C � � � C �k
; (6.4.5)

and the variance of pi is

var.pi / D
E.pi /

�
1 � E.pi /

�
1C

kX
iD1

�k

: (6.4.6)
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Example 6.4.1 Let p1 D 0:4, p2 D 0:4, and p3 D 0:2. Let �1 D 4, �2 D 4, and
�3 D 4. Then,

�.�1 C �2 C �3/

�.�1/ � �.�2/ � �.�3/
D

�.4C 4C 4/

�.4/ � �.4/ � �.4/
D

11Š

3Š � 3Š � 3Š
D
39 916 800

216
;

and
3Y
iD1

p
�i�1
i D 0:43 � 0:43 � 0:23 D 0:000 032 768:

Thus,

f .p1; p2; p3 j �1; �2; �3/ � 6:055 53:

The expected values are

E.pi / D
4

12
D
1

3
for i D 1; 2; 3:

J

6.5 Online versus Offline Learning
The terms online and offline refer to the agent’s process of learning. Online learning
is the process that occurs interactively and in real-time, as the agent interacts with
the environment. As the agent performs actions and receives reward, it updates its
knowledge and adjusts its strategy accordingly. This repeating loop of action and
adaptation allows the agent to learn and evolve in response to changing conditions.

On the other hand, offline learning or batch learning is characterized by a separa-
tion of the learning process from the agent’s interaction with the environment. Here,
the agent collects information from the environment first, typically through a series of
actions and rewards, before undergoing a learning phase or batch processing phase
where it updates its knowledge and strategies based on the collected data.

In the Bayes-adaptive approach, planning is conducted offline, resulting in an
optimal learning policy. This policy represents the best course of action the agent
should take given its current knowledge. It is important to clarify, however, that
while the policy is constructed offline, it is executed online. The agent follows the
predetermined policy while it is actively interacting with the environment. Through
this interaction, the agent gathers data and learns about the environment, which is an
online process. Therefore, even though the policy itself was determined offline, its
implementation and the ensuing learning occur in an online manner. In other words,
the agent is learning about the environment in real-time, while following a strategy
that was determined offline. This approach capitalizes on the benefits of both online
and offline learning: the computational efficiency of offline planning and the real-time
adaptability of online learning.

6.6 Bayes Adaptive Markov Decision Process (BA-MDP)
In this section, we briefly summarize the work of Martin (1967) and Duff (2002) on
the formulation of an MDP with unknown state transition probabilities, which Duff
refers to this as Bayes-Adaptive Markov Decision Process (BA-MDP).

In a BA-MDP, the state space S , action space A, reward functionR, discount factor
 , and planning horizon N are known, except for the state transition probabilities P .
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In a finite-state, finite-action MDP, the Markov property
P.SnC1 D snC1 j Sn D sn; An D an/

D P.SnC1 D snC1 j S0 D s0; A0 D a0; : : : ; Sn D sn; An D an/ (6.6.1)
states that the probability of the next state depends on the current state and action,
and does not require any past history. This is to say that the state variable s 2 S
provides a sufficient statistic of the agent’s past to make a decision. In an MDP, the
state transition probability is known, P.s0 j s; a/, and so with this, it is sufficient to
calculate a probability for the next state s0 just given the current state s and action a.

When dealing with an unknown state transition probability P.s0 j s; a/, as in the
case of BA-MDP, the state variable s 2 S alone is insufficient and requires incorporat-
ing additional information from the past. To account for this, a new variable M called
the information variable is introduced. This information variable captures the relevant
data from the agent’s history, enabling it to inform future actions. Consequently, the
hyperstate .s;M/ takes the place of the original state variable s 2 S.

If the information variableM is an an array that records the number of occurrences
of a particular .s; a; s0/ transition, then the state space SBA D S �M, where

M D

(
M 2W jSj�jAj�jSj

j 8.s; a/ 2 K;
X
s02S

M.s; a; s0/ > 0

)
: (6.6.2)

In this context, we will refer to M as a count array. It is important to note that M
represents a countably infinite space; Bellman’s curse of dimensionality has arrived.

The state transition probabilities P.s0 j s; a/ can be composed into a block matrix
that Duff (2002, p. 25) calls the generalized transition matrix (or Martin (1967, p. 12,
Eq. (1.3.24)) calls it a generalized stochastic matrix) which is defined as

P ,

26664
P.� j s1; �/

P.� j s2; �/
:::

P.� j sjSj; �/

37775 (6.6.3)

D

266666666666666666666666666664

P.s1 j s1; a1/ P.s2 j s1; a1/ � � � P.sjSj j s1; a1/
P.s1 j s1; a2/ P.s2 j s1; a2/ � � � P.sjSj j s1; a2/

:::
:::

:::

P.s1 j s1; ajAs1 j/ P.s2 j s1; ajAs1 j/ � � � P.sjSj j s1; ajAs1 j/

P.s1 j s2; a1/ P.s2 j s2; a1/ � � � P.sjSj j s2; a1/
P.s1 j s2; a2/ P.s2 j s2; a2/ � � � P.sjSj j s2; a2/

:::
:::

:::

P.s1 j s2; ajAs2 j/ P.s2 j s2; ajAs2 j/ � � � P.sjSj j s2; ajAs2 j/

:::
:::

:::

P.s1 j sjSj; a1/ P.s2 j sjSj; a1/ � � � P.sjSj j sjSj; a1/
P.s1 j sjSj; a2/ P.s2 j sjSj; a2/ � � � P.sjSj j sjSj; a2/

:::
:::

:::

P.s1 j sjSj; ajAsjSj j/ P.s2 j sjSj; ajAsjSj j/ � � � P.sjSj j sjSj; ajAsjSj j/

377777777777777777777777777775

(6.6.4)

where jAsi j is the number of admissible actions when in state si , and let jAj D
j [si2S Asi j be the number of rows of P . Moreover, the conditions for MDPs still
hold from Eq. (2.2.2) and Eq. (2.2.3).
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Now, consider the matrix P as a random variable with a prior distribution
H.P j M/, where the information variable M is a point in multi-dimensional
Euclidean space. Mathematically,

NP .s0 j s; a;M/ ,
Z
P

P.s0 j s; a/ dH.P jM/: (6.6.5)

The expected immediate reward given state s and action a with respect to the prior
distribution is

NR.s; a;M/ D
X
s02S

NP .s0 j s; a;M/R.s; a; s0/: (6.6.6)

If the agent observes an .s; a; s0/ transition, then H is updated using Bayes’ Rule:

dH.P jM; s; a; s0/ D
P.s0 j s; a/ dH.P jM/Z
P

P.s0 j s; a/ dH.P jM/

: (6.6.7)

If H is taken to be a Dirichlet distribution (see Sec. 6.4) with parameter M 2
N jSj�jAj�jSj, then the joint density along one row of the generalized transition matrix
(which means that the initial state s 2 S and action a 2 A.s/ is fixed) is

dH
�
P.� j s; a/ jM.s; a; �/

�
D

1

B
�
M.s; a; �/

� Y
s02S

�
P.s0 j s; a/

�M.s;a;s0/�1 (6.6.8)

where the normalizing constant is expressed in terms of the gamma function as

B
�
M.s; a; �/

�
D

Y
s02S

�
�
M.s; a; s0/

�
�
�X
s02S

M.s; a; s0/
� : (6.6.9)

The support constraint (6.4.3) of the Dirichlet distribution is met sinceX
s02S

P.s0 j s; a/ D 1; 8.s; a/ 2 K; (6.6.10)

and the parameter restriction (6.4.1) is met if

M.s; a; s0/ > 0; 8.s; a/ 2 K;8s0 2 S: (6.6.11)

Remark 6.6.1 We give two possible interpretations of (6.6.11), which are the follow-
ing:

(a) Given that M.s; a; s0/ > 0 represents the number of occurrences for a transi-
tion, it implies the agent must have observed every .s; a; s0/ transition at least
once. As M.s; a; s0/ is non-zero, the transition probability is also non-zero.
With one transition in the row of the generalized transition matrix having
non-zero probability, according to Eq. (6.6.10), no transition in that row can
have a probability of one. Thus, for .s; a/ 2 K, 0 < P.s0 j s; a/ < 1.

(b) The agent possesses a non-zero prior belief for all .s; a; s0/ transitions, en-
abling it to learn from experience even when the true transition probability
is zero. If a particular transition .s; a; s0/ is never observed, the agent will
update its belief accordingly, causing the probability associated with that
transition to tend towards zero.
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By Eq. (6.4.5), the expected state transition probability for P.s0 j s; a/ is

NP .s0 j s; a;M/ D E
�
P.s0 j s; a/

�
D

M.s; a; s0/X
s002S

M.s; a; s00/
; (6.6.12)

and by Eq. (6.4.6), the variance is

var
�
P.s0 j s; a/

�
D

NP .s0 j s; a;M/
�
1 � NP .s0 j s; a;M/

�
1C

X
s002S

M.s; a; s00/
(6.6.13)

The MDP version of the Bellman equation (2.4.2) can be rewritten by replacing
the state s 2 S with the hyperstate .s;M/ 2 S �M, P with Eq. (6.6.12), and R with
Eq. (6.6.6), and thus the Bellman equation for BA-MDP is

V �.s;M/ D max
a2A.s/

h
NR.s; a;M/C 

X
s02S

NP .s0 j s; a;M/V �.s0; M 0‘
MCıs;a;s0

/
i

(6.6.14)

In the array M 2 W jSj�jAj�jSj, each entry is the number of observed transitions
.s; a; s0/. For an observed transition .s; a; s0/, the update to M is

M 0 DM C ıs;a;s0 (6.6.15)

where ıs;a;s0 is an array of the same size as M with a 1 in the .s; a; s0/ position, and
0 otherwise. In Eq. (6.6.15), the addition between the arrays is element by element.
It follows from Eq. (6.6.14) that the optimal policy �� is defined by actions that
maximize the hyperstate value

��.s;M/ D arg max
a2A.s/

"
NR.s; a;M/C 

X
s02S

NP .s0 j s; a;M/V �.s0;M 0/

#
: (6.6.16)

6.7 Bayes-Adaptive Semi-Markov Decision Processes (BA-SMDP)
In this section, we introduce one of the main contributions of the thesis. We create
the Bayes-Adaptive Semi-Markov Decision Process (BA-SMDP), and look at four
approaches to resolve how to learn or find a representation of the sojourn-time
distribution.

We begin with an SMDP model hS;A;Q;R; ;N i (see Sec. 4.1) that is known
except for the sojourn-time state probability transition

Q.�; s0 j s; a/ D P.s0 j s; a/F.� j s; a; s0/

D P.s0 j s; a/

Z �

0

f .t j s; a; s0/ dt:

The four approaches that we consider are the following:
(a) learning the sojourn time distribution parameters using a count array to

record the number of each sojourn time occurrence for a particular .s; a; s0/
transition, where sojourn times come from a finite set (Sec. 6.8);

(b) learning the mixture of known sojourn time distributions with unknown
proportions (Sec. 6.9);

(c) learning the mixture of known SMDPs with unknown proportions (Sec. 6.10);
and

(d) learning the unknown continuous sojourn-time distribution parameters
(Sec. 6.11).
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6.8 Learning the Sojourn Time Distribution Parameters Using a Count
Array with a Finite Set of Sojourn Times
For the state transition probability, we will follow the same as the BA-MDP in Sec. 6.6.
Let H be a Dirichlet distribution given by Eq. (6.6.5) with parameter M , then the
expected state transition probability for P.s0 j s; a/ is given by Eq. (6.6.12).

In this section, to deal with how the agent will learn the sojourn time, we suppose
that the agent knows that there is a finite set of possible sojourn times

C D f�1; �2; : : : ; �jC jg;

however, it does not know with certainty which sojourn time will be selected for a
particular .s; a; s0/ transition. Then, we will let W 2W jSj�jAj�jC j�jSj be the count
array where W.s; a; �; s0/ is the number of � occurrences for transition .s; a; s0/.

