A methodology for the design and development of an aerospace-specific data
repository to support data-driven research

Une méthodologie pour la conception et le développement d'un référentiel de données
specifiques a I'aérospatiale pour soutenir la recherche axée sur les données

A Thesis Submitted to the Division of Graduate Studies

of the Royal Military College of Canada
by

Angelina X. Cui

In Partial Fulfillment of the Requirements for the Degree of

Master of Applied Science in Aeronautical Engineering

January 2023

©This thesis may be used within the Department of National Defence but copyright
for open publication remains the property of the author.

Acknowledgments

I would like to express my deepest gratitude to my patient and supportive supervisor, Dr. Catharine
Marsden, who presented me with a new world and | am grateful for the guidance and the inspiration
she has given me along the way. | would also like to thank Nicolas Vincent-Boulay, who was a
reliable research partner and always to my assistance when | need help in this project; and to
everyone in my research group for the support they have provided and the pleasant atmosphere
they have created. | am also grateful to my family for having my back all the time.

Thank you to NSERC (Natural Sciences and Engineering Research Council of Canada) and the
NSERC Chair in Aerospace Design Engineering (NCADE) industrial partners for their financial
support, and to Royal Military College of Canada.

Abstract

A data-driven approach to aerospace research or applications could be beneficial in the era of big
data, but accessibility and usability of the data make this challenging. There have been attempts by
government and academic researchers to resolve this issue by creating large generic databases.
However, the issue remains since those databases may not be able to satisfy researchers' needs. In
this thesis, a systematic approach is presented that can be used to create a compact, efficient, and
aerospace application-specific database based on specific research requirements. The methodology,
which utilizes aviation-related data that are publicly accessible, follows the data ETL (Extract,
Transform, and Load) approach based on domain-specific requirements. A data visualization tool
was created to help researchers better understand the data. The approach was tested with a case-
study simulated environment designed for the purpose of investigating interactions between
entities in a shared airspace. As a result of the implementation, a relational database containing
real-life archived air traffic and weather radar data was created, as well as a map-based data
visualization tool. The result is verified with test cases to demonstrate the flexibility of the approach
for creating different true-to-life flight scenarios.

Résumé

Une approche de recherche axée sur les données pourrait étre bénéfique a I'ére du mégadonnées
pour des applications aérospatiales, mais l'accessibilité et la facilité d'utilisation de ces données en
font un défi. Des gouvernements et chercheurs universitaires ont tenté de résoudre ce probléme en
créant de grandes bases de données génériques; cependant, le probléme demeure puisque ces bases
de données peuvent ne pas satisfaire les besoins des chercheurs. Dans cette thése, on présente une
approche systématique qui peut étre utilisée pour créer une base de données compacte, efficace, et
spécifique a une application aérospatiale, basée sur des exigences de recherche spécifiques. La
méthodologie, qui utilise des données relatives a l'aviation accessibles au public suit 1'approche
ETL (extraction, transformation et chargement) des données en fonction des exigences spécifiques
au domaine. Un outil de visualisation des données a été créé pour aider les chercheurs a mieux
comprendre les données. L'approche a été testée avec un environnement simulé congu pour étudier
les interactions entre des entités dans un espace aérien partagé. L implémentation de cette approche
a permis de créer une base de données relationnelle contenant des données sur le trafic aérien, des
données de radar météorologique archivées, ainsi qu'un outil cartographique de visualisation des
données. Le résultat est vérifié avec des cas d'essai afin de démontrer la flexibilité de I'approche
pour créer différents scénarios de vol réalistes.

Table of contents

ADSTIACT. ...t R bbbt e e e iii
RESUIMIE ...ttt bbbt b bbb bbbt e bt e bt b ettt na et benes iii
TabIe OF CONTENTS ... bbbttt ne e iv
LIST OF TADIES ... bbbttt bbb e e eene b vii
LISt OF FIQUIES ..o et be et e et e s be st e be s aeeseesteeneestesteebenae s viii
(TS a0 7 ANod (0] 01 2 USRS S SR iX
I g € ol [Tox £ o] o [P TP TPPSPSPRPRPIN 1
2. LITEIrature REVIBW......c.oiuiiiiiiiiieiieiee ettt sttt ettt st st et e e e enennen 3
2.1 Background information - Dig dataccceeverieieieininireseeee s 3
2.2 Use cases in other academic fieldS........ccvveeviiieeericeeeeeeereeee et 4
2.3 Challenges associated with big data implementation............c..coevereierienieneneneneeeeeeen 5
2.3.1 Data VISUBHIZALION......cocvieeeeiesiieeee ettt st s e e sesne e e e sneeneenees 5
2.3.2 High volume, high speed, and data SOUICESccecveeeriireeriereseee et 6
2.3.3 Data MaANAGEIMENT....coiiiiiirreeieerteertee st e ste sttt sbeesbeesbeesatesateebeesbeesanesasesasesnsesnseenseennees 7

2.4 Database and database management SYSIEMcc.evveeeriereereerieeeesieseeete e eeesaesreeseseeeseesees 8
2.4.1 Relational and non-relational database tYPeSccevveeerereererieneee et 8
2.4.2 DBIMS PEITOIMANCE ...c.vieieieitieierieeteeie e eteie et te st et e ste st e aesreeseessesssensesseensessessaensens 10

2.5 Data-driven research in the aviation iNAUSEIYccecvviecienieierereee e 11
2.5.1 Historical big data and aerospace simulation research............ccccecevveceeveneecnseecienne 13

2.6. Research-specific aerospace data COIECHIONS..........c.ccvveeiirieieeseeere e 16
2.7 RESEAICN ODJECLIVE ..veeeeeiieiceeeeee ettt st ettt te e e e ene e e e 20

3. Research MethodolOgycoeiiiiiiieiiie e 21
3.1. Data SOUICE SEIECTION.cc.evtiieieiteieieeie ettt ettt sttt et eae 21

I AT LT L1 T o P = WO TR T RO OPRRRO 22

3. L2 AN TrAfFIC TatAcoueeeieeieieeee et 26

3.2 Independent data FEPOSITONYc.ecvevveiieeierie sttt ettt st st esre e e e e ereennenes 28
B3 DA ETL ettt bttt h ettt b et be s heenee e 30
3.3.1 Data EXLFACLION. ...cc.evuirieieieieiieiceieete sttt sttt ettt ettt st et e ne e 30
3.3.2 Data transformMation..........ceoveieireriniseniee ettt st st 37
3.3.3 Loading and data StOrAgE.......ccveeeriieeeieiteeiecte ettt ettt sttt 40

3.4 Data visualization and USEr INTEraCLIONccoerveieieieiresesesie e 41
3.5 Process verification using a proof-of-concept teSt CaSeovvvvevvreecierereeereeee e 43

4. Case Study impPIEMENTATIONcocviiiiiiie e e 45
4.1 Data SOUICE SEIECTION.cuiieieeieieeieese ettt sttt e ae e e e s e seeenaesseennenneas 46
4.2 Database StTUCLUIE DESIGN......cueveuiriirririerierierteiee ettt 47
I L U = I TSRS 49
4.3.1 Data EXIFACTION......ccviteieieiieieeterierieste ettt sttt eae 49
4.3.2 Data transSformMatioNecueeeirierenerieeee ettt sttt 55
4.3.3 L0ading data tO SLOTAGE ...ccvevveeverieeeeeiesteeeeieeeeteste et e et e e s e sseesesreessesseesnensesseennenes 60

4.4 GUI development for data VisualiZationcccceeceveriecienieniereeeeese e 61
4.5 VerifiCation WIth TEST CASEc..eueuiriirririerierierieiee ettt 68

ST @0 (o] [U15] T o TSR 73
LT =] T =] o0 SR 75
Appendix A: NEXRAD data eXEraCtiOncoceiiieiiiiirisie e 83
Appendix B: ADS-B data eXIFraCliOncccoriieiiiiisiiesese e 85
Appendix B1: ADS-B data extraction with Python wrapper.......cccccoveeviciiiiinciiee e 85
Appendix B2: ADS-B data extraction with custom Python script.......cccccoveeiviiiiiiinciieeecieees 86
Appendix C: Weather radar data ProCesSiNg.........couuriierinirenierieieesesesese e 89

Appendix D: Loading data to the database for StOrage..........cccccvvvveieiecienii v 92

F N o] 01T Lo T il o] (0] 4] LI SRS 100
APPENAIX F: ProtOtYPE #2ccviiveeie ettt sttt st a e r e pe e e 103
Appendix F1: Graphical USer iNterface.......iivciiei et e 103
Appendix F2: Design the Main Map ...ttt e e e e e e e e e e saaeeean 111
Appendix F3: Obtain airspace and weather data from data filescccocevvvciveiciceeecccien, 117
Appendix F4: Obtain NAVID chart from data filescceveeoiiiieciiieeeeeeeeeeee e 121
Appendix F5: Obtain elevation profile from data files.........c.ccoeeieiiiiieciiieeeeee, 122
APPENAIX G: ProtOtYPE #3 ...t 124
Appendix G1: Design the Map 1ay0UL.....c.uuii i 124
Appendix G2: Main eXeCULioN fil......couv i 128
Appendix G3: Convert data in CSV file t0 arrays.....cccccevciieiiiciiee s 144
Appendix G4: Mapping ADS-B data for display......ccceeevciieiiriiieeieiiiec e 148
Appendix G5: Mapping NexRad data for displaycceecuveeieiiieiiciiiieccce e 155

vi

List of Tables

Table 1. Comparison of SQL, NoSQL and NeWSQLccccctiriiriiniiniiniienieneenitene et 10
Table 2.Information about different weather dataccccoivievenininieneee, 24
Table 3. Information available in ASDI data Stream.........ccocevereerereninieneneneeeee e 26
Table 4. AWS CLI COMMANA SYNEAX...c.vteruieriieriieniienieenieenieenteesieesieesieesteesseesseesseesseesseesseesseesseesseesseessees 34
Table 5. SQL QUETY StAtEIMENLccveertieriieriiertierttesttenieesteesteertee st esteesteesbeesseesseesteesseesseesseesseesseesseesssesaes 42
Table 6. Dynamic entity and StatiC ENtILYccveriereerierienienienieseeseestesee e e seeeseeeseeesseesseesseesseessees 46
Table 7. ADS-B data content from the OpenSKky NetWorkccceeveiriinieniieniinienieneeseeneeseesee e 51
Table 8. Raw weather radar data (PArt 1)ceeveerierienierieriereestese ettt saees 56
Table 9. Raw weather radar data (PArt 2)c.eereerieneerieniereereeseese ettt e e e seeesseesaeesaeas 56
Table 10. Data content of weather radar dataset.........c.ceevvererereerereneeeeeeeee s 57
Table 11. Data content of ADS-B dataset (PArtl)ccceereerierienienienienieneeseeseeseeseesee e see e saees 57
Table 12. Data content of ADS-B dataset (PArt2)cceereereereenieneenienienieseeseeseeseeseeseesseeseeesaes 58
Table 13. Standardized weather radar dataccocevereerienininere e 58
Table 14. Standardized ADS-B data (PArt 1)......ccceerierienienienienieneertese ettt see s seeesaees 58
Table 15. Standardized ADS-B data (PArt 2)......cccverierienieniienienieneesiteseesee et seeesieeseesaeeseeesaees 59
Table 16. ADS-B data file SIZ€ COMPATISON ..eeviervieriieriieriierieeniienttesteesteeseeseeseesieesseesseesseesseesseesseesses 59
Table 17. Weather data file SIZE€ COMPATISON.......eirviiriiirieeriieriiereesieseesteseeseeseeseeseeeseeesseesseesseesseessees 60

vii

List of Figures

Figure 1.Data ETL PrOCESS «..veevveerieeieeieeie ettt ettt ste st e te sttt e testesteestestesteeateenteebesnbesnbesnbesnne 8
FAgUIE 2. WOTKITOWeitieieiieeteeteeee ettt ettt be e bt b e s be e sbe e s bt e sbeesbeenbaesbeenaeesaeenaean 21
Figure 3. The service available in NOAA........ccoiiiiiieeeeeere ettt saaesaees 22
Figure 4. Structured data vs unstructured data............oceereerieniinieniiieeeseee s 29
Figure 5. Direct download NEXRAD data from NCEI.........cccceriiniiniiniinienieneeneeneeseeseesiee e 31
Figure 6. AMAZon S3 SIIUCTUIE ...cveerveerieeriierieeniienitenieesieesteesteesteesteesseesteesseesseesseesseesseesseesseesseesseesssessees 33
Figure 7. AWS CLI initial CONTIGUIATION ...eevveiriieriieriieriieniienieesieeseesit ettt siee st st e e esseesaeesseesaeesaeas 33
Figure 8. Accessing data from Amazon S3 using AWS CLIL......ccccoviiriiniinieniinieneeeeneeseesee e 35
Figure 9. Accessing data using Impala Shellccooiiiiiiiiniiiiiiceee s 36
Figure 10. Decoding raw radar data file With WCTccceoviiiiiniiniiienieeeeeeee e 38
Figure 11. Data tranSformation PrOCESScverierierieereerieeriiesieestenieesseesseesseeseesseesseesseesseesseesseesseessees 38
Figure 12. Data standardization with tWo raw datasetscccceereerieerieniienienieneeneeneesee e 39
Figure 13. Load cleaned data to SLOTAZEcovereeriieriieriienieeriienieesitesieesttesitesieesie e st esieeseeeseeesseesseesseesneas 41
Figure 14. Effect on tasks due to change of decision from “research requirement” to “data format”..44
Figure 15.Database SCHEIMAccviiriiiiiiiiiiiieiiesteeie ettt ettt et e b e sbaesaeesaeesaeesaeesaeesneas 48
Figure 16.NCEI AMAazon S3 DUCKELcovviiriiirieiiieiieritenieeritesit ettt sieesee s e s esneesaaesaees 50
Figure 17.Downloading weather data from two different dayscccccevveereenienieinienienesieeeeee, 51
Figure 18. ADS-B data download 10Z COMPATISONcc.eerveeriierieeniienieeniienieseesee st seee e see s seeesaeas 53
Figure 19. ADS-B data file COMPATISON......ccueiriierrieriieniieriieniieneestesieeseeseeseeseeeseeesseesseesseesseesseesseesses 54
Figure 20. An overview 0f databaseccocverierieniieniienierieseertere ettt saees 61
Figure 21. ADS-B data representation in Prototype #1cccveveerienienienienienieneeseeseeseeseesee e 62
Figure 22. Interface of ProtOtyPe #2 ...ccuviiiiiieiierierieesieesie ettt e e snaesneas 63
Figure 23. Data 1ayers in PrototyPe #3 ...ccuvovierieiieiierieesieesieese ettt see s seeessae e sseesseesnees 65
Figure 24. The interface of Prototype #3 (‘Flight’ map Style)ccevvverierienieniinierieseeseeseesee e 66
Figure 25. The interface of Prototype #3 (‘Satellite’ map StY1E).....cccererruererererreeneneneeeneneeeeeneeees 68
Figure 26. Introduce novel air vehicle to Prototype #3 (bird’s €Ye VIEW).....ccevcververeerrenveneeseesnennnes 69
Figure 27. Introduce novel air vehicle to Prototype #3(3D VIEW) ..cceerierierierienienieneesieeseeseeseeenenes 70
Figure 28. Adding new data layer to Prototype #3cceevieieririereienieeiesiese st 71
Figure 29. Generate novel simulate airSpace eNVIrONMENTecververreereererereeseeseseseeseeseesseseensenses 72

viii

List of Acronyms

Acronym Definition

ACES Airspace Concept Evaluation System
ACID Atomicity, Consistency, Isolation, and Durability
ADS-B Automatic Dependent Surveillance Broadcast
Amazon S3 Amazon Simple Storage Service
ASDI Aircraft Situation Display to Industry
ATM Air Traffic Management
AWS Amazon Web Services
CLI Command Line Interface
CSv Comma-separated values
DBMS Database Management systems
DOD United States Department of Defense
ETL Extract, Transform, and Load
FAA Federal Aviaiton Administration
FACET Future ATM Concept and Evaluation Tool
GUI Graphical User Interface
IoT Internet of Things
NAS National Airspace System
NASA National Aeronautics and Space Administration
NCEI National Center for Environmental Information
NEXRAD Next Generation Radar
NOAA National Oceanic and Atmospheric Administration
NOAA’s WCT NOAA's Weather and Climate Toolkit
NWS National Weather Service
SQL Structured Query Languag

1. Introduction

The availability of big data is driving several recent advances in aircraft-related research, for
example aircraft trajectory optimization [1] and prediction [2]; flight delay prediction [3], [4]; and
the development of simulated environments [5]-[7] to support research projects [2], [8]-[16]. But
progress is slowed because of challenges associated with accessing and processing the data so that
it is practically useful to aerospace researchers.

