
ANOMALY DETECTION FOR THE MIL-STD-1553B MULTIPLEX DATA 

BUS USING AN LSTM AUTOENCODER 

 

UN DÉTECTEUR D’ANOMALIES PAR AUTO-ENCODEUR RÉCURRENT À 

MÉMOIRE COURT-TERME ET LONG TERME POUR MIL-STD-1553B 

 

 

 
 

 

 

A Thesis Submitted to the Division of Graduate Studies 

 of the Royal Military College of Canada 

by 

 

Alec Harlow, BSc 

Captain 

 

 

In Partial Fulfillment of the Requirements for the Degree of 

Master of Applied Science in Electrical and Computer Engineering 

 

 

 

March, 2022 

 

© This thesis may be used within the Department of National Defence but 

copyright for open publication remains the property of the author.  



ii 

 

Acknowledgments 

I would like to thank my supervisors, Dr. Vincent Roberge and Mr. Brian Lachine, 

for their continual guidance and mentorship throughout this research.  

  



iii 

 

Abstract 

Due to the modernization of aircraft systems and connectivity to ground based 

networks, including the Internet, in commercial and military aviation, real-time 

systems that were thought to be “air-gapped” are becoming more susceptible to 

cyber-attack. Most real-time systems that communicate using the Military Standard 

1553B Multiplex Data Bus (MIL-STD-1553B) protocol do not have the ability to 

detect such attacks. Rightly so, these systems were originally developed with safety 

and redundancy in mind, not security. These two factors introduce attack vectors to 

MIL-STD-1553B communication buses and expose associated avionics systems to 

remote exploitation. Recent approaches to anomaly detection for the MIL-STD-

1553B data bus have leveraged statistical analysis, Markov Chain modeling, remote 

terminal fingerprinting techniques and signature-based detection. However, their 

comparative effectiveness is unknown. In the case of the statistical analysis 

technique, the accuracy and precision in detecting the start and stop time of 

anomalous events are not ideal for conducting investigations. Deep learning 

techniques have shown to be an effective means of anomaly detection and applying 

these techniques to the MIL-STD-1553B Data Bus could provide more accurate and 

precise detection times when anomalies or attacks are present, when compared to 

known statistical analysis, leading to more efficient forensic investigations of 

anomalous events.  

The aim of this research is to improve the time-related performance metrics when 

detecting attacks on the MIL-STD-1553B data bus traffic using a LSTM 

autoencoder. In order to accomplish this aim, an LSTM autoencoder detector was 

developed and tested on two separate datasets from different MIL-STD-1553B 

network architectures, totaling 27 threat instances over 9 scenarios. The detector was 

then compared to the MIL-STD-1553B Anomaly-Based Intrusion Detection System 

(MAIDENS) detector, a statistical-based intrusion detection system. The LSTM 



iv 

 

autoencoder detected every threat instance with no false positive or false negative 

results and improved on the time-related performance metrics when compared to the 

MAIDENS detector. The results demonstrated this deep learning technique as an 

effective method for accurately identifying anomalies on a MIL-STD-1553B Data 

Bus. 

  



v 

 

Résumé 

En raison de la modernisation des systèmes d'aéronefs et de la connectivité aux 

réseaux au sol, y compris Internet, dans l'aviation commerciale et militaire, les 

systèmes en temps réel que l'on croyait “isolés” deviennent de plus en plus 

vulnérables aux cyberattaques. La plupart des systèmes en temps réel qui 

communiquent à l'aide du protocole Military Standard 1553B Multiplex Data Bus 

(MIL-STD-1553B) n'ont pas la capacité de détecter de telles attaques. À juste titre, 

ces systèmes ont été initialement développés dans un souci de sécurité et de 

redondance, et non de sécurité. Ces deux facteurs introduisent des vecteurs d'attaque 

dans les bus de communication MIL-STD-1553B et exposent les systèmes 

avioniques associés à une exploitation à distance. Les approches récentes de 

détection d'anomalies pour le bus de données MIL-STD-1553B ont tiré parti de 

l'analyse statistique, de la modélisation de la chaîne de Markov, des techniques 

d'empreinte digitale des terminaux distants et de la détection basée sur les signatures. 

Cependant, leur efficacité comparative est inconnue. Dans le cas de la technique 

d'analyse statistique, l'exactitude et la précision de la détection de l'heure de début et 

d'arrêt des événements anormaux ne sont pas idéales pour mener des enquêtes. Les 

techniques d'apprentissage en profondeur se sont révélées être un moyen efficace de 

détection des anomalies et l'application de ces techniques au bus de données MIL-

STD-1553B pourrait fournir des temps de détection plus précis et précis lorsque des 

anomalies ou des attaques sont présentes, par rapport à l'analyse statistique connue, 

conduisant à enquêtes médico-légales plus efficaces sur les événements anormaux. 

L'objectif de cette recherche est d'améliorer les mesures de performances 

liées au temps lors de la détection d'attaques sur le trafic du bus de données MIL-

STD-1553B à l'aide d'un auto-encodeur LSTM. Afin d'atteindre cet objectif, un 

détecteur d'auto-encodeur LSTM a été développé et testé sur deux ensembles de 

données distincts provenant de différentes architectures de réseau MIL-STD-1553B, 



vi 

 

totalisant 27 instances de menace sur 9 scénarios. Le détecteur a ensuite été comparé 

au détecteur MAIDENS (Système de détection d'intrusion basé sur les anomalies) 

MIL-STD-1553B, un système de détection d'intrusion basé sur les statistiques. 

L'encodeur automatique LSTM a détecté chaque instance de menace sans résultats 

faux positifs ou faux négatifs et a amélioré les mesures de performances liées au 

temps par rapport au détecteur MAIDENS. Les résultats ont démontré que cette 

technique d'apprentissage en profondeur est une méthode efficace pour identifier 

avec précision les anomalies sur un bus de données MIL-STD-1553B. 

  



vii 

 

Table of Contents 

 
Acknowledgments .................................................................................................... ii 

Abstract .................................................................................................................... iii 

Résumé...................................................................................................................... v 

Table of Contents .................................................................................................... vii 

List of Figures .......................................................................................................... xi 

List of Tables ......................................................................................................... xiii 

Chapter 1 Introduction .............................................................................................. 1 

1.1 Motivation ................................................................................................. 2 

1.2 Statement of Deficiency ............................................................................ 2 

1.3 Aim ........................................................................................................... 3 

1.4 Research Activities ................................................................................... 4 

1.5 Results ....................................................................................................... 5 

1.6 Organization .............................................................................................. 5 

Chapter 2 Background .............................................................................................. 7 

2.1 Military Standard 1553B........................................................................... 7 

2.1.1 Network Communication ...................................................................... 9 

2.1.2 Data Messages .................................................................................... 10 

2.1.3 Control Messages ................................................................................ 11 

2.2 MIL-STD-1553B Vulnerabilities ............................................................ 12 

2.2.1 Denial of Service ................................................................................. 13 



viii 

 

2.2.2 Data Leakage ...................................................................................... 14 

2.2.3 Data Integrity Violation ...................................................................... 15 

2.3 Intrusion Detection Systems ................................................................... 17 

2.3.1 Statistical Anomaly Detection ............................................................ 17 

2.3.2 Anomaly Detection using Machine Learning ..................................... 18 

2.3.3 Anomaly Detection using Deep Learning ........................................... 22 

2.3.4 Practical Applications of LSTM Networks ......................................... 30 

2.4 Existing MIL-STD-1553B Detection Methods ....................................... 31 

2.4.1 Markov Chain Model .......................................................................... 32 

2.4.2 RT Fingerprinting ............................................................................... 32 

2.4.3 MAIDENS .......................................................................................... 33 

2.4.4 Signature Based Detection .................................................................. 34 

2.4.5 Demonstrated Anomaly Detection on MIL-STD-1553B .................... 35 

2.5 Detection Methods .................................................................................. 36 

2.5.1 Precision, Recall and Accuracy (Classification) ................................. 37 

2.5.2 Accuracy and Precision (Detection Time) .......................................... 38 

2.6 Summary ................................................................................................. 39 

Chapter 3 Methodology and Design ....................................................................... 40 

3.1 Phase 1: Data Acquisition Pipeline ......................................................... 40 

3.1.1 Feature Extraction ............................................................................... 43 

3.2 Phase 2: DL Model Development ........................................................... 45 

3.2.1 LSTM Autoencoder Model Setup ....................................................... 45 

3.2.2 LSTM Autoencoder Training ............................................................. 46 



ix 

 

3.2.3 LSTM Autoencoder Threshold ........................................................... 46 

3.3 Phase 3: Anomaly Detection and Validation .......................................... 47 

3.4 Summary ................................................................................................. 48 

Chapter 4 Results .................................................................................................... 49 

4.1 Experimental Design ............................................................................... 49 

4.1.1 LSTM Autoencoder Model ................................................................. 49 

4.1.2 Datasets ............................................................................................... 51 

4.1.3 Results Overview ................................................................................ 51 

4.2 Dataset 1 – MAIDENS Dataset .............................................................. 52 

4.2.1 MAIDENS Detector ............................................................................ 54 

4.2.2 LSTM Autoencoder Detector.............................................................. 56 

4.2.3 Comparison between Detectors .......................................................... 61 

4.3 Dataset 2 ................................................................................................. 62 

4.3.1 MAIDENS Detector ............................................................................ 63 

4.3.2 LSTM Autoencoder Detector.............................................................. 64 

4.4 Discussion ............................................................................................... 68 

4.5 Summary ................................................................................................. 71 

Chapter 5 Conclusion .............................................................................................. 72 

5.1 Overview ................................................................................................. 72 

5.2 Contributions .......................................................................................... 73 

5.3 Future Work ............................................................................................ 74 

5.4 Recommendation .................................................................................... 74 

References ............................................................................................................... 75 



x 

 

Appendix A - MIL-STD-1553B Feature Set .......................................................... 78 

Appendix B - Dataset 1 Model MAE vs MSG# Graphs ......................................... 87 

Appendix C - Dataset 2 Model MAE vs MSG# Graphs ......................................... 90 

Appendix D - Feature Extraction Program (Python) .............................................. 92 

 

  



xi 

 

List of Figures 

Figure 1 - Example of a MIL-STD-1553B Bus Topology Consisting of a BC and 

Two RTs Connected by a Dual Redundancy Data Bus [1] ....................................... 8 

Figure 2 - Per Bit Breakdown of Command, Data and Status Words for MIL-STD-

1553B [2] .................................................................................................................. 8 

Figure 3 - MIL-STD-1553B Breakdown Major and Minor Frames [7] ................. 10 

Figure 4 - MIL-STD-1553B Data Message Formats [7] ........................................ 10 

Figure 5 - MIL-STD-1553B Control Message Formats [7] .................................... 12 

Figure 6 - Acyclic Transfer Storage Channel Attack [10] ...................................... 15 

Figure 7 - Man in the Middle Attack [8] ................................................................. 16 

Figure 8 - Simple Bayesian Probability Network ................................................... 19 

Figure 9 - OCSVM Mapping Input Data Into a High Dimensional Feature Space [15]

 ................................................................................................................................ 21 

Figure 10 - Example of a Feedforward ANN ......................................................... 22 

Figure 11 - Basic RNN Cell [21] ............................................................................ 23 

Figure 12 - The Vanishing Gradient Problem for RNNs [22] ................................ 24 

Figure 13 - LSTM Basic Cell[21] ........................................................................... 25 

Figure 14 - Conceptual Example of an Autoencoder [30] ...................................... 28 

Figure 15 - Architecture of a LSTM Autoencoder [31] .......................................... 29 

Figure 16 - RT Authentication Process [3] ............................................................. 33 

Figure 17 - Generic MIL-STD-1553B Test Bench and Collection Architecture .... 41 

Figure 18 - Abaco BusTools BMDX Structure [39] ............................................... 44 

Figure 19 - Proposed LSTM Autoencoder Layers .................................................. 46 

Figure 20 - LSTM Autoencoder Layers .................................................................. 50 

Figure 21 - High-Level CP140 MIL-STD-1553B Test Bench and Collection 

Architecture ............................................................................................................ 53 

Figure 22 - Dataset 1 Baseline Anomaly Detection Results ................................... 58 



xii 

 

Figure 23 - Dataset 1 Baseline Anomaly Detection Results (Scaled 0 to 5000 

Messages)................................................................................................................ 58 

Figure 24 - Emulated MIL-STD-1553B Test Bench and Collection Architecture . 62 

Figure 25 - Dataset 2 Baseline Anomaly Detection Results. .................................. 65 

 

  



xiii 

 

 List of Tables 

Table 1 - Assigned Mode Codes [7] ....................................................................... 11 

Table 2 - Capabilities of Current Anomaly Detectors for the MIL-STD-1553B Data 

Bus .......................................................................................................................... 36 

Table 3 - Scenario Attack Descriptions .................................................................. 42 

Table 4 - Features of MIL-STD-1553B Network Traffic [1], [2] ........................... 43 

Table 5 - Dataset 1 MAIDENS Detection Results (reproduced from [1]) .............. 55 

Table 6 - Dataset 1 MAIDENS Detection Time Accuracy and Precision Results . 55 

Table 7 - Dataset 1 LSTM Autoencoder Detection Results .................................... 60 

Table 8 - Dataset 1 LSTM Detection Time Accuracy and Precision Results ......... 61 

Table 9 - Dataset 1 Average Detection Time Start and End in Seconds ................. 61 

Table 10 - Dataset 1 Average Detection Time Start and End in Terms of Messages

 ................................................................................................................................ 62 

Table 11 - Dataset 2 LSTM Autoencoder Detection Results .................................. 67 

Table 12 - Dataset 2 LSTM Autoencoder Detection Time Accuracy and Precision 

Results ..................................................................................................................... 68 

Table 13 - Dataset 2 Average Detection Time Start and End in Seconds ............... 69 

Table 14 - Dataset 2 Average Detection Time Start and End in Terms of Messages

 ................................................................................................................................ 69 



1 

 

Chapter 1 

Introduction 

The MIL-STD-1553B protocol is used in numerous military and civilian aircraft to 

communicate key information between flight instruments, sensors and other avionic 

systems. Due to the modernization and connectivity of platform and operational 

systems to the Internet in commercial and military aviation, real-time systems that 

were thought to be “air-gapped” are becoming more susceptible to cyber-attacks. 

Unfortunately, most real-time systems that communicate using the Military Standard 

1553B Multiplex Data Bus (MIL-STD-1553B) protocol, do not have the ability to 

detect such attacks or anomalies. Additionally, the ability to convert the existing 

systems to a more secure protocol would be expensive and unrealistic. Therefore, 

the ideal approach would be to put a system in place that could monitor traffic on 

the bus and provide the ability to detect anomalies that occur. 

Current MIL-STD-1553B anomaly detection techniques are able to detect a 

number of attack techniques that include, but are not limited to: Denial of Service 

(DoS) attacks, Remote Terminal (RT) spoofing attacks, Bus Controller (BC) 

spoofing attacks and attacks that manipulate RT messages. The MIL-STD-1553B 

Anomaly-Based Intrusion Detection System (MAIDENS), a statistics-based 

intrusion detection system purposed by Généreux et al. [1] is able to detect all of the 

aforementioned attacks. With other detectors such as: a Markov chain model 

proposed by Stan et al. [2], a fingerprinting method proposed Stan et al. [3] and a 

signature detection method purposed by Bernard [4], being able to detect a smaller 

subset of attack types. The issue faced with a detector like MAIDENS [1], even 

though it has an impressive zero false positive rate, is that the detection time 

accuracy and precision achieved when indicating the start and stop time of an attack 



2 

 

is not ideal for conducting forensic analysis on a detected attack. Having a detector 

that could reduce the detection window and thereby the number of messages 

associated with potential attack traffic, would significantly improve analysis efforts 

post attack detection.  

To address the need to improve the time-related performance metrics when 

detecting attacks on the MIL-STD-1553B Data Bus, this thesis presents research into 

the detection of anomalies on the MIL-STD-1553B Data Bus using a Long Short-

Term Memory (LSTM) autoencoder deep learning (DL) technique. It identifies the 

improvement in time-related performance metrics of an LSTM autoencoder detector 

in identifying attacks in MIL-STD-1553B bus traffic when compared to the 

MAIDENS detector purposed by Généreux et al. [1].   

1.1 Motivation 

The motivation for this research originates from the lack of security of the MIL-

STD-1553B protocol and the vulnerabilities that stem from it. Since these networks 

are used for communication of core aircraft systems and are in some cases required 

for safe flight operations, the need to validate and verify system security and integrity 

should be a priority. Additionally, in the context of detecting attacks, there is a need 

to be more accurate and precise when detecting attacks from a timing-related 

performance standpoint, in order to reduce the amount of traffic that needs to be 

analyzed. Having a detector that can reduce the detection window and thereby the 

number of messages associated with potential attack traffic, would significantly 

improve analysis efforts post attack detection. 

1.2 Statement of Deficiency 

The statistics-based intrusion detection system, MAIDENS, can detect every attack 

event or threat occurrence that it has been tested against with perfect event 



3 

 

classification accuracy and precision. However, if you consider the time-related 

performance metrics MAIDENS can only detect an anomaly event within a range of 

10 ±8 seconds [1]. This equates to about 10,000 ±8000 messages of traffic, based on 

the data transfer rate from the MAIDENS dataset, and would take an expert a 

significant amount of time to analyse each message to find the actual start and stop 

time of an attack. This deficiency stems from the inability to label each individual 

message through available MIL-STD-1553B recording methods. Leading to the 

need to rely on metrics for event classification instead of the more traditional 

confusion matrix-based approach, that would identify each message as a true/false 

positive or negative. Therefore, being able to increase the time-related performance 

metrics, specifically the detection time accuracy and detection time precision of the 

start and stop time of an attack, would drastically decrease the number of messages 

needed to be analysed during an investigation. In this context, accuracy is defined as 

the closeness of agreement between a test result and the accepted reference value 

and precision is defined as the agreement between independent test results obtained 

under stipulated conditions of detection [5]. 

1.3 Aim 

The aim of this research is to improve the time-related performance metrics when 

detecting attacks on the MIL-STD-1553B data bus traffic using a LSTM 

autoencoder. The time related performance metrics refer to the detection time 

accuracy and the detection time precision when indicating the start and stop time of 

an attack event on the MIL-STD-1553B data bus. This approach will be validated 

through comparison with MAIDENS, a statistical-based anomaly detection method. 

The LSTM Autoencoder will aim to maintain the same detection capabilities when 

compared to the statistical-based anomaly detection method. Once an anomaly is 

detected it is important to be able to accurately and precisely identify the suspected 



4 

 

traffic so that it can be analysed and determination can be made if it is malicious or 

benign in nature.  

In order to accomplish the aim, two datasets of MIL-STD-1553B Data Bus 

traffic will be used, dataset 1 will be from the work conducted in MAIDENS [1] and 

includes five threat scenarios. The second dataset will be captured on proprietary test 

equipment provided by the Royal Military College of Canada (RMC) and consists 

of four threat scenarios. An initial baseline of normal MIL-STD-1553B Data Bus 

traffic will be collected on an emulated MIL-STD-1553B environment that consists 

of MIL-STD-1553B hardware and a combination of emulated and simulated RTs. 

