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Abstract 

There are several applications that require an estimation of the location of an 

electromagnetic emitter. Search and rescue, as well as other civilian and military 

applications require the determination of an emitter’s location. This is also 

known as geolocation. Several methods have been developed for geolocation 

including measuring the received power from the emitter, the angle that the 

electromagnetic wave arrives at a sensor and calculating the difference in time 

of arrival of the emitter signal at spatially separated sensors.  

Recent research has focused on increasing the accuracy of the geolocation by 

using multiple sensors and complex algorithms. Although this is very useful, 

there are some geolocation applications that may benefit from simpler, low-cost 

systems. This thesis employs Angle of Arrival measurements and a simple 

algorithm of linear equations. Although this method is less accurate than other 

methods, it is computationally efficient and enables geolocation by a single 

moving sensor. This numerical method is therefore a viable option for systems 

where simplicity or lower costs are a more limiting factor than accuracy. 
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Résumé 

Il existe plusieurs applications qui nécessitent une estimation de la localisation 

d'un émetteur électromagnétique. La recherche et le sauvetage, ainsi que 

d'autres applications civiles et militaires, nécessitent la détermination de 

l'emplacement d'un émetteur, également connu sous le nom de géolocalisation. 

Plusieurs méthodes ont été développées pour la géolocalisation, notamment la 

mesure de la puissance reçue de l'émetteur, l'angle d'arrivée de l'onde 

électromagnétique sur un capteur et le calcul de la différence de temps 

d'arrivée du signal de l'émetteur sur des capteurs spatialement séparés. 

Des recherches récentes se sont concentrées sur l'augmentation de la précision 

de la géolocalisation en utilisant plusieurs capteurs et des algorithmes 

complexes. Bien que cela soit très utile, certaines applications de géolocalisation 

peuvent bénéficier de systèmes plus simples et peu coûteux. Cette thèse utilise 

des mesures d'angle d'arrivée et un algorithme simple d'équations linéaires. 

Bien que cette méthode soit moins précise que d'autres méthodes, elle est 

efficace en termes de calcul et permet la géolocalisation par un seul capteur 

mobile. Cette méthode numérique est donc une option viable pour les systèmes 

où la simplicité ou les faibles coûts sont un facteur plus limitatif que la précision.  
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1. Introduction 

Determining the location of an energy emitting source is a requirement for 

cellular telephone service providers and is also important for radar and sonar 

applications, as well as in Electronic Warfare (EW). Several methods have been 

developed for geolocation. The most common methods used for geolocation of 

unknown emitters are Received Signal Strength (RSS); Angle of Arrival (AOA); and 

Time Difference of Arrival (TDOA). Each method has different physical 

requirements; advantages and disadvantages. AOA balances simplicity of system 

design with accuracy of measurements and can enable a single moving sensor to 

localize a stationary non-cooperative emitter. 

Many of the AOA papers use Weighted Least Squares (WLS) algorithms [1] [2] [3] 

[4] [5] [6]. The standard algorithm uses the AOA measurements to locate the 

emitter. This thesis uses the law of sines to calculate the distances between the 

measurement locations and the emitter, then a linear system of equations to 

locate a non-cooperative emitter. The linear system of equations makes the 

computation of the estimated location easier at the expense of a small loss of 

accuracy. 

1.1 Motivation 

Whether for search and rescue or military operations, an emitter must first be 

detected within the search area before the localization process can begin. 

Although any single sensor can detect an emitter, not all localization methods can 

be conducted with a single sensor. For example, if the emitter is also moving then 

doppler effects make the use of moving sensors more complicated. In 

circumstances where localization of the emitter is time sensitive, there are two 

advantages to using localization methods that require only a single sensor. First, 

localization can begin as soon as the emitter is detected. Second, systems that use 

single sensor localization can cover larger areas with the a given number of 

sensors. 

For any given power output of the emitter, there is a maximum detection 

distance. This means that each sensor has a maximum range to the emitter and in 

turn a maximum scanning area for the sensor. Systems that require multiple 

sensors to receive the signal from the emitter simultaneously, also require the 

sensors to overlap their areas of localization (Figure 1). This reduces the total area 

that a given number of sensors can cover at any time. In contrast, if the 
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localization can be performed by a single moving sensor, the area of localization 

can be larger, as seen in Figure 2. 

 

Figure 1 Overlapping Scan Areas 

 

Figure 2 Minimally Overlapping Scan Areas 

Methods like TDOA require overlapping localization aeras and therefore reduce 

the total areas covered at one time [7]. When minimally overlapping localization 

areas are employed the area of operations is maximised. The accuracy of a single 

sensor measurement will be less than if multiple sensors make simultaneous 
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measurements. However, additional sensors could be moved towards the emitter 

once the initial sensor has an estimated location. 

AOA methods can be used by a single moving sensor to localize non-cooperative 

emitters. It has been shown that systems with fewer sensors are less accurate [5] 

[8] [9]. Increasing the number of measurements taken by a single sensor can 

increase the accuracy of the estimation in a manner similar to increasing the 

number of sensors. Increasing the number of measurements will require a 

proportional increase in the number of calculations required.  

In order to enable a single sensor to accurately geolocate a non-cooperative 

emitter, a computationally simple algorithm is required. Such a system would 

provide a low complexity and low-cost solution that could maximise the location 

area for a given set of sensors. 

1.2 Statement of Deficiency 

The basic geometry of AOA measurements is depicted in Figure 3. This thesis 

assumes that the first measurement location is used as a reference for all 

calculations. 
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Figure 3 Basic AOA Geometry 

𝜃𝑖 = arctan (
𝑥 − 𝑥𝑖
𝑦 − 𝑦𝑖

) (1) 

 
The reliance on WLS algorithms for AOA geolocation assumes that the problem is 
linear. From the relationship in equation (1), the general estimation equation 
used in [1] [5] and [9] is: 
 

[

cos 𝜃1 − sin𝜃1
cos𝜃2 −sin 𝜃2
⋮

cos 𝜃𝑖

⋮
− sin𝜃𝑖

] [
𝑥
𝑦] =  [

𝑥1 cos 𝜃1 − 𝑦1 sin𝜃1
𝑥2 cos 𝜃2 − 𝑦2 sin 𝜃2

⋮
𝑥𝑖 cos𝜃𝑖 − 𝑦𝑖 sin 𝜃𝑖

] 
(2) 

A                    µ                                  B 
where θi is the AOA measurement taken at point (xi, yi) and µ is the location of the 
Target Emitter. 
When a WLS algorithm is used estimate of µ becomes [1] [3] [5] [9]: 

𝜇̂ =  (𝐴𝑇𝑊𝐴)−1𝐴𝑇𝑊𝐵 (3) 
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where W is the weighting matrix. 

The measurements of θi are noisy. These noisy measurements in A and B are 

correlated. This creates a bias in the system. By reducing the correlation, it may 

be possible to reduce the bias in the estimation of the target location. 

1.3 Thesis Statement 

This thesis uses a linear system of equations of AOA measurements taken by a 

single moving sensor to estimate the geolocation of a stationary non-cooperative 

emitter. The accuracy and computational time of this algorithm will be compared 

to a commonly used AOA WLS algorithm. 

1.4 Research Activities and Scope 

Matlab is used to simulate AOA measurements in order to localize a non-

cooperative emitter. The simulation assumes that the sensor knows its own 

location (without error) at the moment each measurement is taken and the AOA 

measurement (Angle between the sensor and emitter) has random errors. Two 

metrics are used to evaluate a given method of estimation: root means squared 

error (RMSE) of the estimation; and the time required for the estimation. Five 

Thousand independent trials of the estimation process are conducted to compute 

the metrics. 

1.5 Originality and Contribution 

The standard AOA localization equation, given in equation (2) uses the 

measurements θi directly in both the A and B matrices. This thesis uses the 

angular measurements and manipulation of equation (1) to determine the 

distance between the measurement locations and the emitter. This allows the 

localization problem to be described as in equation (4) which will be derived in 

Chapter 3. 

[

−2𝑥1 −2𝑦1 1
−2𝑥2 −2𝑦2 1
⋮

−2𝑥𝑀

⋮
−2𝑦𝑀

⋮
1

] [
𝑥
𝑦
𝑐
] =  

[
 
 
 
𝑑1
2 − 𝑘1
𝑑2
2 − 𝑘2
⋮

𝑑𝑀
2 − 𝑘𝑀]

 
 
 

 
(4) 

                                              A                   μ                B 
The A matrix in equation (4) contains only known true values. However, the A 

matrix in equation (2) contains measurements that include noise. The hypothesis 

that this thesis investigates is that the estimations calculated from equation (4) 

will have less bias than the standard AOA localization using equation (2). 
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Although this thesis focuses only on AOA localization, the use of distance instead 

of angular measurements permits this linear system of equations to be more 

easily combined with other localization methods. Both RSS and TDOA methods 

use calculations of distance rather than angular measurements to locate the 

emitter’s position. The linear system of equations used in this thesis therefore 

enables hybrid methods using AOA and other methods to use a single formula 

whereby the A matrix in (4) contains only known values of measurement location 

coordinates. Existing hybrid formulation requires a separate A matrix for each 

method. Given that multiple studies have demonstrated the benefits of hybrid 

system, this thesis can be applied to future hybrid localization research. 

Another contribution of this thesis is the use of a single moving sensor instead of 

M fixed sensors. Using a single sensor reduces significantly the hardware 

requirements (by a factor of M). Furthermore, it reduces the transmission 

requirements or even completely eliminates them: when we use M fixed sensors, 

they must send their measurements to a central processing unit, which uses these 

measurements to calculate the localization of the emitter. If we are using a single 

sensor, a single transmission link to the processing unit is required instead of M 

links, which significantly reduces the bandwidth requirements. If the moving 

sensor can process the data and compute the localization of the emitter, a 

transmission to a processing unit is no longer required. Hence, in situations where 

the transmission bandwidth is limited, using a single moving sensor is more 

beneficial than M fixed sensors. 

It will be shown that a moving sensor can improve the localization accuracy 

compared to M fixed sensors by taking more than M measurements. Performance 

is further improved if the sensor moves and tries to encircle the emitter, which 

fixed sensors cannot do. 

It is accepted that the benefits of moving sensors listed above apply to the 

geolocation of stationary emitters. If both the emitter and the sensor are in 

motion, then the estimation of the emitter location will be less accurate. 

 

1.6 Organization 

The remainder of this thesis is organized as follows: 

Section 2 presents a review of previous research examining the types of 

measurements and algorithms most commonly used for passive geolocations.  
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The physical requirements of the measurements are examined for complexity and 

applicability to this thesis. This will provide the reader with an understanding of 

the techniques considered in this thesis. 

Section 3 provides details of the research activates for this thesis. This includes 

the reasoning for use of simulation. 

Section 4 will include a summary of the experimental results. 

Section 5 will give the conclusions. 
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2. Literature Review 

2.1 Introduction 

Electromagnetic wave propagation and antenna design are well known 

engineering concepts. Detection and measurement of a received electromagnetic 

signal can therefore be considered a solved problem for the purposes of this 

thesis. Determining the point of origin of an incoming electromagnetic wave is a 

significantly different problem. In order to maintain generality, this thesis does 

not assume any a prior knowledge of the signal or the emitter. All measurements 

are made at the sensor (receiving antenna), which will be an array of antennas or 

a directional antenna in most cases. 

2.2 Received Signal Strength (RSS) 

RSS is the simplest measurement method in terms of physical requirements. Any 

antenna can be used as all that is required is a measurement of the received 

power. When the emitter’s signal is received, a range calculation is made using a 

propagation loss formula for the transmission medium [10] [11]. Even if the 

power at the emitter is unknown, comparing the power received at different 

locations can be used to produce an estimation of the emitter’s location.  
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Figure 4 Two-dimensional example of RSS 

A single RSS measurement provides a range to the target. If the sensing antenna is 

omnidirectional, the single range calculation will place the emitter on a sphere 

surrounding the sensor. For directional antennas, the target will be on a surface 

within the beam of the antenna. Figure 4 displays a two-dimensional example of 

RSS localization. Comparing two measurements will reduce the possible location 

of emitter to an arc at the intersection of the two surfaces. More measurements 

will further reduce the possible location of the emitter. It should be noted that 

when measurements are taken from multiple sensors, the individual sensors do 

not need to be synchronized with each other provided that the measurements 

can reasonably be assumed to be from the same transmission. This maintains the 

simplicity of RSS geolocation systems using multiple sensors. 