In order to use the sojourn time of transition .s; a; s0/ as a parameter of a Dirichlet
distribution, we need to ensure that each � 2 C is in the interval Œ0; 1�, and that they
sum to one. To find the rescaled and normalized sojourn time Q� , we do the following:

(a) Calculate the minimum and maximum of the sojourn times so that
�min D minf�1; �2; : : : ; �jC jg (6.8.1)

and
�max D maxf�1; �2; : : : ; �jC jg: (6.8.2)

(b) Normalize each sojourn time by

� 0i D
�i � �min

�max � �min
: (6.8.3)

(c) Rescale the normalized sojourn times to make their sum equal to one; that is,

Q�i D
� 0iX

�2C

�
: (6.8.4)

We denote the rescaled and normalized set as
QC D fQ�1; Q�2; : : : ; Q�j QC jg

and W.s; a; �; s0/ D W.s; a; Q�; s0/.
If U is taken to be a Dirichlet distribution with parameter W 2 N jSj�jAj�jC j�jSj,

then the joint density on a particular .s; a; s0/ transition is

dU
�
Q�1; : : : ; Q�j QC j j W.s; a; �; s

0/
�
D

1

B
�
W.s; a; �; s0/

� j QC jY
iD1

Q�
W.s;a;Q�i ;s

0/�1
i (6.8.5)

where the normalizing constant is expressed in terms of the gamma function as

B
�
W.s; a; �; s0/

�
D

j QC jY
iD1

�
�
W.s; a; Q�i ; s

0/
�

�
� j QC jX
iD1

W.s; a; Q�i ; s
0/
� (6.8.6)

The expected value of the scaled and normalized mean sojourn time of a particular
transition .s; a; s0/ is

E. Q�i / D
W.s; a; Q�i ; s

0/

j QC jX
jD1

W.s; a; Q�j ; s
0/

D
W.s; a; �i ; s

0/

jC jX
jD1

W.s; a; �j ; s
0/

(6.8.7)
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and its variance is

var. Q�i / D
E. Q�i /

�
1 � E. Q�i /

�
1C

X
Q�2 QC

W.s; a; Q�; s0/
: (6.8.8)

Expressing the mean sojourn time using the original sojourn times from set C , we
have

N�.s; a; s0/ D

X
�2C

�
�W.s; a; �; s0/

�
X
�2C

W.s; a; �; s0/
: (6.8.9)

We can express f as a generalized sojourn-time distribution matrix such that

f� ,

26664
�.s1; �; �/

�.s2; �; �/
:::

�.sjSj; �; �/

37775 (6.8.10)

where the entries correspond to parameters that define distributions for each .s; a; s0/
transition. We suppose now that the matrix f� is a random variable with a prior
distribution U.f� j W /, where W is a point in multi-dimensional Euclidean space.
Mathematically,

Nf .� j s; a; s0; W / ,
Z
f�

f� .� j s; a; s
0/ dU.f� j W /: (6.8.11)

If U is taken to be a Dirichlet distribution with parameter W 2 N jSj�jAj�jSj, then

dU.f� j W / D
1

B.W /

Y
s2S

Y
a2A.s/

Y
s02S

�
�.s; a; s0/

�W.s;a;s0/�1 (6.8.12)

where the normalizing constant is expressed in terms of the gamma function as

B.W / D

Y
s2S

Y
a2A.s/

Y
s02S

�
�
�.s; a; s0/

�W.s;a;s0/�1
�
�X
s2S

X
a2A.s/

X
s02S

W.s; a; s0/
� (6.8.13)

The expected sojourn-time transition probability for f .� j s; a; s0/ is

Nf .� j s; a; s0; W / D E
�
f .� j s; a; s0/

�
D

�W.s; a; � 0; s0/X
� 02C

W.s; a; �; s0/
(6.8.14)

where W.s; a; �; s0/ is the number of occurrences sojourn time � for .s; a; s0/ transi-
tion. Combining both together to get an estimate of Q, we have

NQ.�; s0 j s; a;M;W / D NP .s0 j s; a;M/ NF .� j s; a; s0; W /

D
M.s; a; s0/W.s; a; �; s0/X

s002S
M.s; a; s00/

X
� 02C

W.s; a; � 0; s00/
:
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The reward function is

NR.s; a;M;U / D r1.s; a/C
X
s02S

NP .s0 j s; a;M/

1

jC j

X
�2C

W.s; a; �; s0/X
� 02C

W.s; a; � 0; s0/

Z �

0

e�ˇtr2.t j s; a; s0/ dt; (6.8.15)

where r1.s; a/ is the lump sum and r2.t j s; a; s0/ is the continuous reward rate.
The Bellman equation is

V �.s;M;U / D max
a2A.s/

"
NR.s; a;M;U /C

X
s02S

NP .s0 j s; a;M/

1

jC j

X
�2C

e�ˇ�
W.s; a; �; s0/X

� 02C

W.s; a; � 0; s0/
V �.s0; M 0‘

MCıs;a;s0

;

UCıs;a;�;s0±
U 0 /

3775
(6.8.16)

In the array M 2W jSj�jAj�jSj, each entry M.s; a; s0/ is the number of observed
transitions .s; a; s0/. For an observed transition .s; a; s0/, the update to M in

M 0 DM C ıs;a;s0 ; (6.8.17)

where ıs;a;s0 is an array of the same size as M with a 1 in the .s; a; s0/ position, and
0 otherwise. For the array U 2 W jSj�jAj�jC j�jSj, each entry W.s; a; �; s0/ is the
number of times a particular � 2 C was observed for a particular .s; a; s0/ transition.
For an observed transition with sojourn time .s; a; �; s0/, the update to U is

U 0 D U C ıs;a;�;s0 ; (6.8.18)

where ıs;a;�;s0 is an array of the same size as U with a 1 in the .s; a; �; s0/ position,
and 0 otherwise.

It follows from Eq. (6.8.16) that the optimal policy �� is defined by actions that
maximize the hyperstate

��.s;M;U / D arg max
a2A

�
NR.s; a;M;U /C

X
s02S

NP .s0 j s; a;M/

1

jC j

X
�2C

e�ˇ�
W.s; a; �; s0/X

� 02C

W.s; a; � 0; s0/
V �.s0;M 0; U 0/

�
(6.8.19)

6.9 Learning the Mixture of Sojourn-Time Distributions
For a BA-SMDP hS;A;Q;R; ˇ;N i, we consider that everything about the SMDP
model is known, except for Q. It does not seem fair in a Bayes-adaptive setting that
the agent knows the state space S or the action space A, and yet the agent is not
allowed to know the space concerning the sojourn-time distributions.

In this approach, we consider allowing the agent to know the space of sojourn-time
distributions, but the agent upon observing a sojourn time � does not know from
which distribution � came.
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Example 6.9.1 — Two Inverse Gaussian Distributions. For a particular .s; a; s0/ transition
in an SMDP, the sojourn-time distribution is a mixture of two inverse Gaussians with
respective probability density functions f1.� j �1; �1/ and f2.� j �2; �2/. The
mixture of these two probability density functions is

f .� j s; a; s0/ D �f1.� j �1; �1/C .1 � �/f2.� j �2; �2/; (6.9.1)

where � 2 Œ0; 1� is the mixing weight. The agent knows the probability density
functions f1 and f2 (and their respective parameters), but does not know the mixing
weight �.

Initially, the agent’s estimate of the mixing weight could be O� D 0:5. When the
agent observes a sojourn time � from the .s; a; s0/ transition, the estimate update of
the mixing weight is

O� 
O�f1.� j s; a; s

0/

O�f1.� j s; a; s0/C .1 � O�/f2.� j s; a; s0/
: (6.9.2)

J
Now, a critic may say in Example 6.9.1 that it may be fine to know the space

of the sojourn-time distributions by specifying which family (for example, inverse
Gaussian), but we go too far by specifying the parameters of those distributions which
is something that should be learned by the agent. To soothe this criticism, we can
increase the number of sojourn-time distributions with specified parameters so that
the mixture of these distributions will have more expressive power for an arbitrary
distribution. For k many sojourn-time distributions with respective probability density
functions f1.� j �1/, f2.� j �2/, . . . , fk.� j �k/, the mixture of these functions is

f .� j s; a; s0/ D �1f1.� j �1/C �2f2.� j �2/C � � � C �kfk.� j �k/ (6.9.3)

where �1 C �2 C � � � C �k D 1. The estimate update of the mixing weight would be

O�i  
O�ifi .� j �i /

�1f1.� j �1/C �2f2.� j �2/C � � � C �kfk.� j �k/
: (6.9.4)

Let '.s; a; s0; `/ is the number of observances that the sojourn time came from
distribution ` in .s; a; s0/ transition. Then, we can rewrite the Bellman equation as

V.s;M; '/ D max
a2A.s/

"
NR.s; a;M; '/C

X
s02S

NP .s0 j s; a;M/

X
`2C

'.s; a; s0; `/X
`02C

'.s; a; s0; `0/

Z 1
0

e�ˇ�f`.�/V .s;M 0; '0/ d�

3775 : (6.9.5)

6.10 Learning the Mixture of SMDPs
Let us consider SMDPs where the parameters are known, and through experience,
the agent’s belief over time will select the appropriate SMDP that closely resembles
the environment. The policy mapping beliefs to actions should balance between
attempting to achieve the maximum discounted expected reward and performing
sufficient probing actions to determine the SMDP in which the agent operates.

Suppose that there are K many SMDP models that could be the SMDP model of
the underlying environment. For an arbitrary SMDP model with index k, we will
denote this by the tuple

hS;A;Qk; R; ˇ;N i ; (6.10.1)
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where the state space S, action space A, reward function R, discount rate ˇ, and
planning horizon N are the same for each SMDP model.

We will wrap theseK SMDP model into a single partially observable semi-Markov
decision process (POSMDP)

hSBA;ABA;OBA;QBA; GBA; G0; RBA; ˇ;N i :

The state space is
SBA D S � fkgKkD1 (6.10.2)

where k is the index of the SMDP model. A hyperstate .s; k/ 2 SBA would represent
a state s 2 S from the original state space and an SMDP model index k. The action
space is

ABA D A (6.10.3)
is the same as the action space for all of the SMDP model. The observation space is

OBA D S; (6.10.4)
since the states s 2 S are fully observable and form the observations as well.

We assume that if the agent is in a particular SMDP model k that the state transition
stays within that SMDP; in other words, the transition would be .s; k/! .s0; k/. This
leads us to the sojourn-time state transition probability as

QBA
�
�; .s0; k0/ j .s; k/; a

�
D

(
Qk.�; s

0 j s; a/; if k0 D kI
0; otherwise:

(6.10.5)

or equivalently,

QBA
�
�; .s0; k0/ j .s; k/; a

�
D

(
Pk.s

0 j s; a/Fk.� j s; a; s
0/; if k0 D kI

0; otherwise:
(6.10.6)

The observation transition probability is

GBA
�
o j a; .s0; k0/

�
D

(
1; if s0 D oI
0; otherwise;

(6.10.7)

since the landing state s0 2 S is the observation and it is fully observable, the
observation transition probability becomes deterministic. Similarly, we define the
initial observation probability by

G0
�
o j .s0; k0/

�
D

(
1; if s0 D o;
0; otherwise.

(6.10.8)

The reward function is
RBA

�
.s; k/; a

�
D R.s; a/: (6.10.9)

The discount rate ˇ and the planning horizon N for the POSMDP is the same as
in all of the SMDP models.

To fully define a POSMDP, we have to specify an initial belief �0. A prior
distribution can be used to incorporate expert knowledge about the problem, but if no
information is available, we suggest

�0.s; k/ D
1

jSj
�
1

K
; 8s 2 S;8k 2 f1; 2; : : : ; Kg; (6.10.10)

or

�0.k/ D
1

K
; 8k 2 f1; 2; : : : ; Kg; (6.10.11)

which means that agent believes it is equally likely to be in any of the k possible
SMDP models.

To update the belief, we contribute the following theorem.
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Theorem 6.10.1 Given a belief �.s; k/, and the agent takes action a, waits � sojourn
time, and observes o, the belief update is

�
�
.s0; k0/ j a; �; o

�
D

† X
s2S

KX
kD1

Qk.�; s
0 j s; a/�.s; k/

X
s002S

X
s2S

KX
kD1

Qk.�; s
00 j s; a/�.s; k/

; if k0 D k and s0 D o;

0; otherwise,

where Qk denotes the Q from SMDP model k.

Proof From Theorem 5.5.2 for the belief update of a POSMDP, given an action a the
agent performed, a sojourn time � , and an observation o seen, the belief update for a
particular hyperstate .s; k/ 2 SBA is

�
�
.s0; k0/ j a; �; o

�
D

GBA
�
o j a; .s0; k0/

� X
s2S

KX
kD1

QBA
�
�; .s0; k0/ j .s; k/; a

�
�.s; k/

X
s002S

GBA
�
o j a; .s00; k00/

� X
s2S

KX
kD1

QBA
�
�; .s00; k00/ j .s; k/; a

�
�.s; k/

:

Using Eq. (6.10.5), we can substitute QBA with Qk under the condition that
k0 D k. This means that the state s can transition to state s0, but it must remain within
the SMDP model k. This leads to

�
�
.s0; k0/ j a; �; o

�
D

†
GBA

�
o j a; .s0; k0/

� X
s2S

KX
kD1

Qk.�; s
0 j s; a/�.s; k/

X
s002S

GBA
�
o j a; .s00; k00/

� X
s2S

KX
kD1

Qk.�; s
00 j s; a/�.s; k/

; if k0 D k;

0; otherwise.