Once a baseline model is established, scenarios will be created using a tool built by 

Paquet in [6] to generate traffic recordings with anomalous events. The time related 

performance metrics of both MAIDENS and the LSTM autoencoder methods to 

detect these anomalies will be evaluated in terms of improved detection time 

accuracy and detection time precision. In the context of this research, improving 

these two time-related detection metrics is referred to as improving the effectiveness 

of anomaly detection.  This research will also identify a supplementary list of 

features that describe MIL-STD-1553B message traffic that can be used as a baseline 

set of features in follow on or future works for MIL-STD-1553B detectors. 

1.4 Research Activities 

The following three phases were conducted in order to achieve the aim of this 

research: 

1. Data Acquisition Pipeline:  

a. Generation and collection of MIL-STD-1553B baseline and 

anomalous traffic recordings. 

b. Extraction of features derived from MIL-STD-1553B message 

traffic.   

 



5 

 

2. LSTM Autoencoder Model Development: 

a. Creation of a feature extraction tool to ingest MIL-STD-1553B 

recordings and prepare a usable dataset for model creation.   

b. The creation and application of a LSTM Autoencoder detector to 

create a baseline model to evaluate subsequent traffic against for 

anomaly detection.  

3. Anomaly Detection and Validation:  

a. Validation of the detector based upon its ability to accurately and 

precisely detect anomalies in comparison to MAIDENS using the 

same datasets.  

1.5 Results  

A detector was created using an LSTM autoencoder that was successful in creating 

a baseline model from the collected MIL-STD-1553B bus traffic, using the proposed 

feature set in Appendix A. The LSTM autoencoder was able to detect anomalies on 

two separate datasets from different MIL-STD-1553B network architectures, 

totaling 27 threat instances over 9 scenarios. The LSTM autoencoder detected every 

threat instance for dataset 1 and was compared to the MAIDENS detector. When 

compared to the MADIENS detector, the LSTM autoencoder detector significantly 

improved the detection time accuracy and detection time precision when indicating 

the start and stop time of an attack event. The degree of detection accuracy would be 

more beneficial, compared to MAIDENS, in a forensics investigation as the detected 

times are closer to the actual attack time, resulting in far fewer frames to needlessly 

analyse.    

1.6 Organization 

The remainder of this document will outline the problem space and describe the 

research in greater detail, by explaining the methodology and design, as well as by 



6 

 

presenting the results and analysis of the DL anomaly detector. Chapter 2 will 

provide further background of the MIL-STD-1553B protocol, the currently known 

attack techniques, as well as current detection techniques and methods. Chapter 3 

describes the methodology followed that led to the design of the LSTM autoencoder 

model and overall deep learning pipeline. Chapter 4 presents the results of the 

developed anomaly detector, their analysis and validation of the stated aim.  Chapter 

5 will then provide a conclusion to the research.         



7 

 

Chapter 2 

Background 

In this chapter the MIL-STD-1553B protocol is described in detail along with its 

inherent vulnerabilities. Methods for intrusion detection are discussed to include an 

overview of machine learning (ML), deep learning (DL), Long Short-Term Memory 

(LSTM) artificial neural networks, autoencoders, and selected examples of how such 

techniques have been implemented for anomaly detection. Current methods for 

anomaly detection on MIL-STD-1553B are then presented, along with an 

explanation of what type of attacks they are able to detect. Finally, validation metrics 

for anomaly detection and time-related performance are provided.  

2.1 Military Standard 1553B 

MIL-STD-1553B is a military standard bus communications protocol published in 

1973 by the United States Department of Defense. The standard uses a multipoint 

topology of remote terminals (RTs) connected by a dual redundancy data bus as 

depicted in Figure 1. One terminal is designated as the bus controller (BC) and 

initiates and directs all communication on the bus. A bus monitor (BM) can be 

attached to the bus, but traditionally fills the role of a data historian, analogous to a 

“black box” on an aircraft [7]. 

There are a total of 32 addresses (0 – 31) on a MIL-STD-1553B bus network, 

one address (31) is reserved as a broadcast address and the remaining 31 addresses 

are for potential RTs that can be connected to the data bus. Each address has up to 

32 sub-addresses or addressable data buffers that are used to read and write data to 

and from, with sub-addresses 0 and 31 being reserved for mode codes (section 2.1.3). 

Information is transferred through three 20-bit messages: a command word, a status  



8 

 

 

Figure 1 – Example of a MIL-STD-1553B Bus Topology Consisting of a BC and Two RTs 

Connected by a Dual Redundancy Data Bus [1] 

 

 

Figure 2 – Per Bit Breakdown of Command, Data and Status Words for MIL-STD-1553B [2] 

 



9 

 

word and a data word. The per-bit-breakdown of each word is showed in Figure 2. 

The protocol uses these three types of words for all communication on the bus and 

in order to initiate communication a command word must be sent by the BC [7]. This 

ensures that all traffic on the bus is scheduled and reliable. 

2.1.1 Network Communication 

As described in the previous section, communication on a MIL-STD-1553B bus is 

directed and controlled by the BC. A MIL-STD-1553B bus will contain at least one 

BC and may contain one or many redundant BCs that can take control in case of a 

failure. No RT can transmit on the bus without first receiving instructions by means 

of a command word from a BC. The BC controls bus traffic with a predefined cyclic 

messaging schedule, referend to as the master schedule, where messages can be 

either periodic or aperiodic. Periodic messages are always transmitted within a fixed 

time period. Aperiodic messages are conditional and are not sent at a fixed interval, 

however they will be transmitted within the same allotted time slot only if the 

condition to transmit that specific aperiodic message has been met. A collection of 

periodic and aperiodic messages forms a minor frame within the master schedule 

and a collection of minor frames form a major frame or the entirety of the master 

schedule as shown in Figure 3. The number of minor and major frames are unique to 

each network design and is based on the number of RTs and the types of messages 

required to be sent. Messages are combinations of the three available word types 

(section 2.1), that can be in one of two message formats: data messages and control 

messages [7]. These two message formats will be explained further is the following 

subsections.   



10 

 

 

Figure 3 – MIL-STD-1553B Breakdown Major and Minor Frames [7]  

2.1.2 Data Messages 

To transfer data across the bus the BC will always initialize the communications by 

issuing a command word to the intended destination RT(s). The BC will direct RTs 

to read and/or write from specified sub-address or data buffers. Single data transfers 

can be BC to RT, RT to BC and RT to RT. Broadcast data transfers can be from the 

BC to RT(s) and from RT to RT(s). Broadcast messages differ as they do not require 

a status message to confirm receipt of the message. Figure 4 depicts these message 

formats in further detail [7].  

 
Figure 4 – MIL-STD-1553B Data Message Formats [7] 



11 

 

2.1.3 Control Messages 

The BC monitors and controls the bus by issuing mode commands to RTs. These 

control messages contain a command word and associated data words or consist of 

a command word containing a single mode code. Mode codes are predetermined 

functions, described by the MIL-STD-1553B protocol [7], as shown in Table 1. A 

mode code may direct an RT to reply with only a status word or a status word and 

the corresponding data words. The BC can also send broadcast control messages to 

RT(s) without requiring a response. The types of control messages are depicted in 

Figure 5. 

Table 1 – Assigned Mode Codes [7] 

Transmit- 

Receive Bit 

Mode 

Code 
Function 

Associated 

Data Word 

Broadcast 

Command  

1 00000 Dynamic bus control No No 

1 00001 Synchronize No Yes 

1 00010 Transmit status word No No 

1 00011 Initiate self-test No Yes 

1 00100 Transmitter shutdown No Yes 

1 00101 Override transmitter shutdown No Yes 

1 00110 Inhibit terminal flag bit No Yes 

1 00111 Override inhibit terminal flag bit No Yes 

1 01000 Reset remote terminal No Yes 

1 01001 Reserved No - 

1 01111 Reserved No - 

1 10000 Transmit vector word Yes No 

0 10001 Synchronize Yes Yes 

1 10010 Transmit last command Yes No 

1 10011 Transmit bit word Yes No 

0 10100 Selected transmitter shutdown Yes Yes 

0 10101 
Override selected transmitter 

shutdown 
Yes Yes 

1 or 0 10110 Reserved Yes - 

1 or 0 11111 Reserved Yes - 



12 

 

 
Figure 5 – MIL-STD-1553B Control Message Formats [7] 

2.2 MIL-STD-1553B Vulnerabilities  

The MIL-STD-1553B Protocol was designed with safety and reliability, not security 

in mind. Every communication exchange is preprogrammed and follows a cyclic 

schedule controlled by the BC. Manufacturers of RTs are expected to follow the 

guidelines defined by the MIL-STD-1553B protocol [7]. However, attackers are not 

limited by these guidelines set by the design documentation and can use its flaws to 

achieve their desired effect. 

Stan et al. [2] showcase two main attack categories: message manipulation 

and behaviour manipulation. Message manipulation referring to modification of 

legitimate words (command, data, or status) that are transmitted over the bus. 

Behaviour modification refers to altering how a component would normally operate. 

Using these two types of attacks methods Stan et al. in [2] identifies 3 main types of 

threats to the MIL-STD-1553B communications protocol: denial of service (DoS), 



13 

 

data leakage, and data integrity violation. These attacks can be carried out by two 

means. The first is by a rogue RT: a device that is not intended to be connected to 

the data bus and was not part of the original design. The second is by a compromised 

RT: a RT that is part of the original design, but has been maliciously modified by 

some means. In addition to the types of attacks described in Stan et al. [2], a study 

by Lounis et al. in [8] reviews and analyses the attack vectors on the MIL-STD-

1553B data bus as well. They identify 4 types of attacks that can occur: fabrication 

attacks, interception attacks, interruption attacks, and modification attacks. These 

attacks have some overlap with the types of attacks in [2] and contain attack vectors 

relating to RT components not just the MIL-STD-1553B protocol. For the purpose 

of this research, the types of attacks described by Stan et al. in [2] will be used and 

are explained in more detail in the following sections.  

2.2.1 Denial of Service 

A Denial of Service (DoS) disrupts or blocks communication from occurring [2]. On 

the MIL-STD-1553B Bus the simplest example of a DoS would be in the form of 

behaviour manipulation. The attack would consist of a compromised RT or rogue 

RT that is attached to the data bus, in a BC mode, allowing it to flooding the bus and 

potentially the redundant bus with messages. This would prevent all other 

communications from occurring on the bus, which depending the systems relying on 

the MIL-STD-1553B data bus communications, could have disastrous 

consequences. Message manipulation for this type of attack would refer to a 

compromised RT, in a BC mode, changing the fields of a command word to control 

data routing and causing collisions on the bus. An example would be flipping the 

transmit/receive bit from receive to transmit. The more complex form of a DoS is a 

targeted RT DoS explained in the next section.     



14 

 

 Targeted Remote Terminal Denial of Service 

Targeted Remote Terminal Denial of Service (RT DoS) is achieved when a 

compromised RT or a rogue RT attached to the data bus targets specific RTs or 

specific RT sub-addresses. This type of behaviour manipulation attack can be 

achieved by transmitting when the targeted RT is receiving a command or when it is 

transmitting a response to denying the target RT or RT sub-address. Message 

manipulation can be achieved the same as in the previous section, but specifically 

targeting only specified RTs or RT sub-addresses.   

2.2.2 Data Leakage  

Data leakage is defined by [2] as the unauthorized transmission of data between 

system components. For example, if an attacker wanted to leak data on the bus using 

a message manipulation technique, a compromised RT could make changes to the 

word count (WC) field or the terminal address (TA) in a command word. This could 

cause an RT to transmit exceeding data words, or to transmit data words to another 

RT. A behavioural manipulation technique would include an RT that could have 

been compromised to communicate over a covert channel. A covert channel as 

described in [9] is defined as “a process that alters a particular data item, and the 

receiving process detects and interprets the value of the altered data to receive 

information”. A covert channel could be set up between a BC and compromised RT 

using an acyclic transfer storage channel attack described in [10] and shown in 

Figure 6. This attack is accomplished by altering the reserve bit field in the status 

word to be received by an intended RT. A covert channel attack would allow an 

attacker to gather information about the system and could potentially leak it outside 

the aircraft using legitimate communication systems like a radio or satellite 

communications connected RT.  



15 

 

2.2.3 Data Integrity Violation   

RT Data Manipulation described in [2] involves the rogue device or compromised 

RT that injects or modifies any portion of the data on the bus, also known as 

spoofing. This could occur by transmitting on the data bus masquerading as RT or 

the BC. A rouge or compromised device could also transmit data words at the same 

time as targeted RT, corrupting the data for the intended RT. Another way to perform 

a data integrity violation attack is known as RT hijacking. 

 
Figure 6 – Acyclic Transfer Storage Channel Attack [10] 

 

 RT Hijacking  

RT hijacking is a form of data integrity violation and uses a compromised or rogue 

RT to take over or control a legitimate RT. A means of RT hijacking is presented in 

the works of Paquet [6], the exact implementation could not be disclosed due to 

proprietary restrictions. However, an alternate means of RT hijacking is presented 

by Lounis et al. in [8] described as a Man in the Middle attack. In this example, the 



16 

 

attacker is impersonating the BC and causes an illegal data transfer between two 

legitimate RTs. This attack is illustrated in the Message Sequence Chart in Figure 7 

(where δt is the RT’s admissible delay), the attacker observes a data transfer (Datai) 

from RTi to RTj and then generates another data transfer (Dataj) from RTj to RTi 

once the former is completed [8]. An attack of this nature is only achievable if there 

is enough of a timing gap in the buses master schedule to allow for a message inject, 

otherwise message collisions will occur. Alternatively, the main BC and master 

schedule would need to be altered to achieve this type of attack. The benefit of 

conducting the attack as described is unclear and assumed to be a theoretical 

scenario.  

 
Figure 7 – Man in the Middle Attack [8]  



17 

 

2.3 Intrusion Detection Systems 

An Intrusion Detection System (IDS) is defined as a system that can discover, 

determine, and identify unauthorized use, duplication, alteration, and destruction of 

information systems [11]. An IDS is generally characterized one of two ways: either 

it is misuse-based (also known as signature-based) or anomaly-based. Misuse-based 

detection uses known signatures in order to detect attacks or intrusions [12]. They 

are effective for detecting known type of attacks without generating an 

overwhelming number of false alarms. The limitation of misuse-based detection is 

that by itself it cannot detect novel attacks. It is also limited to the user’s ability to 

update the database of known signatures. Anomaly-based techniques model the 

normal network and system behaviour, and identify anomalies as deviations from 

normal behaviour [12]. Anomaly-based detection methods are appealing for a few 

reasons: they have the ability to detect zero-day attacks, the profiles of normal 

activity are customizable based on system in which they are implemented on, and 

the output from anomaly-based detection engines can be used to define alert 

signatures for misuse-based detectors [12]. Anomaly-based techniques can be 

broken down into two main categories for detection: statistical-based detection and 

machine learning-based detection, which includes the subcategory deep learning.   

2.3.1 Statistical Anomaly Detection  

Statistical-based anomaly detection uses statistical theories as a basis to detect 

anomalous activity. Statistical methods can use the occurrence of normal events in a 

system in order to create a baseline profile. This baseline profile is then used to 

compare subsequent events the occur on the system and events that are far enough 

away from the baseline are considered to be anomalous [13]. For example, a 

frequency-based approach would create a baseline of the average number of packets 

sent over a given time period for each component of the system. A threshold for each 

component would then be determined based on the allowable number of packets 



18 

 

above and below the average. Once the system is in operation, if a component sends 

too many or not enough packets over specified period of time, based on its given 

threshold, it would then be classified as anomalous. If the activity on the system 

fluctuates in unpredictable ways it will be very difficult to use a statistical method to 

model the baseline of the system and set meaningful threshold values that would be 

able to identify anomalous behaviour. This is where a model that would be able to 

adapt or learn the system would be more applicable. 

2.3.2 Anomaly Detection using Machine Learning  

ML is generally described as a set of mathematical techniques, implemented on 

computer systems, that enables a process of information mining, pattern discovery 

and drawing inferences from data. A potential difference between statistical-based 

and ML is that a statistical-based methods require a defined feature set to model a 

system, whereas ML methods are able to perform pattern discovery, when a feature 

set is unavailable. ML can then be broken down into two main classes: supervised 

and unsupervised. Supervised learning can adopt a Bayesian approach to knowledge 

discovery, using probabilities of previous observed events to infer probabilities of 

new events. Unsupervised learning usually draws abstractions from unlabeled 

datasets and applies these to new data [13]. The following sections will describe 

some ML algorithms, both supervised and unsupervised. 

 Bayesian Network 

A Bayesian network models the probabilistic relationships between variables with 

the ability to represent causal relationships depicted in [14]. It is a type of supervised 

ML method that requires, labeled data to train and create a proper learnt model to 

apply data to, in order to determine if it is anomalous or benign. Each state in the 

model is based on the combined probabilities of related variables. As in Figure 8 the 

probability of an engine powered system such as a car being in the “Moving” state 

is based on the combined probabilities of the “Engine On” and “Gas Usage” 



19 

 

variables. Based on Figure 8, if both variables that transition to “Moving” are true, 

then there is a 99 percent probability that the “Moving” is also true. If the state 

happens to be false, probabilistically it could be determined to be anomalous. The 

draw back with such a model is that the probabilistic relationships between states 

requires expert knowledge to be built effectively or efficient algorithms that can 

perform inference [14]. For smaller systems this can be done with ease, but as the 

system grows with complexity so does the time required to model the system. 

 
Figure 8 – Simple Bayesian Probability Network  

 Markov Chain 

A Markov chain model, is primarily used to model the probabilities of transitioning 

between states in a system. This makes it ideal for representing valid transitions 

between messages from a training set of legitimate messages [2]. Where a Markov 

Chain model differs from a Bayesian network is that the probability of the next 

transition is based solely on the current state of the system and not the combined 

probabilities of previous variables within the system. This means that if a system has 

three possible states: S1, S2, and S3, where S1 is the starting state and it can 

transition between all states including itself, the combined probability of 



20 

 

transitioning between states must equal 1. An example of how this concept could be 

applied is if the probabilities of moving between states were as follows: S1 to S1 is 

10%, S1 to S2 is 90%, and S1 to S3 is 0%. If over a certain timeframe S1 transitions 

back to S1 more than 10% of the time a flag could be raised to indicate anomalous 

behaviour. If at any point the system makes a transition to S3 a flag could be raised 

instantaneously. This sort of modeling requires that all states and the transitions 

between them be well defined in a system, making it less ideal for non-deterministic 

systems, but suitable for deterministic systems. 

 Support Vector Machine 

A Support Vector Machine (SVM) is a supervised learning method used for binary 

or multi-class classification, regression and outlier detection, that aims to separate 

data into separate data classes [15]. It achieves this by placing a hyperplane with the 

largest separation or margin between the type classes. One such example would be 

using an SVM to classify valid and invalid data. The data must be well defined and 

there must be a large enough margin of difference between the two types of data so 

that invalid data is not classified as valid or vice versa. If the two types of data are 

too similar there is a greater chance that the SVM would classify them incorrectly. 