The largest drawback to RSS is the impact of multipath fading [12]. Simple 

antennas at ranges close to the emitter will experience significant errors 

depending on whether the received transmission is in a null or a peak. Despite the 
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low accuracy when compared to other measurement methods, particularly for 

unknown emitter transmission power, the economy of antenna requirements and 

the simplicity of the multi-sensor network make RSS an option in applications 

where the transmitted power can be reasonably estimated, such as in cellular 

networks, navigation, and search-and-rescue. 

2.3 Angle of Arrival (AOA) 

Measuring the AOA of an emitter’s signal requires either a directional antenna or 

an antenna array used with beamforming techniques to calculate the angle of the 

incoming signal. Although this requirement is more complex than RSS, it uses 

established technologies and well-known techniques. AOA requires no a priori 

knowledge of the emitter and can be used on any form of transmitted signal. 

These factors make AOA a preferred option for many applications. 

Assuming the emitter’s transmission is within the beamwidth of the sensor, a line 

of bearing to the emitter can be projected. Another measurement from another 

location will produce a second line of bearing. The intersection of these lines is 

the approximate location of the emitter. Figure 5. shows three aircraft using AOA 

to locate a target emitter. In ideal conditions, all three lines of bearing would 

intersect exactly at the location of the target. In practical applications, noise 

added to the transmission, measurement errors, system noise and other factors 

will prevent an exact line of bearing to the target. It has been shown that 

increasing the number of measurements will increase the accuracy of the location 

estimation [9]. 
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Figure 5 Two-dimensional example of AOA 

     It is essential that measurements be taken from different sensor locations. If 

the emitter is stationary, multiple measurements from a stationary sensor will 

continually produce the same line of bearing and not provide additional 

information about the emitter location. Therefore, if a single sensor is used, the 

sensor must be mobile and take multiple measurements at different locations 

during the time the emitter is transmitting. Multiple sensors taking measurements 

of the same transmission from different locations is a preferred method. When 

multiple sensors are used, the ideal placement would be the sensors surrounding 

the emitter at the largest intervals possible [8]. The specifics of the application 

may limit the possibility of surrounding the emitter. For example, base stations for 

cellular networks are in fixed locations, while platforms conducting search-and-

rescue will likely approach from one side of the emitter. 

     At the small cost of more complex sensors, AOA provides greater accuracy than 

RSS. Requiring no a priori knowledge of the emitter, AOA can be employed to 

geolocate any electromagnetic emitter. The requirement for either mobility for a 

single sensor or the coordination of multiple sensors are additional 

considerations. AOA has been proven to be an effective geolocation method for 

cellular networks, and military applications [8] [13]. 
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2.4 Time Difference of Arrival (TDOA) 

In principle, measuring TDOA is relatively simple. If two sensors both receive a 

signal from the emitter, any difference in distance between the individual sensors 

and the emitter will mean that one sensor receives the signal earlier than the 

other. The difference in time of arrival divided by the speed of propagation of the 

signal is the range difference between the two sensors and the emitter. In 

practical applications, TDOA does not require a sophisticated antenna system, but 

it does require precise time synchronization between three or more sensors [14] 

[15]. 

Any antenna that can receive the emitter’s signal can be used for TDOA. The 

measurement of interest is the exact time the transmission was received. 

Therefore, a precise clock is a requirement on all sensors. Furthermore, the clocks 

of all sensors must be synchronized to determine the exact difference in arrival 

time. When sensors make a measurement of the emitter’s signal; one sensor is 

designated as the reference sensor and the arrival time of every other sensor are 

compared to the reference sensor to determine the difference of arrival time. The 

relative arrival time allows the computation of a relative distance to the emitter. 

For each pair of sensors, a hyperbola is produced with the two sensors as the foci 

as seen in Figure 6. Hence for 2-D geolocation a minimum of 3 sensors are 

required. Single senor geolocation using TDOA is possible if the emitted signal is 

periodic as in [16] and [17], but this in not a general case. This thesis places no 

conditions on the emitter other than a stationary location. 
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Figure 6 Two-dimensional example of TDOA 

     TDOA has been shown to provide accurate estimation of emitter locations. 

However, this method requires a minimum of three sensors to receive the 

emitter’s signal, precise time measurements, and synchronization of all sensors. 

These factors make TDOA a more complex system to employ than other methods 

[18]. 

2.5 Hybrid Localization 

Much of the recent work in geolocation has been focused on combining 

measurement methods into hybrid systems. AOA and RSS were used in [1] and 

[19]. TDOA and AOA have been used in a number of studies [3] [4] [5]. TDOA has 

received greater attention because of its accuracy and application for cellular 

telephone networks. TDOA does require a minimum of three sensors to locate the 

emitter and all sensors must be precisely synchronized. This increases both the 

cost and complexity of the sensor system. 

2.6 Selection of AOA Measurement Technique 

As discussed above, the motivation for this thesis was to develop a system of 

geolocation that balanced the competing requirements of simplicity and accuracy. 

The specific requirement is that the system is to be employable by a single moving 

sensor. This requirement eliminated TDOA as an option, because TDOA requires a 
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minimum of three sensors. Although RSS is the simplest, it is the least accurate. 

AOA was therefore selected as the preferred measurement technique. 

2.7 Estimation Algorithms 

No matter what measurement method, or combination of methods used, the 

system must have an algorithm that uses the measurements to estimate the 

location of the target emitter. Maximum Likelihood (ML) estimators have been 

used in [4] [9] [20]. Weighted Least Squares (WLS) were used in [1] [2] [3] [21] 

[20]. Both the ML and the WLS estimators assume the localization problem to be 

non-linear, and therefore use relatively complex algorithms to solve for the 

emitter’s location. 
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3. Research 

The algorithm in this thesis uses the geometry shown in Figure 3 to estimate the 
distance between the known location of each measurement (xi, yi) and the 
unknown location of the emitter (x, y). This thesis was conducted in a two-
dimensional (x, y) plane. It is theoretically possible to extend this research to a 
three-dimensional space by using the both an (x, y) plane for an azimuth and 
either an (x, z) or (y, z) plane for an elevation and then combining the results for a 
three-dimensional geolocation. The general distance between the emitter and the 
sensor I is: 
 

𝑑𝑖 = √(𝑥 − 𝑥𝑖)
2 + (𝑦 − 𝑦𝑖)

2 (5) 

 
Squaring the distance and expanding yields: 
 

𝑑𝑖
2 = 𝑥2 + 𝑦2 − 2𝑥𝑥𝑖 − 2𝑦𝑦𝑖 + 𝑥𝑖

2 + 𝑦𝑖
2 (6) 

Let 
𝑐 = 𝑥2 + 𝑦2 (7) 

and 

𝑘𝑖 = 𝑥𝑖
2 + 𝑦𝑖

2 (8) 
Then equation (5) becomes 

𝑑𝑖
2 =  𝑐 − 2𝑥𝑥𝑖 − 2𝑦𝑦𝑖 + 𝑘𝑖 (9) 

 
Moving ki to the other side and expanding for multiple measurement locations, 
the matrix form of equation (6) becomes: 
 

[

−2𝑥1 −2𝑦1 1
−2𝑥2 −2𝑦2 1
⋮

−2𝑥𝑀

⋮
−2𝑦𝑀

⋮
1

] [
𝑥
𝑦
𝑐
] =  

[
 
 
 
𝑑1
2 − 𝑘1
𝑑2
2 − 𝑘2
⋮

𝑑𝑀
2 − 𝑘𝑀]

 
 
 

 
(10) 

                                             A                   μ                B 
The solution for equation (10) is: 
 

𝜇̂ =  (𝐴𝑇𝐴)−1𝐴𝑇𝐵 (11) 

3.1 Initial Research 

The vector B in equation (10) contains unknown values. Therefore, before an 

estimate of μ can be made, an estimation of 𝑑𝑖
2 is required. This distance can be 

determined using the Law of Sines and the geometry in Figure 7. 
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Figure 7 Angles used to determine distance to emitter 

This thesis uses the AOA measurements θi. It is assumed that the sensor platform 

has been equipped to make these measurements. The physical requirements and 

methods on making these measurements is beyond the scope of this thesis. It is 

also assumed that the sensor locations at: (x1, y1), (xi, yi) are known without 

errors. For M measurements, a total of (M-1) triangles are possible. Using the first 

measurement location as a reference the following calculations are made: 

The angle from the first measurement location to the ith measurement location is 
calculated using the intermediate angle φ:  
 

𝜙1𝑖 = arctan (
𝑥𝑖 − 𝑥1
𝑦𝑖 − 𝑦1

) (12) 

 
As noted in Figure 7, the φ are calculated to be between 00 and 180o but a 
positive or negative sign is assigned to the angle to ensure that later equations 
account for the true geometry.  The inside angles of the triangle in Figure 7 are: 
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𝛼𝑖 = 𝜙1𝑖 − 𝜃1 (13) 
and 

𝛽𝑖 = 𝜃𝑖 − 𝜙𝑖1 (14) 
 
The law of sines states that 
 

𝑑1𝑖
sin(𝛼𝑖 + 𝛽𝑖)

=
𝑑𝑖

sin 𝛼𝑖
=

𝑑1
sin𝛽𝑖

 (15) 

Therefore 

𝑑1 =
𝑑1𝑖 sin 𝛽𝑖
sin(𝛼𝑖 + 𝛽𝑖)

 (16) 

Similarly: 

𝑑𝑖 =
𝑑1𝑖 sin 𝛼𝑖
sin(𝛼𝑖 + 𝛽𝑖)

 (17) 

 

Equation (15) allows for the calculation of a unique d1 value for each pair of 

measurements. For the sake of efficiency d1 is only calculated once. 

Any practical system will contain some noise and errors. This thesis attributes all 

system errors (including system noise, antenna imperfections, etc) to 

measurement errors and represents these error as zero mean Gaussian White 

Noise (WGN). It is also assumed that the error at different measurement locations 

are uncorrelated. Thus, a noisy AOA measurement is: 

𝜃𝑖 = 𝜃𝑖 + 𝜀𝑖  (18) 

where 𝜃𝑖 is the measured value; 𝜃𝑖 is the true values and 𝜀𝑖  is the error (noise). All 

values calculated with the noisy θ measurements will have the same error. 

Appling this to equations (16): 

 

𝑑1 =
𝑑1𝑖 sin 𝛽̂𝑖

sin(𝛼̂𝑖 + 𝛽̂𝑖)
= 𝑑1 + 𝛿1 (19) 

 

where 𝑑1is the calculated value; d1 is the true values and 𝛿1 is the error. 