Big data is a term that is used to describe data generated at high speeds and in large volumes from
various sources and in differing formats. Big data is increasingly available, and data-driven
research is gaining traction across multiple industries, including aerospace. Challenges to
discipline-specific, data-driven aerospace research include the accessing, processing, and
management of large amounts of both raw and transformed data.

Aviation-related data-driven research is increasingly popular, and real-life historical aviation data
is being used to support several research projects including the development of aircraft trajectory
optimization algorithms and the study of the relationship between weather and air traffic ground
delay programs. The difficulties associated with acquiring and storing the relevant data can be
found in the literature, and the creation of aviation databases has become a research topic in itself.

The literature presents examples of both governmental and academic researchers creating large
generic databases to store pre-processed data meant to serve a broad range of aviation research
projects. However, the data stored in these generic databases can differ from what the researchers
need, and the pre-processed data may still need to be converted into another format to meet the
needs of specific projects. One solution is to create smaller, more targeted, independent database
systems designed for specific applications, where data is selected and processed based on carefully
defined research requirements before being stored in the database.

This thesis presents a methodology for creating such a targeted database to meet specific research
requirements. The methodology employs the data ETL (Extract, Transform, and Load) processes,
with an additional phase for creating a data visualization tool meant to make the data more
understandable to researchers. In this thesis, a proof-of-concept database is created to support a
project investigating interactions between entities in a shared airspace. The result of the
implementation is a relational database that contains processed weather radar and air traffic data,

as well as a map-based data visualization tool. The methodology presented can be adapted to a
variety of mid-project changes to the given research requirements, and researchers can use the
processed data not only to recreate real-life airspace environments as they happened in the past but
also to combine historical scenarios and/or introduce novel entities into the simulated real-life
airspace environment.

The thesis is organized into chapters, with Chapter 1 being the introduction. Chapter 2 presents the
literature review related to the research. Chapter 3 presents the approach for the design and
development of an aviation-specific data repository to support data-driven application. Chapter 4
presents the implementation and validation of the approach through a case study. Chapter 5
concludes and recommends potential uses for the contributions of this research to future research
projects.

2. Literature Review

This chapter presents the literature review conducted related to the research, beginning with the
background information on big data in Section 2.1. Section 2.2 presents several use cases of big
data in other academic fields, and Section 2.3 outlines some common challenges associated with
big data implementation faced by researchers. In Section 2.4, the types of database and database
management systems are introduced. Section 2.5 provides some examples of data-driven research
conducted by other researchers in the aviation industry, and Section 2.6 introduces a selection of
data warehouses developed as research-specific aerospace data collections. Chapter 2 is concluded
with a description of the research objective in Section 2.7.

2.1 Background information - big data

In the era of big data, individuals and organizations can generate, collect and exchange large
amounts of digital data every day through the Internet of Things (1oT) [17]. The 10T refers to a
network of physical devices or software connected through the internet, and the purpose of this
network is to collect and exchange data with other devices. The data collected by the 10T can be
imagined as being from a very large number and variety of data sources that keep feeding
information to a big data pool, which leads to the term “big data”.

There is currently no standard definition of the term "big data" although various definitions can be
found. The National Institute of Standards and Technology (NIST) is engaged in an ongoing effort
to determine a precise definition, and in their latest publication stated that "Big Data refers to the
need to parallelize the data handling in data-intensive applications.” [18]. The core characteristics
of big data can be defined by the 3 Vs; volume, velocity, and variety [19], [20]. Volume refers to
the size of the data generated and stored, where the size of big data is usually larger than terabytes
and cannot be easily processed with a normal computer. Variety describes the diverse types,
sources, and formats of the collected data, where, because of the 10T, different physical devices
are used to collect data resulting in a variety of data formats. Velocity reflects the speed of data
generation and processing.

2.2 Use cases in other academic fields

Commercial enterprises see the large amount of available data as a major economic opportunity
with the potential to help them make smarter business decisions [21], whereas academic
researchers see great potential in how big data analytics could impact science, technology, and
other fields [22]. Gudivada et al. [17] believe that big data is enabling new directions for scientific
research that was previously limited by the volume of available data. Applications for the use of
big data exist across many fields.

Bai and Bai [23] propose the idea of using sport-related big data analysis to help coaches and
athletes know more about themselves and adjust their training activities. Sports-related big data
analysis can also be used to analyse the behaviour of competing teams, making it possible for the
coach and athletes to plan strategies to take advantage of their opponents’ weaknesses. Finally, big
data analysis can also be used to identify rising stars in the sport.

Han et al. [24] discuss the development of a platform to collect, store and analyse information
related to Android applications. The platform can be used to identify the common characteristics
of malicious applications and can alert users if such characteristics exist in a newly added
application.

Chen et al. [25] propose using big data to develop an agricultural decision model to achieve
precision agriculture. The purpose of precision agriculture is to obtain a more abundant harvest
with less resource consumption to optimize the agricultural economy. The research group is
currently applying the model to a real-world experiment on a banana field.

Munshi et al. [26] propose the design and implementation of a big data platform for educational
analytics. With the massive amounts of available educational data, models can be built to predict
incidents such as student drop-out rates, or to recommend specific courses for individual students.
The authors believe that the platform can provide academic advisors valuable information allowing
them to give more attention to students who might need their help, and ultimately enhancing
education quality.

Big data technology is also being used to predict market trends, identify target customers, and
develop products that better fit the consumer’s needs. Xiong [27] believes that big data marketing
is better than traditional marketing in the automobile industry because it provides insights into

consumer demand and identifies consumers’ interests, thereby allowing enterprises to produce
automobiles that better meet the needs of consumers. Su [28] proposes the idea of using data mining
and cloud computing technology to analyse data from the tourism industry. The author believes
this will help develop innovative management models which can provide personalized marketing
plans for tourism users. Zhe et al. [29] have designed a luxury brand marketing service model
using big data. The authors believe their model will provide the possibility for precision marketing
and provide consumers with exclusive services.

Gupta and Rani [30] have conducted a literature review on both academic and industry publications
with respect to big data published from 2000 to 2017. Through the bibliometric study, they find
that the common research challenges preventing researchers from realizing the value of big data
include high data volume, data format and data source diversity, data sets correlation, and data
visualization.

2.3 Challenges associated with big data implementation

2.3.1 Data visualization

Identifying a relevant and understandable way to visually present data is a major challenge
associated with big data implementation. Data visualization satisfies the ‘visual need’ of the
human mind and can help humans to understand meaningful information obtained from a large
guantity of data regardless of the different cultural backgrounds or the spoken language of the
reader [31]. Data visualization can be used to provide insight into information and help the reader
to understand and form an opinion on a complex context in a “storytelling” way [32].

Mani and Fei [33] believe that data visualization has an essential role in big data analytics. Big
data analytics refers to the process of applying analytical techniques to data to discover reliable
facts or potential information. However, the authors state that the complexity of big data can affect
the efficiency of a data visualization tool. They believe that this problem can be solved if the
amount of data is reduced, for example when only the data requested by the user can be extracted
and processed to create a visualization.

Agrawal et al. [34] discuss the importance of data visualization tools for helping people understand
collections of data and to support real-time decision making. The research group believes that it is
easier for people to understand data in a graphical manner. They point out that there are many

challenges associated with real-time big data visualization, including extracting data from data
sources, determining the essential information to be displayed, and using the data to create an
effective graphical image. The strategy proposed by the group is data reduction, which is reducing
the big data to smaller manageable data before processing it into visualization.

Eldin et al. [35] believe that data collected by the I0T needs to be pre-processed and presented in
a meaningful way before it can be used by researchers. They believe that data visualization is a
simple and fast way to deliver messages and represent complicated things because it summarizes
large amounts of data using a graphical interface. To convert data into a graphical format requires
the following steps: data extraction and data fusion; identification of a suitable graph type or
visualization model based on the user's objective; and the generation of a visual representation
capable of delivering meaningful messages to users. The challenge associated with this process is
to summarize the data for a specific domain in order to create appropriate visuals to support the
needs of the user.

The literature search shows that data visualization is an effective tool to help humans from different
cultural and technical backgrounds understand complex information in a ‘storytelling’ way [31],
[32]. But the complexity of big data makes big data visualization challenging. Data needs to be
processed before converting to visualization because applying a very large amount of data to a
visualization system is inefficient, particularly in the case of real-time implementation [34]. A
common strategy proposed by researchers to solve this challenge is the reduction of the amount of
input data before sending specific data related to the user’s interest to the visualization system
[33]-[35].

2.3.2 High volume, high speed, and data sources

Digital data is constantly being created, and the size of the data generated is growing rapidly as
data collection technology becomes more advanced. In 2012, IBM estimated that there were 2.5
exabytes (10%8) of data generated every day and that the amount was expected to grow [36]. The
hard drive capacity of a laptop can be range from 160 gigabytes (10°) to more than 2 terabyte (10'?)
[37], which means it would require at least 1.3 million laptops to store all the data. The International
Data Corporation (IDC) predicted in 2011 that the size of the data generated every day will grow
50 times by the year 2020, and that the growth will be driven by the physical devices or software
embedded in systems that continually connect data[38].

In 2015, the Australian Square Kilometre Array Pathfinder (ASKAP) demonstrated that they are
presently able to obtain 7.5 terabytes (10'?) of astronomical data per second and they expect the
number to be 100 times bigger by 2025 [39].

The 10T is generating vast amounts of data at a high speed, but the data cannot be directly used in
many applications because the dataset is too large and not processed. Data collected by different
devices often exist in a variety of formats, even for the same type of data. There is a requirement
to reduce the size of the dataset and to unify the raw data format before these data can be useful to
the broader research community.

2.3.3 Data management

Data management refers to the action of managing data as a resource. Effective data management
not only requires having a reliable method to access, integrate, clean, store and prepare data for
other applications, but also requires robust techniques for maintaining the data storage system and
ensuring data security [40].

Data migration is a specific data management operation that refers to the action of transferring data
from its origin to a new data storage place for an identified application [41]. Data migration can be
divided into three sub-processes identified as Extract, Transform and Load. Data ETL is an
important step in big data analysis, and a successful data ETL provides researchers with a clean
data warehouse to use [42]-[45]. “Extract” is the process of extracting data in different formats
from various data sources. "Transform™ is the most complicated part of the ETL process and
requires the application of transformation techniques to clean the raw data. Transformation
techniques include cleansing, filtering, and restructuring the raw data, and converting it to the
desired format [45]. The transformation process is case-specific; it requires manual analysis of the
datasets, and a clear definition of the intended use of the data before defining the appropriate
structure for the data warehouse. Once the clean data is stored in the selected data warehouse it is
ready to be used in the chosen application. Figure 1 shows the conceptual model of the data ETL
process.

> { Data cleaning

|

Data loading

Data
warehouse

Data extraction

{ Data standardization

Destination database

Data transformation

Multiple data sources

Figure 1.Data ETL process (Adapted from ‘Design of ETL Tool for Structured Data Based on Data Warehouse’, by J.
Wang et al.[44])

A well-designed data ETL process extracts data from multiple data sources, enforces data types
and standards, and ensures structural compliance with the output requirements determined by the
application. This is a key process as it will bring different data together in a standard, homogeneous
environment as a data warehouse.

2.4 Database and database management system

The term “database” refers to a collection of data that are related to each other. In the physical
world, a database can be a series of books or papers. In computing, a database is a collection of
organized data that is stored and can be accessed electronically in a computer system. Software
that is used to manage, maintain, or interact with databases is called a database management system
(DBMS). The DBMS serves as an interface between the database and the end-users or software
applications and ensures the required data is organized and can be easily accessed. There are
different types of DBMS depending on the database type they are designed to interact with.

2.4.1 Relational and non-relational database types

The concept of the relational database is based on a model proposed by E. F. Codd in 1970 [46].
In a relational database, there exists a database structure schema that describes relationships
between each of the parameters stored in the database. The schema should be defined before the

actual database is created and very few modifications can be made once it is defined. In the
operational aspect, relational databases have Atomicity, Consistency, Isolation, and Durability
(ACID) properties. When a relational database is used, each transaction is an atomic operation; if
one part of the system fails, the entire system fails. The isolation and consistency of a relational
database are ensured by each transaction behaving independently and being subject to a set of rules.
Finally, relational data is durable in the sense that if someone changes the database, other parties
who have access to it will be able to see the same changes [47]. The ACID properties ensure high
data consistency between the database and the end-users. These characteristics of the relational
database make it an excellent system for banking or financial systems. The Structured Query
Language (SQL) is a programming language designed specifically for managing and querying
relational databases in a DBMS, thus a relational database is also called an SQL database.

The NoSQL database (non-SQL or non-relational database) is a more recently developed type of
storage method that is becoming increasingly popular. In contrast to relational databases, NoSQL
databases do not require a predefined schema; they store data regardless of its structure and content,
allowing greater flexibility [47]. NoSQL databases can store unstructured or semi-structured data
such as video clips, digital figures, or document files. Large amounts of such data is being
generated every day in web and mobile applications, and there is a need for a storage method that
can collect and store these varied formats of data with low latency, which is a difficult task for a
relational database [48]. Unlike relational databases, NoSQL databases are faster at processing data
because they do not need to adhere to ACID properties [49], [50].

There is a trade-off between performance speed and database complexity [50]. Therefore, one main
concern with a NoSQL database is how to ensure its reliability and consistency. Another difficulty
is that NoSQL does not have a well-defined query language, making complex data query difficult.

Scalability is another difference between SQL and NoSQL databases [47], [51]. An SQL database
is typically hosted on a single server and can be scaled vertically. The scalability of a SQL database
is achieved by adding additional memory, processors, and storage to the server. NoSQL databases,
on the other hand, are horizontally scalable and are often designed to work across cloud servers.

A third database type is NewSQL, which can be considered an improved version of the relational
database, which still maintains the ACID properties but can have the scalable performance of a
NoSQL database [52]-[54]. Table 1 shows a high-level comparison of the SQL, NoSQL, and
NewSQL database types.