An extension of the SVM algorithm that can be used with unlabeled data is 

a one class support vector machine (OCSVM). The OCSVM algorithm takes input 

data and maps it into a high dimensional feature space, it then iteratively finds the 

maximal margin hyperplane, which best separates the training data from the origin 

as seen in Figure 9. The origin represents all data points that have low similarity to 

the training set and is where the outliers of the dataset are supposed to lie. This is 

ideal for intrusion detection as the training data can be the baseline for how the 

system is supposed to behave. Anything that does not fit within the one class can be 

considered anomalous, meaning that system does not need to know what invalid data 

looks like, just valid data. 



21 

 

  
Figure 9 – OCSVM Mapping Input Data Into a High Dimensional Feature Space [15] 

 Clustering  

Clustering refers to unsupervised learning algorithms which do not require pre-

labeled data to extract rules for grouping similar data instances [16]. There is a 

breadth of clustering algorithms that can be applied to datasets depending on the 

desired outcome. They are ideally used in situations where there is little prior 

information available about the data and can be used to make a (preliminary) 

assessment of the data’s structure based on the interrelationships of the data points 

[16]. The benefit of clustering algorithms is that nothing needs to be known about 

the data, however anomalous data that is designed to look like normal data is difficult 

to detect with these methods. More information on the various types of clustering 

algorithms and their applications can be found in [16]. 



22 

 

 Artificial Neural Networks 

Artificial Neural Networks (ANNs) are a way of representing how a brain would 

process information. An ANN is composed of artificial neurons that are able to 

perform certain computations on their inputs [17]. The simplest form of an ANN, 

depicted in Figure 10, is a feedforward neural network, where input data passes 

through hidden layers to an output layer. In an ANN these hidden layers take 

weighted inputs and the corresponding number of neurons in the next hidden layer 

is a reduction of the previous later starting from input to output. The downfall with 

ANN based learning is that as the number of distinct features in the data increase, 

the more time that is required to generate an effective model of the data. 

 

 
Figure 10 – Example of a Feedforward ANN   

2.3.3 Anomaly Detection using Deep Learning  

While ML techniques can be adapted to most problem sets, as the problem space 

increases so does the complexity and the harder it becomes to apply a ML method. 

This section will explore the potential of DL methods that can be applied for anomaly 

detection. DL is a subset of ML that refers to a specific class of multilayered models 



23 

 

that use many layers of simpler statistical components to learn a representation of 

the data [13]. DL networks can utilize supervised and unsupervised learning methods 

or a combination of both. These statistical models are usually layers of Artificial 

Neural Networks (ANNs) and can be adapted to fit the required application. “The 

essence of deep learning is to compute hierarchical features or representations of the 

observational data, where the higher-level features or factors are defined from lower-

level ones.” [18] The ability of DL to derive higher-level features makes them ideal 

for pattern analysis and classification. 

 Recurrent Neural Networks 

A Recurrent Neural Network (RNN) is an adaptation of feed-forward neural 

networks (section 2.3.2.5) in that they use cyclic connections making them more 

powerful in modeling sequences of data [19]. Using backpropagation, the input 

weights between the hidden layers are fine-tuned and calibrated. They can be used 

to predict and model sequence data using previous data samples, with no additional 

class information. The basic RNN cell is shown in Figure 11 and described by 

equation (1) [20]. 

 
Figure 11 – Basic RNN Cell [21] 

 

        The output ℎ𝑡 is a function of both the input 𝑥𝑡 and the previous output ℎ𝑡−1: 

ℎ𝑡  = 𝑓(𝑊𝑥𝑡  +  𝑈ℎ𝑡−1  +  𝑏) (1) 



24 

 

where 𝑊 and 𝑈 are weight matrices, 𝑏 is a bias term, and 𝑓 is a non-linear 

transformation (e.g. the sigmoid or tanh function). RNNs make use of present 𝑥𝑡 

information and the past ℎ𝑡−1 information, however they are difficult to train since 

the weights 𝑊 and 𝑈 are adjusted according to the derivative of the output. This 

feedback loop that causes errors to shrink or grow exponentially and are known as 

the vanishing and exploding gradient problems. Where the vanishing gradient 

problem is the issue that occurs as the RNN updates the weights through 

backpropagation, the update becomes vanishingly small preventing the network 

from further training. Shown in Figure 12 “The shading of the nodes in the unfolded 

network indicates their sensitivity to the inputs at time one (the darker the shade, the 

greater the sensitivity). The sensitivity decays over time as new inputs overwrite the 

activations of the hidden layer, and the network ‘forgets’ the first inputs.” [22] 

Opposingly, the exploding gradient deals with the update becoming too big, making 

the model completely ineffective at learning. 

 
Figure 12 – The Vanishing Gradient Problem for RNNs [22] 

 



25 

 

 Long Short-Term Memory Network 

Long Short-Term Memory (LSTM) networks were developed by Hochreiter et al. in 

[20] to deal with the exploding and vanishing gradient problems associated with 

RNNs. LSTMs are composed of cells with, an input gate 𝑖𝑡, an output gate 𝑜𝑡 and a 

forget gate 𝑓𝑡 shown in Figure 13 from [21].  

 
Figure 13 – LSTM Basic Cell[21] 

 

The gates depend on both the input 𝑥𝑡 and the previous output ℎ𝑡−1, and 

controls how much the internal state depends on the new input and previous state 

using learned weights:  

𝑖𝑡  = 𝜎(𝑊𝑖𝑥𝑡  + 𝑈𝑖ℎ𝑡−1  +  𝑏𝑖) (2) 

𝑓𝑡  = 𝜎(𝑊𝑓𝑥𝑡  + 𝑈𝑓ℎ𝑡−1  +  𝑏𝑓) (3) 

where 𝑊𝑖, 𝑈𝑖, 𝑊𝑓, 𝑈𝑓, are the learned weights, and 𝑏𝑖 and 𝑏𝑓 are learned bias terms. 

The sigmoid function σ is typically used for the gate terms to scale their output 



26 

 

between 0 and 1. Equations for 𝑖𝑡 (2) and 𝑓𝑡 (3) determine the new cell state 𝑐𝑡 as a 

linear combination of the previous 𝑐𝑡−1 and the new candidate internal state 𝑐̃𝑡: 

𝑐̃𝑡  = 𝑡𝑎𝑛ℎ(𝑊𝑐𝑥𝑡  + 𝑈𝑐ℎ𝑡−1  +  𝑏𝑐) (4) 

𝑐𝑡  = 𝑓𝑡𝑐𝑡−1  +  𝑖𝑐̃𝑡 (5) 

where 𝑊𝑐 and 𝑈𝑐 are weight matrices and 𝑏𝑐is the bias. The output ℎ𝑡, is controlled 

by a gate function 𝑜𝑡  that also has it own weights 𝑊𝑜, 𝑈𝑜 and 𝑏𝑜 as the bias:  

𝑜𝑡  = 𝜎(𝑊𝑜𝑥𝑡  +  𝑈𝑜ℎ𝑡−1  +  𝑏𝑜) (6) 

ht = ot tanh (ct)  (7) 

Each cell is meant to remember values over an arbitrary amount of time, with the 

three gates regulating the flow of information in and out of the cell. Overall, the 

LSTM architecture enables a more effective means of modeling a dataset than an 

RNN, as LSTMs do not suffer as significantly from errors in back propagation when 

updating the weights of each gate.  

As with RNNs, LSTMs can be trained to predict the next set of data values 

in a sequence. However, due to the optimizations of LSTMs they are now more 

widely used than traditional RNNs. LSTMs are used in technologies such as speech 

recognition software, handwriting recognitions, and notably, IDSs [21], [23]. 

Because an LSTM can be used to predict the values in a series, the difference 

between the predicted value and the actual value can be used to detect anomalies if 

the difference is above a set threshold. An LSTM model can also be optimized by 

selecting the appropriate hyper-parameter setting explained in the next section. 

 LSTM Network Hyper-parameters 

Hyper-parameters in ML, refer to attributes or values that are used to control and 

fine-tune the learning process of a ML model. The values are set prior to training a 



27 

 

model and affect the speed and quality of the leaning process [24]. Hyper-parameter 

search is commonly performed manually, via rules-of-thumb [25] or by testing sets 

of hyper-parameters on a predefined grid [26]. Bergstra et al. in [27] states that the 

task of determining hyper-parameter settings for deep architectures is an extremely 

difficult and resource intensive optimization task. Some common hyper-parameters 

used in training LSTMs are defined by Gaillard et al. in [28] and in TensorFlow’s 

application programming interface (API) documentation in [29]:  

1. Epochs: Indicates the number of passes of the entire training dataset the ML 

algorithm has completed. 

2. Time-steps or input length: Refers to the length of input sequence used to 

predict the output sequence. 

3. Batch size: Refers to the number of training examples that are utilized in one 

iteration before updating the model’s internal parameters. 

4. Layer count: The number of trainable layers (LSTMs, RNN, etc.) a model 

contains. 

5. Neuron count: The number of nodes that make up each layer of a model. 

6. Early Stopping: Stops training when a monitored metric has stopped 

improving. 

 Autoencoders  

Autoencoders are a type of ANN used to learn efficient data encodings in an 

unsupervised manner [30]. They aim to learn the representation or encoding of a set 

of data by training the network to ignore signal “noise”. An autoencoder consists of 

an encoder and a decoder shown in Figure 14. The encoder takes high-dimensional 

input data and translates it into latent low-dimensional data. The decoder then 

receives the encoder’s output data with the objective to reconstruct the original high-

dimensional input data. There would then be some reconstruction error, but if a 

model is trained on known “good” data a threshold would be set to an acceptable 



28 

 

level. This technique can then be used for anomaly detection by comparing the 

reconstruction error of data with and without anomalies. Usually, a high 

reconstruction error, over a set threshold would be indicative of an anomaly. 

 
Figure 14 – Conceptual Example of an Autoencoder [30] 

 LSTM Autoencoders  

An LSTM autoencoder uses LSTM layers to learn the compressed representations 

of a dataset [30]. It combines the best of an autoencoders ability for signal 

reconstruction and an LSTM’s ability to effectively learn and model a dataset. The 

main differences of a LSTM autoencoder and a regular autoencoder is that the main 

blocks of the network architecture are LSTM cells (section 2.3.3.2) as shown in 

Figure 15. 



29 

 

 
Figure 15 – Architecture of a LSTM Autoencoder [31] 

 

An LSTM autoencoder’s, effectiveness in reconstructing the input signal or 

input values is indicated by its reconstruction error. One method for calculating the 

reconstruction error is by using the Mean Absolute Error (MAE). The MAE is the 

absolute difference between the actual and predicted values [32] defined as:  

𝑀𝐴𝐸 =  
1

𝑚
∑|𝑥𝑖 − 𝑦𝑖|

𝑚

𝑖=1

 

(8) 

where 𝑚 represents the total number of data points in the time series, 𝑥𝑖 is the real 

measured time series in the original scale of the dataset, and 𝑦𝒊 is the predicted output 

of the time series [32]. The higher the MAE value the more inaccurate the predicted 

values were from the input values, the opposite being true for a lower value. This is 

useful when determining if data contains anomalies, as the more anomalies contained 

in the data, the more difficult it will be to recreate the input data resulting in a higher 

MAE value for each recreated value. The MAE can then be used as a method for 

setting a threshold value, where any recreated value that is higher than the threshold 



30 

 

can be considered anomalous. One method for setting the appropriate threshold value 

is using the standard deviation (σ) calculated from the MAE. Standard deviation is 

defined as:  

σ = √ 
∑ (𝑥𝑖 − 𝑥̅)2𝑛

𝑖=1

𝑛 − 1
 

(9) 

where 𝑥𝑖 is the value of the 𝑖𝑡ℎ point in the dataset, 𝑥̅ is the mean value and 𝑛 is the 

number of data points in the dataset. The specified number of standard deviations 

away from the mean can then be set as the threshold value. The default value being 

3 standard deviations away from the mean [33], however depending on the variance 

of the dataset an appropriate threshold can be set.  

2.3.4 Practical Applications of LSTM Networks 

There are examples where LSTM networks either alone or in combination with other 

methods are used for anomaly detection. One such method was purposed by Taylor 

et al. in [21] using a LSTM RNN to detect anomalies on the automotive Controller 

Area Network (CAN) bus. The proposed detector accepts raw CAN bus data words 

as an input and works by learning to predict the next data word originating from each 

sender on the bus. If there are bits in the next word that are not expected they are 

flagged as anomalies. This predictive type of modeling would be ideal for behaviour-

based anomaly detection, as it is able “to detect data packet anomalies that are 

unusual only in the context of the rest of the sequence.” [21]. With the added benefit 

that, “The LSTM based anomaly detector can be applied to many different vehicles 

without substantial modification.” [21].  

As described in Provotar et al. [30] autoencoders that use deep encoders and 

deep decoders offer many advantages over the standard single layer encoders and 

single layer decoders. The depth can exponentially reduce the computational cost of 

representing some functions. It can exponentially decrease the amount of training 



31 

 

needed to learn some functions. As well, experimentally, deep autoencoders yield a 

better compression compared to linear autoencoders. Reference [30] shows the 

application of LSTM autoencoders for anomaly detection with a high degree of 

successful anomaly detection. 

 In recent years, there has been additional research in the field of using 

LSTM Autoencoders for anomaly detection, shown in works like: [34], [35], and 

[36]. Maleki et al. in [34] apply a LSTM autoencoder to detect anomalies in CPU 

utilization, in a cloud computing environment. They concluded that an advantage of 

their applied method was the detection of both abrupt and gradually developing 

anomalies. Said Elsayed et al. in [35] use a hybrid method of a LSTM Autoencoder 

combined with a OCSVM to detect anomalies in web traffic. Their method showed 

promising results, however due to the nature of web traffic, further real-world testing 

was required to confirm the detectors viability. Kabore et al. in [36] review multiple 

deep learning techniques for anomaly detection on ICS systems. The use of LSTM 

and stacked Autoencoder based anomaly detectors were demonstrated to achieve 

positive anomaly detection results.  

The success of the LSTM RNN model in [21] for anomaly detection on the 

CAN bus is a good indication that LSTMs will work well for anomaly detection on 

other bus like networks. Combined with the promising anomaly detection rates of 

the LSTM autoencoder presented in [30], [34] and [36], the MIL-STD-1553B data 

bus would be a good test case for anomaly detection using a LSTM autoencoder DL 

method. Leading the focus of this research to explore the effectiveness of the LSTM 

autoencoder DL method for anomaly detection on MIL-STD-1553B networks.   

2.4 Existing MIL-STD-1553B Detection Methods 

Four anomaly detection methods that have been developed specifically for MIL-

STD-1553B networks have been explored in this research. First is a Markov chain 



32 

 

model described by Stan et al. in [2], second is the RT authentication module or RT 

Fingerprinting described in Stan et al. [3], third is a MIL-STD-1553B Anomaly-

Based Intrusion Detection System (MAIDENS) using time-based histogram 

comparison [1], and fourth is a signature based method proposed by Charles Bernard 

in [4]. 

2.4.1 Markov Chain Model 

Stan et al. in [2] proposed a Markov chain model anomaly detector for the MIL-

STD-1553B bus based on transmitted periodic and aperiodic messages. By 

extracting command and timing features from MIL-STD-1553B messages such as 

source terminal Address (TA), destination TA, time cycle, they could be used to 

define Markov model states (section 2.3.2.2). The aim of this detector was to address 

three types of attack scenarios: A DoS attack, a spoofing attack on a bus with a 

significant amount of traffic, and a spoofing attack on a less busy bus. In the test 

environment described in [2] they were able to use the model against the three attack 

methods and detect all anomalies with a zero false positive rate. Further to this, to 

validate their false positive rate, they applied their learning model to real MIL-STD-

1553B log data. They found that they needed to train their model for around 5 

seconds to achieve a near zero false positive rate. They noted the inability of their 

model to trigger anomalies when a corrupt RT is spoofing the BC or another RT and 

only manipulating the data words. 

2.4.2 RT Fingerprinting 

Stan et al. in [3] propose a RT authentication module that builds on their previous 

work in [2] that utilizes supervised and unsupervised ML algorithms to characterize 

legitimate signals and generates fingerprints for the system components. “The 

proposed module is based on analog signal analysis and utilizes the components’ 

hardware and manufacturing inconsistencies for this purpose. The signal analysis 

produces a unique profile for each monitored RT, which is later used for 



33 

 

authentication. This method is able to detect illegitimate connected devices to the 

data bus, as well as spoofing attacks.” [3] Their RT authentication process is detailed 

in Figure 16. In combination, with their sequenced-based module, the detector has a 

high detection and low false positive rate for the tested attacks. However, their 

detector did not cover attack methods that utilize only data and status words.  

 
Figure 16 – RT Authentication Process [3]  

 

2.4.3 MAIDENS 

MAIDENS [1] is a statistical anomaly-based intrusion detection system that uses a 

time-based histogram comparison method based on research conducted by Losier et 

al. in [37]. The time-based features of the MIL-STD-1553B bus are used to create a 

baseline histogram representation of known, intrusion-free data. By plotting the 

frequency of the values of a given feature, they are able to compare run-time data to 



34 

 

the baseline data and if it is a certain percentage away from the baseline it would be 

considered anomalous [1]. Based on the results in [1] the presented detector was able 

to identify the start and stop times in which a threat occurrence took place across 

five scenarios with no false positive or negative results. The five scenarios included 

four DoS type attacks: DoS using Command words, DoS using Status words, RT 

specific DoS and RT specific sub-address DOS. It also included one data 

manipulation attack: RT Hijack, all described in section 2.2. The detection times 

ranged from within 0.38 seconds to 47.11 seconds of an attacks start and stop time. 

This equates to detecting an attack within 380 to 47,110 messages, assuming a bus 

averages one message every 0.001 seconds, which is not ideal when investigating an 

attack or threat instance given the potential for a significant number of bus frames to 

analyse that may not be related to the attack. Overall, the MADIENS detector is 

effective at detecting attack threat occurrences, however the accuracy of the 

detection times could be improved upon to assist in the investigation of detected 

threat occurrences.   

2.4.4 Signature Based Detection  

The method proposed by Bernard in [4] is a signature-based intrusion detection 

method for MIL-STD-1533. It also utilized two anomaly-based detection 

techniques: word repetition analysis and RT frequency analysis. Word repetition 

analysis attempts to detect attacks that would use repeat words where they otherwise 

would not be. The example given is where an attacker impersonates a RT by sending 

status words close in time to legitimate ones [4]. RT frequency analysis detects 

attacks by analysing the frequency RT addresses appear in traffic samples. Any 

deviation from the expected frequency of transmission could be indicative of a 

defective device or an attack. The research demonstrated that signature-based 

detection was effective at detecting attacks that have clear attack indications, like a 

command word-initiated DoS (BC spoofing) that uses the transmitter shut down and 

start up mode codes or status word data leakage attack that hides data in reserved 



35 

 

bits in the status word. When combined with RT frequency analysis, signature-based 

detection was effective at detecting unauthorized RT address if an attack uses an RT 

address that is not supposed to be used on the bus.    

Signature-based detection however, was shown not to be effective at 

detecting a compromised RT scenario where a compromised RT changes the number 

of command or status words it receives or responds to. The word repetition analysis 

implemented was also demonstrated not to be an effective means of detection. In 

both of these scenarios, a usable signature could not be generated that would reliably 

trigger a detection event without an excessive amount of false positive detections. 