A Taylor Series expansion is used to express error as a function of the AOA 
measurement noise. 
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𝑑1 ≅ 𝑑1 + (
𝜕𝑑1
𝜕𝜃1

|
𝜃1,𝜃𝑖

) 𝜀1 + (
𝜕𝑑1
𝜕𝜃𝑖

|
𝜃1,𝜃𝑖

) 𝜀𝑖 (20) 

where 

𝜕𝑑1
𝜕𝜃1

= +
𝑑1𝑖 sin 𝛽̂𝑖

sin2(𝛼̂𝑖 + 𝛽̂𝑖)
cos(𝛼̂𝑖 + 𝛽̂𝑖) = 𝐹1(𝑖) (21) 

 

because 
𝜕𝛼𝑖

𝜕𝜃1
= −1 (see (13)) and 

 

𝜕𝑑1
𝜕𝜃𝑖

=
𝑑1𝑖 cos 𝛽̂𝑖

sin(𝛼̂𝑖 + 𝛽̂𝑖)
−

𝑑1𝑖 sin(𝛽̂𝑖)

sin2(𝛼̂𝑖 + 𝛽̂𝑖)
cos(𝛼𝑖 + 𝛽̂𝑖) = 𝐹2(𝑖) (22) 

 
It is important to note that both F1(i) and F2(i) are both functions of the AOA 
measurements and must be calculated for each pair of measurements. The first 
measurement location is used as a refence, and the system has M measurements; 
i = 2, …, M 
 
Substituting equations (21) and (22) into equation (19) gives: 
 

𝑑1 ≅ 𝑑1 + 𝐹1(𝑖)𝜀1 + 𝐹2(𝑖)𝜀𝑖 (23) 

 
Comparing equation (23) to equation (19) implies: 
 

𝛿1 = 𝐹1(𝑖)𝜀1 + 𝐹2(𝑖)𝜀𝑖  (24) 
 
A similar Taylor Series expansion for the values of di: 
 

𝑑̂𝑖 =
𝑑1𝑖 sin 𝛼̂𝑖

sin(𝛼̂𝑖 + 𝛽̂𝑖)
= 𝑑𝑖 + 𝛿𝑖 (25) 

and 
 

𝑑𝑖 = 𝑑𝑖 + (
𝜕𝑑𝑖
𝜕𝜃1

|
𝜃1,𝜃𝑖

) 𝜀1 + (
𝜕𝑑𝑖
𝜕𝜃𝑖

|
𝜃1,𝜃𝑖

) 𝜀𝑖 (26) 

where 
 

𝜕𝑑𝑖
𝜕𝜃1

= −
𝑑1𝑖 cos 𝛼̂𝑖

sin(𝛼̂𝑖 + 𝛽̂𝑖)
+

𝑑1𝑖 sin 𝛼̂𝑖

sin2(𝛼̂𝑖 + 𝛽̂𝑖)
cos(𝛼̂𝑖 + 𝛽̂𝑖) = 𝐺1(𝑖) (27) 
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because 
𝜕𝛼𝑖

𝜕𝜃1
= −1 (see (13)) and 

 
𝜕𝑑𝑖
𝜕𝜃𝑖

= −
𝑑1𝑖 sin 𝛼̂𝑖

sin2(𝛼̂𝑖 + 𝛽̂𝑖)
cos(𝛼̂𝑖 + 𝛽̂𝑖) = 𝐺2(𝑖) (28) 

 
As above i = 2, …, M and 
 

𝑑̂𝑖 ≅ 𝑑𝑖 + 𝐺(𝑖)𝜀1 + 𝐺2(𝑖)𝜀𝑖  (29) 

Also 
 

𝛿𝑖 = 𝐺1(𝑖)𝜀1 + 𝐺2(𝑖)𝜀𝑖  (30) 
 

3.2 Derivation of the 1st Stage Weighting Matrix 

Using the estimated values in equation (19) and (25) in the original matrix form of 
equation (6): 
 

[

−2𝑥1 −2𝑦1 1
−2𝑥2 −2𝑦2 1
⋮

−2𝑥𝑖

⋮
−2𝑦𝑖

⋮
1

] [
𝑥
𝑦
𝑐
] =  

[
 
 
 
 (𝑑̂1 − 𝛿1)

2
− 𝑘1

(𝑑̂2 − 𝛿2)
2
− 𝑘2

⋮

(𝑑𝑖 − 𝛿𝑖)
2
− 𝑘𝑖 ]

 
 
 
 

 
(31) 

                                    A                      μ                       B 
Expanding the squares in B gives: 
 

𝑑𝑖
2 = (𝑑𝑖 − 𝛿𝑖)

2
= 𝑑𝑖

2 − 2𝑑̂𝑖𝛿𝑖 + 𝛿𝑖
2 (32) 

 

Assuming that δi is small so that 𝛿𝑖
2 can be neglected, substituting (32) into (31) 

yields: 

[

−2𝑥1 −2𝑦1 1
−2𝑥2 −2𝑦2 1
⋮

−2𝑥𝑖

⋮
−2𝑦𝑖

⋮
1

] [
𝑥
𝑦
𝑐
] =  

[
 
 
 
𝑑1
2 − 𝑘1
𝑑2
2 − 𝑘2
⋮

𝑑𝑖
2 − 𝑘𝑖 ]

 
 
 

− [

2𝑑1𝛿1
2𝑑2𝛿2
⋮

2𝑑𝑖𝛿𝑖

] 
(33) 

                                    A                   μ                B’                      δ 
We let the weight matrix be the expected value of δδT, i.e., 
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𝐸{𝛿𝛿𝑇} = 𝐸 {[

2𝑑1𝛿1
2𝑑2𝛿2
⋮

2𝑑𝑖𝛿𝑖

] [2𝑑1𝛿1 2𝑑2𝛿2 … 2𝑑𝑖𝛿𝑖]} (34) 

 
Expanding equation (34) for a 5-measurement system: 
 
𝐸{𝛿𝛿𝑇}

= 4𝐸

{
 
 

 
 

 

[
 
 
 
 
 
𝑑1
2𝛿1

2 𝑑1𝑑2𝛿1𝛿2 𝑑1𝑑3𝛿1𝛿3 𝑑1𝑑4𝛿1𝛿4 𝑑1𝑑5𝛿1𝛿5
𝑑1𝑑2𝛿1𝛿2 𝑑2

2𝛿2
2 𝑑2𝑑3𝛿2𝛿3 𝑑2𝑑4𝛿2𝛿4 𝑑2𝑑5𝛿2𝛿5

𝑑1𝑑3𝛿1𝛿3
𝑑1𝑑4𝛿1𝛿4
𝑑1𝑑5𝛿1𝛿5

𝑑2𝑑3𝛿2𝛿3
𝑑2𝑑4𝛿2𝛿4
𝑑2𝑑5𝛿2𝛿5

𝑑3
2𝛿3

2

𝑑3𝑑4𝛿3𝛿4
𝑑3𝑑5𝛿3𝛿5

𝑑3𝑑4𝛿3𝛿4
𝑑4
2𝛿5

2

𝑑4𝑑5𝛿4𝛿5

𝑑3𝑑5𝛿3𝛿5
𝑑4𝑑5𝛿4𝛿5
𝑑5
2𝛿5

2 ]
 
 
 
 
 

}
 
 

 
 

 
(35) 

Or: 
 

4𝐸

{
 
 

 
 

Λ

[
 
 
 
 
 
𝛿1
2 𝛿1𝛿2 𝛿1𝛿3 𝛿1𝛿4 𝛿1𝛿5

𝛿1𝛿2 𝛿2
2 𝛿2𝛿3 𝛿2𝛿4 𝛿2𝛿5

𝛿1𝛿3
𝛿1𝛿4
𝛿1𝛿5

𝛿2𝛿3
𝛿2𝛿4
𝛿2𝛿5

𝛿3
2

𝛿3𝛿4
𝛿3𝛿5

𝛿3𝛿4
𝛿5
2

𝛿4𝛿5

𝛿3𝛿5
𝛿4𝛿5
𝛿5
2 ]
 
 
 
 
 

Λ

}
 
 

 
 

 
(36) 

                                                                   Ω                                                
Where: 

Λ = 

[
 
 
 
 
𝑑1 0 0 0 0
0 𝑑2 0 0 0

0
0
0

0
0
0

𝑑3
0
0

0
𝑑4
0

0
0
𝑑5]
 
 
 
 

 (37) 

Hence: 
 

Φ = 𝐸{𝛿𝛿𝑇} = 4ΛE{Ω}Λ (38) 
 
Noting that Ω is a symmetrical matrix means that only one half of the elements 
need to be calculated. The estimated value of the first element of Ω is: 
 

𝐸{𝛿1
2} = 𝐸{(𝐹1(𝑖)𝜀1 + 𝐹2(𝑖)𝜀2)

2} (39) 
 

𝐸{𝛿1
2} = 𝐸{[𝐹1(𝑖)]

2𝜀1
2 + 2𝐹1(𝑖)𝐹2(𝑖)𝜀1𝜀2 + [𝐹2(𝑖)]

2𝜀2
2} (40) 

 

Because the noise is assumed to be uncorrelated WGN and 𝐸{𝜀𝑖
2} is taken to be 

the variance of the noise 𝜎𝑒
2, equation (40) becomes: 
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𝐸{𝛿1

2} = 𝐸{(𝐹1(𝑖)𝜀1 + 𝐹2(𝑖)𝜀2)
2} = ([𝐹1(𝑖)]

2+ [𝐹2(𝑖)]
2)𝜎𝑒

2 (41) 
 
The second element on the diagonal of Ω is: 
 

𝐸{𝛿2
2} = 𝐸{(𝐺1(2)𝜀1 + 𝐺2(2)𝜀2)

2} (42) 
This expands to: 
 

𝐸{𝛿2
2} = 𝐸{𝐺1

2(2)𝜀1
2 + 2𝐺1(2)𝐹2(2)𝜀1𝜀2 + 𝐺2

2(2)𝜀2
2} (43) 

 
Again, noting the properties of WGN, equation (43) simplifies to: 
 

𝐸{𝛿2
2} = (𝐺1(2)

2 + 𝐺2(2)
2)𝜎𝑒

2 (44) 
 
Similarly, the remaining elements on the diagonal are: 
 

𝐸{𝛿3
2} = 𝐸{(𝐺1(3)𝜀1 + 𝐺2(3)𝜀3)

2} = (𝐺1(3)
2 + 𝐺2(3)

2)𝜎𝜀
2 (45) 

 

𝐸{𝛿4
2} = 𝐸{(𝐺1(4)𝜀1 + 𝐺2(4)𝜀4)

2} = (𝐺1(4)
2 + 𝐺2(4)

2)𝜎𝜀
2 (46) 

 

𝐸{𝛿5
2} = 𝐸{(𝐺1(5)𝜀1 + 𝐺2(5)𝜀5)

2} = (𝐺1(5)
2 + 𝐺2(5)

2)𝜎𝜀
2 (47) 

 
The elements in the first row of the off-diagonal of Ω are: 
 

𝐸{𝛿1𝛿2} = 𝐸{(𝐹1𝜀1 + 𝐹2𝜀2)(𝐺1(2)𝜀1 + 𝐺2(2)𝜖2)}

= (𝐹1𝐺1(2) + 𝐹2𝐺2(2))𝜎𝜀
2 

(48) 

 

𝐸{𝛿1𝛿3} = 𝐸{(𝐹1𝜀1 + 𝐹2𝜀2)(𝐺1(3)𝜀1 + 𝐺2(3)𝜀3)} = (𝐹1𝐺1(3))𝜎𝜀
2 (49) 

 

𝐸{𝛿1𝛿4} = 𝐸{(𝐹1𝜀1 + 𝐹2𝜖2)(𝐺1(4)𝜀1 + 𝐺2(4)𝜀4)} = (𝐹1𝐺1(4))𝜎𝜀
2 (50) 

 

𝐸{𝛿1𝛿5} = 𝐸{(𝐹1𝜀1 + 𝐹2𝜀2)(𝐺1(5)𝜀1 + 𝐺2(5)𝜀5)} = (𝐹1𝐺1(5))𝜎𝜀
2 (51) 

 
The remaining elements are: 
 

𝐸{𝛿2𝛿3} = 𝐸{[𝐺1(2)𝜀1 + 𝐺2(2)𝜀2][𝐺1(3)𝜀1 + 𝐺2(3)𝜀3]} (52) 
 
Which expands to 
 

𝐸{𝐺1(2)𝐺1(3)𝜖1
2 + 𝐺1(2)𝜀1𝐺2(3)𝜀3 + 𝐺2(2)𝜀2𝐺1(3)𝜀1
+ 𝐺2(2)𝜀2𝐺2(3)𝜀3} 

(53) 

 



22 
 

After applying the properties of WGN 
 

𝐸{𝛿2𝛿3} = 𝐺1(2)𝐺1(3)𝜎𝜀
2 (54) 

Similarly: 
 

𝐸{𝛿2𝛿4} = 𝐺1(2)𝐺1(4)𝜎𝑒
2 (55) 

 

𝐸{𝛿2𝛿5} = 𝐺1(2)𝐺1(5)𝜎𝑒
2 (56) 

 