Table 1. Comparison of SOL, NoSQL and NewSQOL

Characteristic SQL NoSQL NewSQL
ACID properties Yes No Yes
Relational Yes No Yes

Support unstructured data | No Yes In some cases

(e.g.: video, audio, etc.)

Standard query language Yes No Yes
Community support Very high High Low
Scalability Vertically scalable | Horizontally scalable [Horizontally scalable

2.4.2 DBMS performance

There are several DBMS available for managing the three types of databases. Research has been
conducted comparing the performance of different DBMSs, and results show that DBMS for
NoSQL databases is not always more efficient than DBMS for relational databases[49], [55], [56].
The performance of the DBMS depends on the database operation being performed.

Li et al. [55] conducted performance comparison on several NoSQL DBMSs against Microsoft
SQL Express. MongoDB, Hypertable, Apache CouchDB, Apache Cassandra, RavenDB, and
Couchbase are the NoSQL DBMS chosen for the experiment. The research group found that the
NoSQL databases were not always outperforming the SQL database, and that the efficiency of the
database varied depending on the operation. For reading, writing, and deleting operations the
research study found that only MongoDB and Couchbase consistently outperformed the Microsoft
SQL Express.

Fatima et al. [49] also conducted research on the performance of three different types of DBMSs.
In their experiment, MongoDB was chosen as the NoSQL DBMS, MySQL was chosen as the SQL
DBMS, and VoltDB as the NewSQL DBMS. The research group used these three DBMSs to store
and manage data and compared their performance. According to their research, VoltDB always

10

outperformed MongoDB and MySQL in terms of both read and write operations. As for the other
two DBMSs, MySQL was more efficient for the read operation while MongoDB was more efficient
for the write operation.

Rautmare et al. [56] conducted similar research to compare the performance of the read and write
operation for MySQL and MongoDB. The results show that MongoDB outperformed MySQL in
some cases, but the response time in MySQL was more stable. The authors state that choosing a
DBMS should depend on the requirements associated with the database application.

2.5 Data-driven research in the aviation industry

Data-driven research projects related to aviation are relatively common in the literature. Li and
Ryerson [57] have conducted a literature review of 200 aviation data-driven publications published
after 2010. The authors find that the literature references a variety of data types, and that the same
data may come from different sources. They identified 16 data categories and found that each one
of them had at least 5 available sources. They point out that, because of the existence of different
data sources for the same data, the nomenclature used to describe the information can be
inconsistent, making the data difficult to access and problematic to use. With respect to data
availability, the researchers found that 24% of the 200 publications use publicly available data,
whereas the rest rely on proprietary sources. The authors believe that standardizing data source
nomenclature in the industry and increasing the amount of publicly available data would greatly
benefit aviation data-driven research. A selection from the literature reviewed by Li and Ryerson
is provided in the rest of this section.

Ben Abda et al. [58] examined domestic origin-destination traffic and fares at America's 200
largest airports from 1990 through 2008, focusing on the effects of the arrival and growth of low-
cost carriers by analysing air carrier data obtained from the US Department of Transportation
Bureau of Transportation Statistics.

Alderighi and Gaggero [4] used flight schedule and meteorological data to study the flight
cancellation rate and show that airlines belonging to global alliances are more likely to cancel a

flight under the same weather condition.

Fu and Kim [59] studied the relationship between airport passenger leakage at small local airports
and the relationship with multiple explanatory factors such as travel group size and airfare. The

11

authors employ 8 years of publicly available data in an econometric model including airport
passenger traffic, airline services, driving distance between airports, census information, and
aviation fuel costs.

Cadarso et al. [60] studied the competition between airlines (legacy and low-cost) and high-speed
rail. The authors developed a model for generating airline schedules and used real operational data
obtained from a Spanish airline company as input to validate their model. The results they obtained
from the validation shows that their model generated similar flight schedules to the actual flight
schedule used by the airline company. The validated model was then used to predict the impact on
airline scheduling caused by the entry of high-speed rail into the transport market.

Ren et al. [3] applied machine learning techniques to study the relationship between weather and
Ground Delay Programs (GDP) issued at Newark Liberty International Airport from 2010 through
2014. The authors take GDP advisory data, FAA flight data, and forecast and observed weather
data from U.S. National weather services to create a merged master data repository to support their
research.

Ng etal. [1] developed a trajectory optimization algorithm that minimizes the cost of time and fuel
burn, especially for cargo flights. Their algorithm was validated in a MATLAB simulation by
creating a new trajectory for specific cargo flights based on air traffic data from October 2010,
including wind data for the same period obtained from the National Oceanic and Atmospheric
Administration.

Rakas et al. [61] developed a generalized method to evaluate the impact of equipment outages on
airport throughput and the probability of a separation loss between aircraft. The research involves
a variety of factors including weather conditions, aircraft type, and landing and departure times.
The authors highlight the fact that the data they need to conduct their research cannot be found in
a single database. Their study combined historical data from three Federal Aviation Administration
(FAA) databases: the Aviation System Performance Metric (ASPM), the Remote Monitoring and
Logging System (RMLS), and the Performance Data Analysis and Reporting System (PDARS).

In reviewing some of the publications that appear in Li and Ryerson’s survey [57], it becomes clear
that researchers use historical aviation data obtained from real life to support a variety of research
projects. The industry uses real-life data as input to validate new concepts or algorithms being
developed [1], [3], [60], [61], or they analyse the data and obtain some insight regarding the

12

messages within the data [4], [58], [59]. In a third important application, real-life historical data is
used to support the development of simulation software. Section 2.5.1 introduces and reviews two
such simulation software systems developed by NASA and used for research.

2.5.1 Historical big data and aerospace simulation research

The Future ATM Concepts and Evaluation Tool (FACET) is a simulation and analysis tool
developed by National Aeronautics and Space Administration (NASA) in the late 1990s [5].
Advanced air traffic management concepts can be explored, developed, and evaluated using the
simulation environment provided by FACET. FACET can create simulations and playbacks with
the support of real-life historical data on air traffic, airspace constraints, aircraft performance, and
weather [6], [8]. The software tool was developed to satisfy the requirements of NASA Air Traffic
Management (ATM) researchers by using real-world data to create simulations. FACET has been
used as a testbed for air traffic management related research in subject areas including airspace
complexity, conflict detection and resolution, and flexible airspace utilization.

Sridhar et al. [8] presented a three-step hierarchical method to integrate air traffic flow management
initiatives for the purpose of avoiding regions of severe weather and preventing congestion in the
airspace sector. A simulated environment is created using FACET with 24-hour historical air traffic
data to evaluate the method.

Bilimoria et al. [9] evaluated the performance of two Conflict Detection and Resolution (CD&R)
schemes in a simulated air traffic environment provided by FACET. A 6-hour test scenario
involving nearly a thousand aircraft was modelled in FACET to support the evaluation work. The
initial condition of the test scenario was formed by using actual air traffic data, and the two CD&R
schemes were applied to the simulation to evaluate their influence on the air traffic in terms of
safety, efficiency, and stability.

Sheth et al. [10] conducted an analysis of five airspace tube structures using FACET, including
three existing and two new designs. Using 24-hours of historical air traffic data, FACET was used
to create a simulated environment to test the performance of the designs. The authors defined the
following metrics to measure performance; the spatio-temporal utilization of the airspace, the
frequency and angles at which the aircraft cross the tubes, and the separation distance between
aircraft with and without tubes.

13

Although FACET can generate simulated environments to support Air Traffic Management related
research, it cannot generate simulations of 3D aircraft trajectories or include flight delays caused
by airport ground operation. As a result, NASA has developed the ACES software system that can
be used to simulate aircraft trajectories with given initial conditions and performance parameters
specific to an aircraft model.

The Airspace Concept Evaluation System (ACES) is a fast-time, gate-to-gate simulation and
modelling tool for the National Airspace System (NAS). NASA developed ACES in 2001 and is
continuously updating and incorporating new features [7]. ACES can be used for investigating
current operations, future operating concepts, and new tools and architectures for the NAS. The
simulated environment in ACES is created using official data published by regulatory agencies
including the Rapid Update Cycle (RUC) for enroute wind, the Kinematic Trajectory Generator
(KTG), and the Base of Aircraft Data (BADA) for aircraft performance. In addition to using
multiple databases to create realistic simulated environments, the latest version of ACES also
includes a library of plugins that can be used by researchers to support the development and
evaluation of NextGen concepts.

Thipphavong et al. [2] developed an adaptive weight algorithm to improve the accuracy of aircraft
climb trajectory prediction and they used ACES to establish a proof-of-concept. ACES was
selected because it can generate realistic aircraft trajectories using aircraft models derived from the
BADA. The algorithm adjusts the gross weight of the aircraft model based on the rate of change in
kinetic and potential energy and uses the adaptive weight algorithm to predict the aircraft's climb
trajectory. The researchers believe that the successful development of this algorithm will help
reduce air traffic control workload; improve the automation level of separation assurance; and
increase the capacity of the Next Generation Air Transportation System.

Chen et al. [11] investigated four Detect-and-Avoid (DAA) Well Clear definitions between non-
cooperative aircraft and Unmanned Aircraft Systems (UAS). The authors believe that DAA
systems are essential to ensure the safe integration of UAS into the NAS. The DAA Well Clear is
a separation standard used in DAA systems, and it is important to correctly identify the appropriate
Well Clear definition for UAS DDA systems. The research group uses ACES to generate UAS
trajectories, and the simulation of the encounter scenario is conducted by pairing a UAS trajectory
with a non-cooperative aircraft trajectory.

14

Satapathy et al. [12] evaluate the sensitivity of a new Efficient Descent Adviser (EDA) tool to
predict trajectory errors. The EDA tool evaluated by the group is a trajectory-based method and its
performance depends directly on the accuracy of the trajectory prediction. The research group
conducted the sensitivity analysis by using ACES along with its Kinematic Trajectory Generator
(KTG) to model both actual and predicted flight trajectories. The difference between the two is due
to the uncertainty in the data applied in the trajectory prediction calculation. The EDA is applied
to both trajectories in the simulation, allowing the researchers to evaluate the EDA performance
under variations in trajectory prediction uncertainty requiring controller intervention.

Apart from being used to generate aircraft trajectories, ACES is also a useful research tool for
creating realistic simulations related to airport operational metrics, for example airport throughput
and flight delays. The accuracy of the output in terms of this type of simulation had been verified
by Zelinski et al. [13], [14] using real-world historical flight and weather data as input to ACES.
The research group obtained output including airport throughput, flight delay, and flight tracks
from ACES, which they then compared to the real-world data of the reproduced day in the
simulation. The results show that the output obtained from ACES is highly correlated to real-world
data.

Erzberger et al. [15] presented the design of a ground system that can resolve problems such as
aircraft conflict, arrival schedule, and convective weather avoidance as a means of accommodating
piloted and non-piloted aircraft with reduced dependency on human controllers. ACES was
employed by the research group to test their design. A 24-hour period of historical arrival and
departure data for the Dallas Fort Worth International Airport and the Dallas Love Field airport is
used as input to create a simulated environment in ACES.

Smith et al. [16] investigated the use of larger aircraft and alternative routing to complement the
capacity benefits expected from NextGen in 2025. The research group uses ACES to access NAS
delays for the 2025 demand projected by a Transportation System Analysis Model. The demand
projection for 2025 is made based on real life air traffic data obtained in 2006. The results show
that using larger aircraft with more seats on high-demand routes and introducing new direct routes
can significantly reduce delay and complement NextGen improvements.

Although ACES can generate realistic aircraft trajectories and simulate flight delays at specific
airports, the software does not include the capability of simulating weather. Instead, the only

15

meteorological component available in ACES is the wind effect, and this is done by adjusting the
aircraft's ground speed in the simulation in accordance with the input weather data.

The examples of FACET and ACES usage described above illustrates how researchers in the
aviation industry are using real-life historical data to create simulated environments as a means of
testing new concepts. Both FACET and ACES require various types of input data depending on
the research-specific simulations [5]-[7]. As a result of studies including those described,
researchers have remarked that the quality of the real-world data can be inadequate. For example,
data obtained from one data source might be incomplete and will require combining data from
other data sources before using them as input to simulation software [13], [14]. As a result, aviation
researchers have begun to address the problem of data complexity, accessibility, and compatibility
by undertaking projects aimed at processing and grouping available archived aviation data in “data
warehouses” as a means of providing clean data sources.

2.6. Research-specific aerospace data collections

The development of research-specific databases capable of providing relevant, clean, organized
and manageable data collections is becoming an increasingly popular research topic [62],
[63]. These collections are meant as data “warehouses” and do not process or apply the data to
simulations or other software applications, but rather focus on gathering, cleaning and making the
data accessible so that researchers may use them for specific modelling applications. Eshow et al.
[62] introduced the design and implementation of a data warehouse named ‘Sherlock’ in support
of ATM research at NASA’s Ames Research Center. The purpose of Sherlock is to serve as a
centralized data repository that holds all relevant ATM data and enables NASA researchers to
access data for their own purposes. The author points out that the success of creating Sherlock
depends on continuous access to reliable and robust data sources. The data stored in Sherlock
comes primarily from the FAA and the National Oceanic and Atmospheric Administration
(NOAA). The two organizations have multiple sub-departments that collect air traffic-and weather-
related data that could be used to describe the NAS. An open-source software application is used
to extract, transform and load data from data sources to the storage place in Sherlock. The data
stored in Sherlock can be accessed through a web application, and researchers can download the
data they need from the Sherlock web application instead of trying to find the data they need from
the internet.

For example, Kuhn [64] proposed a methodology for characterizing historical flight days based on
aviation weather and air traffic conditions in a given region to provide input for Traffic Flow

16

Management (TFM) decision-making. The author extracted weather and air traffic data sets from
Sherlock and characterized the information on a case-by-case basis. The cases developed were
employed in the analysis of the past use of TFM initiatives as a means of improving the
performance of the air transportation systems and reducing air traffic management workload in
similar situations.

Pang et al. [65] proposed a neural network model for weather-related aircraft trajectory prediction
using raw air traffic and weather data from Sherlock for a database used to train their model. The
model generated the trajectory prediction based on the aircraft’s current flight plan, the history
flight tracks, and the weather conditions at the time.

Evans and Lee [66] conducted research on air traffic schedule delays caused by weather or air
traffic congestion. The authors applied data mining techniques to historical data extracted from
Sherlock for arrival operations at the Newark Liberty International Airport between June and
August 2010. The authors believe their work will contribute to a better understanding of how these
factors contribute to the occurrence of schedule delays and help to improve ATM decision-making.

Sherlock is a platform for reliable ATM data collection, archiving, processing, query, and delivery
[62] that has proven its usefulness in supporting data-driven research including big data analysis,
machine learning, and data mining [63]-[65]. The Sherlock product is an important component of
the ATM research infrastructure used by the NASA Ames Research Center and their partners, but
there remain challenges that need to be overcome. These challenges have been acknowledged in
presentations given by researchers from NASA Ames Research Center in 2018 and 2019 [67], [68].
The major challenge discussed is that, although Sherlock stores archived data from different data
sources, it only allows users to query data from one individual source at a time. This is because
Sherlock is not a unified database and the datasets stored are heterogeneous in terms of data formats,
spatial and temporal alignment, and scientific units. Because of this, it is hard to bridge across the
data from different sources stored in Sherlock during query operations.