Overall, the application of signature-based network security monitoring is a viable 

tactic for detecting undesirable activity on a MIL-STD-1553B bus. However, 

signature-based detection requires the collection of known attacks or illegal 

messages on the MIL-STD-1553B data bus in order to flag undesirable actions. It 

was demonstrated that this method was ineffective of detecting data integrity attacks 

as no signatures could be set for the data.  

2.4.5 Demonstrated Anomaly Detection on MIL-STD-1553B 

The state of anomaly detection on MIL-STD-1553B has certainly improved since its 

inception. The aforementioned detectors have demonstrated their ability to detect 

anomalies over different threat scenarios. These scenarios have been generalized and 

presented in Table 2. As interest in this fields grows more detectors and methods 

will be created, as well as the ways in which threat actors can carry out attacks. There 

is always a need to continue to mature and develop means of detection, as well 

improve the accuracy and precision of these detection techniques so that they stay 

relevant and useful in real-word application.   

 

 



36 

 

Table 2–- Capabilities of Current Anomaly Detectors for the MIL-STD-1553B Data Bus 

Attack Type 

and/or Level of 

Detail Detected 

MAIDENS 

[1]  

Markov 

Chain 

Model[2] 

RT 

Fingerprinting 

[3] 

Signature 

Detection[4]  

1 

Detection of 

Denial of 

Service (DoS) 

Able Able Able Able 

2 

Detection of 

Targeted RT 

Denial of 

Service 

(RT DoS) 

Able Able Able Able 

3 

Detection of 

BC spoofing  

(Data 

Integrity) 

Able Able Able Able 

4 

Detection of 

Covert 

Channel 

Attack (Data 

leakage) 

Not Tested Not Tested Not Tested Able 

5 

Detection of 

RT message 

manipulation 

(Data 

Integrity)  

Able Unable Unable Unable 

2.5 Detection Methods  

There are many validation techniques available for determining the effectiveness of 

detection methods. Precision, Recall and Accuracy in terms of classification are 

good measures when the data contains labeled anomalous and benign data to 

determine false and true negative rates. As well as, the standard measure of accuracy 

and precision used in this work when determining detection times of anomalous 

event. The following section will describe these means of validation.   



37 

 

2.5.1 Precision, Recall and Accuracy (Classification) 

The performance metrics that are normally collected for evaluating the effectiveness 

of ML methods or for classification are: precision, recall and accuracy [38]. In order 

to calculate these metrics, the following will be collected for each method: 

• True positive (tp): detector identifies an anomaly correctly 

• False positive (fp): detector incorrectly labels benign traffic as anomalous 

• True negative (tn): detector identifies benign traffic correctly 

• False negative (fn): detector incorrectly labels anomalous traffic as benign 

Precision identifies the proportion of positive identifications that were 

actually correct, defined as:  

 
Precision = 

𝑡𝑝

𝑡𝑝+𝑓𝑝
 (10) 

Where a precision of 1 means that the predictor had no false positives or 

found all of the anomalies and a 0 means that the predictor only had false positives 

and no anomalies were found. However, this does not take into account the false 

negatives that were predicted. This is where recall is used to identify the proportion 

of true positives that were identified correctly. Defined as:  

 
Recall = 

𝑡𝑝

𝑡𝑝+𝑓𝑛 
 (11) 

Where a recall of 1 means that all anomalies were identified correctly and a 

0 meaning that they were all labelled incorrectly. Accuracy is then the fraction of 

predictions that the model has identified correctly defined as: 

 
Accuracy = 

𝑡𝑝+𝑡𝑛

 𝑡𝑝+𝑓𝑝+𝑡𝑛+𝑓𝑛
 (12) 



38 

 

Using all three metrics gives a better representation of the data as the 

accuracy alone does not show if there is a significant disparity between the number 

of positive and negative labels. If a method does not produce false positive or false 

negative results these metrics will not be necessary as the method perfectly detected 

an event.   

2.5.2 Accuracy and Precision (Detection Time) 

Accuracy is defined as the closeness of agreement between a test result and the 

accepted reference value [5]. Precision is defined as the agreement between 

independent test results obtained under stipulated conditions. Precision depends on 

the distribution of random errors and does not relate to the true value or the specified 

value [5]. For this work detection time accuracy (𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝐷𝑇) will be in terms of 

average detection time and is defined as: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦
𝐷𝑇

=  
∑ 𝑥

𝑛
 

(13) 

where 𝑥 is the sum of the event detection time and 𝑛 is the number of detection 

events. Detection time precision (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝐷𝑇) will be in terms of the mean absolute 

deviation (MAD) of the event detection times defined as: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝐷𝑇  =  
1

𝑛
∑ |𝑥𝑖 − 𝑥̅|

𝑛

𝑖=1

 

(14) 

where n is the number of detection events, 𝑥𝑖 is the 𝑖𝑡ℎnumber in the events and 𝑥̅ is 

the average event detection time. Combined, these validation metrics will be used to 

determine how accurate and precise a detector is at detecting an event occurrence. 

In this work we will use 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝐷𝑇 (detection time accuracy) and 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝐷𝑇 

(detection time precision) as measure to indicate the start and stop of an attack.  



39 

 

2.6 Summary  

With the currently available detection methods for MIL-STD-1553B each method 

has its strength when it comes to anomaly detection. Table 2 showcases a number of 

detection methods and what they are able and unable to detect. The signature-based 

detection method can detect anomalies with known anomalous signatures, the 

Markov chain method can detect DoS and spoofing attacks and MAIDENS can 

detect attacks that involve data manipulation. While, these methods are able to detect 

anomalies, the degree of 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝐷𝑇 and 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝐷𝑇 are just as important when 

it comes to analysing any detected anomaly. The advantages then of using ML and 

DL methods, would then be a method that could accurately detect all known attacks 

and possibly unknown attack methods, while increasing in the 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝐷𝑇 and 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝐷𝑇. Looking at the applicability of the LSTM autoencoder DL method, 

the next chapter will go on to describe the methodology and design of applying this 

method for detection of anomalies on a MIL-STD-1553B data bus, with the intent 

of increasing the detection time accuracy and precision.   



40 

 

Chapter 3 

Methodology and Design 

This chapter outlines the research methodology and design used to develop an 

anomaly detector that utilized the LSTM autoencoder DL technique described in 

Chapter 2 for the MIL-STD-1553B data bus. The first phase is the development of a 

data acquisition pipeline that will be used to collect and prepare MIL-STD-1553B 

bus traffic. This data acquisition pipeline will also extract defining features of the 

data. The second phase is the creation of a LSTM-based autoencoder method that 

will utilize the data from the previous phase for baseline creation and anomaly 

detection. Finally, the third phase is the validation of the DL model’s ability to 

accurately and precisely detect report on anomalies.  

3.1 Phase 1: Data Acquisition Pipeline  

In order to perform detection on a set of data with a ML or DL technique it has to be 

in a viable format to be ingested by the detector. This set of data points can be in the 

form of a stream of data, like a sequence of messages from a MIL-STD-1553B data 

bus. In order to collect and create a baseline dataset of MIL-STD 1553B network 

traffic, a bus recorder was used to record the communications of simulated and/or 

emulated RTs over a physical MIL-STD 1553B data bus shown in Figure 17. The 

MIL-STD 1553B data bus was setup similarly to the generic test bench and 

collection architecture also shown in Figure 17. The data collected was that of a 

“benign” flight, consisting of an aircraft in flight, where no anomalies were enacted. 

Once the baseline dataset was collected it was used to create a baseline model in the 

next phase.  



41 

 

 
Figure 17 – Generic MIL-STD-1553B Test Bench and Collection Architecture 

 

 The collection of anomalous traffic is similar to the collection of the baseline 

data except for the presence of a rogue device connected to the physical MIL-STD-

1553B bus, to simulate a maliciously attached device that produces anomalies on the 

bus in the form of different scenarios. The scenarios were pulled from the following 

types of attacks: 

1) DoS  

a) Network Disruption (Command word DoS) 

b) Network Disruption (Status word DoS) 

2) Targeted RT DoS 

a) RT deny 

b) RT subaddress deny 

3) Data Integrity Violation 

a) RT hijack 

Using the tool presented by Paquet in [6] each of the above five attack scenarios can 

be carried out on a MIL-STD-1553B bus under test. The attack methodology is laid 

out in Chapter 2.2 and each attack is described in more detailed in Table 3.  

 



42 

 

 

Table 3 – Scenario Attack Descriptions 

Scenario Brief Description  

1a) 

A complete data bus DoS attack where a rogue RT in BC mode uses 

commands words transmitted on the data bus in order to deny all bus 

communication. 

1b) 

A complete data bus DoS attack where a rogue RT in BC mode transmits 

status words after each normally transmitted command word transmitted 

on the data bus to deny all bus communication. 

2a) 

A targeted DoS attack where a rogue RT in BC mode transmits status 

words after each normally transmitted command word intended for a 

specified RT to deny communication to or from that RT. 

2b) 

A targeted DoS attack where a rogue RT in BC mode transmits status 

words after each normally transmitted command word intended for a 

specified RT sub-address to deny communication to or from that RT sub-

address. 

3a) 

The implementation of this attack cannot be disclosed due to it being 

proprietary in nature, however it essentially causes the data for an intended 

recipient RT to be modified and accepted as if it were the intended values. 

 

Attack scenario 1a) is a DoS attack that uses command words transmitted on the data 

bus by a rogue RT in order to deny all bus communication. Attack scenario 1b) is 

also a DoS attack that transmits status words after each normally transmitted 

command word to achieve the same outcome. Attack scenarios 2a) and 2b) transmit 

status words after a command word is transmitted for the targeted RT or RT sub-

address. The exact implementation of Attack scenario 3a) cannot be disclosed due 

to it being proprietary in nature. It is however, essentially causing the data for an 

intended recipient RT to be modified and accepted as if it were the intended values 

and achieves the same desired outcome as the man in the middle attack described in 

section 2.2.3.1.  



43 

 

3.1.1 Feature Extraction 

The raw data from the data collection phase cannot be directly fed into a DL model, 

therefore the data must be prepared in order to do so. This process is known as feature 

extraction. The data is transformed by deriving each feature manually or by other 

means of automatic feature generation. For the purpose of this research the chosen 

features were determined from previous works of MAIDENS [1] and Stan et al. [2]. 

As well, additional features were created by extracting features from the Abaco 

BusTools BMDX format [39].  

The initial feature set available for MIL-STD-1553B are described in the 

works of MAIDENS [1] and Stan et al. [2] shown in Table 4. This feature set defines 

the fundamental features of a message on the data bus, but can be expanded upon to 

better describe the entirety of the messages. 

Table 4 - Features of MIL-STD-1553B Network Traffic [1], [2] 

 Feature name Description 

Command 

Features 

Source Terminal 

Address 
The address of the RT sending the data. 

Source Sub-Address The sub-address of the sending RT. 

Destination Terminal 

Address 
The address of the receiving RT. 

Destination Sub-

Address 
The sub-address of the receiving RT. 

Channel The channel on which the message was sent. 

Word Count The number of data words sent in the message. 

Is Mode Code Whether the command is a mode code or not. 

Time-Based 

Features 

Time Cycle Time cycle of the message. 

Response Time Time for an RT to respond to a command. 

Inter-message Gap Time from end of one message to the start of the next. 

Periodicity 
Mean time difference in start times of messages over a 

given period. 

Bus Utilization Percent use of the bus over a given time period. 

Data Throughput 
Number of data words sent over the bus over a given 

time period. 

 



44 

 

Table A-1 in Appendix A was created based on Table 4, less the time-based features, 

to describe the command and status word features of BC-RT and RT-RT messages. 

For BC-RT messages the RT-RT specific features (e.g. CMD2-addr, CMD2-TR) are 

zeroized to standardize input. The BMDX file format, shown in Figure 18, contains 

more information on a message than what is recorded on the bus. The additional 

information is contingent on the type of bus recorder; however, the supplementary 

Message Status information from [39] can be used to extract additional features from 

a message. The feature list extracted from the Abaco BusTools Message Status word 

is contained in Appendix A, Table A-2. 

 
Figure 18 – Abaco BusTools BMDX Structure [39] 

 

Table A-3 in Appendix A is a combination of Table A-1 and Table A-2 to 

compile the 61 features be extracted from the MIL-STD-1553B protocol and used in 

the LSTM autoencoder model development in the next section.  



45 

 

3.2 Phase 2: DL Model Development  

The model development phase utilizes the baseline data recording from the previous 

phase with the TensorFlow and Pandas Python libraries [29] to create a LSTM 

autoencoder model of the data. TensorFlow is an open-source software library for 

ML and can be used to implement DL techniques [40] and Pandas is an open-source 

data analysis and manipulation tool that can handle large datasets required for DL. 

[41] The TensorFlow software is a core tool for DL model creation and requires the 

user to program and configure their desired model, which is described further in the 

following section.   

3.2.1 LSTM Autoencoder Model Setup 

The input shape of the initial LSTM autoencoder layer is recommended to be about 

half of the number of input features [30]. Since the feature set from Phase 1 contains 

61 features the initial LSTM layer was chose to have 30 nodes. To make the encoder 

portion of the autoencoder, the next LSTM layer should be a reduction in the number 

of nodes. It is recommended the reduction in nodes is at least 50% [30], making the 

second layer have 15 nodes. The last LSTM layer is then expanded back to the size 

of the original layer, back up to 30 nodes, to make the second and third layers the 

decoder portion of the autoencoder. The last layer of the model is the output layer, 

which is a dense layer that is used to change the dimensions of the last LSTM layer 

to map the output to the number of input features [42]. The final proposed LSTM 

autoencoder model is shown in Figure 19 and is a numerical representation of the 

design described in Chapter 2. 



46 

 

 
Figure 19 – Proposed LSTM Autoencoder Layers 

3.2.2 LSTM Autoencoder Training 

As discussed in Chapter 2, there is a need to test different hyper-parameter settings 

to find a balance between the optimization of model creation and the time to produce 

a viable model. Hyper-parameter tuning is problem dependant and will vary greatly 

depending on the data set. The works of Ranjan [43] recommends an initial list of 

hyper-parameters when initiating testing of model design. The main hyper-

parameter settings that are recommended are: 300 epochs, a time-step of 1, a batch 

size of 5 and no callback for early stopping. These initial values will be adapted 

through experimentation to achieve the desired detection accuracy and optimum 

training time.  

3.2.3 LSTM Autoencoder Threshold 

Once a LSTM autoencoder is trained the threshold value for anomaly detection will 

need to be determined. Using the metrics described in Chapter 2 the threshold can 

be set. The threshold can be set anywhere from 2-3 standard deviations from the 

average MAE. The threshold value should change based on the variability of the 



47 

 

data, but once set should remain the same throughout all scenarios for comparison. 

Setting the threshold too high may lead to missing event detections or false negatives 

and setting the threshold too low may lead to too many event detections or false 

positives. The initial threshold value will need to be set through a series of trial and 

error until acceptable results are achieved. Once the threshold is set, the model is 

now ready to accept recordings for anomaly detection. The next phase will describe 

how the results of the DL model will be validated. 

3.3 Phase 3: Anomaly Detection and Validation 

This phase will determine the LSTM autoencoder’s ability to detect anomalies from 

the different recorded scenarios. In order to trigger an anomaly detection event, the 

feature extracted data from phase 1 is run though the LSTM autoencoder model that 

was trained on the baseline data in phase 2. The detector will then generate a MAE 

for each message indicating how well it was able to recreate each message feature. 

If the MAE is higher than the determined threshold value then that message will be 

identified as anomalous.  

Validation activities include comparing performance and time metrics 

between MAIDENS and the LSTM Autoencoder. To enable this, the 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝐷𝑇 

and 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝐷𝑇 of the MAIDENS and LSTM Autoencoder detectors are 

calculated. The 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝐷𝑇 will then be taken from the three attack events in each 

scenario as the average detected start and stop time. The closer the average is to zero 

the more accurate the detection times are for that scenario. 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝐷𝑇 will also be 

calculated using the mean absolute deviation described in Chapter 2 for each 

scenario.  



48 

 

3.4 Summary 

The three phases above describe the process for anomaly detection using a LSTM 

autoencoder. The first phase consists of the collection of a data pipeline for baseline 

recordings as well as recordings that will contain anomalous traffic. The second 

phase is the creation of a baseline LSTM autoencoder model and subsequent 

anomaly detection from the data collected in phase 1. Finally, the third phase is the 

validation of the LSTM autoencoder detector’s ability to detect anomalies. This flow 

is necessary to properly collect and validate a dataset appropriately, the results from 

which are described in the following Chapter.   

  



49 

 

Chapter 4  

Results 

In this chapter, a LSTM autoencoder anomaly detector is built and evaluated using 

the design developed in Chapter 3. The implementation of the LSTM autoencoder 

model is detailed, followed by a description of the two datasets from separate MIL-

STD-1553B network architectures. The results from the detector are then presented 

and compared to a statistical anomaly detector for the first of the two datasets. The 

detector is then evaluated on its ability to accurately and precisely detect the start 

and stop time of anomalies in both datasets.  

4.1 Experimental Design  

The LSTM autoencoder anomaly detection pipeline was implemented using the 

following hardware and software components: 

• Processor: AMD Ryzen 7 3800X 8-Core 

• RAM: 64 GB DDR4 Memory 

• GPU: AMD Radeon RX 5700 XT 8 GB GDDR6 

• SSD: 1 TB NVMe Gen 3  

• Operating System: Windows 10 

• Abaco BusTools Software  

• Abaco BusTools Bus Recorder 

• TensorFlow library 

• Scikit-learn toolkit 

• Pandas library 

• NumPy library 

4.1.1 LSTM Autoencoder Model 

The LSTM autoencoder model that was used for this experiment was composed of 

three LSTM layers that follows the design outlined in Chapter 3. Table A-3 in 

Appendix A details the 61 features that have been extracted from the MIL-STD-



50 

 

1553B protocol and will be used as the input for the LSTM autoencoder. As outlined 

in Chapter 3, the initial layer had 30 nodes. The next layer was then composed of 

half as many nodes, down 15 nodes, making the first two layers, the encoder portion 

of the LSTM network. The last LSTM layer was then expanded back to the size of 

the first layer, up to 30 nodes, to make the second and third layers the decoder portion 

of the LSTM network. The output of the last layer feeds the results into a 61-node 

dense layer, one node for each feature. The final LSTM autoencoder network is 

shown in Figure 20 and resembles the design described in Chapter 3. 

 
Figure 20 –LSTM Autoencoder Layers 

 

As discussed in Chapter 3, there was a need to test different hyper-parameter 

settings to find a balance between the optimization of model creation and the time to 

produce a viable model. The works of Ranjan [43] were used as a starting point for 

the initial hyper-parameter tuning. Initially, the model was trained with 300 epochs, 

a time-step of 1 and a batch size of 5 with no callback for early stopping. After some 

fine tuning, the hyper-parameters that were selected for model creation were: 100 

epochs, a time-step of 1, a batch size of 2000, and an early stopping callback if there 



51 

 

was no significant change in validation (MAE) loss for three consecutive epochs. 