𝐸{𝛿3𝛿4} = 𝐺1(3)𝐺1(4)𝜎𝑒
2 (57) 

 

𝐸{𝛿3𝛿5} = 𝐺1(3)𝐺(5)𝜎𝑒
2 (58) 

 

𝐸{𝛿4𝛿5} = 𝐺1(4)𝐺1(5)𝜎𝑒
2 (59) 

 
The general form of Ω is: 
 

[
 
 
 
 
 

(𝐹1
2 + 𝐹2

2)𝜎𝑒
2 (𝐺1𝐹1(2) + 𝐺2𝐹2(2))𝜎𝑒

2 (𝐺1𝐹1(3))𝜎𝑒
2 … (𝐺1𝐹1(𝑖))𝜎𝑒

2

(𝐺1𝐹1(2) + 𝐺2𝐹2(2))𝜎𝑒
2 (𝐺1(2)

2+ 𝐺2(2)
2)𝜎𝑒

2 𝐺1(2)𝐺1(3)𝜎𝑒
2 … 𝐺1(2)𝐺1(𝑖)𝜎𝑒

2

(𝐺1𝐹1(3))𝜎𝑒
2

⋮

(𝐺1𝐹1(𝑀))𝜎𝑒
2

𝐺1(2)𝐺1(3)𝜎𝑒
2

⋮
𝐺1(2)𝐺1(𝑀)𝜎𝑒

2

⋱
𝐺1(3)𝐺1(4)𝜎𝑒

2

𝐺1(3)𝐺1(𝑀)𝜎𝑒
2

⋱

⋮
𝐺1(4)𝐺1(𝑖)𝜎𝑒

2

(𝐺1(𝑀)
2 + 𝐺2(𝑀)

2)𝜎𝑒
2
]
 
 
 
 
 

 (60) 

Where F1(i), F2(i), G1(i) and G2(i) are defined in equations (21), (22), (27), and (28) 

respectively. The solution of μ using the 1st stage least squares weight matrix is: 

𝜇̂ =  (𝐴𝑇Φ−1𝐴)−1𝐴𝑇Φ−1𝐵′ (61) 
 

3.3 Derivation of 2nd Stage Weight Matrix 

In the 1st stage least squares, it was assumed that the unknown in µ = [x y c]T are 
independent. They are actually related by (7). This relationship should be 
exploited to improve on the 1st stage least squares, leading to the 2nd stage least 
squares as follows: 
 
The 1st stage estimate is: 
 

𝜇̂ = [

𝑥
𝑦

𝑥2 + 𝑦2
] (62) 
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Equation (62) assumes that an initial estimation of the emitter location has been 

made. The true emitter location is (x, y) and the estimated emitter, location is  
(𝑥, 𝑦) where: 

 

𝑥 = 𝑥 + 𝜉𝑥       𝑤ℎ𝑒𝑟𝑒 𝜉𝑥 𝑖𝑠 𝑡ℎ𝑒 𝑒𝑟𝑟𝑜𝑟 𝑖𝑛 𝑥 (63) 
 

𝑦 = 𝑦 + 𝜉𝑦        𝑤ℎ𝑒𝑟𝑒 𝜉𝑦 𝑖𝑠 𝑡ℎ𝑒 𝑒𝑟𝑟𝑜𝑟 𝑖𝑛 𝑦 (64) 
 

𝑥2 + 𝑦2 = 𝑐̂ = (𝑥2 + 𝑦2) + 𝜉𝑐         𝑤ℎ𝑒𝑟𝑒 𝜉𝑐  𝑖𝑠 𝑡ℎ𝑒 𝑒𝑟𝑟𝑜𝑟 𝑖𝑛 𝑐̂  (65) 
 
Squaring 𝑥 and 𝑦 results in: 
 

𝑥2 = 𝑥2 + 2𝑥𝜉𝑥 + 𝜉𝑥
2 (66) 

and 
 

𝑦2 = 𝑦2 + 2𝑥𝜉𝑦 + 𝜉𝑦
2 (67) 

 
If the errors are small then the square of the error can be neglected. The 2nd stage 
can be expressed as: 
 

[
1 0
0 1
1 1

] [
𝑥2

𝑦2
] = [

𝑥2

𝑦2

𝑐̂

] − [

2𝑥𝜉𝑥
2𝑥𝜉𝑦
𝜉𝑐

] 
(68) 

                                          H                      Q             ϵ 
We let the second stage weight matrix be the expected value of ϵϵT which is again 
a symmetric matrix. 
 

Φ2 = 𝐸 {[

4𝑥2𝜉𝑥
2 4𝑥𝑦𝜉𝑥𝜉𝑦 2𝑥𝜉𝑥𝜉𝑐

4𝑥𝑦𝜉𝑥𝜉𝑦 4𝑦2𝜉𝑦
2 2𝑦𝜉𝑦𝜉𝑐

2𝑥𝜉𝑥𝜉𝑐 2𝑦𝜉𝑦𝜉𝑐 𝜉𝑐
2

]} (69) 

 
Moving the constant terms outside the expected value: 
 

Φ2 = [
2𝑥 0 0
0 2𝑦 0
0 0 1

] 𝐸 {[

𝜉𝑥
2 𝜉𝑥𝜉𝑦 𝜉𝑥𝜉𝑐

𝜉𝑥𝜉𝑦 𝜉𝑦
2 𝜉𝑦𝜉𝑐

𝜉𝑥𝜉𝑐 𝜉𝑦𝜉𝑐 𝜉𝑐
2

]}[
2𝑥 0 0
0 2𝑦 0
0 0 1

] (70) 
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The similarities between equation (36) and equation (70) can be seen. Because 
the true values of x and y are unknown, their estimated values from the 1st stage 
are used. Let: 
 

𝐷 = [
2𝑥 0 0
0 2𝑦 0
0 0 1

] (71) 

then 
 

Φ2 = 𝐷(𝐴𝑇Φ−1𝐴)−1𝐷 (72) 
 
The solution for the 2nd stage least squares is: 
 

 
Equation (73) provides the square of the estimate. The 2nd stage estimate is the 
square root of the solution to equation (73); however, two additional implications 
must be accounted for. First the square root can be either positive or negative. To 
resolve this ambiguity, the sign of the 1st stage estimation is used for the 2nd stage 
solution. Secondly it is possible that the solution equation (73) will be negative 
number. In these cases, the 2nd stage solution is disregarded and the 1st stage 
solution is used. 
 

3.4 Development of Simulation 

A Matlab simulation was created that allows for the location of an unknown 
emitter by several measurements at known locations. The user must provide the 
real location of the emitter and the location of all measurements. The program 
calculates the AOA measurement using the true values using equation (1). Noise 
in the system is simulated by adding a random value to the AOA measurements. 
The random value has a zero mean gaussian distribution with variances specified 
by the use. To minimize the impact of random outlier, each algorithm was run 
5000 times and the mean of the estimates were calculated. 
 
For comparison purposes four algorithms are used: the standard AOA algorithm 

and three versions of the linear AOA algorithm. One using only the unweighted 

solution in equation (11); the second using the first stage WLS solution in 

equation (61); and the third using the 2nd stage WLS solution in equation (73). 

Each of these algorithms is passed the Data in Table 1 and must calculate all other 

required values. 

[
𝑥2

𝑦2
] = (𝐻𝑇Φ2

−1𝐻)−1𝐻𝑇Φ2
−1𝑄 (73) 
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Table 1 Data given to Algorithms 

Location of Sensor (xi, yi) Known without error 

AOA at each measurement location (θi) Measured with noise 

Variance of the noise For calculating the Expected Value 

 

3.5 Validation 

For validation purposes the RMSE of the estimation is compared to the Cramer-

Rao Lower Bound (CRLB) for the same variance. The CRLB is the lowest mean 

squared error for an unbiased estimator. The derivation for the CRLB for AOA 

algorithms was adapted from [9] and is detailed in Appendix 2. If the RMSE of the 

algorithm approaches the root of the CRLB, then the algorithm is likely to be 

unbiased and approaches the best possible MSE for the noise variance given. The 

standard AOA algorithm has been shown to approach the CRLB [1] [9] [21]. 

Therefore, a comparison of the linear algorithm to the CRLB is at least as valid as a 

direct comparison to the Standard AOA method.  

The second metric of evaluation is the time required for calculation of the 

estimation. The program has been set to record the time between passing the 

given information to each algorithm and the algorithm returning an estimate of 

the emitter location. In this case the linear algorithm is compared directly to the 

standard AOA algorithm. If less time is required by the program for computation, 

then the algorithm must be computationally simpler. In a practical system a 

computationally simpler system would require a smaller or less powerful central 

processing unit or allow the central processor to be used for other tasks such as 

communication of maneuvering control. 

To simulate the movement of the platform the measurements are taken in four 

concentric arcs with radii of: 500 meters; 1000 meters 2000 meters and 4000 

meters. These measurement configurations provide a balance between the ideal 

configuration of a surrounded emitter [8] and a realist arc length that a platform 

could travel while the emitter is transmitting. Each arc is tested separately with a 

single emitter in one of three positions: at the center of the arc (Figure 8); off 

center of arc (Figure 9); and behind the cure of the arc (Figure 10). This provides a 

total of 12 tests for the algorithms. 
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Figure 8 Senor Configuration with Emitter at Center of Arc 

 

Figure 9 Senor Configuration with Emitter off Center of Arc 
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Figure 10 Sensor Configuration with Emitter Behind the Curve of the Arc 
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4. Experimental Results 

The configurations described is Section 3.5 were designed to test the overall 

effectiveness of the linear algorithm. Additional experiments were conducted to 

optimise the system and test the effectiveness of the linear algorithm in the 

specific application of a moving sensor. 

4.1 Optimising Sensor Order 

The algorithm uses measurement pairs and the law of sines to determine the 

distance from the measurement locations to the emitter. The first measurement 

location is used as the refence point. This results in M-1 pairs for a system of M 

measurements. Theoretically the measurement pairs could be used in any order. 

However, to reduce the number of computations the distance from the first 

measurement to the emitter (d1) is only calculated once and used in all other 

pairings. Therefore, the selection of the first pair of measurement location will 

impact the accuracy of the algorithm. 

Noting the geometry in Figure 7 and equations (16) and (17) we see that as the 

distance between the two measurements locations decreases, so does the angle 

at the emitter (𝛼𝑖 + 𝛽𝑖). The distances are calculated by dividing by Sin(𝛼𝑖 + 𝛽𝑖). 

Smaller distances between measurement locations brings the denominator closer 

to zero. Therefore, the best measurement pair to use for the initial calculation of 

d1 is the first measurement location and the measurement location farthest from 

the first measurement location. This was tested at multiple distances and in 

multiple configurations. The results of a comparison of sensor orders with an arc 

radius of 2000 meters is provided in Figure 11. 
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Figure 11 Impact of Sensor Orders on Accuracy 

Selecting the farthest measurement from the first measurement in the first 

pairing increases the accuracy of estimation significantly. There is also a marginal 

improvement in accuracy by selecting measurement pairs from farthest to closest 

however, only the first pair has a significant impact. All remaining diagrams will 

use the sensor order 1 5 2 3 4. 

4.2 Testing Emitter at Center of Arc 

For validation purposes the RMSE of the linear system of equations is compared 

to the Standard AOA algorithm and the CRLB. The most favorable measurement 

configuration used has the emitter at the center of the platform’s arc. The results 

of these test were very consistent. Figures 12 through 15 show the RMSE vise the 

Noise variance with an arc radius of 500 meters, 1000 meters, 2000 meters and 

4000 meters respectively. 
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Figure 12 RMSE vs Noise Variance at Radius 500 meters 

 

Figure 13 RMSE vs Noise Variance at Radius 1000 meters 
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Figure 14 RMSE vs Noise Variance at Radius 2000 meters 

 

Figure 15 RMSE vs Noise Variance at Radius 4000 meters 
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The shape of the graph is nearly identical and the RMSE increases proportionately 

with the distance from the emitter as expected. Although the 1st stage estimation 

differs significantly from the CRLB the 2nd stage estimation is much closer. 