Lastly, using Eq. (6.10.7), we can remove GBA by adding the condition s0 D o,
which gives us

�
�
.s0; k0/ j a; �; o

�
D

˚ X
s2S

KX
kD1

Qk.�; s
0
j s; a/�.s; k/

X
s002S

X
s2S

KX
kD1

Qk.�; s
00
j s; a/�.s; k/

; if k0 D k and s0 D o;

0; otherwise.

J
We can marginalize s0 so that the belief is expressed in terms of SMDP model

index k

�.k j a; �; o/ D
X
s02S

�
�
.s0; k0/ j a; �; o

�
: (6.10.12)

With the belief expressed this way, �.k/ represents the agent’s subjective probability
that it believes it is in SMDP model k, such as in Fig. 6.1.

This completes our transformation of wrapping K SMDPs into a single POSMDP.
Now that we have fully defined the BA-SMDP as an equivalent POSMDP, we can

use a POSMDP solver such as CHRONOSPERSEUS that we developed in Sec. 5.11.
We demonstrate this in the following example.
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Pr
ob

ab
ili

ty

�.k/
SMDP

1

SMDP

2

SMDP

k

SMDP

K

� � � � � �

� � � � � �

Fig. 6.1 An example of a belief distribution over the possible SMDP models. The belief state with the highest
probability, in this example, SMDP 2, is what the agent believes to be the most likely model of the environment.

Example 6.10.2 — Discerning between two SMDPs. We will consider two distinct
SMDP models that are possible for an environment. Essentially, the agent will
observe and interact with the environment, and will update it’s belief of which of the
two SMDPs the agent is most likely residing.

For both SMDPs, the state space is

S D fs1; s2g;

and the action space is

A D fa1; a2g:

The POSMDP state space consists of hyperstates

SBA D fs1; s2g—
S

� f1; 2g•
model index

D f.s1; 1/; .s2; 1/; .s1; 2/; .s2; 2/g;

and the action space stays the same

ABA D A:

For the state transition probabilities P , we will assign a subscript 1 or 2 to SMDP
1 and SMDP 2, respectively. For SMDP 1:

P1.� j �; a1/ D

� s1 s2

s1 P1.s1 j s1; a1/ P1.s2 j s1; a1/

s2 P1.s1 j s2; a1/ P1.s2 j s2; a1/

�
and

P1.� j �; a2/ D

� s1 s2

s1 P1.s1 j s1; a2/ P1.s2 j s1; a2/

s2 P1.s1 j s2; a2/ P1.s2 j s2; a2/

�
For SMDP 2:

P2.� j �; a1/ D

� s1 s2

s1 P2.s1 j s1; a1/ P2.s2 j s1; a1/

s2 P2.s1 j s2; a1/ P2.s2 j s2; a1/

�
and

P2.� j �; a2/ D

� s1 s2

s1 P2.s1 j s1; a2/ P2.s2 j s1; a2/

s2 P2.s1 j s2; a2/ P2.s2 j s2; a2/

�
:
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We wrap the two SMDP state transition probability functions into a single function
for the POSMDP, and for action a1 this yields

PBA
�
.�; �/ j .�; �/; a1

�
D

2664
.s1;1/ .s2;1/ .s1;2/ .s2;2/

.s1;1/

.s2;1/

.s1;2/

.s2;2/

P1.� j �; a1/ 0

0 P2.� j �; a1/

3775
and similarly for action a2 is

PBA
�
.�; �/ j .�; �/; a1

�
D

2664
.s1;1/ .s2;1/ .s1;2/ .s2;2/

.s1;1/

.s2;1/

.s1;2/

.s2;2/

P1.� j �; a2/ 0

0 P2.� j �; a2/

3775:
Similarly, for the sojourn-time distribution parameters, we have for SMDP 1:

�1.�; a1; �/ D

� s1 s2

s1 �1.s1; a1; s1/ �1.s1; a1; s2/

s2 �1.s2; a1; s1/ �1.s2; a1; s2/

�
and

�1.�; a2; �/ D

� s1 s2

s1 �1.s1; a2; s1/ �1.s1; a2; s2/

s2 �1.s2; a2; s1/ �1.s2; a2; s2/

�
:

We define the matrices in a similar manner for the shape parameter �. This holds for
SMDP 2.

Then, the sojourn-time distribution parameters for the POSMDP,

�BA
�
.�; �/; a1; .�; �/

�
D

2664
.s1;1/ .s2;1/ .s1;2/ .s2;2/

.s1;1/

.s2;1/

.s1;2/

.s2;2/

�1.�; a1; �/ 0

0 �2.�; a1; �/

3775
and

�BA
�
.�; �/; a2; .�; �/

�
D

2664
.s1;1/ .s2;1/ .s1;2/ .s2;2/

.s1;1/

.s2;1/

.s1;2/

.s2;2/

�1.�; a2; �/ 0

0 �2.�; a2; �/

3775
We define �BA

�
.�; �/; a1; .�; �/

�
and �BA

�
.�; �/; a2; .�; �/

�
similarly.

The observation transition function for the POSMDP is

GBA
�
� j a1; .�; �/

�
D GBA

�
� j a2; .�; �/

�
D

2664
oDs1 oDs2

.s1;1/ 1 0

.s2;1/ 0 1

.s1;2/ 1 0

.s2;2/ 0 1

3775
For the reward function, since the reward function is the same for each SMDP,

RBA
�
.s; k/; a

�
D R.s; a/:



July 18, 2023 8:8 World Scientific Book - 9in x 6in ThesisMain page 112

112 Bayes-Adaptive Semi-Markov Decision Processes

This concludes how we wrap two SMDP models into a single POSMDP.
We give a numerical example using CHRONOSPERSEUS. Let the state transition

probabilities be for action a1

PBA
�
.�; �/ j .�; �/; a1

�
D

2664
.s1;1/ .s2;1/ .s1;2/ .s2;2/

.s1;1/ 0:5 0:5

.s2;1/ 0:5 0:5

.s1;2/ 0:6 0:4

.s2;2/ 0:3 0:7

0

0

3775
and for action a2

PBA
�
.�; �/ j .�; �/; a2

�
D

2664
.s1;1/ .s2;1/ .s1;2/ .s2;2/

.s1;1/ 0:5 0:5

.s2;1/ 0:6 0:4

.s1;2/ 0:6 0:4

.s2;2/ 0:5 0:5

0

0

3775
Using the two-parameter inverse Gaussian probability density function, Eq. (4.2.3),
the mean sojourn-time distribution parameters for action a1 are

�BA
�
.�; �/; a1; .�; �/

�
D

2664
.s1;1/ .s2;1/ .s1;2/ .s2;2/

.s1;1/ 2 2

.s2;1/ 3 3

.s1;2/ 3 3

.s2;2/ 2 2

0

0

3775
and for action a2

�BA
�
.�; �/; a2; .�; �/

�
D

2664
.s1;1/ .s2;1/ .s1;2/ .s2;2/

.s1;1/ 2 3

.s2;1/ 3 2

.s1;2/ 2 3

.s2;2/ 3 2

0

0

3775
The shape sojourn-time distribution parameters for action a1 are

�BA
�
.�; �/; a1; .�; �/

�
D

2664
.s1;1/ .s2;1/ .s1;2/ .s2;2/

.s1;1/ 4 4

.s2;1/ 9 9

.s1;2/ 9 9

.s2;2/ 4 4

0

0

3775
and for action a2

�BA
�
.�; �/; a2; .�; �/

�
D

2664
.s1;1/ .s2;1/ .s1;2/ .s2;2/

.s1;1/ 4 9

.s2;1/ 9 4

.s1;2/ 4 9

.s2;2/ 9 4

0

0

3775
For the reward function, we set

r1.�; �/ D

� a1 a2

s1 100 125

s2 125 100

�
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and

r2.�; a1; �/ D

� s1 s2

s1 10 5

s2 5 10

�
and r2.�; a2; �/ D

� s1 s2

s1 5 10

s2 10 5

�
At the beginning of the problem n D 0, we will assume that the agent believes it

is equally likely to be in either of the SMDP models, but starts in s1:

�0.�; �/ D

�kD1 kD2
s1 0:5 0:5

s2 0 0

�
After running CHRONOSPERSEUS on 10 000 beliefs for 100 iterations, we have a
value function where

V � D

† 2664
a1

V.s1;kD1/ 2738:1836

V.s2;kD1/ 2717:5034

V.s1;kD2/ 3245:6313

V.s2;kD2/ 3338:2234

3775;
2664

a2

2741:6379

2715:3396

3303:1980

3277:3660

3775
‡

�.s1/

V

10

2718

a1 2738

2715

a2 2742

(a) SMDP, k D 1

�.s1/

V

10

3338 a1

3246

3277

a2 3303

(b) SMDP, k D 2

Fig. 6.2 Graphs of the ˛-vectors for the value function in Example 6.10.2

In Fig. 6.2, we are able to display the ˛-vectors for each of the SMDP models.
Due to the structure of the problem, the agent knows with certainty which state they
are in, but not the SMDP model. Thus, the belief is distributed over one state over
two models. For instance, suppose that

�.�; �/ D

�kD1 kD2
s1 0:9 0:1

s2 0 0

�
then,

V �.�/ D max

‚�
0:9 0 0:1 0

�2664
2738:1836

2717:5034

3245:6313

3338:2234

3775 ; �0:9 0 0:1 0�
2664
2741:6379

2715:3396

3303:1980

3277:3660

3775
ƒ

D maxf2788:9284; 2797:7939g
D 2797:7939:

In this case, with the agent’s belief of 90% in SMDP 1, the optimal decision is to do
action 2.

J
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6.11 Learning the Continuous Parameter of the Sojourn-Time Distribu-
tion
In this section, we will propose a method for learning the continuous parameter of the
sojourn-time distribution for each .s; a; s0/ transition.

The Bellman equation is

V �.s;M; �/ D max
a2A

"
NR.s; a;M; �/C

X
s02S

NP .s0 j s; a;M/

Z 1
0

e�ˇ� Nf .� j s; a; s0; �/V �.s; M 0‘
MCıs;a;s0

;

�Cıs;a;�;s0°
� 0 / d�

3775 (6.11.1)

The reward function would be

NR.s; a;M; �/ D r1.s; a/C
X
s02S

NP .s0 j s; a;M/Z 1
0

�Z �

0

e�ˇ�r2.t j s; a; s0/ d�
�
NF .d� j s; a; s0; �/: (6.11.2)

Notice that while we assumed that the reward function is given as part of the model,
we are building estimates for many of the terms. In this case, we only require to know
what the lump sum r1.s; a/ and the continuous reward rate r2.s; a; s0/.

For the state transition probability, we will follow the same as the BA-MDP in
Sec. 6.6. LetH be a Dirichlet distribution given by Eq. (6.6.5) with parameterM , then
the expected state transition probability for P.s0 j s; a/ is given by Eq. (6.6.12). In
the array � 2W jSj�jAj�jSj, each entry is the current estimate of the expected sojourn
time O�.s; a; s0/ for the transition .s; a; s0/. Suppose that the agent observes a sequence
of m DM.s; a; s0/-many sojourn times �1; �2; : : : ; �m for transition .s; a; s0/. As the
agent observes each sojourn time, it will update a probability distribution on the mean
sojourn time. To do this, we will assume that the sojourn times follow an inverse
Gaussian distribution.

6.11.1 Our Conjugate Prior: The Gamma-Inverse Gaussian Conjugate Prior
In this section, we introduce our own conjugate prior on the parameter � using the
gamma and the inverse Gaussian distribution. The following definition is originally
due to Barnard (1954).

Definition 6.11.1 — Conjugate. A family F of probability distributions is said to
conjugate (or closed under sampling) for a likelihood function f .x j �/ if, for
every f 2 F , the posterior distribution f .� j x/ also belongs to F (Robert, 2007,
p. 114).

Informally, a family of probability distributions being conjugate or closed under
sampling implies that when updating the posterior, the resulting distribution remains
within the same family of distributions. This is accomplished by merely adjusting
the distribution parameters with newly observed information. Their computational
tractability has made conjugate families a popular choice for modelling (Robert,
2007, p. 115). This substantial simplification, which involves considering families
of distributions closed under sampling, reduces the problem of sequential decision
processes from a random walk in infinitely-many dimensions to a random walk in
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finitely-many dimensions (Wetherill, 1961, p. 283). The idea of parametric families
closed under sampling has its origins in Bayesian statistical decision making (Barnard,
1954; Wetherill, 1961; Martin, 1965; Martin, 1967; DeGroot, 1970, p. 159), adaptive
control processes (Bellman and Kalaba, 1959; Bellman, 1961a), and BRL (Duff, 2002;
Ross et al., 2008a).

We begin by using the gamma distribution as a prior to get the form of the posterior.
Then, we will use that form as the prior candidate, and see if that prior candidate is
closed under sampling.