These final hyper-parameter settings decreased the time to train the LSTM 

autoencoder, from a few hours to around half an hour to train. The hyper-parameter 

tuning was not the focus of this research, but is normally part of the model 

development process and was conducted in order to allow the model to train in a 

faster period of time without negatively effecting the results.  

4.1.2 Datasets 

There are two datasets used for this research. Dataset 1 is the dataset that was used 

in the MAIDENS [1] research and was collected from the CP140 Aurora test bench 

in CFB Greenwood, Nova Scotia and was composed of 15 RTs. Dataset 2 was 

collected on a proprietary MIL-STD-1553B emulated network provided by RMC in 

Kingston, Ontario and was composed 14 RTs. Each dataset contains one baseline 

data recording of normal data bus activity and separate recordings that contain 

scenarios with different attack types being carried out on the data bus. Each 

recording is that of an aircraft in straight and level flight. A limitation that was noted 

was the inability to label each individual message as anomalous or benign for each 

attack scenario. Instead, each attack is recorded and labeled by the initial start and 

stop time of an attack, marking entire sections of recordings as anomalous. Both 

datasets will be described in more detail in section 4.2 and section 4.3.  

4.1.3 Results Overview 

The LSTM autoencoder results for both datasets detected every anomaly occurrence 

with no false positive or false negative results, much like the MAIDENS detector for 

Dataset 1. While reporting an event classification accuracy, precision and recall of a 

100% looks ideal, this comes from each attack in each dataset being labelled by the 

start and stop time of an attack occurrence and not having each individual message 

labelled (a limitation of the attack toolset being used). So, while each detector detects 

every attack occurrence, there is no way of confirming if every message that falls 



52 

 

above the set threshold measurement is a message associated with an attack (a false 

positive) and the same goes for every message that falls below the threshold, it 

cannot be confirmed for sure that it is not associated with the attack (a false 

negative). Therefore, the better metric to use in the case of these datasets, is the time-

related performance metrics for 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝐷𝑇 and 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝐷𝑇, specifically of the 

start and stop time of each attack occurrence. When using these metrics, for every 

scenario in the dataset 1, the LSTM autoencoder greatly increased these time-related 

performance metrics when compared to the MAIDENS detector and had favorable 

results of its own for dataset 2. To note, each detector included results that indicated 

an attack occurrence occurred before the actual start time of an attack. It is 

hypothesized that this is due to the detector triggering on an individual word of a 

message, however due to the limitations of recording tools, timings are by message 

and not by individual words of a message. The results for each dataset will be 

discussed in more detail in the remainder of this Chapter.  

4.2 Dataset 1 – MAIDENS Dataset 

The MAIDENS [1] research used data from a CP140 Aurora test bench, consisting 

of real and simulated RTs. The BC master schedule and exact network design is 

proprietary in nature and was not disclosed. However, Figure 21 outlines the general 

architecture and data collection setup.  



53 

 

 
Figure 21 - High-Level CP140 MIL-STD-1553B Test Bench and Collection Architecture 

 

The MAIDENS data consists of six BMDX data files, described in Chapter 3, 

that have been converted into a comma-separated values (CSV) format. The first file 

is the baseline data file that was recorded with no anomalous behaviour enacted on 

the bus and representative of an aircraft in a straight and level phase of flight. The 

other five BMDX files contain the recording for each of the five threat scenarios 

described in the work of Paquet [6] and are composed of DoS, targeted RT DoS and 

Data Integrity Violation attacks as outlined in Chapter 3:  

1) DoS 

a) Test1a: Network disruption (Command word DoS) 

b) Test1b: Network disruption (Status word DoS) 

2) Targeted RT DoS 

a) Test2a: RT deny 

b) Test2b: RT subaddress deny 

3) Data Integrity Violation 

a) Test3a: RT hijack 

The five recordings each contain about 20 minutes of bus data, contain three 

occurrences of a single type of threat scenario. Each threat scenario was carried out 



54 

 

approximately every 5 minutes, with each occurrence lasting for approximately one 

minute. The exact times when the scenarios started and ended were recorded.  

4.2.1 MAIDENS Detector 

The Maidens detector [1] was provided by RMC, and is a statistical anomaly-based 

detection system that uses time-based histogram comparison, described previously 

in Chapter 2. The detector uses the baseline BMDX file that has been converted into 

CSV format to create a baseline profile. The baseline profile is then used to detect 

anomalies in subsequent bus traffic that is analysed by the MAIDENS detector. For 

this research all of the MADIENS data was re-run through the detector and the same 

results were obtained as in [1]. The performance statistics are described in the results 

section below and will be used for comparison with the LSTM autoencoder anomaly 

detector.  

 MAIDENS Detector Results  

Table 5 shows the detection results for each scenario and each threat occurrence 

within. When determining only whether an attack has occurred, the event 

classification accuracy, precision and recall were all calculated to be 100% 

indicating the MAIDENS detector had no issues detecting every attack occurrence 

(section 4.1.3). Table 6 however, shows the overall 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝐷𝑇 and 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝐷𝑇 

results for each scenario. The MAIDENS detector, detected the start and stop time 

of the first scenario within 0.38 ±0.15 and 47.11 ±37.53 seconds, respectively. This 

meaning that the detector was within hundreds to thousands of messages of 

determining the start and stop time of the threat scenarios. The average start and stop 

time for all combined scenarios is an average of 0.64 ±0.40 seconds for the start time 

and 10.27 ±7.98 seconds for the stop time. 

 

 

 



55 

 

Table 5 - Dataset 1 MAIDENS Detection Results (reproduced from [1]) 

Scenario 
Threat 

Occurrence 

Actual Time 

Of Anomaly 

 (minutes:seconds) 

Identified Time  

Of Anomaly 

(minutes:seconds) 

Start End Start End 

1a) 

1 13:28:57.65 13:30:04.56 13:28:57.47 13:30:19.06 

2 13:35:03.92 13:36:56.54 13:35:03.32 13:37:19.96 

3 13:39:45.94 13:43:16.54 13:39:45.59 13:44:59.94 

1b) 

1 13:48:49.98 13:49:46.45 13:48:49.15 13:49:47.16 

2 13:53:47.29 13:55:46.75 13:53:46.93 13:55:47.80 

3 13:59:02.40 14:01:47.37 13:59:02.25 14:01:48.31 

2a) 

1 14:08.47:58 14:09:50.18 14:08:47.50 14:09:51.05 

2 14:13:45.90 14:15:52.45 14:13:45.84 14:15:53.61 

3 14:18:46.66 14:21:46.45 14:18:45.54 14:21:46.74 

2b) 

1 14:25:54.45 14:26:55.65 14:25:54.15 14:26:55.74 

2 14:30:57.73 14:33:23.53 14:30:56.06 14:33:25.29 

3 14:35:55.50 14:38:56.50 14:35:55.04 14:39:01.41 

3a) 

1 14:44:51.96 14:45:55.61 14:44:50.91 14:45:56.15 

2 14:49:55.57 14:51:49.18 14:49:55.13 14:51:49.35 

3 14:54:51.33 14:57:27.72 14:54:49.38 14:57:27.91 

 
Table 6 - Dataset 1 MAIDENS Detection Time Accuracy and Precision Results 

Scenario 
Average Identified Start 

Time Difference (seconds) 

Average Identified End 

Time Difference (seconds) 

1a) 0.38 ±0.15 47.11 ±37.53 

1b) 0.45 ±0.26 0.89 ±0.13 

2a) 0.41 ±0.46 0.78 ±0.32 

2b) 0.81 ±0.57 2.26 ±1.77 

3a) 1.14 ±0.54 0.3 ±0.16 

Average 0.64 ±0.40 10.27 ±7.98 



56 

 

4.2.2 LSTM Autoencoder Detector 

The LSTM autoencoder detector was created using the methodology and design 

described in Chapter 3. The detector was created using the Python programming 

language with the TensorFlow library as the backend for the LSTM model creation. 

The detector performs two core functions. The first created a baseline model of the 

MIL-STD-1553B data bus undergoing analysis. The second function would compare 

subsequent data from the data bus under analysis for anomaly detection. The decoder 

accepts a converted BMDX file that has undergone feature extraction for baseline 

creation and anomaly detection in CSV format. The program outputs either a trained 

LSTM model or a labeled CSV file that contains all of the messages, the MAE of 

each message and whether each message was determined to be anomalous. The data 

collection pipeline, model creation, and anomaly detection processes are described 

in more detail in the following sections.  

 LSTM Autoencoder Data Collection Pipeline  

Since the data is provided from the MAIDENS work, the data collection portion of 

this pipeline was already completed. The set up for the MAIDENS data collection 

saved the traffic capture in a usable format, in this case the BMDX format. In order 

for this data to be used by the LSTM autoencoder, feature extraction needed to be 

performed on the BMDX files. In order to complete this process, described 

previously in Chapter 3, a program was developed using the Python scripting 

language to convert the BMDX file type in CSV format into a CSV file with all MIL-

STD-1553B features, described in Appendix A, extracted. The program is presented 

in Appendix D. The product from this pipeline was six CSV files, one for each of 

the 5 scenario recordings and one for the baseline recording.  

 LSTM Autoencoder Model Training 

The CSV files from previous section have been converted from their original data 

file recordings into a format that is usable by the Pandas and TensorFlow libraries 



57 

 

so that a DL model could be created to represent the dataset. Using the model design 

described in section 4.1.1, the developed model was trained on the baseline dataset 

recording from the MAIDENS data. The baseline data file contains 753,896 

messages and was split into a training and test set. The training set contains 80% of 

the data while the test set contains the remainder. Using the training set, a LSTM 

autoencoder model was created, while the test set was used to confirm the output of 

the model and used to create the threshold value. As discussed in Chapter 3 the 

threshold can be set using a value of 2 – 3 standard deviations from the average MAE 

value from the test set. Using a standard deviation of 2 the threshold for the 

remainder of the scenarios was 0.4941. Running the complete baseline dataset 

through the created model, none of the baseline model messages fell above the 

threshold, shown in Figure 22.  This indicated that the model is a good representation 

of “normal” traffic as discussed in Chapter 3 and any future traffic that is run against 

this model that falls above the threshold value may be considered anomalous. Figure 

23 shows a smaller sub-section of the baseline graph to demonstrate the variations 

that exist in the MAE values. Due to the RTs being simulated, opposed to being 

emulated, it is expected that the normal behaviour of the RTs will display very little 

variation, however it is not as perfect as Figure 22 would indicate.  



58 

 

 

Figure 22 - Dataset 1 Baseline Anomaly Detection Results 

 

 

Figure 23 - Dataset 1 Baseline Anomaly Detection Results (Scaled 0 to 5000 Messages) 

 



59 

 

 LSTM Autoencoder Anomaly Detection   

In the previous section the baseline LSTM autoencoder model was created and a 

threshold value determined. The five scenario recordings that underwent feature 

extraction in section 4.2.3.1 can now be ingested by the model. Any of the produced 

MAE values for each message that fall above the threshold value of 0.4941 will be 

considered an anomalous message. As discussed in Chapter 3, a group of anomalous 

messages above the threshold will be considered a single event if no other messages 

go above the threshold in a 30 second window. This will allow for the determination 

of the start and stop times of the events. Appendix B showcases output of the LSTM 

autoencoder anomaly detector for each of scenarios, the results being discussed in 

the next section.    

 LSTM Autoencoder Results   

The threshold value was set in section 4.2.2.2, to a MAE value of 0.4941. This 

threshold value led all attacks being detected for all five scenarios, showcased in 

Appendix B. Table 7 shows the detection results for each scenario and each threat 

occurrence within. When determining only whether an attack has occurred, the event 

classification accuracy, precision and recall were all calculated to be 100% 

indicating the LSTM Autoencoder detector had no issues detecting every attack 

occurrence (section 4.1.3). Table 8 however, shows the overall 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝐷𝑇 and 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝐷𝑇 results for each scenario. The LSTM autoencoder detector, detected 

the start and stop time of the first scenario within 0.0060 ±0.0058 and 0.0060 

±0.0031 seconds, respectively. This means that the detector was within 6 ±6 and 6 

±3 messages of determining the start and stop time of the threat scenarios. The 

overall average start and stop time for all combined scenarios is 0.0512 ±0.0354 and 

0.2476 ±0.3194 seconds for determining an anomalous event or 50 ±35 and 250 ±320 

messages.  



60 

 

Table 7 - Dataset 1 LSTM Autoencoder Detection Results 

Scenario 
Threat 

Occurrence 

Actual Time of Anomaly 

(minutes:seconds) 

Identified Time of Anomaly 

(minutes:seconds) 

Start End Start End 

1a) 

1 13:28:57.649195 13:30:04.556062 13:28:57.634574 13:30:04.553993 

2 13:35:03.919435 13:36:56.539377 13:35:03.917005 13:36:56.549938 

3 13:39:45.940323 13:43:16.540626 13:39:45.939523 13:43:16.545886 

1b) 

1 13:48:49.983588 13:49:46.453073 13:48:49.978587 13:49:46.453779 

2 13:53:47.289629 13:55:46.753689 13:53:47.287051 13:55:46.753755 

3 13:59:02.395148 14:01:47.36972 13:59:02.392748 14:01:47.352389 

2a) 

1 14:08.47:578865 14:09:50.178645 14:08:47.573866 14:09:50.173645 

2 14:13:45.897814 14:15:52.450973 14:13:45.893615 14:15:52.447294 

3 14:18:46.656755 14:21:46.448220 14:18:46.652555 14:21:46.445174 

2b) 

1 14:25:54.446686 14:26:55.645693 14:25:54.342154 14:26:55.643948 

2 14:30:57.733593 14:33:23.532993 14:30:57.768592 14:33:23.527994 

3 14:35:55.503482 14:38:56.502798 14:35:55.499274 14:39:00.098576 

3a) 

1 14:44:51.962728 14:45:55.607036 14:44:51.772394 14:45:55.512194 

2 14:49:55.566734 14:51:49.181563 14:49:55.372060 14:51:49.111575 

3 14:54:51.329332 14:57:27.720389 14:54:51.131489 14:57:27.709099 



61 

 

 

Table 8 - Dataset 1 LSTM Detection Time Accuracy and Precision Results  

Scenario 
Average Start Time 

Difference (seconds)  

Average End Time 

Difference (seconds)  

1a) 0.0060 ±0.0058 0.0060 ±0.0031 

1b) 0.0033 ±0.0011 0.0060 ±0.0075 

2a) 0.0045 ±0.0004 0.0039 ±0.0007 

2b) 0.04791 ±0.0378 1.1964 ±1.5465 

3a) 0.1943 ±0.1322 0.0587 ±0.0391 

Average 0.0512 ±0.0354 0.2476 ±0.3194 

4.2.3 Comparison between Detectors 

The LSTM autoencoder anomaly detector outperformed the MAIDENS detector in 

every scenario. As shown in Table 9 there was an 1054.69% increase in average 

detection start time and a 4147.82% increase in average detection end time when 

comparing detection time in seconds. In terms of messages the MAIDENS detector 

can detect the start time within 640 ±400 messages and the stop time within 10270 

±7980 messages, whereas the LSTM autoencoder detector can detect the start time 

within 51 ±35 messages and the stop time within 250 ± 320 messages. Based on the 

median overall average, the LSTM autoencoder anomaly detector is 1058.82% more 

effective at detecting the start time and 4108% more effective at detecting the end 

time of an anomalous event in terms of messages than the MAIDENS detector.  

Table 9 – Dataset 1 Average Detection Time Start and End in Seconds 

 
Average Start and End Detection Time (Seconds) 

Start Low Middle 
Start 

High 
End Low Middle End High 

LSTM 0.0158 0.0512 0.0866 -0.0718 0.2476 0.567 

MAIDENS 0.14 0.54 0.94 2.29 10.27 18.25 

% Increase 886.076 1054.69 1085.45 3189.42 4147.82 3218.70 

 



62 

 

Table 10 – Dataset 1 Average Detection Time Start and End in Terms of Messages 

 
Average Start and End Detection Time (#Messages) 

Start Low Middle 
Start 

High 
End Low Middle End High 

LSTM 16 51 86 -70 250 570 

MAIDENS 140 540 940 2290 10270 18250 

% Increase 875 1058.82 1093.02 3271.43 4108 3201.75 

4.3 Dataset 2 

Dataset 2 was collected from a proprietary MIL-STD-1553B data bus test bench 

provided by RMC. The test bench is composed of a combination of simulated and 

emulated RTs. However, since the BC master schedule and exact makeup of the 

MIL-STD-1553B network is proprietary in nature, it will not be fully disclosed and 

instead the general architecture and setup for data collection is shown in Figure 24.  

 
Figure 24 - Emulated MIL-STD-1553B Test Bench and Collection Architecture 

 

For this dataset a total of five BMDX files were collected. The first file is a 

baseline recording that was collected from the bus during a normal operating state, 

representing the aircraft in straight and level flight. The remaining four BMDX files 

were the recordings of four separate threat scenarios. The four scenarios are executed 

over the physical data bus and recorded using an Abaco BusTools recorder, named 



63 

 

according to attack type and date recorded, and are composed of the attack categories 

outlined in Chapter 3: 

1) DoS 

a) NetDisrupt statusword 250820 (disrupt): Network disruption (Status 

word DoS) 

2) Targeted RT DoS 

a) RT-SA deny statusword rt18 sa32 250820 (deny): RT deny 

b) RT-SA deny statusword rt18 sa1 250820 (SA deny): RT subaddress 

deny 

3) Data Integrity Violation 

a) Hijack rt18 sa6 w56 250820 (hijack): RT hijack 

Each of the four recordings contain three occurrences of a single attack type, with 

each occurrence starting every 5 minutes and lasting for approximately one minute. 

The anomalies were created using a tool created by Paquet [6]. The start and end 

timing of each anomaly occurrence were recorded and examined post recording to 

properly tag the message timings. These scenarios were conducted throughout a re-

enactment of the baseline scenario representing straight and level flight. Scenario 

1a) in this dataset is equivalent to the scenario 1b) described in section 3.1. The DoS 

using command words could not be achieved due to this specific attack type crashing 

the bus monitor consistently during testing. The recordings will be referred to in the 

rest of this document according to their corresponding scenario number e.g. 

“NetDisrupt statusword 250820 (disrupt)” is referred to as Scenario 1a).  

4.3.1 MAIDENS Detector 

Dataset 2 was run through the MAIDENS detector and no results were able to be 

obtained. It was determined that because of how the MIL-STD-1553B protocol was 

implemented on this test bench it could not be handled by the MAIDENS detector 

without significant changes to the source material. The inability of the MAIDENS 



64 

 

detector to handle this dataset is presumed to be because of how this particular bus 

architecture implements bus load optimization. The bus controller balances the bus 

utilization evenly between the main bus (bus A) and the redundant bus (bus B). This 

differs from dataset 1, where the main bus (bus A) was utilized for 99% of bus 

communications. The modification of the MAIDENS detector is out of scope for this 

work, but with proper modification it would most likely be able to ingest this data. 

This did however, showcase the importance of considering how the MIL-STD-

1553B protocol could be implemented when designing an anomaly detection 

method. 

4.3.2 LSTM Autoencoder Detector 

The LSTM autoencoder detector was created using the methodology and design 

described in Chapter 3 and uses the same process described in section 4.2.3 with the 

addition of data acquisition from the test bench.  