Given that the CRLB is the theoretical limit of estimation, a relative formula for 

comparison has been used to determine the decibel ratio of each algorithm to the 

CRLB. The formula used is: 

𝑑𝐵 = 10 × 𝑙𝑜𝑔10 (
𝐶𝑅𝐿𝐵

𝑅𝑀𝑆𝐸 𝑜𝑓 𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚
) (72) 

 

A negative dB value from equation (72) indicates less accuracy than the CRLB. 

Figures 16, 17, 18 and 19 display the relative accuracy vs noise variance 

comparisons for the emitter at the centre of the arc. 

 

Figure 16 Relative Accuracy vs Noise Variance at Radius 500 meters 
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Figure 17 Relative Accuracy vs Noise Variance at Radius 1000 meters 

 

Figure 18 Relative Accuracy vs Noise Variance at Radius 2000 meters 
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Figure 19 Relative Accuracy vs Noise Variance at Radius 4000 meters 

The decibel graph again indicates that the linear system is performing 

consistently. The 2nd stage estimation is less accurate than the Standard AOA 

algorithm. However, a 0.5 dB loss of accuracy when with noise variance of 9 is 

likely to be acceptable in many practical applications. 

To determine the computational efficiency of the linear algorithm, the time 

required to complete an estimation was recorded. The mean of 5000 independent 

trials for the measurement configuration with the emitter at the center of the arc 

is given in Figures 20, 21, 22, and 23. The processor used for all tests was a 2.10 

GHz AMD Ryzen 5 with 8 GB of RAM. 
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Figure 20 Computational Time with Emitter at Center of Arc and Radius 500m 

 

Figure 21 Computational Time with Emitter at Center of Arc and Radius 1000m 
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Figure 22Computational Time with Emitter at Center of Arc and Radius 2000m 

 

Figure 23 Computational Time with Emitter at Center of Arc and Radius 4000m 
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There is a consistency with the computational time: 3.5 μs when the linear system 

is used without a weight matrix; just under 4.5 μs when only the 2st stage is used; 

about 5.25 for the Standard AOA algorithm and 7 μs when the 2nd stage weight 

matrix is used in the linear system of equations.  

4.3 Emitter Off Center of Arc 

In a practical geolocation scenario, it is unlikely that the emitter will be perfectly 

centered on the arc formed by the sensors. To test the effectiveness of the linear 

system of equations with an off-centre emitter, the emitter was changed to 

coordinated (2250, 1750). Figures 24 through 27 provide the relative accuracy of 

the algorithm, as described by equation72). 

 

Figure 24 Relative Accuracy for Off Center Emitter Arc Radius 500m 
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Figure 25 Relative Accuracy for Off Center Emitter Arc Radius 1000m 

 

Figure 26 Relative Accuracy for Off Center Emitter Arc Radius 2000m 
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Figure 27 Relative Accuracy for Off Center Emitter Arc Radius 4000m 

The poorest accuracy is seen in Figure 24. Of the four sensor arcs used in this test, 

the emitter is most off centre for the 500m arc and closest to centre for the 

4000m arc. It follows that the 500m would have the lowest accuracy and the 

4000m arc the highest accuracy for this configuration.  

The impact of the off-centre emitter can most clearly be seen in the results for the 

1st stage estimation.  In the first test, with the emitter centered (figures 16-19) the 

1st stage estimation was consistently at -4dB. In the off-centre test the 1st stage 

estimation moves closer to -4dB as the arc radius increases, and the emitter is 

more centered. 

The computational times for this test are very similar to the time from the first 

test. Figures 28 and 29 provide the times for the 500m arch and the 1000m 

respectively. 
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Figure 28 Computational Time with Emitter Off Center of Arc and Range 500m 

 

Figure 29 Computational Time with Emitter Off Center of Arc and Range 1000m 
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These results indicate that the time required to complete an estimation is 

consistent provided the emitter is within the effective field of view of the sensor 

configuration. 

4.4 Emitter Behind Arc 

The third test conducted placed the emitter behind the arc formed by the 

measurements. This configuration was designed to test the system under 

unfavourable conditions. The relative accuracy for the 1000 meter, 2000 meter 

and 4000 meter arcs are presented in Figures 30 through 32 respectively. 

 

Figure 30 Relative Accuracy for Emitter Behind Arc Radius 1000m 
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Figure 31 Relative Accuracy for Emitter Behind Arc Radius 2000m 

 

Figure 32 Relative Accuracy for Emitter Behind Arc Radius 4000m 
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With the emitter behind the arc, it is closest to the largest arc and farthest from 

the smallest arc. It was therefore expected that the 4000 meter arc would have 

the best results. In Figures 30 and 21 we see that there is minimal difference 

between the 1st stage estimation and the 2ns stage estimation. This is an 

indication that the estimation is inaccurate. A similar pattern can be seen in 

Figures 24 and 27. As the noise variance increases the 1st stage estimation 

accuracy remains constant but the relative accuracy of the 2nd stage estimation 

decreases, approaching the 1st stage estimation. 

The reason the 2nd stage estimation approaches the 1st stage estimation for 

unfavourable sensor-emitter configuration is a result of equation (71). As noted 

above, it is possible for the 2nd stage solution to include a negative x2 or y2, 

particularly for noisy measurements or unfavourable configurations. When a 

negative x2 or y2 is calculated, the algorithm rejects the 2nd stage estimation and 

returns the 1st stage estimation. Therefore, the worst possible result is the 1st 

stage estimation. 

As with the above tests the computation times were recorded. Figures 33 through 

35 give the results. 

 

Figure 33 Computational Time with Emitter Behind Arc and Radius 1000m 
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Figure 34 Computational Time with Emitter Behind Arc and Radius 2000m 

 

Figure 35 Computational Time with Emitter Behind Arc and Radius 4000m 

It was observed with both the 1000 meter arc and the 4000 meter the 

computational time require increased with the variance of the noise. This is 
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attributed to the emitter being at an extreme range for the 1000 meter arc and an 

extreme angle for the 4000 meter arc. The complete failure of the 2nd stage 

estimation for the 1000 meter arc (Figure 30) confirms that the emitter is beyond 

an acceptable range. Although Figure 32 shows that the 2nd stage was not 

completely rejected for the 4000 meter arc, the relatively small difference 

between the 1st and 2nd stage indicates this configuration is approaching a useable 

limit. 

4.5 Impact of Additional Measurements 

Fixed sensors have set locations and set distance between senor locations. 

Moving sensors have the possibility of increasing the frequency of measurements 

as the sensor platform moves. If the total distance traveled by the platform 

remains the same while the frequency of measurements is increased the 

distances between measurements will decrease. Increasing the number of 

measurements can increase the accuracy of the estimation, but there is an upper 

limit. If the noise in the AOA measurements is sufficiently large, or the 

measurements are taken too close together, then the noise could exceed the 

angular difference between measurements. This will have the effect of reducing 

the accuracy of the system. To investigate how the linear algorithms responds to 

increasing measure, tests were conducted with the emitter at the center of the 

2000m and 4000m arcs (similar to Figure 8). The length of the arc and the 

variance were kept constant while increasing the numbers of equally spaced 

measurements. Figures 36 and 37 display the results. 
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Figure 36 Error for Increasing Measurements 2000m Arc 

 

Figure 37 Error for Increasing Measurements 4000m Arc 
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In both cases the accuracy of the linear system improves with the number of 

measurements and begins to plateau around 9 measurements in the arc. This 

shows the advantage of using a moving sensor compared to fixed sensors. With 

fixed sensors, the number of measurements is limited to the number of sensors, 

whereas with a moving sensor, the number of measurements can be increased, 

which will improve the performance. 

4.6 Impact of Increasing Arc Length 

Another advantages that mobile sensors have over fixed sensors is the ability to 

change the distance between measurements or to move to locations that come 

closer to surrounding the emitter. To test the impact of extending the arc length 

past 90o tests are conducted with 5 measurements and 9 measurements changing 

the arc length from 90o to 130o in 10o increments. For all these tests the variance 

was kept constant and the arc radius was maintained at 2000m.  The 

measurement order for these tests were: first, Last, remaining measurements 

from second to second last. Figure 38 and 39 show the results. 

 

Figure 38 Error for Increasing Arc Length with 5 Measurements  
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Figure 39 Error for Increasing Arc Length with 9 Measurements 

As expected, increasing creasing the distance between measurements improves 

the accuracy of the estimation. This again shows the advantage of using a moving 

sensor compared to fixed sensors. With a moving sensor, we can get an estimate 

of the location of the emitter from the first measurements, and then try to 

surround the emitter, which of course cannot be done with sensors at fixed 

locations. In summary, increasing both the number of measurements and the 

total arclength improved the accuracy even further.  

4.7 Discussion of Accuracy 

In all the above tests, the accuracy of the linear algorithm was less than the 

accuracy of the standard AOA algorithm. The premise of this thesis was that using 

distances instead of angle of arrival measurements would reduce the bias and 

therefore improve the overall accuracy. The errors and noise in the system were 

attributed to the angular measurements. It follows that distances calculated from 

noisy measurements would have errors as well. To determine the cause of the 

overall system inaccuracy, the errors in the distance calculations are examined.  
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Knowing the true location of the emitter and true measurement locations, the 

true distance was calculated and the errors in the distances calculated by the 

algorithm were determined. For these tests 5000 independent iterations are 

conducted, then the MatLab function mean was used to find the mean of the 

distance errors and the MatLab function std was used to find the standard 

deviation of the distance errors. Table 2 provides the mean and standard 

deviation of the distance errors. Note that Table 2 displays the distances in the 

order 1 2 3 4 5 for ease of reading, however the algorithm calculates the distances 

in the order 1 5 2 3 4, as it previously discussed that this order improves the 

performance. 

Table 2 Mean and Standard Deviation of Distance Errors (Order 1 5 2 3 4) 

 AOA Variance 

 1 2 3 4 5 

Mean of d1 0.88 1.44 1.94 2.42 2.88 

Mean of d2 7.13 14.79 22.70 30.87 39.28 

Mean of d3 1.82 3.62 5.43 7.26 9.09 

Mean of d4 0.71 1.40 2.08 2.77 3.46 

Mean of d5 0.31 0.63 0.95 1.28 1.60 

 

Std Dev d1 35.46 50.20 61.53 71.11 79.57 

Std Dev d2 125.49 180.51 224.97 264.50 301.32 

Std Dev d3 60.78 86.26 106.03 122.89 137.91 

Std Dev d4 40.52 57.39 70.40 81.42 91.18 

Std Dev d5 35.12 49.72 61.53 70.45 78.84 

 

Using the mean as an indication of the bias on the distance calculation, it can be 

seen that the bias is relatively small compared to the standard deviation. For 

comparison the same investigation of distance errors was conducted with the 

measurements in the order 1 2 3 4 5. Table 3 displays the results. 
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Table 3 Mean and Standard Deviation of Distance Errors (Order 1 2 3 4 5) 

 AOA Variance 

 1 2 3 4 5 

Mean of d1 9.59 18.60 27.72 37.04 46.59 

Mean of d2 9.48 48.44 27.52 36.81 46.33 

Mean of d3 1.51 3.18 4.88 6.60 8.34 

Mean of d4 0.69 1.37 20.6 2.75 3.44 

Mean of d5 0.28 0.57 0.86 1.15 1.45 

 

Std Dev d1 129.51 186.66 233.05 274.50 313.31 

Std Dev d2 129.40 186.50 232.86 274.28 313.07 

Std Dev d3 60.37 85.73 105.43 122.24 137.23 

Std Dev d4 40.66 57.58 70.62 81.67 91.44 

Std Dev d5 35.08 49.65 60.85 70.32 78.67 

 

Comparing Table 2 and Table 3, we see that the mean of the errors or bias on the 

calculation of d3, d4 and d5 is small when the order of the measurements is 1 2 3 

4 5. The standard deviations for d2, d3, d4, and d5 are about the same in either 

order. The bias of d1 and d2 as well as the standard deviation of d1 are 

significantly higher when the measurement order is 1 2 3 4 5. The impact on the 

bias and standard deviation of d1 is particularly important as this value is only 

calculated once, but used in the calculation of all other distance. This confirms 

what was observed in section 4.1: using the measurements in the order 1 5 2 3 4 

instead of 1 2 3 4 5 improves the performance.  