Researchers from NASA are not the only ones trying to develop an integrated aviation data
warehouse [63], [69]-[71]. Larsen [69] has presented an integrated aviation data warehouse that
was developed in support of aviation big data analysis research. The author points out that since
aviation data comes from diverse data sources, they do not have the standardization, uniformity or
defect controls required for reliable integration. In addition, the diversity of data sources makes the

17

size of data extremely large for a given period of time, and that might exceed the capability of a
traditional desktop to manage and make use of the data.

Tyagi and Nanda [70] presented an architecture for the development of a data warehousing and big
data analytics tool for ATM researchers. The proposed tool is designed to be an intelligent
repository for a variety of ATM data and would allow users to combine datasets before querying
and analyzing them instead of manually downloading, cleaning, ingesting, and querying a small
subset of one or multiple datasets. The authors point out that having such a data warehouse can
save redundant steps by providing one platform to solve the needs of a larger number of researchers
while ensuring accurate, stable, and easily accessible data solutions.

Ayhan et al. [71] describe a novel analytics system that processes, correlates, and stores Aircraft
Situation Display to Industry (ASDI) data in a data warehouse. The authors clarify the need for
developing scalable data warehouses to better manage and store data. They point out that it is hard
to perform analytics on raw data as the collected data is large, compressed, and requires correlation
with other flight data before it can be used for analysis. The research group designed and developed
a data warehouse to store two years of archived ASDI data. The data warehouse was then used to
support the development of software models to predict airspace density as a means of providing
more refined rerouting decisions.

In 2020, a group of researchers from Embry-Riddle Aeronautical University (ERAU) presented a
research initiative to address not only the problem of managing the accumulated FAA air traffic
management data they collect, but also to make the data useful in support of data-driven research
conducted at the university [63]. The research group point out that it remains difficult to utilize the
collected data because it still requires a series of processes before it can be used. These processes
include extracting appropriate data files from the archive, decompressing those files, extracting the
relevant data from the decompressed files, and correlating data between multiple files to fill in
potentially missing information. The authors emphasize that such a workflow is not suitable for a
sustainable research program and is time and resource intensive. The research group also mention
that the challenge of making use of available aviation data for aviation big data research is not
unique to ERAU, and that the challenge is primarily caused by the wide variety of aviation data
types. They believe that there is a need to develop a system-level design for an aviation big data
system that can provide adequate and useful support to research and operational needs.

To demonstrate a proof-of-concept, the ERAU research group takes a 24-hour period of collected
aviation data from various data sources and develops a data repository to store these data. They

18

present their workflow and discuss the problems they encounter during the implementation
including extracting data from different data sources and converting them to a format suitable for
storage; identifying the correlation between different datasets to fill in the gap where there is
missing information from one data set; and designing an interface that allows users to query and
visualize the data they are interested in. After implementing the proof-of-concept, the researchers
present several lessons learned from their research. They emphasize that data clean-up and pre-
processing are important after extracting data from data sources, and that it should be expected to
see inconsistency in data format across data sources as well as incomplete information within a
single source. Finally, they point out that the data repository should be capable of maintaining
efficient performance in terms of feeding back the query results to users.

The examples of Sherlock and other data repositories described above reflect their usefulness in
terms of supporting aviation data-driven research. The Sherlock data repository developed by
NASA aims to provide researchers with a platform to download all ATM-related data [62].
Although Sherlock is considered an essential tool for ATM researchers, it is not a unified data
repository and its data cannot be used directly in data-driven research [63], [70] without cleaning
and standardization processes being applied [67], [68]. Unlike the Sherlock data repository, there
are other researchers who design and develop small data repositories for specific research
applications [63], [69]-[71]. These authors prefer to have a data repository with only a limited
amount of data defined by the research purpose rather than a master data repository like Sherlock.
For this smaller type of data warehouse, raw data extracted from data sources is processed to satisfy
the research requirement before storing them in the repository. Characteristics of this kind of data
repository are manageability using a normal desktop computer, and the reliability of providing
efficient performance when users query data from it.

The literature review reveals that, although we are in the era of big data and that much of that data
has relevance for promising areas of aviation research, challenges remain to its utilization. The
biggest challenges are related to correlating large amounts of data from a variety of sources, and
locating, extracting, processing, and storing relevant material in a format ensuring consistency,
compatibility, and ease of use for the aerospace researcher. Although the large amounts of
information available have led to the temptation to create large “data warehouses”, the practice of
storing large amounts of data increases the difficulties associated with the querying, extraction, and
processing tasks necessary to make the data useful to the researcher in an efficient manner.

19

2.7 Research objective

In the study that is the subject of this thesis, a smaller, more efficient, aecrospace research-specific
data repository is proposed, and a methodology is presented for its development. The methodology
is aimed at developing best practices and alternatives for pre-processing and storing data according
to a well-defined research need in such a way that the information is accessible, non-redundant,
clean, and compatible. The approach is validated with a proof of concept where a prototype data
repository is created in support of a defined research project. The research objective can be broken

down into five main tasks as follows:

1. Identify aviation data sources that satisfy the given research need within the constraints
that the sources must be publicly available and easily accessible.

2. Design and develop an independent data repository that i) can be handled by a common
desktop computer; ii) is compatible (can be accessed) with various programming
languages; and iii) can provide effective feedback to user queries.

3. Develop a script to implement Data ETL and extract data from the sources identified in
Task #1, clean it to satisfy specified requirements, and load it to the data repository
developed in Task #2.

4. Design and develop a Graphical User Interface (GUI) that provides a platform for the data
repository user to visualize and interact with the data.

5. Verify the methodology using a proof-of-concept test case.

20

3. Research Methodology

This chapter presents the methodology used to create an aerospace research-specific data repository
that satisfies the five main tasks discussed in Section 2.7 and illustrated in Figure 2. Section 3.1
discusses the data source selection based on the defined requirement of a specific research project.
Section 3.2 presents the design and development of a data repository that satisfies the requirements
of Task #2 as defined in Section 2.7. Section 3.3 presents the implementation of Data ETL as
described in Section 2.3.3; and Section 3.4 describes the development of a web-based GUI to
provide data visualization to users. Section 3.5 concludes the chapter by presenting a validation
approach using a proof-of-concept test case.

g B i Design and develop |]) 3 Methodology .
Identify data sources t_he ST CHE Implement Data ETL DE‘VEI_OP G_LI I.ur e validation with [.;muf-
independent data visualization
| | | of-concept test case

repository

Figure 2. Workflow

3.1. Data source selection

Task #1 involves the identification of suitable aviation data sources that fit the given research
criteria with the added constraint that the data be publicly available at no charge. In the literature
review conducted by Li and Ryerson [57], they identify 16 data categories of aviation-related data
used in data-driven aviation research, the most commonly used being Air Traffic Control data;
individual flight-level data; economics, logistics and operational data; airport and airline specific
data; fuel and fuel-related data; weather-related meteorological data; aviation geography and
geometry data; and socioeconomic, demographic and population data. In the study that is the
subject of this thesis, four of these categories of data are accessed; individual flight-level data,
airport and airline specific data, weather-related meteorological data, and aviation geography and
geometry data. The data are used to implement the research methodology in the context of a
specific research project. The remaining part of this section provides more detailed information
about the data sources selected and the types of data associated with each of them.

21

3.1.1 Weather data

The NOAA is a scientific agency within the United States Department of Commerce. The role of
the NOAA is to monitor natural environmental activities in the United States. One of the
organization’s responsibilities is to release weather forecasts as well as warnings when weather
hazards are predicted [72]. The NOAA collaborates with other top-level organizations to jointly
develop weather products for use by the public and federal agencies. These organizations include
NASA, FAA, and the United States Department of Defense (DOD) as shown in Figure 3.

Vational Aeronautics ang National Oceanic and United States Federal Aviation
Space Administration Atmospheric Adminstration| [Department of Defense Administration
NASA (NOAA) (DOD) (FAA)
l Nati = T
‘Geostationary Operational Vational Environmental Satellite, . sioral 4 :\utuuﬁlat.'lc Surface Aulomattt Weather
5 N N N ‘Weather Service Observation System Observation System
Environmental Satellite Data, and Information Service WS (ASOS)- AWOS g
(GOES) (NESDIS) -) ¢)
National Center for
Environmental Information N
(NCED) — Center Weather
e N.atmmll Ce]u;ersd.fnr. Service Unit
nnrﬂnme‘ntn rediction (CWST)
(NCEP)
¥
Other services E Aviation community related]
D —_—
Space Weather | Climate Prediction Storm Prediction Center
Prediction Center (SPC)
(aka: Space Center Aviation Weather
\Environment Center)/ Center
Environmental AWC Tropical Prediction
T River Forecast Modeling Center Center
River Forecast National Center
Centers icti 7 Operations
(aka: Hydrologic ‘Ocean Pret:llctmn Clel.!ter -
Prediction Center (aka: Marine Prediction |Weather Forecast Offices|
Center (WFO)

Figure 3. The service available in NOAA

There are multiple environmental services associated with the NOAA program, and some of these
are responsible for providing information to the aviation community [73]. Figure 3 shows an
overview of the services available from the NOAA, where the blue boxes represent services related
to the aviation community and the white boxes show other services. The National Weather Service
(NWS) is one of the government institutions under the NOAA program, and an important role of
the NWS is to issue severe weather warnings to save lives and minimize property loss [74]. Within
that context, several weather prediction services under the NWS provide direct weather forecast
information to aviation users.

The two green boxes highlighted in Figure 3 are the data sources selected for use in the project that
is the subject of this thesis, and both are owned by the NOAA. The Aviation Weather Center (AWC)
is an institute belonging to the National Centers for Environmental Prediction (NCEP) with the
objective of providing consistent, timely, and accurate weather information to the global aviation
community. The National Center for Environmental Information (NCEI) is an organization
belonging to the National Environmental Satellite, Data and Information Service (NESDIS) and is
the Nation’s leading authority for environmental data. The NCEI manages a large amount of
archived atmospheric and oceanic data and fulfils the role of helping the NOAA meet the growing
need for high value data in environmental research. Unlike the AWC, the NCEI provides only the
raw data to users and for data-driven research, raw data is more useful because machines can
process complex data values more effectively than humans.

All weather data captured by any institution under the NOAA program is publicly available on the
NOAA website. The various types of weather data are collected by different devices, and the raw
data are ‘encoded’ in their own language and appear in different data formats [73] in the different
databases. The NOAA’s Weather and Climate Toolkit (WCT) is an independent and free software
released by the NOAA and has two primary functions: data visualization and data export [75]. The
software can generate satellite images from any given raw radar data file but can also convert a
raw radar data file to a variety of common formats and export. Researchers can use the WCT
software to convert raw weather data files to the desired format compatible with their research
activity.

In 2000, NASA conducted a study to review all the aviation weather products available at the time
[73]. The study uses Federal Aviation Regulations Part 91 (General Operating and Flight Rules),
Part 135 (Air Taxi Operators and Commercial Operators), and Part 121 (Domestic Commercial
Operators) as the context to analyze the critical weather information required by aviation users at
each phase of flight. Depending on the phase of flight, different weather products may be required,
because each product has a different coverage area. For example, while certain weather products
are only available in the terminal area, others are issued for all 48 contiguous states in the U.S..
The study identifies weather products used by the aviation community as well as the data sources,
data content, and updated frequency of each weather product. Table 2 provides an overview of the
weather products studied and is presented here to demonstrate the diversity of data formats, update
frequencies, and coverage areas for the different organizations under the NWS.

23

As an example, the Meteorological Aerodrome Reports (METAR) is a joint effort by the NWS,
the DOD, and the FAA, and provides an hourly report of surface weather information for US airport
terminal areas [73], [75]. The METAR data is a text string that combines information from
Automated Weather Observing Systems (AWOS) and Automated Surface Observation Systems
(ASOS) to provide the report issue time, wind speed and direction, visibility, temperature, and
other weather phenomena.

Table 2.Information about different weather data [73]

Responsible |Coverage |Update
Weather Product Description organization |Area rate Format
Aviation Routine ASOS!
Weather Report Surface condition at the | AWOS?
(METAR) airport HO?3 Terminal |1 hour Text string
Terminal Area Forecast | Airport terminal NWS
(TAF) weather forecast WFO* Terminal |4 hours Text string
Airman's 3 categories, hazardous 3000
Meteorological atmospheric conditions square
Advisory (AIRMET) |for VFR AWCS miles 6 hours Text string
Significant 3000
Meteorological Hazardous conditions square
Information (SIGMET) (for all user categories |AWC miles 6 hours Text string
Low-Level Significant
Weather Chart 4 times per|Graphical
(LLSWC) Aid VFR briefing NWS U.S. region |day chart

1 ASOS: Automatic Surface Observation System

2 AWOS: Automatic Weather Observation System
HO: Human Observation

4 WFO: Weather Forecast Office

5 AWC: Aviation Weather Center

24

High-Level Significant

Provide forecasts

Weather Chart during en-route phase 4 times per|Graphical
(HLSWC) for international flight |[NWS U.S. region |day chart
Information at 9 Graphical

Winds and Temperature

discrete elevations from

chart or text

Aloft (WA and TA) 3000 ft to 39000 ft NCEP® U.S. region |12 hours |string
Unscheduled weather As Graphical
Meteorological Impact |information help flight condition |chart or text
Statement (MIS) planning, flow control |CWSU’ Regional |warrant string
Nowcast information As Graphical
Center Weather help flight crew avoid condition |chartor text
Advisory(CWA) hazardous condition Cwsu Regional |warrant string
Atmosphere As
observation by pilot or condition
Pilot Report(PIREPS) |aircraft instrument Pilots Localized |warrant Text report
Images of cloud and the
temperature of the GOES® 15 min ~ 1 |Satellite
Satellite Imagery (SI) |cloud NOAA National |hours image
Information on freezing
Radiosonde Additional |level and relative
Data (RAD) humidity NWS National |12 hours |Radar image
Next Generation Produce 18 products
Weather Surveillance |related to precipitation ~ 200 mile |6~12
Radar(NEXRAD) and velocity estimates |NWS radius minutes Binary file
Terminal Doppler Provide wind shear As
Weather Radar precipitation in the FAA condition
(TDWR) terminal area NWS Terminal |warrant Radar image

6 NCEP: National Centers for Environmental Prediction

7 CWSU: Centers Weather Service Unit

8 GOES: Geostationary Operational Environmental Satellite

25

3.1.2 Air traffic data

Airline Situation Display to Industry (ASDI) is a data stream that broadcasts real-time air traffic
data to members of the aviation community and has been serving as the data feed of FAA's
Cooperative Research Data Agreement since 1998 [71]. ASDI delivers information to users
through a text string, where the ASDI messages include, but are not limited to, flight plan
information, arrival information, and departure information for aircraft in the NAS. Table 3 lists
the information content associated with each type of message delivered by ASDI.

Table 3. Information available in ASDI data stream

Message type Content

Flight plan Aircraft identification

Departure point

Destination

Aircraft type

Speed

Coordination Fix

Coordination time

Assigned altitude

Requested altitude

Route

26

Arrival information Aircraft identification

Departure point

Destination

Arrival time

Departure information Aircraft identification

Aircraft type

Departure point

Actual departure time

Destination

Estimated time of arrival (ETA)

The ASDI is a data stream, and the organization is not responsible for collecting the data, but rather
makes available data coming from the Enhanced Traffic Management System (ETMS) [76]. The
ETMS in turn derives its air traffic information from several sources [77] including airline schedule
data from the Official Airline Guide (OAG); real-time NAS messages from the Air Route Traffic
Control Centers (ARTCCs); and air traffic data over the contiguous and the oceanic area of the
United States from the Aeronautical Radio Incorporated (ARINC) and the Dynamic Oceanic
Tracking System(DOTS). The ETMS combines the available data to always maintain a
comprehensive picture of air traffic in the NAS. This information is then broadcast in real time by
the ASDI and can be publicly accessed by members of the aviation research community.