Recall that the gamma distribution is

f .� j a; b/ D
ba

�.a/
�a�1e�b� ; � 2 .0;1/ (6.11.3)

where a > 0 is the shape parameter, b > 0 is the rate parameter, and �.�/ is the
gamma function. The one-parameter form of the inverse Gaussian distribution is

f .� j �; �2/ D f .� j �/ D
�p
2��3

exp
�
�
.� � �/2

2�

�
; � 2 .0;1/: (6.11.4)

The support of the gamma function is � 2 .0;1/, which is the same interval for the
mean parameter of the inverse Gaussian; this makes the gamma distribution a good
prior candidate.

The one-parameter inverse Gaussian distribution exhibits a key property where
the expected value equals the variance; in other words, E.�/ D var.�/. This charac-
teristic is important in the context of timing perception in animals and humans, as
it mimics Weber’s Law for timing (Gibbon, 1977). According to Weber’s Law for
timing, the difference required to discern the perception of one time interval from
another must be of a significantly greater order of magnitude. For example, when
operating on a seconds-level time scale, the distinction between a bus arriving in 5 or
6 seconds would be imperceptible. However, the difference between a bus arriving in
5 seconds versus 500 seconds would be discernible. As the time scale progresses from
seconds to minutes to hours, the precision of time perception grows proportionally.
In probabilistic terms, this implies that as the expected sojourn time E.�/ increases
to longer durations, the error (standard deviation) must proportionally expand, and
consequently impacts the variance var.�/ as well. Remarkably, studies have shown
that fish, birds, bees, rats, and even humans exhibit a linear scaling of error (standard
deviation) with respect to the mean (Buhusi et al., 2009).

Suppose that we observed a sojourn time �1. The posterior distribution is propor-
tional to the (sampling) likelihood distribution multiplied by prior distribution:

posterior / likelihood � prior
f .� j �1/ / f .�1 j �/f .�/

D
�q
2��31

exp
�
�
.�1 � �/

2

2�1

�
ba

�.a/
�a�1e�b�

D
1q
2��31

ba

�.a/
�a exp

�
�
.�1 � �/

2

2�1
� b�

�
:
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Now, let us use this posterior as the prior. We observe another sojourn time �2, and
we use this to update.

f .� j �2/ / f .�2 j �/f .� j �1/

D
�q
2��32

exp
�
�
.�2 � �/

2

2�2

�
1q
2��31

ba

�.a/
�a exp

�
�
.�1 � �/

2

2�1
� b�

�
D

1q
2��31

q
2��32

ba

�.a/
�aC1 exp

�
�
.�1 � �/

2

2�1
�
.�2 � �/

2

2�2
� b�

�
By induction,

f .� j �1; �2; : : : ; �n/ / f .�n j �/f .� j �1; �2; : : : ; �n�1/

D .2�/�
n
2

nY
iD1

�
� 32
i

ba

�.a/
�aCn�1 exp

"
�
1

2

nX
iD1

.�i � �/
2

�i
� b�

#
:

(6.11.5)

We can now find the maximum likelihood estimator of � using our new likelihood
function f .� j �1; �2; : : : ; �n/. It is often more convenient to work with the (natural)
logarithm of the likelihood function (Hogg et al., 2013, p. 205), as it simplifies the
differentiation process by dealing with additive terms rather than multiplicative terms.
The (natural) logarithm function is a strictly increasing transformation on the interval
.0;1/, which preserves the order of values as they are transformed. As a result,
the value of � that maximizes the transformed function lnf .�/ will still maximize
the original function f .�/. Given that the likelihood function always yields positive
values, and using K to denote the normalizing constant, we can take the (natural)
logarithm of both sides so that

lnf .� j �1; �2; : : : ; �n/

D ln

 
K.2�/�

n
2

nY
iD1

�
� 32
i

ba

�.a/
�aCn�1 exp

"
�
1

2

nX
iD1

.�i � �/
2

�i
� b�

#!

D ln

 
K.2�/�

n
2

nY
iD1

�
� 32
i

ba

�.a/

!
C .aC n � 1/ ln � �

1

2

nX
iD1

.�i � �/
2

�i
� b�:

Now, we determine its critical value; that is, we will solve the equation

@ lnf
@�

D 0:

So, we have
@ lnf
@�

D
aC n � 1

�
C
�1 � �

�1
C
�2 � �

�2
C � � � C

�n � �

�n
� b

D
aC n � 1

�
� b C

nX
iD1

�i � �

�i

D
aC n � 1

�
� b C

nX
iD1

�
1 �

�

�i

�
D
aC n � 1

�
� b C n � �

nX
iD1

1

�i
:
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Setting it to zero and multiplying by � , we have

�

 
nX
iD1

1

�i

!
�2 C .n � b/� C .aC n � 1/ D 0: (6.11.6)

Since the first term is negative, this is a concave downward quadratic function, which
means that its critical point is a global maximum. Using the quadratic formula, we
have

O� D

n � b ˙

p
.n � b/2 C 4.aC n � 1/

nX
iD1

1

�i

2

nX
iD1

1

�i

(6.11.7)

Let us now write the maximum likelihood estimator O� in a recursive form so that
the agent does not need to store all the previous sojourn times; in other words, we
would like an update rule that only requires a, b, n, the recent observed sojourn time
�n, and the estimate of O� at n � 1. Beginning with Eq. (6.11.6) at n � 1, we have

�

 
n�1X
iD1

1

�i

!
�2n�1 C .n � 1 � b/�n�1 C .aC n � 2/ D 0;

and solving for the sum of the reciprocal sojourn times, we have
n�1X
iD1

1

�i
D
.n � 1 � b/�n�1 C aC n � 2

�2n�1
: (6.11.8)

Then, with the fact that
nX
iD1

1

�i
D

1

�n
C

n�1X
iD1

1

�i
(6.11.9)

and using Eq. (6.11.7) at n,

O�n D

n � b ˙

p
.n � b/2 C 4.aC n � 1/

nX
iD1

1

�i

2

nX
iD1

1

�i

D

n � b ˙

p
.n � b/2 C 4.aC n � 1/

 
1

�n
C

n�1X
iD1

1

�i

!

2

 
1

�n
C

n�1X
iD1

1

�i

! :

Then, we can substitute Eq. (6.11.8) into O�n, which yields

O�n D

n � b ˙

vuut.n � b/2 C 4.aC n � 1/

�
1

�n
C
.n � 1 � b/�n�1 C aC n � 2

�2n�1

�
2

�
1

�n
C
.n � 1 � b/�n�1 C aC n � 2

�2n�1

� : (6.11.10)

To ensure that O�n is nonnegative (since � 2 .0;1/), and to avoid a complex radical,
we require the following two conditions:
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(a) nC a � 2 > 0; and
(b) n � b � 1 > 0.
For the initial value �0, we start just with the gamma distribution with parameters

a > 0 and b > 0. So,

f .�0/ D
ba

�.a/
�a�10 e�b�0

Then, we take the (natural) logarithm

lnf .�0/ D a ln.b�0/ � ln.�0�.a// � b�0;

and by taking the derivative with respect to �0, we have

@ lnf
@�0

D
a � b�0 � 1

�0
;

and setting it to zero to find the critical point gives

a � b�0 � 1

�0
D 0

�0 D
a � 1

b
: (6.11.11)

Modelling priors is crucial when working with limited data, but as the sample size
increases, their impact on the inference process diminishes. As sample size grows, the
likelihood function becomes the primary source of information for inference. (Robert,
2007, p. 124).

Example 6.11.2 In this example, we use 16 random sojourn times generated by the
(one-parameter) inverse Gaussian distribution IG.� D 3; �2 D 32/ as listed in
Table 5.1. We begin with initial gamma parameters of a D 3 and b D 2, and calculate
the estimate O� for each new sample observed, as shown in Table 6.1.

Table 6.1 Calculations for O� .

n �i
1

�i

nX
iD1

1

�i
O�n

0 1.0000
1 1.4588 0.6855 0.6855 1.4861
2 5.9780 0.1673 0.8528 2.1658
3 2.3113 0.4327 1.2854 2.3992
4 2.4519 0.4078 1.6933 2.5634
5 1.9821 0.5045 2.1978 2.5932
6 2.0355 0.4913 2.6891 2.6221
7 1.6069 0.6223 3.3114 2.5682
8 3.5954 0.2781 3.5895 2.7024
9 3.7644 0.2656 3.8552 2.8256

10 4.3149 0.2318 4.0869 2.9521
11 2.4975 0.4004 4.4873 2.9784
12 1.8990 0.5266 5.0139 2.9432
13 1.1870 0.8425 5.8564 2.7948
14 1.3712 0.7293 6.5857 2.7165
15 2.4073 0.4154 7.0011 2.7423
16 4.5663 0.2190 7.2201 2.8224

Using either Eq. (6.11.7) or the recursive form in Eq. (6.11.10) yields the same
result. As we can see in Fig. 6.3, the conjugate prior distribution (Eq. (6.11.5)) evolves
and converges around � D 3 as more sojourn times are observed, with deeper red
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Fig. 6.3 The conjugate prior distribution on the � mean parameter of the inverse Gaussian distribution IG.3; 9/.
Initial parameters were a D 3 and b D 2. The darker red indicates higher sample counts.

indicating a higher number of observations. The Matlab code to produce all the curves
in Figure 6.3 is available in Appendix A.4.

J
The Bellman equation is

V �.s;M; �/ D max
a2A

˚
NR.s; a;M; �/CX

s02S

NP .s0 j s; a;M/

Z 1
0

e�ˇ� Nf .� j s; a; s0; �/
Z 1
0

f .� 0 j �; �/V �.s0;M 0; � 0/ d� d�

)
(6.11.12)

Now, we can use the maximum likelihood estimator for the next � 0. This means
that we do not need to calculate the integral for the weighting of every possible � .

V �.s;M; �/ D max
a2A

˚
NR.s; a;M; �/CX

s02S

NP .s0 j s; a;M/

Z 1
0

e�ˇ� Nf .� j s; a; s0; �/V �.s0;M 0; � 0/ d�

)
Next, we apply importance sampling to deal with the integral. This integral is

quite difficult since it requires the next state value. To approximate the integral,

�.s; a; s0;M; �/ D

Z 1
0

e�ˇ� Nf .� j s; a; s0; �/V �.s0;M 0; � 0/ d� (6.11.13)

we use

O�.s; a; s0;M; �/ D
1

jC j

jC jX
nD1

e�ˇ�n
Nf .�n j s; a; s

0; �/

D.�n/
V �.s0;M 0; � 0/ (6.11.14)

where the function D.�n/ is given by

D.�n/ D
X
s2S

X
a2A

X
s02S

w.s; a; s0/ Nf .� j s; a; s0; �/

D

X
s2S

X
a2A

X
s02S

M.s; a; s0/X
s002S

M.s; a; s00/

Nf .� j s; a; s0; �/
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Replacing the integral with the approximation yields
V �.s;M; �/ D max

a2A

˚
NR.s; a;M; �/C

X
s02S

NP .s0 j s; a;M/
1

jC j

jC jX
nD1

e�ˇ�n
Nf .�n j s; a; s

0; �/

D.�n/
V �.s0;M 0; � 0/

9=; (6.11.15)

and since
1

jC j

jC jX
nD1

e�ˇ�n does not depend on s0, we can move this in front of the

summation of s0

V �.s;M; �/ D max
a2A

˚
NR.s; a;M; �/C

1

jC j

jC jX
nD1

e�ˇ�n
X
s02S

NP .s0 j s; a;M/
Nf .�n j s; a; s

0; �/

D.�n/
V �.s0;M 0; � 0/

9=; (6.11.16)

After seeing that in Sec. 6.10 it is possible to formulate a BA-SMDP as a POSMDP,
we can answer in the affirmative that we can express the BA-SMDP as a POSMDP, but
this is a special case. In that instance, we presupposed the existence of a finite set of
known SMDPs and then aggregated these into a single POSMDP, in which the agent
builds a belief state over these SMDPs. However, in this section, we shall examine the
general scenario in which our uncertainty is described through distributions on state
transition probabilities and distributions on parameters of the sojourn-time distribution,
as opposed to a finite set of known parameters. We will carry out a similar analysis of
BA-SMDPs as we did with POSMDPs in Sec. 5.10, but we will have to generalize the
notion of ˛-vectors to ˛-functions. Generalizing from ˛-vectors to ˛-functions was
described in Duff (2002) and extended to continuous POMDPs in Porta et al. (2005).
Porta et al. (2006) describes how to deal with continuous observations, and while
time maybe considered a form of continuous observations, Porta et al. use linear
combinations of Gaussian distributions for their models which is not a great family of
distributions to use for sojourn times.

For POSMDPs, the state s 2 S is partially observable where the state space is a
finite set. While with BA-SMDPs, the unknown are the parameters for the transition
probabilities and the sojourn-time distributions; the space of unknown parameters in
a point in a compact subset of RjSj�jAj�jSj�j‚j.