The Matlab function normplot compares the distribution of a given variable (blue 

crosses in Figures 40 and 41) to the normal distribution (dashed red line in Figures 

40 and 41). Figure 40 is the normplot for d1 with an AOA Variance of 1 and a 

sensor order of 1 5 2 3 4. Figure 41 is the normplot for d3 under the same 

conditions. Although d1 closely follows the normal distribution d3 does not. 
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Figure 40 normplot for d1 with AOA Variance of 1 

 

Figure 41 normplot for d3 with AOA Variance of 1 
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This has two important impacts on the accuracy of the linear algorithm. First the 

errors are not zero mean. Second the distribution is not strictly Gaussian. The 

noise in the system was assumed to be zero mean, additive white gaussian noise. 

The fact that this is not the case creates inaccuracies in the system. However, 

without a model of the noise, an estimate cannot be calculated. 
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5. Conclusion 

The objective of this thesis was to utilize an algorithm based on a linear system of 

equations to estimate the location of an emitter from AOA measurements. The 

metrics to be used were the accuracy compared to the standard AOA algorithm 

and computational efficiency compared to the standard AOA algorithm. When 

using a 2-stage weighted least squares with the linear system of equations the 

algorithm provides an estimated emitter location within -0.5 dB of the CRLB. 

Although the accuracy of the new algorithm does not match the standard AOA 

algorithm, it is a reasonably accurate estimation. The 2-stage weighted least 

squares estimation does require approximately 2 microseconds more 

computational time than the standard AOA algorithm. It is noted that in most 

case the 1st stage weighted least squares estimation is fast than the standard AOA 

algorithm. In fact, the when the noise variance is was below 4 the 1st stage WLS 

estimation was in all cased faster that the standard AOA algorithm, even in 

unfavourable conditions. The algorithm used for this thesis is an effective 

estimation tool when the sensor-emitter configuration is not completely 

unfavorable and its accuracy is close to that of the standard AOA and to the CRLB.  

Using a single moving sensor reduces the hardware complexity compared to 

several fixed sensors and also reduces the throughput required to transmit the 

data from the sensors to a central processing unit. If the moving sensor can 

process the collected data and estimate the location, data transmission can be 

completely eliminated. Furthermore, a moving sensor can increase the number of 

measurements and try to encircle the emitter, which will improve the localization 

accuracy. 

5.1 Future Work 

The use of distances instead of measured angles in the system matrix may provide 

an advantage if this algorithm were to be combined with either RSS or TDOA 

measurements. When the standard AOA algorithm is used in hybrid estimations 

with RSS and TDOA, two equations are required: the angular equation for AOA 

and a distance equation for RSS or TDOA. In this thesis the conversion of the 

angular measurements into distances is included in the time recorded for the 

estimation. If this algorithm were used in a hybrid estimation, the second 

equation would not be required and the overall time for a hybrid estimation may 

be reduced. 
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As noted in Chapter 4, increasing the frequency of measurements that include 

noise has an upper limit where the noise overtakes the measurements. The 

implementation of a filter on the noisy measurements may reduce the impact of 

the noise and increase the overall accuracy of the algorithm. 
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Appendix A. MatLab Code 

A1.1 Main Program 

% Linear AOA Method based on  Dr. Y.T Chan's notes Sep 22 
% 
% Written by Capt. James Bayes 
% Partial Fulfillment of the Requirements for the Degree of 
% Master of Applied Science in Electrical Engineering 
clear all 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%% 
% Target and measurement locations 
 
TargetX = [2000];% X coordinate of Emitter 
TargetY = [2000];% Y coordinate of Emitter 
 
SensorX = [0.0 2000 152.2 585.8 1234.6]; % X coordinate of sensor 
measurements 
SensorY = [2000.0 0 1234.6 585.8 152.2]; % Y coordinate of sensor 
measurements 
 
Nsensors = length(SensorX); 
 
NoiseVar = [0.1 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0]; % used to 
set the variance of the noise 
% NoiseVar =[5 5 5]; 
NumVar = length(NoiseVar); 
 
NumTrials = 5000; % used to number of iterations 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%% 
rng(2647589,"v4"); % Seed for random number generator 
 
% call function to calculate the AOA for each measurement 
% This represents the measurements taken at each location 
% After this function call calculations will be bases on: 
%     The Sensor Locations (known to Sensors) and 
%     The AOA 'measured' in this function call 
ThetaAngles = AOAmeasure (TargetX, TargetY, SensorX, SensorY); 
 
% initalising Variables for Standard AOA metrics 
StandCalMean = zeros(NumVar,1); 
StandRSME = zeros(NumVar,1); 
StandBiasX= zeros(NumVar,1); 
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StandBiasY= zeros(NumVar,1); 
% initalising Variables for Linear with stage 1 weight metrics 
Stage1CalMean = zeros(NumVar,1); 
Stage1RSME = zeros(NumVar,1); 
Stage1BiasX= zeros(NumVar,1); 
Stage1BiasY= zeros(NumVar,1); 
% initalising Variables for Linear with stage 2 weight metrics 
Stage2CalMean = zeros(NumVar,1); 
Stage2RSME = zeros(NumVar,1); 
Stage2BiasX= zeros(NumVar,1); 
Stage2BiasY= zeros(NumVar,1); 
complexcount = zeros(NumVar,1); 
 
for varit = 1:NumVar 
    % Estimate and Calculation time for Standard AOA calculations 
    Standx=zeros(NumTrials,1); Standy=zeros(NumTrials,1); 
    StandCalcT=zeros(NumTrials,1); 
    % Estimate and Calculation time for Linear with no weights 
    No_weightx=zeros(NumTrials,1); No_weighty=zeros(NumTrials,1); 
    No_weightCalcT=zeros(NumTrials,1);  
    % Estimate and Calculation time for 1st stage weights 
    Stage1x=zeros(NumTrials,1); Stage1y=zeros(NumTrials,1); 
Stage1c=zeros(NumTrials,1); 
    Stage1CalcT=zeros(NumTrials,1);    
    % Estimate and Calculation time for 2nd stage weights 
    Stage2x=zeros(NumTrials,1); Stage2y=zeros(NumTrials,1); 
    Stage2CalcT=zeros(NumTrials,1); 
    baddata = 0;  
 
    for it = 1:NumTrials % Running multiple iterations of method 
        ThetaAnglesafter = 
ThetaAngles+sqrt(NoiseVar(varit))*randn(Nsensors,1); % adding 
noise 
 
        % Call function to calculate distance from sensor location 
to Target 
        % These function used the AOA and the distance between 
measurements 
        % to calculates the distance to target using the Law of 
Sines 
        tic; 
        [Standx(it), Standy(it)] = AOA_2013_2D(SensorX, SensorY, 
ThetaAnglesafter,NoiseVar(varit)); 
        StandCalcT (it,varit) = toc; % Recording the calculation 
time for the Standard AOA method 
        tic; 
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        [No_weightx(it), No_weighty(it),] = AOA_0stage (SensorX, 
SensorY, ThetaAnglesafter); 
        No_weightCalcT (it,varit) = toc; % Recording the 
calculation time for Linear with no weights 
        tic; 
        [Stage1x(it), Stage1y(it), Stage1c(it)] = AOA_1stage_AB 
(SensorX, SensorY, ThetaAnglesafter,NoiseVar(varit)); 
        Stage1CalcT (it,varit) = toc; % Recording the calculation 
time for 1st stage weights 
        tic 
        [Stage2x(it), Stage2y(it), baddata] = AOA_2stage_AB 
(SensorX, SensorY, ThetaAnglesafter,NoiseVar(varit)); 
        Stage2CalcT (it,varit) = toc; % Recording the calculation 
time for 2nd stage weights 
        complexcount(varit)=complexcount(varit)+baddata; 
        
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%% 
    end 
     
    % Determine the CRLB 
    [RCRLB_AOA(varit)] = 
AOA_RCRLB(Nsensors,SensorX,SensorY,1,TargetX,TargetY,NoiseVar(vari
t)); 
 
    % Determining the Mean calculation time for each algorithm 
    StandCalMean(varit)=mean(StandCalcT(:,varit)); 
    No_WCAlMean(varit)=mean(No_weightCalcT(:,varit)); 
    Stage1CalMean(varit)=mean(Stage1CalcT(:,varit)); 
    Stage2CalMean(varit)=mean(Stage2CalcT(:,varit)); 
    
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%% 
    % CONDUCT ANALYSIS OF THE RESULTS OF THE ESTIMATION 
%%%%%%%%%%%%%%%%%%%%%% 
     
    % Determine the average of the estimated target location 
    StandXerror=TargetX -Standx; 
    StandYerror=TargetY - Standy; 
    StandDisError=sqrt(StandXerror.^2+StandYerror.^2); 
    StandRSME(varit)=sqrt(mean(StandDisError.^2)); 
 
    No_WXerror=TargetX -No_weightx; 
    No_WYerror=TargetY - No_weighty; 
    No_WDisError=sqrt(No_WXerror.^2+No_WYerror.^2); 
    No_WRSME(varit)=sqrt(mean(No_WDisError.^2));    
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    Stage1Xerror=TargetX -Stage1x; 
    Stage1Yerror=TargetY - Stage1y; 
    Stage1DisError=sqrt(Stage1Xerror.^2+Stage1Yerror.^2); 
    Stage1RSME(varit)=sqrt(mean(Stage1DisError.^2)); 
 
    Stage2Xerror=TargetX -Stage2x; 
    Stage2Yerror=TargetY - Stage2y; 
    Stage2DisError=sqrt(Stage2Xerror.^2+Stage2Yerror.^2); 
    Stage2RSME(varit)=sqrt(mean(Stage2DisError.^2)); 
 
    % Determine the bias in the estimations 
    StandBiasX(varit)=(mean(Standx))-TargetX; 
    StandBiasY(varit)=(mean(Standy))-TargetY; 
 
    Stage1BiasX(varit)=(mean(Stage1x))-TargetX; 
    Stage1BiasY(varit)=(mean(Stage1y))-TargetY; 
 
    Stage2BiasX(varit)=(mean(Stage2x))-TargetX; 
    Stage2BiasY(varit)=(mean(Stage2y))-TargetY; 
end 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%% 
% Saving data to text file 
fileid = fopen('14-04-2023.txt','a+'); 
 
fprintf(fileid, '\n\nFile written at : %s \n', datetime); 
fprintf(fileid, 
'*************************************************\n' ); 
fprintf(fileid, '*****Target at Center of Arc (2000, 2000) 
*******\n' ); 
fprintf(fileid, 'Number of Iteration Per Noise Variance:  %6.0d 
\n',NumTrials); 
fprintf(fileid, 'True Target X Location is  %3.3d \n',TargetX); 
fprintf(fileid, 'True Target Y Location is  %3.3d \n\n',TargetY); 
fprintf(fileid, 'Measurement Location');  
fprintf(fileid, '\nX coordinate'); fprintf(fileid,' 
%5.1f',SensorX); 
fprintf(fileid, '\nY coordinate'); fprintf(fileid,' 
%5.1f',SensorY); 
 
fprintf(fileid, '\n********* Range 2000m 
**************************\n\n' ); 
fprintf(fileid, 'Noise Variances Used: '); fprintf(fileid,'%8.6f    
',NoiseVar); 
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fprintf(fileid, '\n-----------------------------------------------
-------------------------------------' ); 
fprintf(fileid, '\nRCRLB             '); fprintf(fileid,' 
%11.6f',RCRLB_AOA); 
fprintf(fileid, '\n-----------------------------------------------
-------------------------------------' ); 
 
% fprintf(fileid, '\nStandard AOA Method -------------------------
---------------------------------------\n' ); 
fprintf(fileid, '\nRSME Standard AOA '); fprintf(fileid,' 
%11.6f',StandRSME); 
% fprintf(fileid, '\nBias on X coordinate is   '); 
fprintf(fileid,' %11.6f',StandBiasX); 
% fprintf(fileid, '\nBias on Y coordinate is   '); 
fprintf(fileid,' %11.6f',StandBiasY); 
% fprintf(fileid, '\nMean Time for Calculations'); 
fprintf(fileid,'%12.6f', StandCalMean); 
 