Another public source of air traffic data is the Automatic Dependent Surveillance-Broadcast (ADS-
B). ADS-B uses satellite navigation and other sensors to determine the position of an aircraft and

27

broadcast it periodically. The latest version of the Code of Federal Regulations Title 14 Part 91.225
and Part 91.227 states that all aircraft must be equipped with ADS-B Out to fly in most controlled
airspace after January 1, 2020 [78], [79]. In general, ADS-B Out refers to an avionics subsystem
that broadcasts flight information of the equipped aircraft. Any other airspace users equipped with
ADS-B In systems can receive the broadcast information. Ground receivers like the Air Traffic
Control System can also receive the broadcast information by equipping an antenna with receivers
and an adapted surveillance processor. ADS-B is a surveillance service used to support separation
assurance and traffic flow management [80]. Unlike the weather products discussed in the previous
section that have minute-based or hour-based update rates, the ADS-B message updates every
second. The flight information broadcast by ADS-B Out includes time, horizontal and vertical
position, speed, barometric altitude, and aircraft identification code.

Accessing the ASDI data stream is more complicated than accessing ADS-B data. The FAA
maintains a list of acknowledged direct ASDI subscribers who can access the ASDI data stream
[81]. ADS-B data, however, can be accessed through the internet and there are several platforms
that provide archived ADS-B data to the public [82]-[84]. All ADS-B data platforms identified in
this research are notable for having missing information or aircraft positional error in the data they
provide. For the purpose of this research, when these errors are encountered, the records that lack
information on aircraft position are neglected during the data extraction process. Section 4.3.1.2
present more detail on the work associated with obtaining and processing ADS-B data.

This section has provided a brief presentation of some of the wide variety of available data sources
on weather and air traffic data. The selection of the type and source of data used on any given
research project will be driven by the requirements of the project itself and limited by the constraint
that the data be publicly availability and easily accessible.

3.2 Independent data repository

Task #2 from Section 2.7 concerns the design and development of an independent data repository
that i) can be handled by a common desktop computer; ii) is compatible (can be accessed) with
various programming languages; and iii) can provide effective feedback to user queries.

While this task is defined independently, it is performed iteratively with Task #3 — the
implementation of data ETL. Once the data source has been selected (Task #1) and the data

28

downloaded and decoded (Task #3), it must be cleaned to meet the research project specific
requirements (Task #3) and then uploaded to the new database (Task #3). The processes used for
cleaning the data will depend on the structure and organization of the raw data, and the type and
structure of the database required to store the cleaned data (Task #2) will depend on the approach
to data ETL.

The data content of the weather and air traffic data sources discussed in Section 3.1 can be
considered structured data, where structured data refers to any data converted to a predefined
structure and format before being placed in a storage location [85]. Structured data is often
described as data, especially numbers or text strings, that can be organized into tables or
spreadsheets, whereas unstructured data is information that cannot be arranged in such a way
including images, audio and video files. Figure 4 offers more detail on the differences between
structured and unstructured data.

Structured data VS Unstructured data
Can be displayed in rows, columns = Can not be displayed in rows, .?.
and relational databases 1 columns and relational databases g1
C
Data are presents in termsof 123 B Data are presents in terms of n
numbers, dates and strings A C images, audio, video, e-mails @
~
7 , , , (7
Estimated 20% of enterprise data 20% Estimated 80% of enterprise data 80%
=Y=Y=)
Requires less storage @ Requires more storage | :1 [:1 [:1
L [ofli < [)|
Easier to manage and protect a‘sﬁ More difficult to manage and
with legacy solutions > protect with legacy solutions

Figure 4. Structured data vs unstructured data (Adapted from ‘Structured Data vs. Unstructured Data: what are they

and why care?’, Lawtomated [85])

A selection of different types of databases and data management systems was presented in Section
2.4 with respect to their advantages and disadvantages. A common choice for structured data is the

29

relational database. Relational databases maintain data in tables, providing an efficient and flexible
way to store and access structured data. When designing a relational database, the primary goal is
to minimize duplicate data columns among different tables and build connections between them
by identifying their correlation. This requires an understanding of the data content as well as the
requirements specific to the defined research project. Based on the type of data obtained from the
data ETL (Task #3), the process begins with questions that may include “What does the cleaned
data look like?”, “How can the data obtained be structured in separate tables?” What criteria
should be used to create relationships between tables?”, etc.

The structure of the database used for the proof of concept that is the subject of this thesis is
described in detail in Section 4, where the answers to the questions posed above are provided for a
selected case study.

3.3 Data ETL

The third task identified in Section 2.7 is the application of data ETL techniques to extract data
from the sources identified in Task #1; transform it to satisfy specified research requirements; and
load it to the data repository developed in Task #2. Ifthe raw data is ‘encoded’, it must be decoded,
and the underlying structure and organization examined. The decoding process is driven by
questions such as “How are we going to use the data?”’; “Is the original structure adequate?”’; and
“How do I want the data stored in the new database so that it is easy to use?”.

3.3.1 Data Extraction

Different data download methods are needed to assist the data extraction process depending on
which data sources are selected. This section introduces three data extraction methods that were
investigated in this research. Section 3.3.1.1 introduces the most common data extraction method,
and Sections 3.3.1.2 and 3.3.1.3 present high-level descriptions of two data extraction methods
implemented for the case study that is part of this thesis and are described in more detail in Chapter
4,

30

3.3.1.1 Direct download

The most common way to download something from the internet is by direct download. This data
extraction method can be applied to data sources that provide users with a GUI. Users are capable
of viewing or selecting the data of their interest through the GUI and can choose the file to
download from there.

Figure 5 shows an example of downloading Next Generation Radar (NEXRAD) data from the
NCEI website. The NEXRAD data collected at the KIFK weather station on January 1st, 2020
from 00:00:00 to 00:59:59 are the subject of the example. The data file identified in the search can
be downloaded from the website by clicking the ‘Download’ button located at the bottom right
corner. The NOAA has several direct download platforms where users can obtain data by selecting
a country, city, zip code, or any geographical point on a map [86].

wmg National Centers for
V Environmental Information

Home Access Search Dataset Search Data Search 6 OrderStatus @ Help @ Guide W Cart)
NOAA Next Generation Radar (NEXRAD) Level 2 Base Data Clear Scarch
What@ Where @ When @

Ex: Colorado 202 01 01 00 00
TEEEE
Station Search @

Bx: TATL
“ = s “
mhln Count/Limit: 1/1000 Total File Count: 8811310 & Bulk Dovinloads = @

NEW YORK CITY JFK, NY US (NWS_NEXRAD_NXL2DPBL_TJFK_20220101000000_20220101005959.tar)

FILE SIZE 1DATATYPE PERIOD OF RECORD
10.75 MB B 2022-01-01 00:00 to 2022-01-0
00:59

Figure 5. Direct download NEXRAD data from NCEI[86]

31

Direct data download has the advantage of being user-friendly, particularly because the GUI
provides guidance for searching and finding the specific dataset the user requires. The disadvantage
of this method is that it is difficult to automate the data extraction process and download a wide
array of data files at the same time because it requires the user to click and download one file at a
time. This disadvantage could be overcome by using application programming interfaces (APIs)
or port connection if the selected data sources have these services available. The following sections
will introduced two data extraction methods that uses APIs and port connection.

3.3.1.2 Amazon Web Service Command Line Interface

Amazon Web Services (AWS) is a subsidiary of Amazon that provides businesses, governments,
and individuals with on-demand cloud computing platforms and APIs. AWS offers a storage
service named Amazon Simple Storage Service (Amazon S3). Amazon S3 uses an object storage
architecture which treats data as an object and can organize many objects amongst different
“buckets” [87].

Figure 6 illustrates the overall architecture of the Amazon S3. Each data object includes the data
value, an object key that works as a globally unique identifier, and a metadata capability for storing
extra information. A bucket container is the storage entity for storing data objects, and multiple
data objects can be stored in the same bucket container. When a bucket container is created, the
bucket owner is required to assigh a name to the bucket and choose an AWS region. The AWS
region is a geographical location where the AWS cluster data centers [88]. The AWS region is an
important piece of information for identifying buckets. The bucket owner can restrict access to a
specific group of users or open the bucket to the public.

32

_

data object

a data object content

object key data object

wversion Id

data value

metadata

subresources

access control information

bucket container 4—,_

bucket region (AWS region)
bucket 1

bucket name

bucket owner

access control

Figure 6. Amazon S3 structure

= %

=]

* Amazon 83

The AWS Command Line Interface (CLI) is an open-source, unified tool for AWS service
management. The data object stored in Amazon S3 buckets can be accessed using AWS CLI to
connect and send commands to the AWS server. The AWS CLI can be downloaded from AWS's
official website and is compatible with the three most popular operating systems: Microsoft
Windows, macOS, and Linux [89]. In order to use the AWS CLI to access data stored in Amazon
S3 buckets, users are required to specify the AWS region of the bucket as well as the data output
format. Figure 7 shows an example of AWS CLI initial configuration, where the two access keys
shown in the figure are used to verify whether a user has the authorization to access restricted
buckets. To access buckets that have open access, there is no need to specify the two access keys
in the initial configuration.

% aws configure

AWS Access Key ID [None]: AKTATOSFODNNZEXAMPLE

AWS Secret Access Key [None]: wlalrXUtnFEMI/K7MDENG/bPxRFiCYEXAMPLEKEY
Default region name [Mone]: wus-west-2

Default output format [Nene]: json

Figure 7. AWS CLI initial configuration

33

Table 4 shows the command syntax used in AWS CL1 to access and download data objects from
Amazon S3 buckets. In the command syntax, <bucket> represents the name of the bucket, <prefix>
represents the name of folders stored inside the bucket, <object> refers to the globally unique
identifier of the data object, and users can define the destination of the downloaded data by
configuring <target>.

Table 4. AWS CLI command syntax

Command syntax Description
aws s3 Is <bucket> List all objects and prefixes in <bucket>
aws s3 cp <bucket>/<object> <target> Copy a <object> from <bucket> to destination <target>

aws s3 cp <bucket>/<prefix> <target> -- [Copy ALL <object> in <prefix> from <bucket> to
recursive destination <target>

Figure 8 shows an overview of the complete process of using AWS CLI to access and download
data objects from Amazon S3. The advantage of this data extraction method is the ease with which
the process can be automated to download a large amount of data. However, this can only be
achieved under two conditions. The first is that the user must know the basic information about the
bucket they want to access including, but not limited to, the name of the bucket; the AWS region
of the bucket; and how the data object is organized inside the bucket. The second condition is to
obtain access permission to the bucket. Depending on how the bucket owner configures the access
control of their bucket, some buckets have restricted access while others are publicly accessible.
Some companies and organizations configure their buckets with restricted access so that the data
object is only available to their members.

34

% <

command script object 1 key
AWS region

* data value

bucket name
data object 1

tarket bucket

target object key m

@ AWS region + bucket name N
> _
target data object

AWS CLI i
object n key : :

data object n

C

data value

Figure 8. Accessing data from Amazon S3 using AWS CLI

3.3.1.3 Apache Impala

Apache Hadoop is a software platform that manages data processing and storage for big data
applications. It is credited with being the platform for modern cloud data storage because it breaks
large data sets into manageable pieces and distributes the data analysis work to different computing
clusters. The data stored in Apache Hadoop can be queried and accessed by using an open-source
SQL query engine named Apache Impala [90].

The Impala Shell is a tool that can be used to communicate with Apache Impala by using text-form
commands. The Impala Shell connects to the Impala service through Secure Shell (SSH), a network
protocol that allows one computer to remotely access another computer or server over the internet.
The SSH is known for its identity authentication and encoded data communication, ensuring
security in the communication between the end-user and the database server. To use Impala Shell
to establish a remote connection to the database server, the user must provide information on the
server address, server port, and user identity. In Python, there exist open-source libraries that allow
users to establish a connection to a remote server and perform impala-shell operations [91].

35

server_addrass

port_number

SQ2L guery \
user_identity -
3 < \
Query result

capture query result
in test

r formatted plain text to csv file
1 T

Figure 9. Accessing data using Impala Shell

A\ J

Figure 9 illustrates the process of using Impala Shell to access data on a cloud data server. Users
can access an online database server, and once the client is connected, the client can use SQL
queries to search and explore the database. SQL is a query language used for managing relational
databases. Using SQL queries allows users to extract data from a remote data server and once the
guery execution is done, the query result will be returned to users in plain text. To make the data
transformation process easier, the query result is converted from plain text to comma-separated
values (CSV) files without modifying any of the data content. One way this can be achieved is by
using a Python library named Pandas designed for data manipulation and analysis. Additional
discussion on how to use SQL to query data from a relational database can be found in Section
3.4.

The advantage of the Impala Shell is like that of the AWS CLLI, in that it facilitates automated data
extraction. Users can create a script with a list of SQL query statements and pass the script
document to Impala Shell to automate the data extraction process. A disadvantage is that this
method requires a stable internet connection. If a download process is interrupted by a loss of
internet connection, it is impossible to locate the breakpoint and restart the download process at
the breakpoint. In addition, the method also requires the user to know the address of the remote
data server and the server port open for connection.

36

3.3.1.4 Summary

This section introduced three methods that can be used to extract data from data sources depending
on how it is presented to users. This is the first step of the data ETL defined in Task #3 in Section
2.7. The following section will introduce the second ETL step — the process of transforming the
extracted raw data into a form that satisfies the given research requirements.

3.3.2 Data transformation

After extracting data from a data source, the next step is data transformation. In data ETL, data
transformation is the process of converting data from one format or structure to another [41]-[44].
Raw data is not always readable or understandable to humans because the format depends on the
way it was collected, particularly if it was collected by machine. If that is the case, the first step in
data transformation is to convert the raw data into a readable form, and data owners often provide
information about how to do the conversion on their website. For example, the NOAA's WCT
mentioned in Section 3.1.1 is a software that can convert raw weather data files to various common
data formats.

The WCT can generate radar images from a raw weather radar file, as well as decoding and
exporting the input radar data to a specific file format. Figure 10 is an example of using the WCT
GUI to generate the radar image and to export the decoded data to a CSV file with a given raw
weather radar file. The toolkit can be executed either through a GUI or through command lines.
The user can choose the execution method depending on whether the purpose is to observe one
specific file or to decode and export the data of a large number of raw weather radar files.

The decoded data is first converted into CSV files so that the researcher will be able to read and
explore the raw data content. The CSV file format is selected as it allows data to be saved in a
tabular format, which is similar to the tables within a relational database. The advantage of
converting the decoded raw data to CSV file format is that it makes it easier to import the data file
to another storage database in the next step.