For POSMDPs, the observations are generated by G.o j a; s0/, a distribution over
observations given by action a and state s0. However, BA-SMDP observations are
state transitions s; a; �; s0 (state s, action a, and sojourn time � resulting in transition
to state s0) which is generated by

P.s0 j s; a/F.� j s; a; s0/:

For POSMDPs, the belief state � is a distribution over jSj possible states. For
BA-SMDPs, the information state is hdH.P jM/; dU.f jM; �/i is a distribution
(density) over possible probability transition arrays and a distribution over the possible
sojourn-time distribution parameters.

For POSMDPs, the belief state update in light of an action a, sojourn time � , and
observation o is

�.s0 j a; �; o/ D

G.o j a; s0/
X
s2S

P.s0 j s; a/F.� j s; a; s0/�.s/X
s002S

G.o j a; s00/
X
s2S

P.s00 j s; a/F.� j s; a; s00/�.s/
; (6.11.17)
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which we write abstractly as

� 0 D T .� j a; �; o/: (6.11.18)

This is a Bayes’ update that works on a (discrete) probability mass function and
changes the probabilities of each state accordingly.

For BA-SMDPs, the update in light of
(a) an observed state transition .s; a; s0/

dH.P j s; a; s0;M/ D
P.s0 j s; a/ dH.P jM/Z
P

P.s0 j s; a/ dH.P jM/

: (6.11.19)

This is a Bayes’ update that works on a continuous probability distribution
and adjusts the curve accordingly.
If H is closed under sampling, then we write abstractly as

M 0 D T .M j s; a; s0/: (6.11.20)

and

dH.P jM 0/ D dH.P j s; a; s0;M/ (6.11.21)

(b) an observed sojourn time � for a particular state transition .s; a; s0/

dU.f j s; a; �; s0;M; �/ D
f .� j s; a; s0/ dU.f j �/Z
f

f .� j s; a; s0/ dU.f j �/
: (6.11.22)

Again, this is a Bayes’ update that works on a continuous probability distribu-
tion and adjusts the sojourn-time distribution curve accordingly.
If U is closed under sampling, then we write abstractly as

� 0 D T .� j s; a; �; s0;M/: (6.11.23)

and

dU.f j � 0/ D dU.f j s; a; �; s0;M; �/ (6.11.24)

(We have shown that the gamma inverse-Gaussian prior is closed, and to get
from � to � 0, we can use the maximum likelihood estimator.)

The probability of transitioning from state s to state s0 after performing action a
with respect to the prior is

NP .s0 j s; a;M/ D

Z
P

P.s0 j s; a/ dH.P jM/ (6.11.25)

If H is a Dirichlet distribution with parameter M , then

NP .s0 j s; a;M/ D
M.s; a; s0/X

s002S
M.s; a; s00/

: (6.11.26)

The sojourn-time � for transitioning from state s to state s0 after performing action a
with respect to the prior is

Nf .� j s; a; s0; �/ D

Z
f

f .� j s; a; s0/ dU.f j �/ (6.11.27)

If U is the gamma inverse-Gaussian conjugate prior (derived in Sec. 6.11.1) with
parameter � , then

Nf .� j s; a; s0; �/ D �.s; a; s0/: (6.11.28)
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The value function of a POSMDP is a piecewise-linear convex function for a
finite planning horizon. To achieve a similar outcome for the BA-SMDP, we will
use ˛-functions instead of ˛-vectors. These ˛-functions serve the same purpose as
sufficient statistics, which captures the necessary information to calculate the value
function.

The ˛-function, denoted by

˛.s; P; f /

where s is a state, P is an array of state transition probabilities for all .s; a; s0/,
and f is all sojourn-time distributions for every .s; a; s0/ transition. The set of all
˛-functions is represented as V , where

V D f˛1; ˛2; ˛3; : : :g:

As the value function changes at each decision epoch n due to new observations, we
will denote Vn as the set of ˛-functions that describe the value function at that stage.

Theorem 6.11.3 The value function of a BA-SMDP at decision epoch n for hyper-
state

�
s; dH.P jM/; dU.f j �/

�
is

Vn
�
s; dH.P jM/; dU.f j �/

�
D max
˛2Vn

�Z
f

Z
P

˛.s; P; f / dH.P jM/ dU.f j �/
�
: (6.11.29)

where ˛-functions on hyperstate .s; P; f / are defined by

˛.s; P; f / D
X
s02S

P.s0 j s; a/

Z 1
0

e�ˇ�f .� j s; a; s0/
�
R.s; a; s0/

C ˛�nC1.s; a; �; s
0;M; �/

�
d� (6.11.30)

Proof We begin with the definition of the value function being the maximum inner
product between an ˛-function and a hyperstate. At decision epoch n, the value
function for a particular state is defined by

Vn
�
s; dH.P jM/; dU.f j �/

�
D max
˛2Vn

Z
f

Z
P

˛.s; P; f / dH.P jM/ dU.f j �/:

(6.11.31)
The value function is based on a double integral (instead of a summation with POS-
MDPs using ˛-vectors). Now, what remains to be shown is what set of appropriate
˛-functions are required to satisfy Eq. (6.11.31).

The initial value function V0 is the set with a single ˛-function; that is,

V0 D f˛0g: (6.11.32)

We will define the initial ˛0-function to be

˛0 , R0.s; P; f / (6.11.33)

where R0.s; P; f / is the initial reward or value assigned to the state .s; P; f /. Then
using Eq. (6.11.31),

V0
�
s; dH.P jM/; dU.f j �/

�
D max
f˛0g

Z
f

Z
P

˛0.s; P; f / dH.P jM/ dU.f j �/

D

Z
f

Z
P

R0.s; P; f / dH.P jM/ dU.f j �/:

(6.11.34)
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For our inductive hypothesis, using Eq. (6.11.31), suppose that we can write the
value function for hyperstate

�
s0; dH.P jM 0/; dU.f j � 0/

�
at decision epoch nC 1

as

VnC1
�
s0; dH.P jM 0/; dU.f j � 0/

�
D max
˛2VnC1

Z
f

Z
P

˛.s0; P; f / dH.P jM 0/ dU.f j � 0/ (6.11.35)

As we vary M 0 and � 0, different ˛-functions will have the largest value with the
densities dH and dU . Now, we substitute Eq. (6.11.19) and Eq. (6.11.22) into
Eq. (6.11.35) to get
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�
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˛2VnC1

�Z
f

Z
P

˛.s0; P; f /
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P.s0 j s; a/ dH.P jM/

f .� j s; a; s0/ dU.f j �/Z
f

f .� j s; a; s0/ dU.f j �/

	

(6.11.36)

We define the optimal ˛-function at decision epoch nC 1 for a particular transition
.s; a; �; s0/ given the (sufficient statistic) parameters M and � by

˛�nC1.s; a; �; s
0;M; �/

D arg max
˛2VnC1

�Z
f

Z
P

˛.s0; P; f /
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P.s0 j s; a/ dH.P jM/

f .� j s; a; s0/ dU.f j �/Z
f

f .� j s; a; s0/ dU.f j �/

	

(6.11.37)

so that

VnC1
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s0; dH.P jM 0/; dU.f j � 0/

�
(6.11.38)
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f
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P

P.s0 j s; a/f .� j s; a; s0/ dH.P jM/ dU.f j �/

(6.11.39)

D

Z
f

Z
P

˛�nC1.s; a; �; s
0;M; �/P.s0 j s; a/f .� j s; a; s0/ dH.P jM/ dU.f j �/

NP .s0 j s; a;M/ Nf .� j s; a; s0; �/
(6.11.40)

At this moment, we have presented Vn and VnC1 in terms of ˛-functions, but we
have yet to define the ˛-function formally. To accomplish this, we will revisit the
original form of the Bellman equation, substitute in VnC1, and simplify the expression
to derive a representation of the ˛-function.
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The Bellman equation for decision epoch n is

Vn
�
s; dH.P jM/; dU.f j �/
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�X
s02S
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(6.11.41)
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Substituting Eq. (6.11.40) for VnC1 in the above leads to
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We expand NP .s0 j s; a;M/ and Nf .� j s; a; s0; �/ and factor to get
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If we define ˛.s; P; f / as

˛.s; P; f / D
X
s02S

P.s0 j s; a/

Z 1
0

e�ˇ�f .� j s; a; s0/
�
R.s; a; s0/
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then we have our appropriate set of ˛-functions, and

Vn
�
s; dH.P jM/; dU.f j �/

�
D max
˛2Vn

�Z
f

Z
P

˛.s; P; f / dH.P jM/ dU.f j �/
�
; (6.11.48)

which completes our proof. J
Equation (6.11.48) along with Eq. (6.11.47) and Eq. (6.11.37) defines the value

function Vn
�
s; dH.P j M/; .f j �

�
around some local neighbourhood of some

selected information state.
To summarize, for a hyperstate .s;M; �/ and a set of ˛-functions that define VnC1,

we are doing the following:
(a) Find the optimal ˛�nC1.s; a; �; s

0;M; �/ in the set VnC1 using Eq. (6.11.37)
for all possible action a 2 A and � 2 .0;1/.

(b) The summation over s0 2 S and the integral over � 2 .0;1/ in Eq. (6.11.46)
marginalizes the red term’s dependence on s0 and � , and for a fixed initial
state s what remains is a function of P and f for each choice of action a.

(c) Selecting the action a that maximizes the inner product of the term with the
densities dH.P jM/ and dU.f j �/ fixes a—for fixed state s, M and � , the
newly constructed ˛n.s; P;M/ is a mixture (over s0 and � ) of functions of the
form R.s; a; s0/C ˛�nC1.s

0; P; f / where a is the optimal action as selected
in Eq. (6.11.47). This action a is associated with the newly constructed
˛n-function.

6.12 Convergence
In this section, we show that the BA-SMDP value iteration converges to the optimal
BA-SMDP value function by using a recent result by Ren and Stachurski (2021).
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Ren and Stachurski (2021) introduces the idea of value convexity. To begin with,
we need to define the following. Let R.SBA/ be the set of all functions from the
metric space SBA to R, and let

J WSBA �A �R.SBA/! R (6.12.1)

be a given mapping.
We need to show that the BA-SMDP hyperstate is a metric space. A hyperstate

for a BA-SMDP is

.s; dH.P jM/; dU.f j �// , sBA;

where
s is a physical state from the state space S;

dH is the density over Œ0; 1�jSj�jAj�jSj that describes the uncertainty of the state
transition probability for each .s; a; s0/ transition; and

dU is the density over .0;1/jSj�jAj�jSj that describes the uncertainty of the
sojourn-time distribution for each .s; a; s0/ transition.

This means that the hyperstate space is

S � Œ0; 1�jSj�jAj�jSj � .0;1/jSj�jAj�jSj , SBA: (6.12.2)

Lemma 6.12.1 If S with metric dS is a metric space, then the hyperstate space SBA
is a metric space with metric dSBA .

Proof We will consider each component of the hyperstate:
(a) If S is discrete or finite, then .S; dS/ is a metric space, where dS is the

discrete metric defined by

dS.s; s
0/ D

(
1; if s ¤ s0

0; if s D s0:

(b) The closed interval Œ0; 1� is a complete metric space with the absolute-value
metric defined by

dŒ0;1�.x; y/ D jx � yj:

For the space underlying h, it is comprised of the Œ0; 1�jSj�jAj�jSj, which is
a Cartesian product of finitely many metric spaces, so it is a product metric
space, where the metric would be defined by

dŒ0;1�jSj�jAj�jSj.h; h
0/ D

sX
s2S

X
a2A

X
s02S

dŒ0;1�
�
h.s; a; s0/; h0.s; a; s0/

�2
D

sX
s2S

X
a2A

X
s02S
jh.s; a; s0/ � h0.s; a; s0/j2:

The open interval .0;1/ is an incomplete1 metric space where the metric
would be defined by

d.0;1/.x; y/ D jx � yj;

1It is not complete since not all Cauchy sequences converge inside of the interval. If we consider .0;1/ with the
absolute metric, then the Cauchy sequence 1=n! 0 as n!1, but 0 … .0;1/.
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and

d.0;1/jSj�jAj�jSj.u; u
0/ D

sX
s2S

X
a2A

X
s02S

d.0;1/
�
u.s; a; s0/; u0.s; a; s0/

�2
D

sX
s2S

X
a2A

X
s02S
ju.s; a; s0/ � u0.s; a; s0/j2:

We introduce sBA D .s; h; u/ and s0BA D .s
0; h0; u0/. Then, SBA is a metric space since

it is a Cartesian product of finitely many metric spaces, and the metric for SBA is

dSBA.sBA; s
0
BA/ D

q
dS.s; s

0/2 C dŒ0;1�jSj�jAj�jSj.h; h
0/2 C d.0;1/jSj�jAj�jSj.u; u

0/2:

J
Ren and Stachurski (2021) then introduce the following definition.