 LSTM Autoencoder Data Collection Pipeline  

For the collection of the recording of each scenario including the baseline an Abaco 

BusTools recorder was connected as well as the tool created by Paquet [6]. Once 

collected, the Abaco BusTools software was used to output the BMDX files in CSV 

format in order to use the feature extraction tool presented in Appendix D. The 

product from this pipeline is five CSV files, one for each of the four attack scenario 

recordings and one for the baseline recording.  

 LSTM Autoencoder Model Creation 

Using the same model creation process in section 4.2, the feature extracted baseline 

CSV file from the data collection pipeline was then usable by the Pandas and 

TensorFlow libraries so that a DL model can be created to represent the dataset. 

Using the model design described in section 4.1, the model was trained on the 

baseline dataset that was collected. The baseline data file contains 995,633 messages 



65 

 

and is split into a training and test set as outlined in Chapter 3. The training set 

contains 80% of the data while the test set contains the remainder. Using the training 

set, a LSTM autoencoder model was created, while the test set was used to confirm 

the output of the model and used to create the threshold value. Initially, a standard 

deviation of 2 was used, the same as in dataset 1, but produced an unacceptable false 

positive rate. Due to the increase in variation of data compared to dataset 1, 

increasing the threshold for dataset 2 to 2.5 standard deviations better suited the 

dataset and produced acceptable results for all four scenarios. Using a standard 

deviation of 2.5 the threshold was determined to be 1.0351. After having run the 

complete baseline dataset through the created model, none of the baseline model 

messages fell above the threshold, shown in Figure 25. This indicated that the model 

is a good representation of “normal” traffic as discussed in Chapter 3 and any future 

traffic that is run against this model that rises above the threshold value may be 

considered anomalous.  

 
Figure 25 - Dataset 2 Baseline Anomaly Detection Results. 



66 

 

 LSTM Autoencoder Anomaly Detection   

In the previous section the baseline LSTM autoencoder model was created and a 

threshold value determined. The 4 scenario recordings that underwent feature 

extraction as described in section 4.3.2.1 were then ingested by the baseline model 

created in the previous section. Any of the MAE values that fell above the threshold 

value of 1.0351 will be considered an anomalous message. As with this discussed in 

section 4.2.2.2, any group of anomalous messages above the threshold will be 

considered a single event if no other messages go above the threshold in a 30 second 

window. Appendix C showcases the output of the LSTM autoencoder anomaly 

detector for each of the 4 scenarios, the results being discussed in the next section.  

 LSTM Autoencoder Results   

The threshold value was set in section 4.3.2.2, to a MAE value of 1.0351. This 

threshold value led to all attacks being detected and no false positives being 

produced for all 4 scenarios, showcased in Appendix C. Table 11 showcases the 

detection results for each scenario and each threat occurrence within. When 

determining only whether an attack has occurred, the event classification accuracy, 

precision and recall were all calculated to be 100% indicating the LSTM 

Autoencoder detector had no issues detecting every attack occurrence (section 

4.1.3). Table 12 however, shows the overall 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝐷𝑇 and 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝐷𝑇 results 

for each scenario. The LSTM autoencoder detector, detected the start and stop time 

of the first scenario within 0.0097 ±0.0120 and 0.0482 ±0.0582 seconds respectively. 

This means that the detector was within 20 and 120 messages of determining the 

start and stop time of the threat scenarios. The overall average start and stop time for 

all combined scenarios is 0.0071 ±0.0087 and 0.0698 ±0.0409 seconds for 

determining an anomalous event or within 15 and 100 messages. 

 

 



67 

 

Table 11 - Dataset 2 LSTM Autoencoder Detection Results 

Scenario 
Threat 

Occurrence 

Actual Time of Anomaly  

(minutes:seconds) 

Identified Time of Anomaly 

 (minutes:seconds) 

Start End Start End 

1a) 

1 13:31:21.410110  13:32:20.276438    13:31:21.382417 13:32:20.274504 

2 13:36:21.585307 13:37:19.811250 13:36:21.585307 13:37:19.675735 

3 13:41:21.666338 13:42:20.350172 13:41:21.667805 13:42:20.342905  

2a) 

1 13:09:25.728274 13:10:25.680717 13:09:25.727660 13:10:25.680379 

2 13:14:25.767550 13:15:25.531311 13:14:25.767814 13:15:25.530763 

3 13:19:25.541643 13:20:25.878662 13:19:25.543358 13:20:25.877716  

2b) 

1 12:23:29.388951 12:25:28.701594 12:23:29.388951 12:25:28.701269 

2 12:28:29.137439 12:29:29.089815 12:28:29.188035 12:29:29.088796 

3 12:33:29.540529 12:34:29.741777 12:33:29.542288 12:34:29.740567 

3a) 

1 14:37:32.380410 14:38:27.244591 14:37:32.380119 14:38:27.177577 

2 14:42:32.412870 14:43:27.898795 14:42:32.412957 14:43:27.525835 

3 14:47:32.210372 14:48:27.393951 14:47:32.210796 14:48:27.161069 



68 

 

Table 12 - Dataset 2 LSTM Autoencoder Detection Time Accuracy and Precision Results  

Scenario 
Average Start Time 

Difference (seconds) 

Average End Time 

Difference (seconds) 

1a) 0.0097 ±0.0120 0.0482 ±0.0582 

2a) 0.0009 ±0.0006 0.0006 ±0.0002 

2b) 0.0175 ±0.0221 0.0009 ±0.0004 

3a) 0.0003 ±0.0001 0.2242 ±0.1048 

Average 0.0071 ±0.0087 0.0685 ±0.0409 

4.4 Discussion  

The LSTM Autoencoder proved a successful means for detecting anomalies on two 

different MIL-STD-1553B Bus architectures. For dataset 1, the LSTM Autoencoder 

outperformed the MAIDENS detector in every scenario and for dataset 2 the detector 

indicated the start and stop time of each event with a hundredth or thousandth of a 

second, detecting each the start and stop time of each scenario within a few messages 

of the threat occurrence.  

For dataset 1, the LSTM autoencoder detector outperformed the MAIDENS 

detector in each of the 5 scenarios. Table 9 showcases the improved start and end 

time detections in seconds, while Table 10 showcases the improved start and end 

time detections in terms of number of messages. The LSTM autoencoder detector 

had an average detection start time of 0.0512 ±0.0354 seconds and an average 

detection stop time of 0.2476 ±0.3194 seconds over the 5 scenarios. This equates to 

the LSTM autoencoder being able to detect the start time of an anomalous event 

within approximately 51 ±35 messages and the stop time within 250 ±320 messages. 

Compared to the statistical-based method, MAIDENS [1], which had an average 

detection start time of 0.54 ±0.40 seconds or within 640 ±400 messages and an 



69 

 

average detection stop time of 10.27 ±7.98 seconds or within 10270 ±7980 

messages.  

 For dataset 2, the MAIDENS detector was not able to process the 

recordings. This was likely due to how the bus architecture was implemented for 

dataset 2 and would require a significant rework of the MADIENS detector, which 

was out of scope for this work. However, the LSTM autoencoder detector was able 

to process the recording the same as in dataset 1 and the results are presented in 

Table 13 and Table 14. The LSTM autoencoder detector had an average start 

detection time of 0.0071 ±0.0087 seconds or within approximately 7 ±8 messages 

and an average stop time detection of 0.0685 ±0.0409 seconds or within 

approximately 68 ±41 messages. The results demonstrating this DL technique as an 

effective method for identifying attacks on a MIL-STD-1553B Data Bus.  

Table 13 – Dataset 2 Average Detection Time Start and End in Seconds 

 
Average Start and End Detection Time (Seconds) 

Start Low Middle 
Start 

High 
End Low Middle End High 

LSTM -0.0016 0.0071 0.0158 0.0276 0.0685 0.1094 

 

Table 14 – Dataset 2 Average Detection Time Start and End in Terms of Messages  

 
Average Start and End Detection Time (#Messages) 

Start Low Middle 
Start  

High 
End Low Middle End High 

LSTM -1 7 15 27 68 109 

 

The significance of increasing the 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝐷𝑇  of detection means reducing 

the number of messages needed to be sorted through to find the actual start and stop 

time of an event, if they are not already known. As an example, if a forensic 

investigator were trying to determine the start time of Scenario 1a) from dataset 1. 

Using the detection time from MAIDENS the operator would need to sort through 

approximately 540 to 1000 messages, before finding the actual start time. Using the 



70 

 

detection time of the LSTM autoencoder anomaly detector the operator would need 

to sort through approximately 50 to 90 messages. This is a significant decrease and 

would drastically reduce the amount of time needed to narrow down an anomalous 

event.  

There were a couple of drawbacks that were noted during experimentation. 

The first is the manual setting of a threshold value. For both datasets an acceptable 

threshold value was able to be set for all anomaly detection. However, depending on 

how the MIL-STD-1553B protocol was implemented or what state of flight an 

aircraft is in during recording, this value will need to be adjusted accordingly. The 

general observation was that the busier and more complex the communication 

schedule is, the higher the threshold values needed to be set. The setting of the 

threshold value may require expert knowledge on the system and is a significant 

factor to ensure the detector is detecting only anomalous events. The second 

drawback noted related to data collection and how the threat emulation tool from 

Paquet [6] did not have the ability to tag individual messages as anomalous. The 

LSTM autoencoder by design is able to tag each message as anomalous or not. 

Overall, the increase in performance when compared to MADIENS is worth the few 

drawbacks, with each drawback that could be studied and expanded on further in the 

future to potentially minimize their effect. 

The above results showcase the viability of DL methods as a means of 

detecting of anomaly on a MIL-STD-1553B Bus. An LSTM autoencoder is just one 

example of many available DL methods that can be explored for anomaly detection 

on network architectures like the MIL-STD-1553B protocol. Advances in means of 

detection of anomalies can not only inform users of intrusions on their networks, but 

can also be a means of fault detection for maintenance actions. 



71 

 

4.5 Summary 

Overall, for dataset 1 when comparing the LSTM Autoencoder detector, it 

outperformed the MAIDENS detector for all five scenarios in both the 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝐷𝑇 

and 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝐷𝑇 when indicating start and stop time of threat occurrences. For 

dataset 2 the LSTM Autoencoder was also able to detect the start and stop times of 

each anomalous scenario within a tenth to a hundredth of a second. Unfortunately, 

the MAIDENS detector was unable to process the data from dataset 2 resulting in 

the fact that no comparisons could be made between the two detectors. The results 

showcase the applicability of using the LSTM autoencoder DL method for anomaly 

detection on MIL-STD-1553B data bus.  

  



72 

 

Chapter 5 

Conclusion  

This research investigated the improvement of detection time accuracy and precision 

of threat scenarios on the MIL-STD-1553B data bus. This was accomplished by the 

implementation of an LSTM autoencoder DL detector to improve the overall 

effectiveness of anomaly detection times when compared to a statistical-based 

detection method. This chapter presents an overview of the motivations for this 

research, contributions of this research in the field of MIL-STD-153B anomaly 

detection, recommendations for future work based on this research, and finally 

recommendations based on the finding of this research.  

5.1 Overview  

While the detection of an actual cyber attack on a physical aircraft has yet to be 

realized, the consequences of such an event cannot be ignored. The difficulty of 

MIL-STD-1553B networks is that not every data bus network is implemented the 

same and it is too costly to replace and implement a different protocol. There are 

methods that have been developed for the MIL-STD-1553B protocol and include 

signature-based, and anomaly-based detection techniques [1], [2], [3], [4].  

The aim of this research was to improve the time-related performance 

metrics when detecting attacks on the MIL-STD-1553B data bus traffic using a 

LSTM autoencoder deep learning technique. Not only was it successful in detecting 

different attacks on two different bus architectures, but it also outperformed the 

MAIDENS detector presented in [1] in both detection time accuracy (𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝐷𝑇) 

and detection time precision (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝐷𝑇). The detector can handle different types 

of anomalous scenarios, detecting the start and stop timings of each anomalous 



73 

 

scenario to a hundredth or thousandth of a second with no false positive or negative 

results. The degree of detection accuracy would be more beneficial, compared to 

MAIDENS, in a forensics investigation as the detected time are closer to the actual 

attack time, resulting in far fewer frames to needlessly analyse.  

There are some drawbacks to the LSTM autoencoder and the specific 

implementation throughout this work. The setting of a manual threshold value is 

variable based on the data bus under examination. This can require the use of expert 

knowledge in order to set an appropriate value for proper anomaly detection. 

Another drawback, is the setting of hyper-parameters and selection of features. The 

feature set proposed was used in its entirety, however some features may not be 

relevant or hinder the models training. This goes for the selection of hyper-

parameters as well, there could very well be better parameters that optimize the 

model’s performance. Lastly, the datasets used both represent an aircraft during 

straight and level flight and use simulated and emulated RTs. Using a real MIL-

STD-1553B data bus would be beneficial to confirm the results of this study as well 

as traffic during different phases of flight. 

This work provides substantial evidence of the applicability of the LSTM 

autoencoder detector for anomaly detection on MIL-STD-1553B networks. There 

are some deficiencies that could be improved upon to confirm viability on real MIL-

STD-1553B data busses and optimize the detector. However, this work satisfies the 

overall aim of improving the detection capabilities when compared to a statistical-

based detection method. 

5.2 Contributions 

The following contributions were made by this research:  

1. An LSTM autoencoder detector that has an improved detection time 

accuracy and detection time precision than the MAIDENS detector. 



74 

 

2. The collection of benign and anomalous MIL-STD-1553B traffic datasets.  

3. A tool for conducting feature extraction on MIL-STD-1553B traffic 

collected in BMDX format for input into ML or DL models.  

4. A list of MIL-STD-1553B features for ML or DL modeling.  

5.3 Future Work 

This research investigated the application of a LSTM autoencoder detector in order 

to increase in efficiency in detecting anomalies on the MIL-STD-1553B data bus. 

This work also concludes that there are areas that could be improved upon and 

recommends the following to be investigated to further advance this work: 

1. Development of a feature selection and optimization process.  

2. Development of a model training and hyper-parameter selection and 

optimization process.  

3. Development of a MIL-STD-1553B data bus dataset that would allow for 

detection of anomalies in different phases of operation (flight).  

5.4 Recommendation 

This research was conducted in a test environment with simulated and emulated 

devices. It is recommended that this anomaly detection method be evaluated on real 

MIL-STD-1553B traffic. Once tested and evaluated it could be used as a means of 

developing an effective IDS for implementation on the tested MIL-STD-1553B data 

bus network. This implementation could provide the ability to monitor traffic on 

MIL-STD-1553B traffic where nothing currently exists.   



75 

 

References 

[1] S. J. J. Généreux, A. K. H. Lai, C. O. Fowles, V. R. Roberge, G. P. M. Vigeant, and J. 

R. Paquet, “MAIDENS: MIL-STD-1553 Anomaly-Based Intrusion Detection System 

Using Time-Based Histogram Comparison,” 2019. 

[2] O. Stan, Y. Elovici, A. Shabtai, G. Shugol, R. Tikochinski, and S. Kur, “Protecting 

Military Avionics Platforms from Attacks on MIL-STD-1553 Communication Bus,” 

ArXiv170705032 Cs, Jul. 2017, Accessed: Jan. 28, 2019. [Online]. Available: 

http://arxiv.org/abs/1707.05032 

[3] O. Stan, A. Cohen, Y. Elovici, and A. Shabtai, “Intrusion Detection System for the 

MIL-STD-1553 Communication Bus,” IEEE Trans. Aerosp. Electron. Syst., pp. 1–1, 

2019, doi: 10.1109/TAES.2019.2961824. 

[4] C. Bernard, “An application of network security monitoring to the MIL-STD-1553B 

data bus,” Masters thesis, Royal Military College of Canada, Kingston, ON, 2019. 

[5] “ISO 5725-1:1994(en), Accuracy (trueness and precision) of measurement methods 

and results — Part 1: General principles and definitions.” 

https://www.iso.org/obp/ui/#iso:std:iso:5725:-1:ed-1:v1:en (accessed Sep. 20, 2022). 

[6] J. Paquet, “Uncovering MIL-STD-1553 vulnerabilities: exploitability of military 

aircraft networks,” Masters thesis, Royal Military College of Canada, 2014. 

[7] “MIL-STD-1553 Designer’s Guide.” ILC Data Device Corporation, 1998. 

[8] K. Lounis, Z. Mansour, M. Wrana, M. A. Elsayed, S. H. H. Ding, and M. Zulkernine, 

“A Review and Analysis of Attack Vectors on MIL-STD-1553 Communication Bus,” 

IEEE Trans. Aerosp. Electron. Syst., pp. 1–1, 2022, doi: 

10.1109/TAES.2022.3177583. 

[9] R. A. Kemmerer, “Shared Resource Matrix Methodology: An Approach to Identifying 

Storage and Timing Channels,” ACM Trans. Comput. Syst., vol. 1, no. 3, p. 22. 

[10] T. D. Nguyen, “Towards MIL-STD-1553B Covert Channel Analysis:,” Defense 

Technical Information Center, Fort Belvoir, VA, Jan. 2015. doi: 

10.21236/ADA613900. 

[11] S. Mukkamala, A. Sung, and A. Abraham, “Cyber Security Challenges: Designing 

Efficient Intrusion Detection Systems and Antivirus Tools,” in Enhancing Computer 

Security with Smart Technology, illustrated ed., V. Rao Vemuri, Ed. CRC Press, 2005. 

[12] S. Agrawal and J. Agrawal, “Survey on Anomaly Detection using Data Mining 

Techniques,” Procedia Comput. Sci., vol. 60, pp. 708–713, 2015, doi: 

10.1016/j.procs.2015.08.220. 

[13] C. Chio and D. Freeman, Machine Learning & Security: Protecting Systems with Data 

and Algorithms. O’Reilly, 2018. 

[14] D. Heckerman, “A Tutorial on Learning with Bayesian Networks,” in Innovations in 

Bayesian Networks. Studies in Computational Intelligence, vol. 156, D. E. Holmes and 

L. C. Jain, Eds. Springer Berlin Heidelberg. [Online]. Available: 

https://doi.org/10.1007/978-3-540-85066-3_3 

[15] L. A. Maglaras and J. Jiang, “Intrusion detection in SCADA systems using machine 

learning techniques,” in 2014 Science and Information Conference, Aug. 2014, pp. 

626–631. doi: 10.1109/SAI.2014.6918252. 



76 

 

[16] A. K. Jain, M. N. Murty, and P. J. Flynn, “Data clustering: a review,” ACM Comput. 

Surv., vol. 31, no. 3, pp. 264–323, Sep. 1999, doi: 10.1145/331499.331504. 

[17] K. Hornik, M. Stinchcombe, and H. White, “Multilayer feedforward networks are 

universal approximators,” Neural Netw., vol. 2, no. 5, pp. 359–366, Jan. 1989, doi: 

10.1016/0893-6080(89)90020-8. 

[18] L. Deng and D. Yu, “Deep Learning: Methods and Applications,” Found. Trends® 

Signal Process., vol. 7, no. 3–4, pp. 197–387, 2014. 

[19] J. Kim, J. Kim, H. L. T. Thu, and H. Kim, “Long Short Term Memory Recurrent 

Neural Network Classifier for Intrusion Detection,” in 2016 International Conference 

on Platform Technology and Service (PlatCon), Feb. 2016, pp. 1–5. doi: 

10.1109/PlatCon.2016.7456805. 