37

P .

ros——

Memory Ussge #5319/ 20173 M

Figure 10. Decoding raw radar data file with WCT

Once the raw data set is converted to a CSV file, it is ready for the necessary data transformation
operations. Data transformation involves the process of cleansing, filtering, reorganizing, and
converting raw information into a desired format [41]-[44]. Figure 11 illustrates the overall process
of data transformation.

data review data review

Raw data Filtering data

(decoded)

A vy p

Data standardization

Figure 11. Data transformation process

Once the raw data has been converted into a readable format, the data content can be explored. The
raw data extracted may contain more information than the research requires, and redundant
information is a waste of storage capacity in the project data repository. If that is the case, the raw
data content is filtered to retain only the required information.

If more than one data source is used, the data transformation phase will also require actions to
standardize the common data content after filtering out undesired content. In this research, data

38

standardization refers to the process of identifying duplicate data contents in different datasets and
unifying their naming convention and data unit. Figure 12 shows an example of the complete data
transformation process with two raw datasets.

| Raw dataset 1

data data data data
content content content content
1-1 1-2 1-3 1-4

Filtering
data

Filtered dataset 1 |
data data data
content content | content

Raw dataset 2

data data data data data
content content content content |content

1-1 1-2 1-4

Commen data content in
different scientific unit

Filtered dataset 2]

data data data
content content content

Standardized dataset 1 \

standardized
data content data content
common data

1-2 1-2
content

Data
standardization

Standardized dataset 2

standardized
common data

data content data content

2-1 2-4

2-1 22 | 23 24 | 25 : 2-1 2-2 2-4 T content

Figure 12. Data standardization with two raw datasets

In the example shown in Figure 12, the red column in the raw datasets represents the undesired
data component that is not needed for the given research requirements, and the blue data column
in the filtered datasets represents a duplicate or redundant data component. The data
standardization process is done for each raw dataset separately but based on the same research
requirements since the two raw datasets contain different data contents. The end product obtained
after this phase is two standardized datasets that include only the data content that is required for
the given research project with no duplication.

A specific example of data that requires transformation because of common content is the time the
data is collected. Depending on how the raw data is managed by the data owner, this information
can be presented in different ways. One representation commonly used for date and time-related
information is defined by the International Organization for Standardization (ISO). The
international standard to represent time defined by the ISO 8601 is: yyyy-mm-dd
Thh:mm:ss+UTC offset [92]. On the other hand, for computer operating systems, the Unix time
(or POSIX time) system is used. The Unix time is the number of seconds that have elapsed since
00:00:00 UTC on 1 January 1970, excluding leap seconds [93]. The Unix time system is more

39

commonly used in computers as it can represent time as an integer which makes it easier to parse
and use across different software systems.

The goal of data transformation is to apply a series of actions to the extracted data to eliminate
duplicate information, convert it to a format that satisfies the given research requirements and
prepare it for loading into the final storage place. Once the transformation process is completed,
the cleaned data is ready to be loaded into the selected storage place.

3.3.3 Loading and data storage

The last step of the data ETL process is to load the data into the selected storage place. In the case
study that will be discussed later in this thesis, the selected storage place is a relational database as
discussed in Section 3.2 that is designed and developed as part of Task #2. The last step of the data
ETL process is to load the data file to the predefined database.

For example, the Python programming language provides library extensions that can help convert
data in a CSV file to a local database file or to upload the data to a database server. Figure 13 below
shows an example of the loading process. The left part of the figure represents three standardized
data tables from three separate CSV files where the blue column represents a data component that
is shared by all the datasets, the green column represents a unique data component within that
dataset, and the purple column represents a data component that is shared by some dataset.

The right part of the figure shows a relational database structure design based on the data
correlation, which was determined in Task #2. The main table is designed to store two common
data contents that are shared by all three standardized datasets and a ‘main_id’ is assigned to each
row. Because of the uniqueness of the ‘main_id’, it can be used to replace the duplicate information
in the three original datasets. Therefore, in the database, the blue columns are removed from each
table and replaced by a new column to store the ‘main_id’ value. In spite of the fact that the tables
have been modified, they still contain the same information as they did before moving to the
database. The information in the standardized datasets 2 and 3 can be merged into the database
table 2 as these two datasets have another shared data content. Having the information merged into
one data table will make querying easier as it will only be necessary to search one data table to
retrieve information from two different datasets. The loading process in this phase will be loading
the data from the CSV tables to a relational database with the help of Python library extensions.

40

Standardized dataset 1

standardized standardized data data

common data common data content content Database table 1
content 1 content 2 1-1 12 * GFmEmon dhmerrion
I * main id] e
Main table
1 standardized standardized
main_id common data commen data

‘ Standardized dataset 2 ‘ contentl content 2
standardized standardized data data

common data common data content content

content1 | content 2 2.1 23 >

b

Database table 2

N data content
Standardized dataset 3 .., datacontent datacontent data content 23
et 2.1 3.2 3.1 data content
standardized standardized data data data o= & > ¢ a‘mﬂ o
common data common data content content content 3-5)

content 1 content 2 32 35 3-7

CSV files Database schema

Figure 13. Load cleaned data to storage

The process of loading the cleaned data to a final storage place is the last step of the data ETL
process defined in Task #3 in Section 2.7. Once the data is loaded to the storage place, it is ready
to be used for specific applications defined by researchers. The following section will introduce
the design and development of a GUI that allow researchers to visualize and interact with the data
for specific applications.

3.4 Data visualization and user interaction

Once the data ETL process is completed, the cleaned data are stored in the new database and are
ready to be used. The fourth task identified in Section 2.7 is to design and develop a GUI that
provides a platform for the database user to visualize and interact with the data. Literature reviews
[31], [32] show that data visualization is an effective tool to help humans from a variety of
disciplines understand complex information. The selection of the type of visualization model is
based on the user's objective [35]. A simple example of data visualization is the Microsoft Excel
spreadsheet. Excel can convert data into line charts, bar charts, pie charts, or maps (if the given
data is geographically based).

41

Graphical representations can be in either static or dynamic, where static visualization is a still
image that is only able to deliver a message that does not change over time. A dynamic
visualization is an animation of a series of data images and often allows users to interact with it.
An advantage of dynamic visualization is that it can reveal information contained in the data that
is not evident in static displays.

Commercial software such as Microsoft Excel, Tableau, Infogram, and ChartBlocks are data
management tools that have been developed for general applications and often cannot satisfy
complex and specific research requirements. Programming languages like C++ and Python have
library extensions that can create static or dynamic visualization from a given set of data.
Programming languages can be used by researchers to develop GUIs to satisfy specific research
requirements. The design and development of the visualization interface depends on the selected
data as well as the purpose of the research objective. Depending on the purpose of the research, the
visualization tool should be able to address questions like: “What are we using the data for?”, “How
do we want to display the data?”, “What information are we trying to get from the data?”, or “What
kinds of interaction is needed to help understand the data?”, etc.

Table 5. SQL query statement

Query statement | Description

Select Select rows from one or many database tables and returns this data in the form
of a result table

Where Filter database rows based on specific range or value

And, Or, Not Operators that used combine with “Where”

Join Combine rows from two or more tables, based on a related column between them
show tables Show all tables within the database

describe table Show the name of all columns in table

For the case study that is presented in Chapter 4, the data shown in the visualization tool is the
cleaned and standardized data stored in a relational database after the data ETL process of Task #3

42

described in Section 2.7. SQL is a domain-specific language designed for managing data in a
relational database. SQL queries can be used to search and extract data from relational databases
for applications. Programming languages like C++ and Python all have library extensions to
support the use of SQL queries within the development environment. Therefore, regardless of the
choice of programming language for developing the visualization tool, data stored in a relational
database can always be accessed and extracted to create graphical representations. For example,
Table 5 presents some useful SQL query statements which can be applied for the purpose of
exploring the database content or to load data from the database for applications.

Despite existing commercial software that can create graphical representations of datasets, a data
visualization tool that can be tailored for specific implementations is developed. The development
of the visualization tool is equally important to the database as it can be used to study and analyze
data from a specific disciplinary project perspective. The data visualization tool can also serve as
an analysis tool to test research hypotheses by testing if the data supports the proposed research
approach and/or solution. Once the visualization tool has been implemented, the completed process
can be verified using a proof-of-concept case study as described in the following Section.

3.5 Process verification using a proof-of-concept test case

This chapter discusses the implementation of Tasks #1 to #4 as defined in Section 2.7. The
methodology concludes with Task #5 which is the process of verifying the data selection, cleaning,
database design and the visualization tool using a proof-of-concept test case. The purpose of Task
#5 is to make sure that i) the database obtained has enough data to support the needs of the defined
research; and ii) the data visualization tool developed in Task #4 can serve as a platform that allows
researchers to appropriately understand, visualize and interact with the data.

The implementation of the tasks described in this chapter is an approach to designing and
implementing a database based on given research requirements. Once the process is complete, a
research-specific relational database has been created and includes a data visualization tool that is
specifically designed for the project. If the given research requirements change during one or more
phases of the research project, the systematic approach that has been developed can adapt to the
change in an iterative manner. Figure 14 illustrates how typical changes to project requirements
might impact the individual tasks and how the remaining processes would be updated to produce
a new database or data visualization tool adapted to the new requirements.

43

(Design and develop

[.]m structure of an Implement Data ETL Dewlt.]p G.LI flur data
independent data visualization

repository
e

Methodology
———> validation with proof-
of-concept test case

Identify data sources ———————>

h h

Change of Change of Change of visualization
data sources research requirement or interaction requirement

Figure 14. Effect on tasks due to change of decision from “research requirement” to “data format”

This chapter presented a systematic methodology for the creation of a database and a data
visualization tool tailored to the needs of specific research projects. The approach can be used to
structure databases for any data-driven research that requires a series of specific types of data. It is
an iterative process that is developed based on given research requirements and that can adapt to
changes to requirements that may arise during the research project. A proof-of-concept
implementation of the methodology is described in the following Section, in which a database is
created to support the requirement for a series of “real world” historic simulated flight scenarios
with a range of visualization and data acquisition capabilities.

44

4. Case study implementation

A proof-of-concept implementation is provided in this Section. The case study was performed in
collaboration with a co-researcher and is based on their research project investigating risk
assessment methodologies for an airspace shared between crewed and un-crewed aircraft. The
research required a database that contains ADS-B and weather radar data as a tool for creating a
simulated airspace environment on which the risk assessment is based. The researcher provided
the types of data required as well as the following criteria for the database:

1. The database must contain enough data to support the creation of a series of varying ‘real
world’ simulated flight scenarios based on historic traffic patterns.
2. The simulated airspace environment must contain the following entities:
1. Air traffic
2. Airspace and airport infrastructure
3. Ground obstacle
4. Terrain
5. Weather
3. The database should maintain a high level of efficiency in terms of data acquisition.
4. A data visualization tool is required to visualize and interact with the simulated airspace
environment.

In this chapter, Section 4.1 presents the choice of data sources and Section 4.2 describes the design
of the database structure. Section 4.3 outlines the process of implementing the data ETL process
on the raw data sources identified in Section 4.1. The programming language Python is used in this
case study, and the Python code used for the case study is attached in the Appendices. In Section
4.4 the GUI developed for data visualization and interaction is presented and discussed. The final
data visualization product developed in this case is a local-host website that is developed using
JavaScript and a link to a You-Tube presentation is provided in the Appendices.

45

4.1 Data source selection

The entities required for the simulated airspace environment are defined in Criteria #2, above, and
are listed in Table 6, where they are divided into two categories based on their rate of change with
respect to time: dynamic and static.

Table 6. Dynamic entity and Static entity

Dynamic entity Static entity
Air traffic Airspace and airport infrastructure
Weather Ground obstacle

Terrain

Among the five entities in Table 6, airspace and airport infrastructure, ground obstacles, and terrain
are classified as static entities. The term 'static’ means that the characteristics of these entities
change at a frequency that is much lower than that of entities classified as dynamic, such as the
position of an air vehicle or a weather system. For example, the FAA releases a dataset every 28
days that is updated to reflect modifications to so-called static entities, for example, an airway or
the airspace infrastructure.

In the case-study implementation, only the most recent update of the static entity data is used. The
data for the case-study static entities is obtained from a map development tool named Mapbox
studio [94] and will be discussed in more detail in Section 4.4. For the purposes of the case-study,
the methodology developed in this thesis is applied to create a database storing real-life weather
radar and air traffic data collected and archived from two open sources: ADS-B data from the
Opensky Network and weather radar data from the NCEI.

The OpenSky Network [82] is a non-profit organization founded in 2012 to provide secure and
reliable real-world air traffic data to the public. The organization gathers data using ADS-B
transponders which can collect air traffic information every second. The collected data is decoded
and archived in a large historical database. The OpenSky Network offers access to its online
database free of charge, and users can assess their historical database by establishing an impala-

46

shell connection. The ADS-B data stored in the database are already decoded, and the data content
of the downloaded data will be described in more detail in Section 4.3.1.2. Because the data
obtained from the OpenSky Network has already been decoded, there is no need to perform the
decoding process in the data transformation phase for the ADS-B data.

The weather radar data used in the case study is the NEXRAD data archived by the NCEI. The
NCEI is an organization that helps the NOAA manage archived atmospheric and oceanic data to
support the need for high-value data in environmental research. Weather radar data are archived
based on the time and the weather station where the data was collected. This makes it possible to
extract only the data that are within a specific geographical boundary or collected at a specific time.
The NCEI makes its database accessible to the public through multiple platforms, and for the case-
study described in this chapter, radar data was extracted from the NCEI Amazon S3 bucket. The
advantage of selecting this particular data source is the potential to automate the data extraction
process and easily download a large number of data files.

4.2 Database structure design

This section discusses the design of the database structure for storing the data required to create
the simulated airspace environment. The goal is to have a research-specific database that not only
contains sufficient data to support the research but also maintains high efficiency when querying
data from the database. The database designed for the purposes of the case-study is based on the
data content of weather radar and air traffic data.

The process of developing the database is an iterative process and involves understanding how the
data is presented at source while also considering the user’s research requirements. A relational
database is used for this case study because the selected data are structured. In this case study, the
update frequencies of the two selected data sources differ and merging the two datasets will result
in missing values in data rows. As a result, ADS-B data and weather radar data will be stored
separately. Figure 15 illustrates the design of the database schema. The ADS-B data obtained
from the OpenSky Network is already decoded, and the data content of the weather radar data from
NOAA is obtained by performing a complete data transformation process as described in Section
4.3.

The design is based on two types of data content common to both datasets: geographical locations
and time. Latitude and longitude information is divided into one-degree by one-degree data points

47

and stored in the ‘Geographical point’ table with a given ‘Geo ID’ that serves as a unique
identifier for each row. Altitude is not included in this table but is managed by creating a new data
content named ‘geo BLOB’ with the help of an SQLite spatial extension. This approach is
discussed in Section 4.3.2.4 as part of the ‘load data to storage’ phase.

A unique identifier ‘Geo ID’ is used to identify the data within a specific geographical region
among the two datasets. The purpose of creating the ‘Geographical point’ table is to: i) narrow
down a range while querying data from the database and ii) extract data that are from the same
geographical area across two tables by using SQL queries. However, for the purpose of creating
the simulated airspace environment, precise geographical information is required for each
entity. Therefore, the latitude and longitude information associated with each data row remains as
this information stored in the two tables is in decimal degrees detailed to 6 decimal places.