Definition 6.12.2 — Value-Convex. A mapping J is called value-convex if for all
.s; a/ 2 K, � 2 Œ0; 1�, and V1 and V2 are value functions, then

J
�
s; a; �V1 C .1 � �/V2

�
� �J.s; a; V1/C .1 � �/J.s; a; V2/:

For a BA-SMDP, consider the mapping

J
�
s; dH.P jM/; dU.f j �/; a; V

�
D R.s; a;M; �/C

Z
f

Z
P

X
s02S

NP .s0 j s; a;M/

Z 1
0

e�ˇ� Nf .� j s; a; s0; �/

V
�
s0; dH.P j H 0/; dU.f j � 0/

�
:

If J is assumed to be value-convex, and has an upper bound, then we can use the
following result.

Theorem 6.12.3 — Ren and Stachurski (2021). If the mapping J is value-convex, and
there exists an � > 0 such that

J.s; a; LV / � LV .s/ � � 8.s; a/ 2 K

where LV is an upper bound, then
(a) The Bellman operator is geometrically stable on the set of all possible

value functions;
(b) The Bellman equation has a unique solution in the set of all possible value

functions, and that solution is V �; and
(c) Bellman’s principle of optimality holds and at least one optimal policy

exists.

6.13 Discussion and Further Work
In Sec. 6.6, we summarized the work of Martin and Duff on the framework of BA-
MDPs. Duff (2002, Chap. 5) showed that a BA-MDP could be rewritten as a POMDP,
and so we followed a similar analysis of transforming a BA-SMDP into POSMDP
so that we could apply CHRONOSPERSEUS. At the time, Duff did not use PERSEUS
to solve his reformed POMDP. Instead, there were two main reinforcement learning
algorithms that Duff developed for BA-MDPs:

(a) Actor-Critic Policy Gradient: This method focuses on policy iteration for
improving stochastic policies in MDPs and creates a sample-based variant.
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Duff combines parameterized functions for representing policies and value
functions into the policy iteration process. The algorithm utilizes a Monte
Carlo technique for estimating the gradient of the value function concerning
policy parameters and applies the resulting “actor-critic, policy-gradient”
method to BA-MDPs.

(b) State-action-reward-state-action SARSA(�) for BA-MDPs: For each com-
bination of physical state and action, a linearly-parameterized function ap-
proximator is used to generalize the evolving Q-value estimates over the
information state components.

Later, the approximate offline BEETLE algorithm (Bayesian Exploration Exploitation
Tradeoff in LEarning) by Poupart et al. (2006) extended PERSEUS (Spaan and Vlassis,
2005) for BA-MDPs. BEETLE first samples reachable state-belief pairs using a default
or random policy simulation. Then, it performs approximate value iteration at these
pairs using the derived equations. However, BEETLE encounters a challenge due
to the increasing ˛-functions in the resulting value function polynomial, growing
exponentially with the planning horizon. This intractability issue is a crucial aspect to
address for the algorithm’s efficiency and scalability.

In our current focus on developing conjugate priors for state transition probabilities
and sojourn-time distribution parameters, an alternative model-free approach could
be considered. Dearden et al. (1998) introduced one of the first model-based ex-
ploration methods for BRL—Bayesian Q-Learning—which extends Watkins (1989)
Q-Learning algorithm by constructing and updating probability distributions over the
Q-values. As a potential avenue for future work, this model-free approach could be
extended to the BA-SMDP, exploring its applicability and potential benefits within
this framework.

From the very beginning of BRL, Bellman (1956) assumes that the reward was
known and focuses on learning the unknown state transition probabilities. The
majority of BRL research still continues with this tradition of assuming a known
reward function (Ghavamzadeh et al., 2015, p. 417). For example, with BA-POMDP,
Ross et al. (2007) mentions that their approach can be generalized to learn the reward
function as well: this can be accomplished by adding posterior parameters for the
reward in the hyperstate (Ross et al., 2011, p. 1737). The Dirichlet distribution could
be used if the reward function is drawn from a discrete set of values. If the reward is
continuous, then Ghavamzadeh et al. (2015, p. 417) suggests following Strens (2000)
and assume that the rewards are Gaussian distributed. Unfortunately, we are not able
to use this Gaussian conjugate prior approach for a parameter on the sojourn-time
distribution, which lead to our creation of the gamma-inverse Gaussian conjugate
prior in Sec. 6.11.1.

In BRL, the reward function is known typically, which could inadvertently provide
the agent with substantial information. For instance, when an agent attempts to
discern between two SMDPs, like in Example 6.10.2, the reward function may
contain sufficient information to indicate which SMDP the agent currently inhabits.
Notably, even the sojourn time distribution is incorporated into the reward function
of an SMDP (4.3.1). In POMDPs, utilizing reward functions for belief updates
has enhanced performance (Izadi and Precup, 2005). Furthermore, Silver, Singh,
Precup and Sutton (2021) recently argued that even a seemingly innocuous reward
signal in a complex environment could lead to the emergence of general intelligence,
emphasizing the importance of reward maximization for driving intelligent behaviour.
However, it is important to acknowledge that the article does not explicitly discuss
the information aspect of the rewards, which might still be an open question. Future
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work in this domain may need to reconsider the assumption of known rewards or to
leverage the known rewards to extract information about the sojourn-time parameters.

In Sec. 6.10, we discuss an agent learning a mixture of SMDPs by approximating
the BA-SMDP with a finite number of SMDPs. We then employ CHRONOSPERSEUS,
which further approximates the solution using importance sampling methods. A
natural question arises: How much error is introduced in total and at each step of
this process? Can we quantify the impact of these approximations on the overall
numerical stability and precision of the solution? It would be valuable to investigate
this issue from a numerical analysis perspective, aiming to derive error bounds that
would provide insights into the trade-offs between approximation techniques and the
quality of the resulting policies.

In Sec. 6.11.1, we devised a conjugate prior for the mean � of an inverse Gaussian
distribution, assuming exchangeability—a standard premise in Bayesian analysis.
This implies that the joint distribution of the mean sojourn time parameter � remains
unchanged regardless of the observed permutation of sojourn times �1, �2, . . . , �n
(owing to the commutative properties of multiplication and addition in the joint
density (6.11.5)). Nevertheless, recent research indicates that both rats and humans
can recall event sequences in episodic tasks, possibly utilizing similar cognitive
processes and mnemonic representations (Allen et al., 2014). This finding suggests
the potential need for more sophisticated time representations. For instance, consider
music: knowing the names of four notes and the number of occurrences may not be
sufficient to identify the title of the piece without knowing the order in which they
were played. Consequently, our focus may extend beyond merely examining what
and when an event transpired to include how it was sequenced.

6.14 Conclusion
In this chapter, one of the major contributions from this thesis, the novel framework
and strategies of a Bayes-adaptive semi-Markov decision process (BA-SMDP), was
introduced. The essence of this framework lies in demonstrating how an agent
could optimally learn the parameters of an SMDP, while concurrently addressing
the exploration versus exploitation quandary. We considered four distinct strategies
within the context of the BA-SMDP:

(a) learning the sojourn time distribution parameters using a count array to
record the number of each sojourn time occurrence for a particular .s; a; s0/
transition, where sojourn times come from a finite set;

(b) learning the mixture of known sojourn time distributions with unknown
proportions;

(c) learning the mixture of known SMDPs with unknown proportions; and
(d) learning the unknown continuous sojourn-time distribution parameters.

In the fourth strategy, we conceptualized a conjugate prior specifically designed to
monitor the uncertainty associated with the mean parameter of the inverse Gaussian
distribution. This technique, although developed specifically for the inverse Gaussian
sojourn time distribution, could potentially provide a foundation for formulating
conjugate priors for parameters of other sojourn time distributions. Furthermore, we
demonstrated that the value function of this BA-SMDP can be represented by a set of
˛-functions. These functions can serve as the basis for a solution using a point-based
value iteration approach.
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7
Conclusion

What do mathematicians do? This is not an easy question to answer. However, one
good reply is that mathematicians makes natural questions precise.

—Bellman (1984, p. 114)

As we approach the end of this work, it is fitting to circle back to the bus problem
introduced in the first chapter. Recall in this scenario, you are embarking on a journey
involving four bus stops, with a bicycle at your disposal should you decide to switch
modes of transport. The duration of your bus ride is uncertain, primarily due to the
variability of traffic conditions. However, with repeated daily experiences, you would
gradually learn to estimate how long it might take to reach your final destination
under different circumstances. This seemingly simple example aptly illustrates our
inherent human ability to learn over time and make decisions under uncertainty. Our
rich tapestry of experiences allows us to form reasonable predictions about traffic
patterns and to estimate travel times with a degree of accuracy.

7.1 Summary
Building on these insights, the primary aim of this thesis was to equip reinforcement
learning with the capacity to tackle more intricate, real-world problems where timing
plays a pivotal role. Futhermore, we want this framework and its methods to be able
to tackle uncertainty and deal with the exploration versus exploitation tradeoff.

We first review Markov decision processes (MDPs), a basic model that mirrors
understanding the fixed number of bus stops during a journey (Chap. 2). Venturing
further, we described MDPs with an added layer of complexity, partial observability
(POMDPs). In the bus problem, this would be the uncertainty of traffic conditions
during the bus ride (Chap. 3). Next, we reviewed MDPs that take into account time,
known as semi-Markov decision processes (SMDPs). This aligns with finding the
optimal policy where the sojourn time distribution is known, but stochastic (Chap. 4).

Despite these advances, the intersection of time and partial observability, encap-
sulated by partially observable semi-Markov decision processes (POSMDPs) has
been largely unexplored (Chap. 5). In particular, scenarios where time is the key
observation, akin to deciding the best moment to switch from bus to bicycle, had yet
to be extensively probed.

In Chap. 5, we developed the partially observable semi-Markov decision pro-
cess (POSMDP) solver—CHRONOSPERSEUS—combining PERSEUS and importance
sampling for efficient POSMDP solutions where transition time is observable. The
versatility of the solver spans various problem types, including episodic, non-episodic,
mixed-observable, discrete, continuous observation space, and a mixture of fixed and
stochastic continuous sojourn times. When the agent knows the entire model, like in

131
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the bus problem, we saw that CHRONOSPERSEUS that is similar to human intuition
in such scenarios.

The effectiveness of CHRONOSPERSEUS was demonstrated in learning a policy
on a POSMDP where time is the only available information to resolve the partially
observable state. This scenario is prevalent in many real-world problems, and the
proposed solver provides significant advantages in decision-making and planning
under uncertainty.

The critical interplay between exploration and exploitation, akin to our daily
decision to either try a potentially faster but uncertain route (exploration) or stick
to the usual, known path (exploitation), has been thoroughly investigated within the
context of MDPs. However, this key equilibrium has not been extensively explored
for SMDPs. This is comparable to learning whether to switch modes of transport
optimally, given the uncertain duration of the bus journey, while trying to reduce
transit time. Recognizing this gap, this thesis introduces novel mathematical models
and algorithmic advancements.

In bridging these gaps, the focus of Chap. 6 was on the development of an innova-
tive Bayesian paradigm known as Bayes-adaptive semi-Markov decision processes
(BA-SMDPs). This framework and its strategies incorporates the crucial role of tim-
ing in decision-making processes under uncertainty, all the while finding an optimal
balance between exploration and exploitation during the learning of environmental
dynamics. Through this endeavour, the work not only broadens the horizons of
reinforcement learning but also equips it to tackle real-world problems of greater com-
plexity where timing is integral and allows for optimal exploration versus exploitation
policy in such an environment.

Four distinct learning approaches were developed, including learning of sojourn
time distribution parameters using a count array, learning the mixture of known so-
journ time distributions with unknown proportions, learning the mixture of known
semi-Markov decision processes (SMDPs) with unknown proportions, and learning
unknown continuous sojourn-time distribution parameters. The final approach necessi-
tated the development of a novel conjugate prior for the mean parameter of the inverse
Gaussian distribution, which allows tracking of the uncertainty about the parameter.
These methodologies will afford researchers and modellers the capacity to optimally
learn an SMDP, thereby enhancing sample efficiency and reward maximization.

7.2 Future Work

While this research has made significant strides, it has also illuminated avenues for
future exploration. For instance, an extension of the model-free approach of Bayesian
Q-Learning to BA-SMDP could be explored to evaluate its applicability and potential
benefits. Moreover, the underlying reward function, treated as known in this study,
warrants further scrutiny.

It is important to acknowledge the limitations inherent in this study. The exchange-
ability assumption—a cornerstone of Bayesian analysis—was employed throughout
the BA-SMDP. However, recent studies suggest that both rats and humans can recall
the sequence of events in episodic tasks, potentially employing similar cognitive
processes and mnemonic representations. This opens up a compelling perspective
that goes beyond merely examining the what and when of an event to include how it
unfolds in a sequence. Hierarchical models could offer a richer depiction of temporal
dynamics in such contexts.
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Moreover, the stationary environment assumption, where transition probabilities
or sojourn time distributions within the environment remain unchanged over time,
confines the types of problems that can be addressed using this approach. This
constraint points to a future research direction exploring methods to accommodate
non-stationary environments, thus broadening the method’s applicability.