[20] S. Hochreiter and J. Schmidhuber, “Long Short-Term Memory,” Neural Comput., vol. 

9, no. 8, pp. 1735–1780, 1997. 

[21] A. Taylor, S. Leblanc, and N. Japkowicz, “Anomaly Detection in Automobile Control 

Network Data with Long Short-Term Memory Networks,” in 2016 IEEE International 

Conference on Data Science and Advanced Analytics (DSAA), Oct. 2016, pp. 130–139. 

doi: 10.1109/DSAA.2016.20. 

[22] A. Graves, Supervised Sequence Labelling with Recurrent Neural Networks, vol. 385. 

Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. doi: 10.1007/978-3-642-24797-

2. 

[23] M. J. Potvin, “Detecting malicious anomalies in heavy duty vehicular networks,” 

Masters thesis, Royal Military College of Canada, Kingston, ON, 2020. 

[24] M. Claesen and B. De Moor, “Hyperparameter Search in Machine Learning.” arXiv, 

Apr. 06, 2015. Accessed: Sep. 25, 2022. [Online]. Available: 

http://arxiv.org/abs/1502.02127 

[25] G. E. Hinton, “A Practical Guide to Training Restricted Boltzmann Machines,” in 

Neural Networks: Tricks of the Trade, vol. 7700, G. Montavon, G. B. Orr, and K.-R. 

Müller, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp. 599–619. doi: 

10.1007/978-3-642-35289-8_32. 

[26] F. Pedregosa et al., “Scikit-learn: Machine learning in Python,” J. Mach. Learn. Res., 

vol. 12, pp. 2825–2830, 2011. 

[27] J. Bergstra and Y. Bengio, “Random Search for Hyper-Parameter Optimization,” J. 

Mach. Learn. Res., vol. 13, no. 10, pp. 281–305, 2012. 

[28] F. Gaillard, “Epoch (machine learning) | Radiology Reference Article | 

Radiopaedia.org,” Radiopaedia. https://radiopaedia.org/articles/epoch-machine-

learning?lang=us (accessed Sep. 25, 2022). 

[29] “tf.keras.callbacks.EarlyStopping | TensorFlow v2.10.0,” TensorFlow. 

https://www.tensorflow.org/api_docs/python/tf/keras/callbacks/EarlyStopping 

(accessed Sep. 25, 2022). 

[30] O. I. Provotar, Y. M. Linder, and M. M. Veres, “Unsupervised Anomaly Detection in 

Time Series Using LSTM-Based Autoencoders,” in 2019 IEEE International 

Conference on Advanced Trends in Information Theory (ATIT), Dec. 2019, pp. 513–

517. doi: 10.1109/ATIT49449.2019.9030505. 

[31] J. Venskus, P. Treigys, and J. Markevičiūtė, “Unsupervised marine vessel trajectory 

prediction using LSTM network and wild bootstrapping techniques,” Nonlinear Anal. 

Model. Control, vol. 26, no. 4, pp. 718–737, Jul. 2021, doi: 

10.15388/namc.2021.26.23056. 



77 

 

[32] A. Almalaq and J. J. Zhang, “Evolutionary Deep Learning-Based Energy Consumption 

Prediction for Buildings,” IEEE Access, vol. 7, pp. 1520–1531, 2019, doi: 

10.1109/ACCESS.2018.2887023. 

[33] T. Hasith Ram Varma, D. Dhwani, and A. M. Méan, “A Review of various statestical 

methods for Outlier Detection,” Int. J. Comput. Sci. Eng. Technol. IJCSET, 2014. 

[34] S. Maleki, S. Maleki, and N. R. Jennings, “Unsupervised anomaly detection with 

LSTM autoencoders using statistical data-filtering,” Appl. Soft Comput., vol. 108, p. 

107443, Sep. 2021, doi: 10.1016/j.asoc.2021.107443. 

[35] M. Said Elsayed, N.-A. Le-Khac, S. Dev, and A. D. Jurcut, “Network Anomaly 

Detection Using LSTM Based Autoencoder,” in Proceedings of the 16th ACM 

Symposium on QoS and Security for Wireless and Mobile Networks, Alicante Spain, 

Nov. 2020, pp. 37–45. doi: 10.1145/3416013.3426457. 

[36] R. Kabore, A. Kouassi, R. N’goran, O. Asseu, Y. Kermarrec, and P. Lenca, “Review 

of Anomaly Detection Systems in Industrial Control Systems Using Deep Feature 

Learning Approach,” Engineering, vol. 13, no. 01, pp. 30–44, 2021, doi: 

10.4236/eng.2021.131003. 

[37] B. F. Losier, R. Smith, and V. R. Roberge, “Design of a Time-Based Intrusion 

Detection Algorithm for the MIL-STD-1553.” 

http://roberge.segfaults.net/joomla/index.php/publications (accessed Mar. 06, 2019). 

[38] K. P. Shung, “Accuracy, Precision, Recall or F1?,” Medium, Apr. 10, 2020. 

https://towardsdatascience.com/accuracy-precision-recall-or-f1-331fb37c5cb9 

(accessed Sep. 25, 2022). 

[39] L. S. (Abaco S. Anderson and N.-G. Us, “AN 009 The BMD and BMDX File 

Formats,” p. 11. 

[40] M. Abadi et al., “TensorFlow: A system for large-scale machine learning,” p. 21. 

[41] “pandas - Python Data Analysis Library.” https://pandas.pydata.org/ (accessed Sep. 

27, 2022). 

[42] Y. Verma, “A Complete Understanding of Dense Layers in Neural Networks,” 

Analytics India Magazine, Sep. 19, 2021. https://analyticsindiamag.com/a-complete-

understanding-of-dense-layers-in-neural-networks/ (accessed Sep. 27, 2022). 

[43] C. Ranjan, “Step-by-step Understanding LSTM Autoencoder Layers,” Data Sci., Apr. 

2019, [Online]. Available: https://towardsdatascience.com/step-by-step-

understanding-lstm-autoencoder-layers-ffab055b6352 



78 

 

Appendix A - MIL-STD-1553B Feature Set 

 

This Appendix contains 3 tables: Table A-1, that describes the command and status word features derived from the MIL-

STD-1553 protocol. Table A-2, that describes the message word features derived from the MIL-STD-1553 protocol. Lastly, 

Table A-3 that is a compilation of the features in Tables A-1 and A-2. 

Table A-1 – MIL-STD-1553B Command and Status Word Features   

 Feature Name Abbreviation Description 

BC-RT 

or  

RT-RT 

Message 

Features  

 

Command 1 Address CMD1-addr The address of the RT transmitting or receiving data for BC-RT message. For 

RT-RT messages it is the address of the transmitting RT. 

Command 1 

Transmission or 

Receive mode 

CMD1-TR Indicates whether CMD 1 RT is sending or receiving. 

Command 1 sub 

address 

CMD1-subaddr The sub-address of CMD 1 RT. 

Command 1 number 

of data words 

CMD1-numword Number of words to transmit or receive. 

Status word 

response time to 

command 1 

RSP1 The amount of time in micro seconds (us) for CMD 1 RTs status word to respond 

to BC. 

Status word 1 

Address 

STS1-addr Address of RT status word response to CMD 1. 

 Status word 1 Error 

Bit 

STS1-Error Indicates if the Error bit in STS1 is set. 



79 

 

 Feature Name Abbreviation Description 

 Status word 1 

Instrumentation Bit 

STS1-Inst Indicates if the Instrumentation bit in STS1 is set. 

 Status word 1 

Service Request Bit 

STS1-SerReq Indicates if the Service Request bit in STS1 is set. 

 Status word 1 

Reserve Bit 

STS1-Reserved Indicates if the Reserved bit in STS1 is set. 

 Status word 1 

Broadcast Cmd 

Received Bit 

STS1-BCRecv Indicates if the Broadcast Cmd Received bit in STS1 is set. 

 Status word 1 Busy 

Bit 

STS1-Busy Indicates if the Busy bit in STS1 is set. 

 Status word 1 

Subsystem Flag Bit 

STS1-SubFlag Indicates if the Subsystem Flag bit in is STS1 set. 

 Status word 1 

Dynamic Bus 

Acceptance Bit 

STS1-DBAcc Indicates if the Dynamic Bus Acceptance bit in STS1 is set. 

 Status word 1 

Terminal Flag Bit 

STS1-TerFlag Indicates if the Terminal Flag bit in STS1 is set. 

RT-to-RT 

Message 

Features 

(Zeroized if 

not present) 

 

Command 2 Address CMD2-addr The address of the RT transmitting or receiving data for BC-RT message. For 

RT-RT messages it is the address of the transmitting RT. 

Command 2 

Transmission or 

Receive mode 

CMD2-TR Indicates whether CMD 2 RT is sending or receiving. 

Command 2 sub 

address 

CMD2-subaddr The sub-address of CMD 2 RT. 

Command 2 number 

of data words 

CMD2-numword Number of words to transmit or receive. 

Status word 

response time to 

command 2 

RSP2 The amount of time in micro seconds (us) for CMD 2 RTs status word to respond 

to BC. 



80 

 

 Feature Name Abbreviation Description 

Status word 2 

Address 

STS2-addr Address of RT status word response to CMD 2. 

 Status word 2 Error 

Bit 

STS2-Error Indicates if the Error bit in STS2 is set. 

 Status word 2 

Instrumentation Bit 

STS2-Inst Indicates if the Instrumentation bit in STS2 is set. 

 Status word 2 

Service Request Bit 

STS2-SerReq Indicates if the Service Request bit in STS2 is set. 

 Status word 2 

Reserve Bit 

STS2-Reserved Indicates if the Reserved bit in STS2 is set. 

 Status word 2 

Broadcast Cmd 

Received Bit 

STS2-BCRecv Indicates if the Broadcast Cmd Received bit in STS2 is set. 

 Status word 2 Busy 

Bit 

STS2-Busy Indicates if the Busy bit in STS2 is set. 

 Status word 2 

Subsystem Flag Bit 

STS2-SubFlag Indicates if the Subsystem Flag bit in is STS2 set. 

 Status word 2 

Dynamic Bus 

Acceptance Bit 

STS2-DBAcc Indicates if the Dynamic Bus Acceptance bit in STS2 is set. 

 Status word 2 

Terminal Flag Bit 

STS2-TerFlag Indicates if the Terminal Flag bit in STS2 is set. 



81 

 

Table A-2 – MIL-STD-1553B Message Status Features  

Feature Name Abbreviation Description 

Bad RT Address  BT1553_INT_BAD_RTADDR This bit indicates that the RT address in the status word response is not identical to 

the RT addressed in the command word. 

Bit Count BT1553_INT_BIT_COUNT This bit indicates that the bit count of one or more words in the message was not the 

expected value (16). This condition also sets the BT1553_INT_INVALID_WORD 

bit. 

BM Overflow  BT1553_INT_BM_OVERFLOW This bit indicates that the BM overflowed at this point and some messages were 

lost. The number lost can be determined by examining the message numbers. 

Broadcast BT1553_INT_BROADCAST This bit indicates that the message was a broadcast message. This is set in BC, BM 

and RT messages. 

Channel BT1553_INT_CHANNEL This bit indicates the channel on which the message was detected. If this bit is set, 

the message was detected on Bus B; otherwise, the message was detected on Bus A. 

Early Response  BT1553_INT_EARLY_RESP This bit indicates that the 1553 decoder detected a command sync with less than 

2μs of bus dead time when a status word is expected. 

End of Message  BT1553_INT_END_OF_MESS This bit indicates that the parity bit of the last word of the message has been 

transmitted or received on the 1553 bus. This bit is set on every legal message with 

a valid command word, regardless of any other detected error conditions. 

High Word  BT1553_INT_HIGH_WORD This bit indicates that the message contained more data words than was defined in 

the word count field of the command word. 

Invalid Word  BT1553_INT_INVALID_WORD This bit indicates that any of the following was detected on one or more words of 

the message: inverted sync, invalid Manchester II encoding (including zero and 

crossing errors), bit count error, or parity error. 

Inverted Sync  BT1553_INT_INVERTED_SYNC This bit indicates that the sync field was inverted from what was expected by the 

message transfer format on one or more of the words in the message. This condition 

also sets the BT1553_INT_INVALID_WORD bit. 

Late Response  BT1553_INT_LATE_RESP This bit indicates that the 1553 decoder did not detect a command sync within the 

specified Late Response Timeout when a status word is expected. This time is set 

with the “wTimeout2” parameter of the BusTools_BC_Init function. 

Low Word Flag BT1553_INT_LOW_WORD This bit indicates that the message contained fewer data words than were indicated 

in the word count field of the command word. 

Message Error  BT1553_INT_ME_BIT This bit indicates that the 1553 Status Word response had the Message Error bit set. 



82 

 

Feature Name Abbreviation Description 

Mid Bit BT1553_INT_MID_BIT This bit indicates that successive mid-zero crossings were not within 150ns of the 

expected time for any successive bits in any word of the message (except the sync 

bit – see below). This condition also sets the BT1553_INT_INVALID_WORD bit. 

Mode Code BT1553_INT_MODE_CODE This bit is set to indicate a mode code message. 

No Command BT1553_INT_NOCMD This bit is set when the decoder does not see any message on the bus after a BC 

command is sent. This is probably the result of an improperly terminated bus. The 

BT1553_INT_NO_RESP bit is set as well. 

NO Inter-Message 

Gap 

BT1553_INT_NO_IMSG_GAP This bit indicates that the mid-sync zero crossing of the next command sync was 

detected prior to 4μs preceding the mid-zero crossing of the parity bit of the last 

word of the current message. The next command sync may or may not produce a 

valid command word. 

No Response  BT1553_INT_NO_RESP This bit indicates that the 1553 decoder did not detect a command sync within the 

specified No Response Timeout time when a status word is expected. This time is 

set with the wTimeout1 parameter to the BusTools_BC_Init function. 

Non-Continuous 

Data 

BT1553_INT_NON_CONT_DATA This bit indicates that a gap was detected between successive data words in the 

message. The hardware allows a 4-μs gap before declaring a Low Word error and 

beginning a search for the next command word. 

Parity Error BT1553_INT_PARITY This bit indicates that a parity error was detected in one or more words of the 

message. Odd parity is used (per the MIL-STD-1553B Specification). This 

condition also sets the BT1553_INT_INVALID_WORD bit. 

Reset RT BT1553_INT_RESET_RT This bit indicates that a valid Reset Terminal mode code command was received. 

The application must reset this RT to an initialized state. 

Retry BT1553_INT_RETRY This bit indicates that an automatic retry was executed by the BC. This bit doesn’t 

indicate whether the retry was successful. Failure of the retry results in the No 

Response error bit set or the Message Error bit in the RTs status word being set. 

RT to RT Format BT1553_INT_RT_RT_FORMAT This bit indicates that the message is an RT to RT message. It is detected in 

hardware by two consecutive words with a command sync. 

RT to RT not 

Responding 

BT1553_RTRT_RCV_NRSP This bit indicates which message on a RT to RT message is not responding. If 

BT1553_INT_NO_RESP is set for a RT to RT message check this bit. If set the 

receive command did not respond. If reset the transmit command did not respond. 

Self Test BT1553_INT_SELF_TEST This bit indicates the reception of a Built-In-Test mode code command. 



83 

 

Feature Name Abbreviation Description 

Trigger Begin BT1553_INT_TRIG_BEGIN This bit indicates that the BM trigger enable condition was met in this message. BM 

message gathering begins at this time. This bit is generated by the API interrupt 

service function. 

Trigger End BT1553_INT_TRIG_END This bit indicates that the BM trigger disable condition was met in this message. 

BM message gathering terminates at this time. This bit is generated by the API 

interrupt service function. 

Two Bus BT1553_INT_TWO_BUS This bit indicates that both buses (Bus A and Bus B) were active sometime during 

the message. This is a 1553 protocol error. 

Wrong Bus BT1553_INT_WRONG_BUS This bit indicates that the RT responded on a different bus than the one on which 

the command word was transmitted. This is a 1553 protocol error. 

Alternate Bus BT1553_INT_ALT_BUS This bit indicates that an automatic retry was executed by the BC on alternate bus. 

This bit doesn’t indicate whether the retry was successful. Failure of the retry 

results in the No Response error bit set or the Message Error bit in the RTs status 

word being set. 

Invalid RT to RT 

Transmission 

BT1553_INV_RTRT_TX Invalid RT to RT Transmission CMD2. 