“—>|FK | Geo_ID
FK| Time_ID

Time

Latitude

Longitude

Helght above sea level

Reflectivity value

HHPK| geo ID PK| Time_ID

Latitude Hour

| standardized ADSB_data |
" /Fk| Geo_ID
FK| Time_ID
Time
Latitude

Longitude

Longitude

Icao24

Velocity

Heading

Vertrate

Callsign
BarometricAltitude
GeometricAltitude
LastPosUpdate
geo_ BLOB

Figure 15.Database schema

48

In a manner similar to that used to create the ‘Geographical point’ table, a ‘Unix_time’ table is
created to assist in querying data collected at specific times in the two standardized tables. The
Unix time format is selected in this case because it is the easiest for computers to process. The time
difference between each data row in the ‘Unix_time’ table is one hour, and a unique identifier,
‘Time ID’, is assigned to each data row. In the two standardized tables, each row is assigned the
corresponding ‘Time_ID’ based on the hour when data is collected. However, the two standardized
tables still have a “Time’ content which indicates the exact time when the data is collected.

4.3 Data ETL

This section presents the implementation of the data ETL process using the programming language
Python. The results obtained from each process is presented at the end of each subsection.

4.3.1 Data Extraction

4.3.1.1 Extracting weather data

The weather radar data used in this case study is extracted from the NCEI Amazon S3 bucket. The
data is categorized into weather station folders and then stored in subfolders of year, month, and
day depending on when the data was collected. Figure 16 illustrates how the archived radar data is
stored in the folders of the Amazon S3 bucket.

The AWS region and the name of the bucket can be found on the AWS open data registry website.
After obtaining the necessary information about the bucket and how the data is being stored and
organized, a Python script was developed to extract weather radar data from the bucket using AWS
CLI. The research requirements specific to the case study is for selectable weather “scenarios”
featuring extreme weather conditions for specific airspace locations. For this reason, the dates for
a selection of significant weather events were obtained from a list provided on the NWS
website[95]. These dates were used as a guide for downloading weather radar data collected on
different days with varying weather conditions in a way that is useful for the simulated airspace
environment.

49

Gk ﬁ_s..

| ecemner

-) (= v (o . ‘
|ee@@]|| YY) F— "‘... R P .‘...
: 5 B B

noaa-nexrad-level2

Figure 16.NCEI Amazon S3 bucket

The size and number of weather data files obtained from the bucket will differ depending on the
location and weather conditions of the selected weather station. This size difference can affect the
time required to download the data, and the performance of the computer and the quality of the
internet connection can also contribute to the time required. While it is difficult to be specific on
how long it takes to download a certain amount of weather data, two examples of data download
duration, files available, and the size of all downloaded files are shown in Figure 17 for 24 hours
of weather data for two different dates collected by the same weather station (KOKX). Figure 17
indicates that if there was bad weather on the selected date and location, more weather information
is available. Despite this, downloading weather data from different days does not significantly
increase the download time because the bucket only contains raw files that are compressed. The
Python script developed for the data extraction process can be found in Appendix A.

50

Weather data time: 2020/10/03 00:00 - 23:59 UTC Weather data time: 2022/04/17 00:00 - 23:59 UTC

Weather station: KOKX Weather station: KOKX

Data download duration: ©.0 minutes 20.870052 secondll pata download duration: ©.@ minutes 33.459966 second
Number of files: 175 Number of files: 212

Size of all files: 490 MB Size of all files: 966 MB

Figure 17.Downloading weather data from two different days

4.3.1.2 Extracting ADS-B data

The OpenSky Network was selected as the best data source to satisfy the need for air traffic data
as defined in Criteria #2. The historical database of the OpenSky Network is based on Cloudera
Impala, and users can connect to the database by establishing an impala-shell connection. The
organization provides information on an available open-source Python wrapper named ‘pyopensky’
that can be used to access and download data. An attempt was made to use this Python wrapper to
extract ADS-B data from the OpenSky Network, and the Python script for this implementation can
be found in Appendix B1.

Table 7 shows the data content and the description of each term contained in the ADS-B data
extracted from the OpenSky Network historical database using the wrapper. The data contains
information which is not required for the specified research project where only the data content
highlighted in green in Table 7 is required for the research. Another problem associated with using
the wrapper to directly download all ADS-B data is that the data obtained may contain aircraft
identification or position error. An initial attempt was made to use the wrapper to download all
ADS-B data on the selected date and geographical region. The dataset obtained contains redundant
information and would require additional processing in the data transformation phase.

Table 7. ADS-B data content from the OpenSky Network

Data content |Description

time UTC time in Unix timestamp (seconds)
icao24 Aircraft type designator

lat Latitude of the aircraft position

lon Longitude of the aircraft position

51

velocity Ground speed in m/s

heading Direction of movement as the clockwise angle from the geographic north
vertrate Vertical speed in m/s
callsign Callsign of the aircraft

At surface position = true; At airborne positions = false (only false condition is

onground required)

alert Special indicators used in ATC

spi Special indicators used in ATC

squawk 4-digit octal number used by ATC and pilot represent for emergency condition

Altitude in meters measured by barometer, the value will be slightly different from the
value measured by GNSS sensor(geoaltitude), but baroaltitude always present in
baroaltitude [measurement

geoaltitude Altitude in meters measured by GNSS sensor

lastposupdate |Time indicate the age of the position information, in Unix timestamp(second)

lastcontact Time last receive signal from aircraft, time in Unix timestamp (second)

hours Unix timestamp(second) indicating the hour

To overcome the problem of obtaining undesired ADS-B data, a second attempt was made using a
Python script to extract ADS-B data rather than using the open-source wrapper. The script is
designed to extract only the data content required at specific times and from geographical areas
defined by the researchers. This method also filters out records that have missing position
information (e.g.: the barometric altitude) while querying ADS-B data in the OpenSky Network
database. In this way, the data obtained will not need to go through the process of removing
undesired data content in the next phase (data transformation). This approach, however, requires
knowing the server address and the port number before establishing the shell connection.
Information on this implementation can be found on the OpenSky Network website. In addition, it
requires more time to extract the data because of the filtering process. The complete Python script
can be found in Appendix B2. The ‘pyopensky’ wrapper has a similar capability to filter out
undesired data content during query operation, which is achieved by passing SQL query to the
wrapper. The result obtained is the same as the script presented in Appendix B2.

52

Using a similar approach to that applied to weather data, the size and time required to download
ADS-B data varies depending on the selected time, geographical area as well as the network quality
and the performance of the computer. An example is given in Figure 18 where the logs for
downloading historical air traffic data from the OpenSky Network are compared with and without
the filtering process being applied during the data extraction process. The ADS-B data in the
example was collected on August 1%, 2020 from 15:00:00 to 15:01:00 UTC around the east coast
of the United States of America.

15:01:00

1

unique ai

e: 1.104 MB

Figure 18. ADS-B data download log comparison

Figure 18 indicates that it is more efficient to download all ADS-B data available on the OpenSky
Network server for a specific time and geographical location, but the information obtained will be
need additional processing to remove undesired information. While applying the filter and using
the script to download the ADS-B data takes more time to execute, the information obtained will
not require additional processing.

Figure 19 presents snips of the ADS-B data files obtained using the two different methods. A
comparison of the two data files shows that the data obtained from the script only contains the
information required for the specified research, and there is no missing position information in the
dataset. Some data records have missing aircraft callsign information. In the ADS-B data, an
aircraft can be identified with its unique callsign or aircraft type designator, and for those records
that are missing aircraft callsign, a cross-reference can be applied to the data file by searching the
aircraft type designator; locating other records associated with the same aircraft; and using those
records to identify the missing callsign information. In the case study that is aprt of this research,
the aircraft type designator is used as the aircraft identification code, while the callsign is used as
backup information. For this reason, missing callsign in the data file is disregarded as long as there
is an aircraft type designator associated with the record.

53

7| - [= (s)) S et e e o (v i [F] [i ¢ L M N o | »p Q
[l time icao2d lat lon heading vertrate calisign onground alert spi squawk Itity lastcontac hour i)
BEM 16E+09 287380 41.18495 -74.0567 52.01993 4459934 0 N64350 FALSE FALSE FALSE 1200 10668 1082.04 16E+09 16E+09 1.6E+09
REM 1.6E+09 401adc FALSE FALSE FALSE 6170 518.16 16E+09 1.6E+09
16E+09 a4ba02 30.94918 -814194 2296726 357.4324 0.32512 RPA4300 FALSE FALSE FALSE 6626 11277.6 11955.78 16E+09 16E+09 1.6E+09
1.6E+09 4b17fc 49.44057 1485159 233.2384 136.3405 0 SWR407 FALSE FALSE FALSE 2032 82296 861822 16E+09 16E+09 1.6E+0
16E+09 401024 FALSE FALSE FALSE 7000 701.04 16E+09 1.6E+09
16E+09 406953 50.82051 0.393949 229.6346 318.633 -10.4038 EDC755 FALSE FALSE FALSE 6761 734568 767334 16E+09 16E+09 1.6E+09
1.6E+09 4ca%93 4463173 10.19833 218.2904 164.5554 8128 AZA1844 FALSE FALSE FALSE 6315 7223.76 7597.14 16E+09 16E+09 1.6E+09
16E+09 491464 38.70181 -9.48878 29.48083 330.7512 0.65024 RVP156 FALSE FALSE FALSE 3217 21336 35052 16E+09 16E+09 1.6E+09
1.6E+09 4bccad 4444663 25.23935 206.6023 303.7296 0 SXs48Z FALSE FALSE FALSE 3232 115824 1208532 16E+09 16E+09 1.6E+09
16E+09 abeall 3846506 -77.6395 216.0475 2218148 0 AALB47 FALSE FALSE FALSE 7315 115824 12230.1 16E+09 16E+09 1.6E+09
Bl 16E+09 a0681c 38.87334 -75.8529 230.662 35.28514 -5.20192 AAL1639 FALSE FALSE FALSE 1117 102489 1081278 16E+09 16E+09 1.6E+09
BN 16E+09 a2cfa8 33.15134 -97.0796 1857592 3555526 3.57632 FALSE FALSE FALSE 3657 5135.88 5387.34 16E+09 16E+09 1.6E+09
1.6E+09 ac6cOd 35.84224 -103.841 270.1321 125.7787 -0.32512 N9SC FALSE FALSE FALSE 2740 13716 143256 16E+09 1.6E+09 1.6E+09
1.6E+09 3ce624 4454137 17.23297 2159991 329.832 0 JKH32C FALSE FALSE FALSE 5530 12192 1279398 1.6E+09 1.6E+09 1.6E+09
BN 16E+09 3965ab 46.17325 7.521146 245.3143 3113442 0 AFR645 FALSE FALSE FALSE 1000 115824 12176.76 16E+09 16E+09 1.6E+09
27! 16E+09 501d1d _ 45.66005 15.9429 109.1907 46.90915 -6.5024 CTN1SH FALSE FALSE FALSE 1000 69342 78486 16E+09 16E+09 16E+09
gl 1.6E+09 501f5f 457358 16.06498 TESTRU1 TRUE TRUE FALSE 5005 16E+09 16E+09 1.6E+09
BLE] 16E+09 4ca333 TRUE FALSE FALSE nn 16E+09 1.6E+09
P2l 16E+09 3fed%4 DMYAA FALSE FALSE FALSE 7000 609.6 16E+09 16E+09
1.6E+09 a6fd39 3441086 -100.564 2224731 305.9689 0.32512 N558P FALSE FALSE FALSE 3413 12192 1275588 16E+09 1.6E+09 1.6E+09
B 16E+09 4b1697 4113332 1154226 225.7378 339.8719 0 SWR2513 FALSE FALSE FALSE 1226 109728 11597.64 16E+09 16E+09 1.6E+09
16E+09 406837 GIRED FALSE FALSE FALSE 7000 525.78 16E+09 1.6E+09
1.6E+09 484772 R—. A T m—— o o e -
8 1.6E+09 504dd9 51.80501 10.98541 .
B <o www e (Obtained from wrapper to extract all data
16E+09 aafdal 44.22821 -123.318
1.6E+09 ab329e 3498596 -91.3559 206.3248 245.8634 0 UAL333 FALSE FALSE FALSE 6541 11597.64 12184.38 16E+09 16E+09 1.6E+09
288 SE+00 & 06 302 06 £ 904 0 My A A A 4114 £0 08 £8 & £E+00 £E+09 EE+0
A B > 3 F H I) - L M N 4
time icao24a lat lon velocity heading vertrate callsign baroaltitu geoaltituc onground lastposup hour U
2 1.53E+09 addcfd 41.32219 -73.5264 166.9725 44.62552 14.6304 EJA412 5173.98 5501.64 FALSE 1.53E+09 1.53E+09
1.53€+09 a7767b 41.8135 -72.1643 199.3051 59.26451 -0.32512 LXJ580 5151.12 5463.54 FALSE 1.53E+09 1.53E+09
Bl 1.53E+09 a0Oebab 41.83017 -73.0442 251.9757 232.9663 7.15264 AAL1161 7536.18 8023.86 FALSE 1.53E409 1.53E+09
Bl 1.53E+09 a71048 40.34338 -74.9728 226.3115 211.5222 -11.7043 6537.96 6583.68 FALSE 1.53E+09 1.53E+09
1.53E+09 a6b736 40.7514 -73.293 56.53503 254.6992 -5.52704 N5315L 731.52 723.9 FALSE 1.53E+09 1.53E+09
il 1.53E+09 all6e8 41.14224 -73.5883 60.64551 212.8812 -4.22656 N17AV 762 800.1 FALSE 1.53E+09 1.53E+09
8 1.53E+09 a447cd 41.76048 -74.0818 142.2566 163.4 -0.32512 EJA375 1478.28 1562.1 FALSE 1.53E+09 1.53E+09
1.53E+09 a0041e 40.00127 -74.403 87.4933 167.4347 0.32512 N10UA 1188.72 1272.54 FALSE 1.53E+09 1.53E+09
1.53E+09 a4b973 40.03455 -74.3302 66.89553 200.2466 0 N403TD 731.52 777.24 FALSE 1.53E409 1.53E+09
1.53E+09 27400b 40.65616 -73.2622 42.1122 154.6871 0 1524 876.3 FALSE 1.53E+09 1.53E+09
1.53E+09 a8b5a8 40.3006 -72.961 216.0083 227.9925 -3.90144 6103.62 6134.1 FALSE 1.53E+09 1.53E+09
1.53E+09 a92fe6 40.10431 -73.8072 82.83187 36.15819 0 N691RB 2255.52 2415.54 FALSE 1.53E#09 1.53E+09
1.53E+09 a32bcb 40.82049 -73.7345 132.9785 26.66418 10.07872 2156.46 1996.44 FALSE 1.536+09 1.53E+09
1.53E+09 aBaa28 40.8292 -73.0062 49.74171 79.27114 3.2512 1645.92 1638.3 FALSE 1.53E+09 1.53E+09
1.53E+09 a168f5 40.86438 -72.663 172.5712 239.1534 -1.95072 3627.12 3619.5 FALSE 1.53E+09 1.53E+09
1.53E+09 a8d5a4 41.52068 -74.0444 253.552 229.3609 0.32512 UAL652 10363.2 10965.18 FALSE 1.53E+09 1.53E+09
1.53E409 a93d7c 40.07128 -74.6847 180.6057 47.53968 -9.7536 EDV5474 3185.16 3398.52 FALSE 1.53E+09 1.53E+09
1.53E+09 2ac323 41.00382 -74.0575 100.4023 171.4547 0 571.5 807.72 FALSE 1.53E#09 1.53E+09
1.53E+09 a0469a 40.73845 -73.0168 7279.0576 4N RINAA -1 30N4R N 94488 944118 FAISF 153F+19 153F+9
2 1.53E409 a05bde 40.22301 . . .
o = w0 Obtained from script to extract desired data
1.53E+09 a08a85 41.23805
1.53E+09 al741a 40.97258 -72.3916 200.2403 241.789 -6.17728 4663.44 4678.68 FALSE 1.53E+09 1.53E+09 .