Despite these constraints, there are potential extensions of the techniques devel-
oped here. Specifically, the method designed for the inverse Gaussian sojourn time
distribution could serve as a blueprint for creating conjugate priors for parameters of
other sojourn time distributions.

Another consideration lies in the realm of temporal control, which refers to the
timing of an agent’s action. While our work focused on temporal learning—the
tracking of time when an event occurs—addressing the issue of temporal control
remains to be studied further in depth.

Finally, this thesis introduced the concept of a multi-SMDP encapsulated within a
POSMDP. This model may be further generalized into a basis set, potentially allowing
a linear combination of SMDPs to express the true underlying SMDP, even if it falls
outside the original set of SMDPs. Such an advancement would significantly enhance
the expressiveness and flexibility of our models, providing a robust platform for future
investigations.

In this way, the research presented herein serves not only as a testament to the
progress made but also as a signpost for future developments in the field.

7.3 Final Thoughts
Ultimately, this thesis stands as a testament to the potential that lies in the use of more
expressive models, such as POSMDP or the BA-SMDP. By employing these models,
we can circumvent the computational complexity that arises from expanding the state
space of simpler MDPs, effectively avoiding Bellman’s Curse of Dimensionality. This
work lays a solid foundation and opens new avenues for future research in the realm
of sequential decision-making under uncertainty involving time.
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Appendix A

Code

A.1 Elevator Problem (MDP version)

import numpy as np

import matplotlib.pyplot as plt

#Parameters

N = 9 #time in minutes

r = 25.0 #reward

c = 3.0 #cost

C = 10.0 #penalty

S = 5 #number of floors

V = np.zeros((S,N+1))

optimalPolicy = np.zeros((S,N+1))

#Probability transition matrix

#P(i,j) = P(floor at

# 1 2 3 4 5

P = np.array([[1.0, 0.0, 0.0, 0.0, 0.0], # 1

[1/2, 1/2, 0.0, 0.0, 0.0], # 2

[0.0, 1/2, 1/2, 0.0, 0.0], # 3

[0.0, 0.0, 1/2, 1/2, 0.0], # 4

[0.0, 0.0, 0.0, 1/2, 1/2]])# 5

#Calculating the last decision epoch, n = N-1

for s in np.arange(S):

V[s,N] = np.max([r - C, r*P[s,0] - c])

optimalPolicy[s,N] = np.argmax([r - C, r*P[s,0] - c])

#Calculating the decision epochs, n < N-1

for n in np.arange(N-1, -1, -1):

for s in np.arange(S):

tempSum = 0

for i in np.arange(S):

tempSum = tempSum + P[s,i]*V[i,n+1]

V[s,n] = np.max([r-C, r*P[s,0]-c + tempSum])

optimalPolicy[s,n] = np.argmax([r - C, r*P[s,0]-c + tempSum])

plt.imshow(V);

135
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plt.colorbar()

print(optimalPolicy) #Optimal actions

print(0.5 * (V/np.max(V))) #What I used to calculate the percentage of

#colour for the figure

print(V) #The values of the value function

A.2 Inverse Gaussian Pseudo Random Number Generator
# Inverse Gaussian distribution

# 28 March 2019: Richard Kohar

import math

import torch as pt

from torch.distributions import Normal

from torch.distributions import Uniform

def pdfIG(x,mu,Lambda):

# Input:

# x is a tensor

# mu is a scalar

# Lambda is a scalar

#

# Output:

# pdf is a tensor

pdf = pt.sqrt(Lambda/(2*math.pi*x.float()**3))*pt.exp(-(Lambda*

(x.float()-mu)**2)/(2*mu**2*x.float()))

return pdf

def cdfIG(x, mu, Lambda):

# Input:

# x is a tensor

# mu is a scalar

# Lambda is a scalar

#

# Output:

# cdf is a tensor

m = Normal(pt.tensor([0.0]), pt.tensor([1.0]))

cdf = m.cdf(pt.sqrt(Lambda/x.float())*(x/mu - 1)) + math.exp(2*Lambda

/mu)*m.cdf(-pt.sqrt(Lambda/x.float())*(x/mu + 1))

return cdf

def randomIG(size, mu, Lambda):

# Input:

# size is a tensor [m,n] that gives the size of the random IG sample.

# mu is a scalar

# Lambda is a scalar

# Generate a normal distribution

m = Normal(pt.tensor([0.0]), pt.tensor([1.0]))
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nu = m.sample(size)

y = nu**2

x = mu + (mu**2 * y / (2*Lambda)) - (mu/(2*Lambda))*pt.sqrt(4*mu*

Lambda*y.float() + mu**2 * (y.float())**2)

u = Uniform(pt.tensor([0.0]), pt.tensor([1.0]))

z = u.sample(size)

ind1 = (z <= (mu/(mu + x)))

ind2 = 1 - ind1

sampleIG = (ind1.float()*x) + (ind2.float()*((mu**2)/x))

return sampleIG

A.3 Truncated Gaussian Distribution
# Truncated Gaussian distribution when b = infty (for PyTorch)

# 28 Feb 2021: Richard Kohar

import math

import torch as pt

from torch.distributions import Normal

pt.set_grad_enabled(False)

def pdfGaussian(x, mu, sigma, device):

# Input:

# x is the tensor data

# mu is the mean

# sigma is the standard deviation

# device is the GPU or CPU

#

# Output:

# pdf is the pdf of the data x.

pdf = 1.0/pt.sqrt(2.0*math.pi*(sigma**2.0))*

pt.exp(-((x - mu)**2.0)/(2.0*(sigma**2.0)))

return pdf

def laplaceTruncGaussLeft(mu, sigma, beta, a, device):

# Input:

# mu is a scalar

# sigma is a scalar

# beta is a scalar

# a is a scalar

# device is if it’s on the GPU or CPU
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m = Normal(pt.tensor(0.0, device=device), pt.tensor(1.0, device=device))

I = pt.exp(((sigma**2.0 * beta**2.0) / 2.0) - (mu * beta)) *

((1 - m.cdf(((a-mu)/sigma) +

(sigma*beta)))/(1 - m.cdf((a - mu)/sigma)))

return I

def pdfTruncGauss(x, mu, sigma, a, b, device):

# Input:

# x is a tensor

# mu is a scalar/tensor

# sigma is a scalar/tensor

# a is the left truncation point

# b is the right truncation point

# device is if it is a GPU or CPU

#

# Output:

# pdf is the pdf of the data x.

assert a < b, ’a is not less than b’

m = Normal(pt.tensor(0.0, device=device), pt.tensor(1.0, device=device))

pdf = pdfGaussian(x, mu, sigma, device) / (m.cdf((b - mu)/sigma) -

m.cdf((a - mu)/sigma))

xind = x > a

xind2 = x < b

pdf = pdf * (xind*xind2)

return pdf

# This is for a Gaussian distribution that is truncated on the

# left hand side and allow the right hand side to go to

# infinity.

def pdfTruncGaussLeft(x, mu, sigma, a, device):

# Input:

# x is a tensor

# mu is a scalar/tensor

# sigma is a scalar/tensor

# a is the left truncation point

# device is if it is a GPU or CPU

#

# Output:

# pdf is a tensor

m = Normal(pt.tensor(0.0, device=device), pt.tensor(1.0, device=device))
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pdf = pdfGaussian(x, mu, sigma, device) / (1.0 - m.cdf((a - mu)/sigma))

xind = x > a

pdf = pdf * xind

return pdf

# This is for a Gaussian distribution that is truncated on the

# right hand side and allow

# the left hand side to go to infinity.

def pdfTruncGaussRight(x, mu, sigma, b, device):

# Input:

# x is a tensor

# mu is a scalar/tensor

# sigma is a scalar/tensor

# b is the right truncation point

# device is if it is a GPU or CPU

#

# Output:

# pdf is a tensor

m = Normal(pt.tensor(0.0, device=device), pt.tensor(1.0, device=device))

pdf = pdfGaussian(x, mu, sigma, device) / (m.cdf((b - mu)/sigma) - 1.0)

xind = x < b

pdf = pdf * xind

return pdf

def randomTruncGaussLeft(mu, sigma, a, max_rejections=10000):

# Input:

# mu is a scalar/tensor

# sigma is a scalar/tensor

# a is the left truncation point

#

# Output:

# sampleTruncGaussLeft is a tensor

# Sample X ~ N(x | mu, sigma^2, )

rejections = 0

m = Normal(mu, sigma)

while True:

sampleTruncGaussLeft = m.sample()
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if a <= sampleTruncGaussLeft:

return sampleTruncGaussLeft

rejections = rejections + 1

if rejections > max_rejections:

assert False, ’Too many rejections’

def randomTruncGaussRight(mu, sigma, b, max_rejections=10000):

# Input:

# mu is a scalar/tensor

# sigma is a scalar/tensor

# b is the right truncated point

#

# Output:

# sampleTruncGaussRight is a tensor

# Sample X ~ N(x | mu, sigma^2, )

rejections = 0

m = Normal(mu, sigma)

while True:

sampleTruncGaussRight = m.sample()

if sampleTruncGaussRight <= b:

return sampleTruncGaussRight

rejections = rejections + 1

if rejections > max_rejections:

assert False, ’Too many rejections’

def randomTruncGauss(mu, sigma, a, b, device, max_rejections=10000):

# Input:

# mu is a scalar/tensor

# sigma is a scalar/tensor

# a is the left truncation point

# b is the left truncation point

#

# Output:

# sampleTruncGaussLeft is a tensor

# Sample X ~ N(x | mu, sigma^2)

rejections = 0

m = Normal(mu, sigma)

while True:

sampleTruncGauss = m.sample()

if a <= sampleTruncGauss <= b:

return sampleTruncGauss
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rejections = rejections + 1

if rejections > max_rejections:

assert False, ’Too many rejections’

A.4 Calculating the conjugate prior distribution
% Calculating the distribution on the mean parameter of the inverse

% Gaussian distribution

% 2023 Jan 21: Richard Kohar

%These times are sampled from an Inverse Gaussian distribution

%of mu = 3, and lambda = 9.

times = [1.4588, 5.9780, 2.3113, 2.4519, 1.9821, 2.0355,...

1.6069, 3.5954, 3.7644, 4.3149, 2.4975, 1.8990, 1.1870,...

1.3712, 2.4073, 4.5663];

%These are the prior parameters for the gamma distribution.

a = 3;

b = 2;

x = linspace(0, 5, 500);

maxval = zeros(1, length(times));

maxTheta = zeros(1, length(times));

hold on

for i = 1:length(times)

taus = times(1:i);

priorlikelihood = @(theta) 1/sqrt(2*pi)*prod(taus.^(-3/2)) ...

* (b^a)/ gamma(a) ...

.* theta.^(a + length(taus) - 1) ...

.* exp(-1/2 .* sum( ((repmat(taus, length(theta), 1) - ...

repmat(theta’, 1, length(taus))).^2) ...