% fprintf(fileid, '\nStandard Linear without Weights -------------
------------------------------------------\n' ); 
fprintf(fileid, '\nRSME No Weights   '); fprintf(fileid,' 
%11.6f',No_WRSME); 
% fprintf(fileid, '\nBias on X coordinate is   '); 
fprintf(fileid,' %11.6f',LineBiasX); 
% fprintf(fileid, '\nBias on Y coordinate is   '); 
fprintf(fileid,' %11.6f',LineBiasY); 
% fprintf(fileid, '\nMean Time for Calculations'); 
fprintf(fileid,'%12.6f', LineCalMean); 
 
% fprintf(fileid, '\nStandard Linear 1st Stage Weights -----------
--------------------------------------------\n' ); 
fprintf(fileid, '\nRSME S1 Weighted  '); fprintf(fileid,' 
%11.6f',Stage1RSME); 
% fprintf(fileid, '\nBias on X coordinate is   '); 
fprintf(fileid,' %11.6f',LineBiasX); 
% fprintf(fileid, '\nBias on Y coordinate is   '); 
fprintf(fileid,' %11.6f',LineBiasY); 
% fprintf(fileid, '\nMean Time for Calculations'); 
fprintf(fileid,'%12.6f', LineCalMean); 
 
% fprintf(fileid, '\nStandard Quadratic 2nd Stage Weights --------
--------------------------------------------\n' ); 
fprintf(fileid, '\nRSME S2 Weighted  '); fprintf(fileid,' 
%11.6f',Stage2RSME); 
% fprintf(fileid, '\nBias on X coordinate is   '); 
fprintf(fileid,' %11.6f',QuadBiasX); 
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% fprintf(fileid, '\nBias on Y coordinate is   '); 
fprintf(fileid,' %11.6f',QuadBiasY); 
% fprintf(fileid, '\nMean Time for Calculations'); 
fprintf(fileid,'%12.6f', QuadCalMean); 
fprintf(fileid, 
'\n**************************************************\n' ); 
fprintf(fileid, '\nMean Time (in seconds) required for 
Calculations \n' ); 
fprintf(fileid, 'Noise Variances used: '); fprintf(fileid,'%8.6f    
',NoiseVar); 
fprintf(fileid, '\n-----------------------------------------------
-------------------------------------' ); 
fprintf(fileid, '\nStandard AOA      '); fprintf(fileid,'%12.6f', 
StandCalMean); 
fprintf(fileid, '\nS1 No Weights     '); fprintf(fileid,'%12.6f', 
No_WCAlMean); 
fprintf(fileid, '\nS1 Weighted       '); fprintf(fileid,'%12.6f', 
Stage1CalMean); 
fprintf(fileid, '\nS2 Weighted       '); fprintf(fileid,'%12.6f', 
Stage2CalMean); 
fclose(fileid); 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% 
% FUNCTIONS USED IN THE SCRIPT ARE LISTED BELOW  
%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% 
% Function to calculate the AOA for each measurement 
function [AOAAngles] = AOAmeasure(TX,TY,SX,SY) 
% Calculate angles between target and measurement 
Xtd = TX-SX';  Ytd = TY-SY'; % distance between Target and sensor 
AOAAngles = atan2d(Xtd,Ytd);  % returns angle from positive Y-Axis 
end 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% 
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A1.2 Standard AOA Function 

function [x, y] = AOA_2013_2D(SX,SY,Az,VarAzi) 
% Created:  Feb 2, 2023 (Groundhog Day) 
% Reason:   This is the AOA algorithm from the 2013 paper AOA 
localization for an emitter. 
% Status:   Active  
SX=SX'; SY=SY';  
%   Remembered that one must use radians 
VarAzi = VarAzi*(pi/180)^2;     % Convert to radians 
M = size(SX,1);     % Number of sensors 
a = cosd(Az);   b = sind(Az);  % 
 
A = [-a b]; 
B = [-SX.*a + SY.*b]; 
% Get initial estimate 
u1 = (A'*A)\A'*B; 
 
% Check to see if we want Weight Matrix or not. 
for repcnt = 1:2 
    % YT's version of the weight matrix for the 2D part 
    Xp = SX-u1(1);  Yp = SY-u1(2); 
    Di = (Xp).^2 + (Yp).^2; 
    W = diag([Di*VarAzi]); 
%   Get updaetd estimate 
    u1 = (A'/W*A)\A'/W*B; 
    % update the weighting matrix with the estimate of the target 
location 
end 
x = u1(1);  y = u1(2); % 
end 
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A1.2 Linear Function without Weight Matrix 

function [x, y,c] = AOA_0stage (SX,SY,AOAAngles) 
 
M=length(SX); 
% Creating the A Matrix 
A= ones(M,3);  %  A Matrix is used for 1st stage weight [-1xi -
2yi, 1] 
A(:,1)=-2*SX'; A(:,2)=-2*SY'; % placing x and y values in A 
 
Ki=SX.^2+SY.^2;  
Ki=Ki'; 
 
Xp = (SX(2:M)-SX(1))';     Yp = (SY(2:M)-SY(1))'; 
% Distance between sensor 1 and all other sensors 
DELp = sqrt(Xp.^2 + Yp.^2); 
% Angle between 1st sensore and other sensors 
PHI1m = atan2d(Xp, Yp);     % angle from sensor 1 to p 
PHIm1 = atan2d(-Xp,-Yp);    % angle from sensor p to 1  
 
%   You have possible M1 triangles 
BetaP = abs(AOAAngles(2:M) - PHIm1); 
AlphaP = abs(PHI1m - AOAAngles(1)); 
BetaP(BetaP>180) = 360 - BetaP(BetaP>180);      % At sensor p, 
this is the angle between sensor 1 to the target.  
AlphaP(AlphaP>180) = abs(360 - AlphaP(AlphaP>180)); % Angle at 
sensor 1 between target and sensor p. 
 
%   We use the law of sines to solve Dp1 
d1_p = DELp.*sind(BetaP)./(sind(AlphaP+BetaP)); 
% Calculate values for AOA 
dp = DELp./sind(AlphaP+BetaP).*sind(AlphaP); 
 
B= zeros(M,1); 
B(1) = d1_p(1)^2-Ki(1); 
B(2:M) = dp.^2-Ki(2:M); 
 
uxy = (A'*A)\A'*B; 
 
x = uxy(1);  y = uxy(2); 
end 
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A1.3 Linear Function with 1st Stage Weight Matrix 

function [x, y, c] = AOA_1stage (SX,SY,AOAAngles,VarAzi) 
%   Remembered that one must use radians 
VarAzi = VarAzi*(pi/180)^2; 
M = size(SX,2); % Number of sensors 
M1 = (M-1); 
 
% Creating the A Matrix 
A= ones(M,3);  %  A Matrix is used for 1st stage weight [-1xi -
2yi, 1] 
A(:,1)=-2*SX'; A(:,2)=-2*SY'; % placing x and y values in A 
 
Ki=SX.^2+SY.^2;  
Ki=Ki'; 
 
Xp = (SX(2:M)-SX(1))';     Yp = (SY(2:M)-SY(1))'; 
% Distance between sensor 1 and all other sensors 
DELm = sqrt(Xp.^2 + Yp.^2); 
% Angle between 1st sensore and other sensors 
PHI1m = atan2d(Xp, Yp);     % angle from sensor 1 to p 
PHIm1 = atan2d(-Xp,-Yp);    % angle from sensor p to 1  
 
%   You have possible M1 triangles 
BetaM = zeros(M1,1);   AlphaM = zeros(M1,1); 
% These variables contain the sign of the error 
BetaMs = ones(M1,1);   AlphaMs = ones(M1,1); 
k = 0; 
i = 1; 
for j = i+1:M 
    k = k  + 1; 
    %   The code below tracks the sign of the errors 
    BetaM(k) = (AOAAngles(j) - PHIm1(k)); 
    if BetaM(k) < 0 
        BetaM(k) = abs(BetaM(k));   BetaMs(k) = -BetaMs(k);     % 
angle is negative, make pos, flip sign of error 
    end 
    if BetaM(k) > 180 
        BetaM(k) = 360 - BetaM(k);  BetaMs(k) = -BetaMs(k);     % 
angle greater than 180, sub tract from 360, flip sign of error 
    end 
    AlphaM(k) = (PHI1m(k) - AOAAngles(i)); 
    if AlphaM(k) < 0 
        AlphaM(k) = abs(AlphaM(k));   AlphaMs(k) = -AlphaMs(k); 
    end 
    if AlphaM(k) > 180 
        AlphaM(k) = 360 - AlphaM(k);  AlphaMs(k) = -AlphaMs(k); 
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    end 
end 
 
%   We use the law of sines to solve Dp1 
dk_m = DELm.*sind(BetaM)./(sind(AlphaM+BetaM)); % d(1)  
% Calculate values for AOA 
d_m = DELm.*sind(AlphaM)./sind(AlphaM+BetaM);   % d(2:M) 
 
distm= zeros(M,1); % Creating a single matrix for d1 through dm 
distm(1,1) = dk_m(1); distm(2:M) = d_m; 
% Creating the B Martix [(di)^2-ki] 
B= zeros(M,1); 
B(1) = dk_m(1)^2-Ki(1); 
B(2:M) = d_m.^2-Ki(2:M); 
 
% Build the weighting matrix 
% Init vectors 
F1=zeros(M,1); F2 = F1; G1 = F1; G2 = F1;  
k = 0; 
i=1; 
for j = i+1:M 
    k = k + 1; 
    % F1 and F2 are for the d(1) 
    F1(k) = -DELm(k).*sind(BetaM(k)).*cosd(AlphaM(k)+BetaM(k))... 
        ./(sind(AlphaM(k)+BetaM(k)).^2); 
    F2(k) = DELm(k).*cosd(BetaM(k))./(sind(AlphaM(k)+BetaM(k))) 
... 
        - 
DELm(k).*sind(BetaM(k)).*cosd(AlphaM(k)+BetaM(k))./(sind(AlphaM(k)
+BetaM(k)).^2); 
     
    % G1 and G2 are for the d(i) 
    % NOTE the G1,G2 elements are shifted one place to align with 
the 
    % Epsilon Matrix below 
    G1(k+1) = DELm(k).*cosd(AlphaM(k))./(sind(AlphaM(k)+BetaM(k))) 
... 
        - 
DELm(k).*sind(AlphaM(k)).*cosd(AlphaM(k)+BetaM(k))./(sind(AlphaM(k
)+BetaM(k)).^2); 
    G2(k+1) = -
DELm(k).*sind(AlphaM(k)).*cosd(AlphaM(k)+BetaM(k))./(sind(AlphaM(k
)+BetaM(k)).^2); 
end 
% Building the Epsilon Matrix 
Epsilon = zeros(M,M); 
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Epsilondiag = zeros(M,M); 
Epsilonoff = zeros (M,M); 
for Rowi =1:M 
    for Coli = 1:M 
        if (Rowi == 1) && (Coli ==1) 
            Epsilondiag(Rowi,Coli) = 
distm(Rowi)^2*(AlphaMs(1)*AlphaMs(1)*F1(1)^2+BetaMs(1)*BetaMs(1)*F
2(1)^2)*VarAzi; 
        elseif (Rowi == 1) && (Coli ==2) 
             Epsilonoff(Rowi,Coli) = 
distm(Rowi)*distm(Coli)*(AlphaMs(1)*AlphaMs(1)*F1(1)*G1(2)+BetaMs(
1)*BetaMs(1)*F2(1)*G2(2))*VarAzi; 
        elseif (Rowi == 1) && (Coli >=3) 
            Epsilonoff(Rowi,Coli) = 
distm(Rowi)*distm(Coli)*AlphaMs(1)*AlphaMs(Coli-
1)*F1(1)*G1(Coli)*VarAzi; 
        elseif (Rowi ~=1) && (Coli == Rowi) 
            Epsilondiag(Rowi,Coli) = distm(Rowi)^2*(AlphaMs(Coli-
1)*AlphaMs(Coli-1)*G1(Coli)^2+BetaMs(Coli-1)*BetaMs(Coli-
1)*G2(Coli)^2)*VarAzi; 
        elseif (Rowi >=2) && (Coli > Rowi) 
            Epsilonoff(Rowi,Coli) = 
distm(Rowi)*distm(Coli)*AlphaMs(Rowi-1)*G1(Rowi)*AlphaMs(Coli-
1)*G1(Coli)*VarAzi; 
        else 
            Epsilonoff(Rowi,Coli) = 0; 
        end 
    end 
end 
Epsilon = Epsilondiag+Epsilonoff+Epsilonoff'; 
% resolve the 1st stage solution 
uW = (A'/Epsilon*A)\A'/Epsilon*B; 
x=uW(1); y=uW(2); c=uW(3); 
end 
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A1.4 Linear Function with 2nd Stage Weight Matrix 

function [x, y, negc] = AOA_2stage (SX,SY,AOAAngles,VarAzi) 
%   Remembered that one must use radians 
VarAzi = VarAzi*(pi/180)^2; 
M = size(SX,2); % Number of sensors 
M1 = (M-1); 
 