 

 Table A-3 – MIL-STD-1553B Feature Set  

 
Feature Number Feature Name Abbreviation 

BC-RT 

or 

RT-RT 

Message 

Features 

 

1 Command 1 Address CMD1-addr 

2 
Command 1 Transmission 

or Receive mode 

CMD1-TR 

3 Command 1 sub address CMD1-subaddr 

4 
Command 1 number of 

data words 

CMD1-numword 

5 
Status word response time 

to command 1 

RSP1 

6 Status word 1 Address STS1-addr 

7 Status word 1 Error Bit STS1-Error 



84 

 

 
Feature Number Feature Name Abbreviation 

8 
Status word 1 

Instrumentation Bit 

STS1-Inst 

9 
Status word 1 Service 

Request Bit 

STS1-SerReq 

10 Status word 1 Reserve Bit STS1-Reserved 

11 
Status word 1 Broadcast 

Cmd Received Bit 

STS1-BCRecv 

12 Status word 1 Busy Bit STS1-Busy 

13 
Status word 1 Subsystem 

Flag Bit 

STS1-SubFlag 

14 
Status word 1 Dynamic 

Bus Acceptance Bit 

STS1-DBAcc 

15 
Status word 1 Terminal 

Flag Bit 

STS1-TerFlag 

16 Bad RT Address BT1553_INT_BAD_RTADDR 

17 Bit Count BT1553_INT_BIT_COUNT 

18 BM Overflow BT1553_INT_BM_OVERFLOW 

19 Broadcast BT1553_INT_BROADCAST 

20 Channel BT1553_INT_CHANNEL 

21 Early Response BT1553_INT_EARLY_RESP 

22 End of Message BT1553_INT_END_OF_MESS 

23 High Word BT1553_INT_HIGH_WORD 

24 Invalid Word BT1553_INT_INVALID_WORD 

25 Inverted Sync BT1553_INT_INVERTED_SYNC 

26 Late Response BT1553_INT_LATE_RESP 

27 Low Word Flag BT1553_INT_LOW_WORD 

28 Message Error BT1553_INT_ME_BIT 

29 Mid Bit BT1553_INT_MID_BIT 

30 Mode Code BT1553_INT_MODE_CODE 

31 No Command BT1553_INT_NOCMD 

32 No Inter-Message Gap BT1553_INT_NO_IMSG_GAP 



85 

 

 
Feature Number Feature Name Abbreviation 

33 No Response BT1553_INT_NO_RESP 

34 Non-Continuous Data BT1553_INT_NON_CONT_DATA 

35 Parity Error BT1553_INT_PARITY 

36 Reset RT BT1553_INT_RESET_RT 

37 Retry BT1553_INT_RETRY 

38 RT to RT Format BT1553_INT_RT_RT_FORMAT 

39 RT to RT not Responding BT1553_RTRT_RCV_NRSP 

40 Self Test BT1553_INT_SELF_TEST 

41 Trigger Begin BT1553_INT_TRIG_BEGIN 

42 Trigger End BT1553_INT_TRIG_END 

43 Two Bus BT1553_INT_TWO_BUS 

44 Wrong Bus BT1553_INT_WRONG_BUS 

45 Alternate Bus BT1553_INT_ALT_BUS 

46 
Invalid RT to RT 

Transmission 

BT1553_INV_RTRT_TX 

RT-RT 

Message 

Features 

(Zeroized 

if not 

present) 

 

47 Command 2 Address CMD2-addr 

48 
Command 2 Transmission 

or Receive mode 

CMD2-TR 

49 Command 2 sub address CMD2-subaddr 

50 
Command 2 number of 

data words 

CMD2-numword 

51 
Status word response time 

to command 2 

RSP2 

52 Status word 2 Address STS2-addr 

53 Status word 2 Error Bit STS2-Error 

54 
Status word 2 

Instrumentation Bit 

STS2-Inst 

55 
Status word 2 Service 

Request Bit 

STS2-SerReq 

56 Status word 2 Reserve Bit STS2-Reserved 



86 

 

 
Feature Number Feature Name Abbreviation 

57 
Status word 2 Broadcast 

Cmd Received Bit 

STS2-BCRecv 

58 Status word 2 Busy Bit STS2-Busy 

59 
Status word 2 Subsystem 

Flag Bit 

STS2-SubFlag 

60 
Status word 2 Dynamic 

Bus Acceptance Bit 

STS2-DBAcc 

61 
Status word 2 Terminal 

Flag Bit 

STS2-TerFlag 

 

 

 



87 

 

Appendix B - Dataset 1 Model MAE vs MSG# Graphs 

 
Figure B-1: Dataset 1 - MAE vs MSG # for Scenario 1a 

  

Figure B-2: Dataset 1 - MAE vs MSG # for Scenario 1b 



88 

 

Figure B-3: Dataset 1 - MAE vs MSG # for Scenario 2a 

Figure B-4: Dataset 1 - MAE vs MSG # for Scenario 2b 

 



89 

 

Figure B-5: Dataset 1 - MAE vs MSG # for Scenario 3a 



90 

 

Appendix C - Dataset 2 Model MAE vs MSG# Graphs 

Figure C-1: Dataset 2 - MAE vs MSG # for Scenario 1a

Figure C-2: Dataset 2 - MAE vs MSG # for Scenario 2a



91 

 

Figure C-3: Dataset 2 - MAE vs MSG # for Scenario 2b

 
Figure C-4: Dataset 2 - MAE vs MSG # for Scenario 3a 

 



92 

 

Appendix D - Feature Extraction Program (Python) 

1. from __future__ import absolute_import, division, print_function, 
unicode_literals 

2. import tensorflow as tf  
3. import matplotlib as mpl 
4. import matplotlib.pyplot as plt 
5. import numpy as np 
6. import os 
7. import pandas as pd  
8.  
9. # Reads in BMDX file converted in txt or csv format for feature  
10. # extraction 
11. # Outputs .csv file with extracted features  
12.   
13.  
14. # Set path of converted BMDX file (.txt or .csv) 
15. path =r'C:\Users\User\Desktop\DL\Final Dataset' 
16. csv = r'baseline_inflight_5_240920.txt' 
17. final_csv = csv.replace('.txt','')+"_Features.csv" 
18. # use .csv instead of .txt if required 
19.   
20. csv_path=(path+"\\"+csv) 
21. # use "," as the delimiter if required 
22.  
23. df = pd.read_csv(csv_path,delimiter="\t",converters={"CMD1  ": lambda 

x: int(x, 16),"CMD2  ": lambda x: int(x, 16),"Err/Sts": lambda x: 
int(x, 16),'Err/Sts.1': lambda x: int(x, 16), 'STS1  ': lambda x: 
int(x, 16), 'Err/Sts.2': lambda x: int(x, 16), 'STS2  ': lambda x: 
int(x, 16), 'Err/Sts.3': lambda x: int(x, 16),'Int/Status': lambda x: 
int(x, 16)}) 

24.  
25. df = df.fillna(0) 
26. bincolumns = ['CMD1  ', 'Err/Sts', 'CMD2  ','Err/Sts.1', 'STS1  ', 

'Err/Sts.2','STS2  ', 'Err/Sts.3'] 
27.   
28. for col in bincolumns: 
29.     df[col] = df[col].apply(lambda x: format(int(x), '04b')) 
30.     df[col] = df[col].astype(str).str.pad(16,fillchar='0') 
31.      
32.  
33. df['Int/Status'] = df['Int/Status'].apply(lambda x: format(int(x), 

'04b')) 
34. df['Int/Status'] = 

df['Int/Status'].astype(str).str.pad(32,fillchar='0')  
35.   
36. allcolumns = ['MSG #  ', 'Time Stamp          ','CMD1  ', 

'Err/Sts','RSP1','Err/Sts.1', 'STS1  ','CMD2  ','RSP2', 
'Err/Sts.2','STS2  ', 'Err/Sts.3', 'Int/Status'] 

37. sdata = df[allcolumns] 
38.  
39.   



93 

 

40.  
41. splitted = sdata['CMD1  '].apply(lambda x: pd.Series(list(x))) 
42. splitted.columns = ['CMD1 B'+str(x) for x in splitted.columns] 
43. sdata = sdata.join(splitted) 
44.   
45. splitted = sdata['STS1  '].apply(lambda x: pd.Series(list(x))) 
46. splitted.columns = ['STS1 B'+str(x) for x in splitted.columns] 
47. sdata = sdata.join(splitted) 
48.   
49. splitted = sdata['CMD2  '].apply(lambda x: pd.Series(list(x))) 
50. splitted.columns = ['CMD2 B'+str(x) for x in splitted.columns] 
51. sdata = sdata.join(splitted) 
52.   
53. splitted = sdata['STS2  '].apply(lambda x: pd.Series(list(x))) 
54. splitted.columns = ['STS2 B'+str(x) for x in splitted.columns] 
55. sdata = sdata.join(splitted) 
56.   
57. splitted = sdata['Int/Status'].apply(lambda x: pd.Series(list(x))) 
58. splitted.columns = ['Int/Status B'+str(x) for x in splitted.columns] 
59. sdata = sdata.join(splitted) 
60.   
61. sdata["CMD1-addr"] = (sdata["CMD1 B0"] + sdata["CMD1 B1"]+sdata["CMD1 

B2"]+sdata["CMD1 B3"]+sdata["CMD1 B4"]).apply(int, args=(2,)) 
62. sdata["CMD1-TR"] = sdata["CMD1 B5"] 
63. sdata["CMD1-subaddr"] = (sdata["CMD1 B6"] + sdata["CMD1 

B7"]+sdata["CMD1 B8"]+sdata["CMD1 B9"]+sdata["CMD1 B10"]).apply(int, 
args=(2,)) 

64. sdata["CMD1-numword"] = (sdata["CMD1 B11"] + sdata["CMD1 
B12"]+sdata["CMD1 B13"]+sdata["CMD1 B14"]+sdata["CMD1 B15"]).apply(int, 
args=(2,)) 

65.   
66. sdata["STS1-addr"] = (sdata["STS1 B0"] + sdata["STS1 B1"]+sdata["STS1 

B2"]+sdata["STS1 B3"]+sdata["STS1 B4"]).apply(int, args=(2,)) 
67. sdata["STS1-Error"] = sdata["STS1 B5"] 
68. sdata["STS1-Inst"] = sdata["STS1 B6"] 
69. sdata["STS1-SerReq"] = sdata["STS1 B7"] 
70. sdata["STS1-Reserved"] = (sdata["STS1 B8"] + sdata["STS1 

B9"]+sdata["STS1 B10"]).apply(int, args=(2,)) 
71. sdata["STS1-BCRecv"] = sdata["STS1 B11"] 
72. sdata["STS1-Busy"] = sdata["STS1 B12"] 
73. sdata["STS1-SubFlag"] = sdata["STS1 B13"] 
74. sdata["STS1-DBAcc"] = sdata["STS1 B14"] 
75. sdata["STS1-TerFlag"] = sdata["STS1 B15"] 
76. sdata["CMD2-addr"] = (sdata["CMD2 B0"] + sdata["CMD2 B1"]+sdata["CMD2 

B2"]+sdata["CMD2 B3"]+sdata["CMD2 B4"]).apply(int, args=(2,)) 
77. sdata["CMD2-TR"] = sdata["CMD2 B5"] 
78. sdata["CMD2-subaddr"] = (sdata["CMD2 B6"] + sdata["CMD2 

B7"]+sdata["CMD2 B8"]+sdata["CMD2 B9"]+sdata["CMD2 B10"]).apply(int, 
args=(2,)) 

79. sdata["CMD2-numword"] = (sdata["CMD2 B11"] + sdata["CMD2 
B12"]+sdata["CMD2 B13"]+sdata["CMD2 B14"]+sdata["CMD2 B15"]).apply(int, 
args=(2,)) 

80.   
81. sdata["STS2-addr"] = (sdata["STS2 B0"] + sdata["STS2 B1"]+sdata["STS2 

B2"]+sdata["STS2 B3"]+sdata["STS2 B4"]).apply(int, args=(2,)) 



94 

 

82. sdata["STS2-Error"] = sdata["STS2 B5"] 
83. sdata["STS2-Inst"] = sdata["STS2 B6"] 
84. sdata["STS2-SerReq"] = sdata["STS2 B7"] 
85. sdata["STS2-Reserved"] = (sdata["STS2 B8"] + sdata["STS2 

B9"]+sdata["STS2 B10"]).apply(int, args=(2,)) 
86. sdata["STS2-BCRecv"] = sdata["STS2 B11"] 
87. sdata["STS2-Busy"] = sdata["STS2 B12"] 
88. sdata["STS2-SubFlag"] = sdata["STS2 B13"] 
89. sdata["STS2-DBAcc"] = sdata["STS2 B14"] 
90. sdata["STS2-TerFlag"] = sdata["STS2 B15"] 
91.  
92. sdata["BT1553_INT_HIGH_WORD"] = sdata["Int/Status B31"] 
93. sdata["BT1553_INT_INVALID_WORD"] = sdata["Int/Status B30"] 
94. sdata["BT1553_INT_LOW_WORD"] = sdata["Int/Status B29"] 
95. sdata["BT1553_INT_INVERTED_SYNC"] = sdata["Int/Status B28"] 
96.   
97. sdata["BT1553_INT_MID_BIT"] = sdata["Int/Status B27"] 
98. sdata["BT1553_INT_TWO_BUS"] = sdata["Int/Status B26"] 
99. sdata["BT1553_INT_PARITY"] = sdata["Int/Status B25"] 
100. sdata["BT1553_INT_NON_CONT_DATA"] = sdata["Int/Status B24"] 
101.   
102. sdata["BT1553_INT_EARLY_RESP"] = sdata["Int/Status B23"] 
103. sdata["BT1553_INT_LATE_RESP"] = sdata["Int/Status B22"] 
104. sdata["BT1553_INT_BAD_RTADDR"] = sdata["Int/Status B21"] 
105. sdata["BT1553_INT_CHANNEL"] = sdata["Int/Status B20"] 
106. # B19 (corresponds to bit 12 0x00001000L) is not used 
107. sdata["BT1553_INT_WRONG_BUS"] = sdata["Int/Status B18"] 
108. sdata["BT1553_INT_BIT_COUNT"] = sdata["Int/Status B17"] 
109. sdata["BT1553_INT_NO_IMSG_GAP"] = sdata["Int/Status B16"] 
110.   
111. sdata["BT1553_INT_END_OF_MESS"] = sdata["Int/Status B15"] 
112. sdata["BT1553_INT_BROADCAST"] = sdata["Int/Status B14"] 
113. sdata["BT1553_INT_RT_RT_FORMAT"] = sdata["Int/Status B13"] 
114. sdata["BT1553_INT_RESET_RT"] = sdata["Int/Status B12"] 
115.   
116. sdata["BT1553_INT_SELF_TEST"] = sdata["Int/Status B11"] 
117. sdata["BT1553_INT_MODE_CODE"] = sdata["Int/Status B10"] 
118. sdata["BT1553_INT_NOCMD"] = sdata["Int/Status B9"] 
119. sdata["BT1553_INV_RTRT_TX"] = sdata["Int/Status B8"] 
120.   
121. sdata["BT1553_RTRT_RCV_NRSP"] = sdata["Int/Status B7"] 
122. sdata["BT1553_INT_RETRY"] = sdata["Int/Status B6"] 
123. sdata["BT1553_INT_NO_RESP"] = sdata["Int/Status B5"] 
124. sdata["BT1553_INT_ME_BIT"] = sdata["Int/Status B4"] 
125.   
126.   
127. sdata["BT1553_INT_TRIG_BEGIN"] = sdata["Int/Status B3"] 
128. sdata["BT1553_INT_TRIG_END"] = sdata["Int/Status B2"] 
129. sdata["BT1553_INT_BM_OVERFLOW"] = sdata["Int/Status B1"] 
130. sdata["BT1553_INT_ALT_BUS"] = sdata["Int/Status B0"] 
131. col = ['Time Stamp          ','CMD1-addr', 'CMD1-TR', 'CMD1-

subaddr', 'CMD1-numword','RSP1','STS1-addr','STS1-Error','STS1-
Inst','STS1-SerReq','STS1-Reserved','STS1-BCRecv','STS1-Busy','STS1-
SubFlag','STS1-DBAcc','STS1-TerFlag', 'CMD2-addr', 'CMD2-TR', 'CMD2-
subaddr', 'CMD2-numword','RSP2','STS2-addr','STS2-Error', 'STS2-



95 

 

Inst','STS2-SerReq','STS2-Reserved','STS2-BCRecv','STS2-Busy','STS2-
SubFlag','STS2-DBAcc','STS2-
TerFlag','BT1553_INT_HIGH_WORD','BT1553_INT_INVALID_WORD','BT1553_INT_L
OW_WORD','BT1553_INT_INVERTED_SYNC','BT1553_INT_MID_BIT','BT1553_INT_TW
O_BUS','BT1553_INT_PARITY','BT1553_INT_NON_CONT_DATA','BT1553_INT_EARLY
_RESP','BT1553_INT_LATE_RESP','BT1553_INT_BAD_RTADDR','BT1553_INT_CHANN
EL','BT1553_INT_WRONG_BUS','BT1553_INT_BIT_COUNT','BT1553_INT_NO_IMSG_G
AP','BT1553_INT_END_OF_MESS','BT1553_INT_BROADCAST','BT1553_INT_RT_RT_F
ORMAT','BT1553_INT_RESET_RT','BT1553_INT_SELF_TEST', 
'BT1553_INT_MODE_CODE','BT1553_INT_NOCMD','BT1553_INV_RTRT_TX','BT1553_
RTRT_RCV_NRSP','BT1553_INT_RETRY','BT1553_INT_NO_RESP','BT1553_INT_ME_B
IT','BT1553_INT_TRIG_BEGIN','BT1553_INT_TRIG_END','BT1553_INT_BM_OVERFL
OW','BT1553_INT_ALT_BUS'] 

132.   
133. finDF = sdata[col] 
134. finDF.index=sdata['MSG #  '] 
135. save_csv_path=(path+"\\"+final_csv) 
136. finDF.to_csv(save_csv_path) 

 


	Acknowledgments
	Abstract
	Résumé
	Table of Contents
	List of Figures
	List of Tables
	Chapter 1  Introduction
	1.1 Motivation
	1.2 Statement of Deficiency
	1.3 Aim
	1.4 Research Activities
	1.5 Results
	1.6 Organization

	Chapter 2  Background
	2.1 Military Standard 1553B
	2.1.1 Network Communication
	2.1.2 Data Messages
	2.1.3 Control Messages

	2.2 MIL-STD-1553B Vulnerabilities
	2.2.1 Denial of Service
	2.2.1.1 Targeted Remote Terminal Denial of Service

	2.2.2 Data Leakage
	2.2.3 Data Integrity Violation
	2.2.3.1 RT Hijacking


	2.3 Intrusion Detection Systems
	2.3.1 Statistical Anomaly Detection
	2.3.2 Anomaly Detection using Machine Learning
	2.3.2.1 Bayesian Network
	2.3.2.2 Markov Chain
	2.3.2.3 Support Vector Machine
	2.3.2.4 Clustering
	2.3.2.5 Artificial Neural Networks

	2.3.3 Anomaly Detection using Deep Learning
	2.3.3.1 Recurrent Neural Networks
	2.3.3.2 Long Short-Term Memory Network
	2.3.3.3 LSTM Network Hyper-parameters
	2.3.3.4 Autoencoders
	2.3.3.5 LSTM Autoencoders

	2.3.4 Practical Applications of LSTM Networks

	2.4 Existing MIL-STD-1553B Detection Methods
	2.4.1 Markov Chain Model
	2.4.2 RT Fingerprinting
	2.4.3 MAIDENS
	2.4.4 Signature Based Detection
	2.4.5 Demonstrated Anomaly Detection on MIL-STD-1553B

	2.5 Detection Methods
	2.5.1 Precision, Recall and Accuracy (Classification)
	2.5.2 Accuracy and Precision (Detection Time)

	2.6 Summary

	Chapter 3  Methodology and Design
	3.1 Phase 1: Data Acquisition Pipeline
	3.1.1 Feature Extraction

	3.2 Phase 2: DL Model Development
	3.2.1 LSTM Autoencoder Model Setup
	3.2.2 LSTM Autoencoder Training
	3.2.3 LSTM Autoencoder Threshold

	3.3 Phase 3: Anomaly Detection and Validation
	3.4 Summary

	Chapter 4   Results
	4.1 Experimental Design
	4.1.1 LSTM Autoencoder Model
	4.1.2 Datasets
	4.1.3 Results Overview

	4.2 Dataset 1 – MAIDENS Dataset
	4.2.1 MAIDENS Detector
	4.2.1.1 MAIDENS Detector Results

	4.2.2 LSTM Autoencoder Detector
	4.2.2.1 LSTM Autoencoder Data Collection Pipeline
	4.2.2.2 LSTM Autoencoder Model Training
	4.2.2.3 LSTM Autoencoder Anomaly Detection
	4.2.2.4 LSTM Autoencoder Results

	4.2.3 Comparison between Detectors

	4.3 Dataset 2
	4.3.1 MAIDENS Detector
	4.3.2 LSTM Autoencoder Detector
	4.3.2.1 LSTM Autoencoder Data Collection Pipeline
	4.3.2.2 LSTM Autoencoder Model Creation
	4.3.2.3 LSTM Autoencoder Anomaly Detection
	4.3.2.4 LSTM Autoencoder Results


	4.4 Discussion
	4.5 Summary

	Chapter 5  Conclusion
	5.1 Overview
	5.2 Contributions
	5.3 Future Work
	5.4 Recommendation

	References
	Appendix A -  MIL-STD-1553B Feature Set
	Appendix B -  Dataset 1 Model MAE vs MSG# Graphs
	Appendix C -  Dataset 2 Model MAE vs MSG# Graphs
	Appendix D -  Feature Extraction Program (Python)