./repmat(taus, length(theta), 1), 2 )’ - b*theta);

normalized= @(theta) priorlikelihood(theta) ./

integral(priorlikelihood, 0, Inf);

[maxval(i), maxTheta(i)] = max(normalized(x));

maxTheta(i) = maxTheta(i)/length(x) * x(end);

plot(x, normalized(x), "Color", [1 (44-(2*i + 12))/44 (44-(2*i + 12))/44])

ylim([0, 1.3])

end

hold off

A.5 ChronosPerseus
A.5.1 Solver

# -*- coding: utf-8 -*-
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"""

Created on Thu Sep 24 15:31:29 2020

Chronos Perseus: A point-based POSMDP solver

@author: Richard Kohar

"""

import torch as pt # pt for PyTorch

from inverseGaussian import * # imports my IG functions

pt.utils.backcompat.broadcast_warning.enabled=True

pt.backends.cudnn.deterministic=True

pt.set_grad_enabled(False)

# CollectBeliefs

def collectBeliefs(P, G, xi0, sojournTime, numStates, numActions,

numBeliefs, device):

# Input:

# P[a,s,s] or [numActions, numStates, numStates]

# G[a,s,o] or [numActions, numStates, numObs]

# xi0[s] or [numStates]

# sojournTime is a class that represents the time distribution

# methods: sampleTime, pdf

# numStates: number of states

# numActions: number of actions

# numBeliefs: number of beliefs to generate

# device: cpu or gpu

# Output:

# B set of beliefs

# C set of sampled sojourn times

# w the proportion of sojourn times that came from each s,a,s’ transition

# f is the likelihood of each sampled sojourn times

B = pt.zeros(numBeliefs, numStates, device=device)

C = pt.zeros(numBeliefs, device=device)

B[0] = xi0

w = pt.zeros(numActions,numStates,numStates, device=device)

f = pt.zeros(numBeliefs, numActions, numStates, numStates, device=device)

#f(tau_n | s, a, s’) -- [xi, a, s, s]

a = pt.randint(numActions,(numBeliefs,1), device=device)

#Randomly select an action a (preselect all actions)

for b in pt.arange(1,numBeliefs):

xiOld = B[pt.randint(b,(1,))]

#Randomly select a belief from set B

s1 = pt.multinomial(xiOld, 1).squeeze()

#Generate state s from belief distribution xi
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#s1 is a scalar tensor / torch.Size([])

#Action is already randomly generated

s2 = pt.multinomial(P[a[b], s1, :], 1).squeeze()

#Generate state s’ according to probability transition matrix for P(.|s,a)

#s2 is a scalar tensor / torch.Size([])

C[b] = sojournTime.sampleTime(a[b],s1,s2)

#Generate sojourn time

f[b,:,:,:] = sojournTime.pdf(C[b])

#[tau, a, s, s’] It is [b,a,s,s’] but at the end,

#we reduce to unique beliefs, but the number of times will remain the same.

w[a[b], s1, s2] = w[a[b], s1, s2] + 1

#Randomly select an observation o according to P(o | xi, a, tau)

myG = G[a[b]] #[1,s’,o] slice along action (don’t worry

#about dim 0, because we’ll use that for s)

myXi = xiOld.t().unsqueeze(dim=1) #[s,1,1]

myP = P[a[b]].squeeze(dim=0).unsqueeze(dim=2)

#[1,s,s’] -> [s,s’] -> [s,s’,1]

myf = f[b,a[b]].squeeze(dim=0).unsqueeze(dim=2)

#[1,s,s’] -> [s,s’] -> [s,s’,1]

temp = myG * myXi * myP * myf

#[1,s’,o] * [s,1,1] * [s,s’,1] * [s,s’,1] = [s,s’,o]

temp = pt.sum(temp, dim=0)

#Sum along s, [s,s’,o] -> [s’,o]

Pxiaotau = pt.sum(temp,dim=0)

#Sum along s’ [s’,o] -> [o] (row vector)

o = pt.multinomial(Pxiaotau, 1)

#Calculate the new belief

xiNew = temp[:,o] #[s’] (in column vector)

B[b] = xiNew.t()/Pxiaotau[o] #[s’].t()/Normalization constant [1,s]

w = w/pt.sum(w) #normalize w

B = B.unique(dim=0) #reduces the number of beliefs if redundant

C = C[1:] #removes the zeroth term (which is not generated)

f = f[1:] #removes the zeroth term (which is not generated)

return B,C,w,f

# This returns the calculation for alpha(s | a, tau_n, o)

def computeAlphaATauO(P,G,V,f):

# Input:

# P[a,s,s] or [numActions, numStates, numStates]

# G[a,s,o] or [numActions, numStates, numObs]

# V[i,s] or [numVec, numState]

# f[tau,a,s,s’] -- f(tau_n | s, a, s’)

# Output:

# alphaATauO = G * P * f * V

# alphaATauO [i,f,a,o,s] or [numInV, numInf, numActions, numObs, numStates]
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#Temporary format [i, f, a, s, s’, o]

myG = G.unsqueeze(dim=0).unsqueeze(dim=1).unsqueeze(dim=3)

#[a,s’,o] -> [1,1,a,1,s’,o]

myP = P.unsqueeze(dim=0).unsqueeze(dim=1).unsqueeze(dim=5)

#[a,s,s’] -> [1,1,a,s,s’,1]

myf = f.unsqueeze(dim=0).unsqueeze(dim=5) #[f,a,s,s’] -> [1,f,a,s,s’,1]

myV = V.unsqueeze(dim=1).unsqueeze(dim=2).unsqueeze(dim=3).

unsqueeze(dim=5) #[i,s’] -> [i,1,1,1,s’,1]

# Essentially, we are doing: G * P * f * V

# This has myG(1,1,a,1,s’,o).*myP(1,1,a,s,s’,1).*

myF(1,f,a,s,s’,1).*myV(i,1,1,1,s’,1)

myM = myG * myP * myf * myV #[i, f, a, s, s’, o]

#Summing over all s’, thus alphaAO (i,c,a,s,o) and then

#transpose to get (i,c,a,o,s)

alphaATauO = myM.sum(dim=4).transpose(3,4)

return alphaATauO #[i,f,a,o,s] or [numInV, numInf, numActions,

numObs, numStates]

# Backing up to an alpha vector.

def backup(V,P,G,R,C,w,f,D,xi,flag):

# Input:

# V[i,s] or [numVec, numState]

# P[a,s,s] or [numActions, numStates, numStates]

# G[a,s,o] or [numActions, numStates, numObs]

# R[a, s] or [numActions, numStates]

# C[tau] (the sampled sojourn times)

# w[a,s,s’] or [numActions, numStates, numStates]

# (the proportion that (s,a,s’) was sampled)

# f[tau,a,s,s’] -- f(tau_n | s, a, s’)

# D is the discount factor that is precalculated for every time.

# xi[1,s] or [1, numState] -- a single belief used for the update

# Output:

# alpha[numStates]

numStates = V.size(1)

#This will get the number of states from the size of the V set.

alphaATauO = computeAlphaATauO(P,G,V,f)

#[i,f,a,o,s] alpha(s | a, tau, o)

# Computing the argmax using beliefs for all s,a,tau,o

myXi = xi.unsqueeze(0).unsqueeze(0).unsqueeze(0)

#[1,s] -> [1,1,1,1,s]

XiDotAlphaATauO = (alphaATauO * myXi).sum(dim=4)

#[i,f,a,o,s] -> [i,f,a,o] basically xi \cdot alpha, for every alpha in V
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# Doing the argmax

bestalphaind_forallATauO = XiDotAlphaATauO.argmax(dim=0,

keepdim=True).unsqueeze(4).repeat(1,1,1,1,numStates)

# unsqueeze(4) expands the dimension for s

# repeat [1,1,1,1,numStates] because [i,f,a,o]

bestalphareduce_forallATauO = pt.gather(alphaATauO,

index=bestalphaind_forallATauO, dim=0).squeeze(0)

# Now, we have those best alpha vectors for each time, action, and

# observation, thus [f,a,o,s].

# The singleton dimension along alpha vectors is to be removed.

# Computing backup

bestalpha_forTau = bestalphareduce_forallATauO.sum(dim=2) #[f,a,o,s] -> [f,a,s]

myD = D.unsqueeze(1).unsqueeze(1) #[f] -> [f,1,1]

alphaAXi = R + pt.sum(myD * bestalpha_forTau, dim=0) #[f,a,s] -> [a,s]

# Computing backup

alphaAction = pt.argmax((alphaAXi* xi).sum(dim=1)) #[]

alpha = alphaAXi[alphaAction].unsqueeze(0) #[alphaAction, :] -> [1,s]

# Why is the action not selected?

# alphaAXi = R + pt.sum(myD * bestalpha_forTau, dim=0)

# You will want to print the alpha and alphaAction because

# check

if flag:

print("alpha", alpha)

print("alphaAction", alphaAction)

print("xi", xi)

print("alphaAXi*xi", alphaAXi*xi) #see why we are not getting action 0?

print("sum of alphaAXi*xi", (alphaAXi* xi).sum(dim=1))

# Assumption: Zhang could be wrong. we need to break down the backup value

# calculation.

print("R*xi (immediate)", pt.sum(R*xi, dim=1))

print("exp future reward", pt.sum(pt.sum(myD *

bestalpha_forTau, dim=0)*xi, dim=1))

# These are the two components that are used for determining which action

# is to be selected. We should see why action 1 is better from this by seeing

# that the value for action 1 is better than the value for action 0.

return alpha, alphaAction

#alpha[numStates] alphaAction is scalar with 0 to numActions

# Calculates the optimal value function at a particular belief state

# and it’s corresponding optimal action.

def valuefunc(V,Vactions,B):
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# Input:

# V[i,s] or [numVec, numState]

# Vactions[i] or [numVec]

# B[b,s] or [numBelief, numState]

# Output:

# VxB.values, VxBcorrespondingActions Return the max V*xi [value, action]

# B * V’ = [b,i] -> max [b]

# b * V’ = [1,i] -> max [1]

myV = V.unsqueeze(0) #[i,s] -> [1,i,s]

myB = B.unsqueeze(1) #[b,s] -> [b,1,s]

VxB = myV * myB #[b,i,s]

VxB = pt.sum(VxB, dim=2) #[b,i,s] -> [b,i]. <V,xi> for every xi in B.

VxB = VxB.max(dim=1)

VxBcorrespondingActions = Vactions[VxB.indices]

return VxB.values, VxBcorrespondingActions #Return the max V*xi [value, action]

# Update function

def update(V,Vactions,B,P,G,R,C,w,f,D,device):

# Input:

# V is the number of vectors i by number of states s V[i,s]

# Vactions

# B

# Output:

numStates = V.size(1)

numBeliefs = B.size(0)

V2 = pt.zeros_like(B) #[b,s] There cannot be more alpha vectors than beliefs.

V2actions = pt.zeros(numBeliefs, dtype=pt.int16, device=device)

#corresponding action

B2ind = pt.ones(numBeliefs, device=device)

#1 if belief is not improved; otherwise, 0 if belief is improved.

(Vb, VbActions) = valuefunc(V,Vactions,B)

k = pt.tensor(0, dtype=pt.int16, device=device)

alphaATauO = computeAlphaATauO(P,G,V,f) #[i,f,a,o,s] alpha(s | a, tau_n, o)

while pt.sum(B2ind) > 0:

xiInd = pt.multinomial(B2ind, 1)

xi = B[xiInd] #Randomly select a belief xi from B2.

#Creates the new alpha vector candidate that could be added to the set V.

(alpha, alphaAction) = backup(V,P,G,R,C,w,f,D,xi,xiInd==(B.size(0)-9))

XiAlpha = (xi*alpha).sum(dim=1) #[1,s]*[1,s] -> [s]
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#No improvement

if XiAlpha < Vb[xiInd]:

#Keep the old one

alpha = Vb[xiInd]

alphaAction = VbActions[xiInd]

B2ind[xiInd] = 0

#Enforce the belief removal (numerical rounding instability)

#Improvement

VAlphaB = (B*alpha).sum(dim=1) #[b] compute alpha value for all beliefs

B2ind = B2ind * (VAlphaB < Vb) #1 if belief is not improved;

#otherwise, 0 if belief is improved.

V2[k] = alpha

V2actions[k] = alphaAction

k = k + 1

V = V2[0:k]

Vactions = V2actions[0:k]

return V, Vactions

#MAIN SCRIPT

def solvePOSMDP(problem, numBeliefs, numIter):

"""

Solve a given POMDP assuming pytorch tensors on CUDA device (or CPU)

:param problem: Dictionnnary containing

’P’ : Tensor of dimensions (a,s,s’) of transition probabilities

’G’ : Tensor of dimensions (a,s’,o) of observation probabilities

’r1’ : Tensor of dimensions (a,s) of lump sum rewards

’r2’ : Tensor of dimensions (a,s,s’) of continuous reward rate

’mu’ : Tensor of dimensions (a,s,s’) of mean parameter for

sojourn time distribution

’Lambda’ : Tensor of dimensions (a,s,s’) of shape parameter

for sojourn time distribution

’xi0’ : Tensor of dimensions (1,s) of initial belief

’beta’ : Scalar discount rate

:param numBeliefs: Number of beliefs to use

:param numIter: Number of iteration of value iteration

:return: V, VActions

’V’ : Tensor of dimensions (alpha_vector, state) (all the alpha vectors)

’VActions’ : Tensor of dimensions (alpha_vector) (corresponding actions)

"""

# Extract problem

P = problem["P"]

G = problem["G"]

R = problem["R"]

V = problem["V0"]
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Vactions = problem["V0actions"]

sojournTime = problem["sojournTime"]

xi0 = problem["xi0"]

beta = problem["beta"]

#Extract other information

device = P.device

numActions, numStates, numObs = G.size()

#MAIN SCRIPT

(B, C, w, f) = collectBeliefs(P, G, xi0, sojournTime, numStates,

numActions, numBeliefs, device)

#Precomputing the discount factor for each tau.

D = (1/C.size(dim=0))*pt.exp(-beta*C)/((w.unsqueeze(dim=0)*f).

sum(dim=1).sum(dim=1).sum(dim=1))

minValue = pt.zeros(numIter)

maxValue = pt.zeros(numIter)

for j in pt.arange(1,numIter):

print("Iteration", j)

(V, Vactions) = update(V,Vactions,B,P,G,R,C,w,f,D,device)

minValue[j] = V.min()

maxValue[j] = V.max()

# print(j, V.size())

minValue = minValue[1:]

maxValue = maxValue[1:]

return B, C, V, Vactions, minValue, maxValue
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