% Creating the A Matrix 
A= ones(M,3);  %  A Matrix is used for 1st stage weight [-1xi -
2yi, 1] 
A(:,1)=-2*SX'; A(:,2)=-2*SY'; % placing x and y values in A 
 
Ki=SX.^2+SY.^2;  
Ki=Ki'; 
 
Xp = (SX(2:M)-SX(1))';     Yp = (SY(2:M)-SY(1))'; 
% Distance between sensor 1 and all other sensors 
DELm = sqrt(Xp.^2 + Yp.^2); 
% Angle between 1st sensore and other sensors 
PHI1m = atan2d(Xp, Yp);     % angle from sensor 1 to p 
PHIm1 = atan2d(-Xp,-Yp);    % angle from sensor p to 1  
 
%   You have possible M1 triangles 
BetaM = zeros(M1,1);   AlphaM = zeros(M1,1); 
% These variables contain the sign of the error 
BetaMs = ones(M1,1);   AlphaMs = ones(M1,1); 
k = 0; 
i = 1; 
for j = i+1:M 
    k = k  + 1; 
    %   The code below tracks the sign of the errors 
    BetaM(k) = (AOAAngles(j) - PHIm1(k)); 
    if BetaM(k) < 0 
        BetaM(k) = abs(BetaM(k));   BetaMs(k) = -BetaMs(k);     % 
angle is negative, make pos, flip sign of error 
    end 
    if BetaM(k) > 180 
        BetaM(k) = 360 - BetaM(k);  BetaMs(k) = -BetaMs(k);     % 
angle greater than 180, sub tract from 360, flip sign of error 
    end 
    AlphaM(k) = (PHI1m(k) - AOAAngles(i)); 
    if AlphaM(k) < 0 
        AlphaM(k) = abs(AlphaM(k));   AlphaMs(k) = -AlphaMs(k); 
    end 
    if AlphaM(k) > 180 
        AlphaM(k) = 360 - AlphaM(k);  AlphaMs(k) = -AlphaMs(k); 
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    end 
end 
 
%   We use the law of sines to solve Dp1 
dk_m = DELm.*sind(BetaM)./(sind(AlphaM+BetaM)); % d(1) 
% Calculate values for AOA 
d_m = DELm.*sind(AlphaM)./sind(AlphaM+BetaM);   % d(2:M) 
 
distm= zeros(M,1); % Creating a single matrix for d1 through dm 
distm(1,1) = dk_m(1); 
distm(2:M) = d_m; 
 
% Creating the B Martix [(di)^2-ki] 
B= zeros(M,1); 
B(1) = dk_m(1)^2-Ki(1); 
B(2:M) = d_m.^2-Ki(2:M); 
 
% Build the weighting matrix 
% Init vectors 
F1=zeros(M,1); F2 = F1; G1 = F1; G2 = F1;  
k = 0; 
i=1; 
for j = i+1:M 
    k = k + 1; 
    % F1 and F2 are for the d(1) 
    F1(k) = -DELm(k).*sind(BetaM(k)).*cosd(AlphaM(k)+BetaM(k))... 
        ./(sind(AlphaM(k)+BetaM(k)).^2); 
    F2(k) = DELm(k).*cosd(BetaM(k))./(sind(AlphaM(k)+BetaM(k))) 
... 
        - 
DELm(k).*sind(BetaM(k)).*cosd(AlphaM(k)+BetaM(k))./(sind(AlphaM(k)
+BetaM(k)).^2); 
     
    % G1 and G2 are for the d(i) 
    % NOTE the G1,G2 elements are shifted one place to align with 
the 
    % Epsilon Matrix below 
    G1(k+1) = DELm(k).*cosd(AlphaM(k))./(sind(AlphaM(k)+BetaM(k))) 
... 
        - 
DELm(k).*sind(AlphaM(k)).*cosd(AlphaM(k)+BetaM(k))./(sind(AlphaM(k
)+BetaM(k)).^2); 
    G2(k+1) = -
DELm(k).*sind(AlphaM(k)).*cosd(AlphaM(k)+BetaM(k))./(sind(AlphaM(k
)+BetaM(k)).^2); 
end 
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% Building the Epsilon Matrix 
Epsilon = zeros(M,M); 
Epsilondiag = zeros(M,M); 
Epsilonoff = zeros (M,M); 
for Rowi =1:M 
    for Coli = 1:M 
        if (Rowi == 1) && (Coli ==1) 
            Epsilondiag(Rowi,Coli) = 
distm(Rowi)^2*(AlphaMs(1)*AlphaMs(1)*F1(1)^2+BetaMs(1)*BetaMs(1)*F
2(1)^2)*VarAzi; 
        elseif (Rowi == 1) && (Coli ==2) 
             Epsilonoff(Rowi,Coli) = 
distm(Rowi)*distm(Coli)*(AlphaMs(1)*AlphaMs(1)*F1(1)*G1(2)+BetaMs(
1)*BetaMs(1)*F2(1)*G2(2))*VarAzi; 
        elseif (Rowi == 1) && (Coli >=3) 
            Epsilonoff(Rowi,Coli) = 
distm(Rowi)*distm(Coli)*AlphaMs(1)*AlphaMs(Coli-
1)*F1(1)*G1(Coli)*VarAzi; 
        elseif (Rowi ~=1) && (Coli == Rowi) 
            Epsilondiag(Rowi,Coli) = distm(Rowi)^2*(AlphaMs(Coli-
1)*AlphaMs(Coli-1)*G1(Coli)^2+BetaMs(Coli-1)*BetaMs(Coli-
1)*G2(Coli)^2)*VarAzi; 
        elseif (Rowi >=2) && (Coli > Rowi) 
            Epsilonoff(Rowi,Coli) = 
distm(Rowi)*distm(Coli)*AlphaMs(Rowi-1)*G1(Rowi)*AlphaMs(Coli-
1)*G1(Coli)*VarAzi; 
        else 
            Epsilonoff(Rowi,Coli) = 0; 
        end 
    end 
end 
Epsilon = Epsilondiag+Epsilonoff+Epsilonoff'; 
% resolve the 1st stage solution 
uW = (A'/Epsilon*A)\A'/Epsilon*B; 
PhiS1= (A'/Epsilon*A); % storing for using in 2nd stage 
 
x=uW(1); y=uW(2); c=uW(3); 
 
% Record signs for stage 2 
xsign =1; ysign =1; 
if x<0 
    xsign =-1; 
end 
if y<0 
    ysign =-1; 
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end 
negc=0; 
% If c is negative the estimate will be complex 
% If c is negative use stage 1 values only 
if (x^2 >=0) && (y^2 >=0) && (c >=0) 
    %Stage 2 
    Dmat = zeros(3,3); 
    Dmat (1,1) = 2*x; Dmat (2,2) = 2*y; Dmat(3,3)=1; 
    PhiS2 = Dmat/PhiS1*Dmat; 
     
    H = [1,0;0,1;1,1]; 
    Qmat = [x^2;y^2;c]; 
     
    uW2 = (H'/PhiS2*H)\H'/PhiS2*Qmat; 
    if (uW2(1)>=0) && (uW2(2) >=0) 
        % resolve solution for 2nd stage 
        x = sqrt(uW2(1))*xsign; y=sqrt(uW2(2))*ysign; 
    else 
        negc=1; 
    end 
else 
    negc=1; 
end 
end 
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Appendix B. Derivation of Cramer Rao Lower Bound 

This derivation is adapted from [9] but altered to match the notation used in this 

thesis. 

For AOA geolocation in two dimensions, we let the true emitter location be: 

 

The location of M sensors is (x1, y1), (x2, y2), …, (xM, yM) and the AOA 

measurements between the sensors and the emitter are: 

𝜃 = [

𝜃1
𝜃2
⋮
𝜃𝑀

] (B2) 

 

Each of these measurements contain the true AOA: 

 

and zero mean additive white gaussian noise: 

𝛿𝜃 = [

𝛿𝜃1
𝛿𝜃2
⋮

𝛿𝜃𝑀

] (B4) 

Therefore equation (B2) can be written as: 

𝜃 = [

𝑔1(𝑇) + 𝛿𝜃1
𝑔2(𝑇) + 𝛿𝜃2

⋮
𝑔𝑀(𝑇) + 𝛿𝜃𝑀

] (B5) 

 

𝐸 = [
𝑥
𝑦] (B1) 

𝑔(𝐸) =

[
 
 
 
 
 
 tan

−1 (
𝑥 − 𝑥1
𝑦 − 𝑦1

)

tan−1 (
𝑥 − 𝑥2
𝑦 − 𝑦2

)

⋮

tan−1 (
𝑥 − 𝑥𝑀
𝑦 − 𝑦𝑀

)
]
 
 
 
 
 
 

=  

[
 
 
 
 
 
 
 tan−1 (

∆𝑥1
∆𝑦1

)

tan−1 (
∆𝑥2
∆𝑦2

)

⋮

tan−1 (
∆𝑥𝑀
∆𝑦𝑀

)
]
 
 
 
 
 
 
 

=  [

𝑔1(𝐸)

𝑔2(𝐸)
⋮

𝑔𝑀(𝐸)

] (B3) 
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Noting that the distance between any sensor and the emitter is: 

 

 

The derivative of 𝑔(𝐸) evaluated to true emitter position is: 

 

Defining a diagonal matrix of the noise variance as: 

𝑆 =  

[
 
 
 
𝜎1
2 0

0 𝜎2
2

0 0
0 0

0 0
0 0

⋱ 0
0 𝜎𝑀

2 ]
 
 
 

 (B8) 

 

The Cramer Rao Lower Bound can be calculated as: 

 

and evaluated as: 

 

 

 

𝑑𝑖 = √[𝑥 − 𝑥𝑖]
2 + (𝑦 − 𝑦1)

2 (B6) 

𝑔𝐸 =
𝜕𝑔(𝑇)

𝜕𝑇
=

[
 
 
 
 
 
 
 
∆𝑥1

𝑟1
2

−∆𝑦1

𝑟1
2

∆𝑥2

𝑟2
2

−∆𝑦2

𝑟2
2

⋮
∆𝑥𝑀

𝑟𝑀
2

⋮
−∆𝑦𝑀

𝑟𝑀
2 ]
 
 
 
 
 
 
 

 (B7) 

𝐶 = (𝑔𝐸
𝑇𝑆−1𝑔𝐸)

−1 (B9) 

𝐶 =
1

𝑀
∑

1

𝜎𝑖
2

𝑀

𝑖=1

[
 
 
 
 
(∆𝑦𝑖)

2

𝑟𝑖
4

−∆𝑥𝑖∆𝑦𝑖

𝑟𝑖
4

−∆𝑥𝑖∆𝑦𝑖

𝑟𝑖
4

(∆𝑥𝑖)
2

𝑟𝑖
4 ]

 
 
 
 

 (B10) 