Figure 19. ADS-B data file comparison

In this section, the data extraction method used to extract weather radar and air traffic data has been
presented. The selection of the data extraction method depends on how the data is presented at the
source as well as what then user requires for the research. The importance of the data extraction
phase is to extract raw data from selected data sources that meet the research requirement without
unnecessary or missing data components. The next section will present the implementation of data

transformation on the raw data downloaded in this case study.

54

4.3.2 Data transformation

There are three processes in the data transformation phase as shown in Figure 11; decoding raw
data, filtering, and data standardization. This section will present the implementation of each of
these processes in the context of the case study.

4.3.2.1 Decoding raw data

The ADS-B data obtained from the OpenSky Network historical database has already been
decoded but because all Impala-shell query results are returned in plain text format, the downloaded
data must be converted to a CSV file. This was performed at the time the data was extracted from
the OpenSky Network database, and the implementation of the operation can be found in the data
extraction Python script provided in Appendix B2.

The raw radar data obtained from NEXRAD requires decoding in order to provide a readable
format for the user. Raw radar data downloaded from the NCEI AWS S3 bucket can be decoded
using special software, and the NCEI offers a list of free decoders for various programming
languages on its website. In this case study, the NOAA’s WCT distributed from NCEI was
selected. The WCT is a decoding software that is officially released by the NCEI and using WCT
for the case study ensures the integrity of the decoded data. A Python script was developed to run
the WCT through command lines. The complete script can be found in Appendix C, which was
used to run the execution of decoding raw radar files, the exporting of data to CSV files.

4.3.2.2 Filtering data content

After the data is decoded and converted to a CSV file, the next step is to filter out data components
that are not required for the research. In the context of the case study described here, this step only
applies to the weather radar data because the ADS-B data was filtered as it was extracted from the
OpenSky Network database as described in Section 4.3.1.2.

Tables 8 and 9 show the data components of the weather radar data after the decoding process.

Only the data content highlighted in green has been requested by the researcher, and the data
content highlighted in red needs to be removed. This process is performed as part of the Python

55

script developed for extracting the weather radar data from the NCEI Amazon S3 bucket, and the
detailed implementation can be found in the Python script provided in Appendix C.

Table 8. Raw weather radar data (part 1)

Raw weather data (part 1)
Data content Sweep sweepTime elevAngle value radialAng
Azimuth
. angle in the
The tilt angle
. radar’s
o Time of the sweep, between the Base
Description . . . polar
Radar sweep Zulu time, UTC horizontal plane and | reflectivity .
and . . coordinate
) (0-360 degree) (YYYY-MM-DDT the line of sight of value
data unit system,
Hh:mm:ssZ) the current sweep (dBZ2))
(d) where 0 is
egree
J north
(degree)
Table 9. Raw weather radar data (part 2)
Raw weather data (part 2)
Data . i . .
surfaceRan heightRel heightASL latitude longitude
content
Description . . Height Latitude of the base Longitude of the base
Range of Height relative o o)
and) above sea reflectivity data reflectivity data point
) radar site(m) to radar(m))
data unit level (m) point(Angular degree) (Angular degree)

4.3.2.3 Data standardization

Once all datasets contain only the required data, the remaining process in the data transformation
phase is to standardize the naming conventions and data units for common data contents. Tables
10, 11 and 12 present the data content from the two datasets used for the case study. The columns
highlighted in blue represent common data components shared by the two datasets, where time and
geographical information are the common data contents in this case. A standardized naming
convention and data unit must be defined and implemented to be compatible with the design of the
database schema described in Section 4.2.

56

Table 10. Data content of weather radar dataset

Filtered weather radar data

Data content sweepTime value heightASL latitude longitude
Description Time of the Base Height above Latitude of Longitude of the
and sweep, Zulu reflectivity sea level the base base reflectivity

data unit time, UTC value (m) reflectivity data point
(YYYY-MM- (dBZ) data point (Angular degree)

DDT (Angular
Hh:mm:ssZ) degree)

The weather radar dataset uses the label ‘sweepTime’ to identify the time when the data is collected,
while the ADS-B data obtained from the OpenSky Network uses the label “time”. Although both
datasets use Coordinated Universal Time (UTC) standard, one dataset presents time as YYYY-
MM-DDThh:mm:ssZ, whereas the other dataset presents time data in seconds in the Unix time
format. In this case study, the ‘sweepTime’ label from the weather radar dataset is renamed to ‘time
to keep the naming consistency in both datasets. The Unix time format is selected to represent time
in both datasets because the format makes it easy for computers to store, manage and compare data.
The implementation of this operation can be found in the Python script provided in Appendix C.

>

Table 11. Data content of ADS-B dataset (partl)

ADS-B data (part 1)
Data content time ican24 lat lon velocity heading
Description | UTCtime | Icaocode | Latitude of | Longitude Ground Direction of
and of the data of the the aircraft of the speed the
data unit captured aircraft position aircraft (m/s) movement as
(Unix time) (text (Angular position the clockwise
string) degree) (Angular angle from
degree) the
geographic
north
(Angular
degree)

57

Table 12. Data content of ADS-B dataset (part2)

ADS-B data (part 2)
Data content vertrate callsign baroaltitude geoaltitude lastposupdate
Description Vertical Callsign of | Aircraft Aircraft Time indicate
and speed the aircraft altitude altitude the age of the
data unit (m/s) (text string) measured by | measured by | position
barometer GNSS sensor | information
(m) (m) (Unix time)

The geographical information data content also requires the standardization of both data units and
naming convention. Although the angular degree is used to represent the geographical coordinate
in both datasets, the naming convention between the two is not the same. The labels ‘lat” and ‘lon’
in the ADS-B dataset are renamed as ‘latitude’ and ‘longitude’ to keep the naming consistent
between both datasets. Tables 13, 14 and 15 show the data content of the two datasets after the data
standardization process.

Table 13. Standardized weather radar data

Standardized weather radar data
Data content time latitude longitude value heightASL
Data unit Unix time Angular Angular dBZ m
degree degree

Table 14. Standardized ADS-B data (part 1)

ADS-B data (part 1)
Data time latitude longitude ican24 velocity heading
content
Data unit Unix time Angular Angular Text string m/s Angular
degree degree degree

58

Table 15. Standardized ADS-B data (part 2)

ADS-B data (part 2)
Data content vertrate callsign baroaltitude geoaltitude lastposupdate

Data unit m/s Text string m m Unix time

Metres are used in both datasets as the unit for altitude information, but these data contents are all
kept in their own form as they are collected based on different standards. The altitude information
in the weather dataset is the height of the radar antenna above sea level, whereas, in the ADS-B
dataset, there are barometric altitudes and geographical altitudes. According to the description
provided by the OpenSky Network, the ADS-B data provided will almost always have the
barometric altitude information, but in case of missing information, the geographical altitude
information of each ADS-B data is extracted from the OpenSky Network historical database. A
new data column will be created to manage the altitude information while loading the data to the
new database for storage and will be presented in Section 4.3.3.

The ADS-B data used in this case study require little modification, and only the semantics and
scientific units are edited for shared data content. The size of the ADS-B data file is mainly
determined by when and where the data was captured and is not significantly impacted by the data
standardization process. Table 16 provides an example of file size before and after the process for
ADS-B data collected around the New York area on June 1st, 2020 from 00:00 - 00:03 UTC.

Table 16. ADS-B data file size comparison

Description File size
Original data file 5,569 KB (5.569 MB)
Standardized data file 5,664 KB (5.664 MB)

The weather radar data requires a complete data transformation process from decoding the raw data
to data standardization. During this process, the file size of the weather radar data file changes
significantly. Table 17 provides an example of how the file size changes for 10 minutes of weather
radar information collected at the weather radar KOKX on August 1%, 2020 around 00:14 UTC.

59

Table 17. Weather data file size comparison

Description File size

Raw data file 2,412 KB (2.412 MB)
Decoded data file 16,320 KB (16.32 MB)
Filtered and standardized data file 9,482 KB (9.482 MB)

4.3.3 Loading data to storage

Once all the datasets are cleaned and standardized, the last step in the data ETL process is to load
the data to the database for storage. In this thesis, the database is built with SQLite. The database
schema shown in Figure 15 is implemented to store the required weather radar and ADS-B data.

In the data transformation phase, the two datasets are converted to the CSV file format for
processing. In Python, there is a library extension that can convert CSV files to local database files.
The library extensions used to assist in this process are named ‘pandas’ and ‘sqlite3’. Pandas is a
Python library that was developed for data manipulation and analysis, while sqlite3 is used for
creating and managing database files. Appendix D contains the complete Python script for loading
the cleaned and standardized weather radar data and ADS-B data to the research database.

In the database schema shown in Figure 15, the geo_BLOB column is a spatial data object created
by using the latitude, longitude, and altitude of the current data row. This is achieved by using a
spatial extension of SQLite named Spatialite [96]. Figure 20 presents an example of a database file
obtained from the implementation. The table highlighted in blue corresponds to the four data tables
presented in the database schema shown in Figure 15. The other tables shown on the list come with
the Spatialite extension. The example presented in Figure 20 contains 5 minutes of ADS-B data
and 10 minutes of weather radar data collected on August 1%, 2020 at around 00:14 UTC. The size
of this database is around 58 MB. The size of the database is bigger than the sum of the two original
datasets due to adding the Spatialite extension. However, the Spatialite extension is important for
this case study, as it is designed to support the management and querying of data from geodatabases.

60

4New Database 4 Open Database

Write Changes

Z Revert Changes

1) Open Project [5iSave Project @ Attach Database ¢ Close Database

| Database Structure Browse Data Edit Pragmas Execute SQL
| JCreate Table @ Create Index &Pr\nt
Mame Type Schema

~ || Tables (26)
| ElementaryGeometries
Geographical_point
KMNM
| Spatiallndex
Standardized_ADSB_data
Standardized_NEXRADII_data
Unix_time
data_licenses
geometry_columns
geometry_columns_auth

geometry_columns_field_infos

v

T T T T e T

geometry_columns_statistics
geometry_columns_time
spatial_ref_sys
spatial_ref_sys_aux

spatialite_history

v ov oW v v

sql_statements_log

| sglite_sequence

| views_geometry_columns

| views_geometry_columns_auth

] views_geometry_columns_field_infos

v ov oW v v

| views_geometry_columns_statistics
| wvirts_geometry_columns

| virts_geometry_columns_auth

| wirts_geometry_columns_field_infos
| wirts_geometry_columns_statistics
Indices (4)

Views (6)

Triggers (76)

v v v
ml

CREATE VIRTUAL TABLE ElementaryGeomnetries USING VirtualElerentary()

CREATE TABLE Geographical_point{Geo_|D text, Latitude int, Longitude int)

CREATE VIRTUAL TABLE KMM USIMG Virtual KMNM()

CREATE VIRTUAL TABLE Spatiallndex USING VirtualSpatiallndex()

CREATE TABLE Standardized_ADSEB_data(Geo_ID text, Time_|D text, Time int, Latitude float, Longitude f|
CREATE TABLE Standardized_NEXRADII_data(Geo_ID text, Time_ID text, Time int, Latitude float, Longitu
CREATE TABLE Unix_time(Time_|D text, Hour int)

CREATE TABLE data_licenses (id INTEGER PRIMARY KEY AUTOINCREMEMT, name TEXT NOT MULL UNI
CREATE TABLE geometry_columns (f_table_name TEXT MOT MULL, f_geometry_column TEXT MOT MU
CREATE TABLE geometry_columns_auth (f_table_name TEXT NOT MULL, f_geometry_column TEXT MO
CREATE TABLE geometry_columns_field_infos { _table_name TEXT NOT MULL, f_geometry_column TE}
CREATE TABLE geometry_columns_statistics (f_table_name TEXT MOT NULL, f_gecmetry_column TEXT|

CREATE TABLE geometry_columns_time (f_table_name TEXT MOT MULL, f_geometry_column TEXT NG |

CREATE TABLE spatial_ref_sys (srid INTEGER MOT NULL PRIMARY KEY, auth_name TEXT MOT MULL, au
CREATE TABLE spatial_ref_sys_aux (srid INTEGER NOT MULL PRIMARY KEY, is_gecgraphic INTEGER, ha
CREATE TABLE spatialite_history (event_id INTEGER NOT MULL PRIMARY KEY AUTOIMCREMEMT, table |
CREATE TABLE sql_statements_log (id INTEGER PRIMARY KEY AUTOINCREMEMT, time_start TIMESTAM
CREATE TABLE sqlite_sequence(name,seq)

CREATE TABLE views_geometry_columns (view_name TEXT NOT NULL, view_gecmetry TEXT MOT NUL|
CREATE TABLE views_geometry_columns_auth { view_name TEXT NOT MULL, view_geometry TEXT MO
CREATE TABLE views_geometry_columns_field_infos (view_name TEXT NOT NULL, view_geometry TEX
CREATE TABLE views_geometry_columns_statistics (view_name TEXT NOT MULL, view_geometry TEXT,
CREATE TABLE virts_geometry_celumns (virt_name TEXT NOT MULL, virt_geometry TEXT NOT NULL, g
CREATE TABLE virts_geometry_columns_auth (virt_name TEXT NOT NULL, virt_geometry TEXT NOT NU
CREATE TABLE virts_geometry_celumns_field_infos { virt_name TEXT MOT NULL, virt_geometry TEXTN

CREATE TABLE virts_gecmetry_celumns_statistics (virt_name TEXT MOT MULL, virt_gecmetry TEXT NO] |

Figure 20. An overview of database

UTF-8

4.4 GUI development for data visualization

This section presents a prototype of the data visualization tool developed for the case study. The

visualization tool must meet the following requirements:

1. The tool should be able to create simulated air traffic scenarios by using any selected data

from the database.

2. The tool should be able to generate a 2D and a 3D visualization in the simulated airspace

environment.

61

3. The tool should be able to display the collection date and time of the data in use in the
simulated airspace environment.

4. The tool should be able to generate animation intended to visualize how the air traffic and
weather change with respect to time.

5. The tool should have functions that allow users to visualize and extract data on the
interaction between different airspace entities within the simulated flight scenario.

6. The tool should be able to be used with any electronic device.

Figure 21 shows the first prototype developed as part of this thesis research to load and visualize
the ADS-B data from the database. It was developed using Python with BaseMap [97], one of its
library extensions.

#EIFQA=~B

Visualization of archived air traffic data

== oy e -
M’ e 12000

e A dew Yoi'c
T o

2020-06-01 00:01:45 UTC

Figure 21. ADS-B data representation in Prototype #1

In Prototype #1, the simulated airspace environment is presented in a three-dimensional space.
Video 1, accessible through the link provided below, is a 2-minute archived air traffic playback
using Prototype #1. The ADS-B data loaded to Prototype #1 was captured on June 1%, 2020 around

00:01:00 UTC.

Video 1 — Prototype #1 demonstration: https://www.youtube.com/watch?v=9H4eGOKYgTk

62

https://www.youtube.com/watch?v=9H4eG0KYgTk

Figure 21 is a snapshot taken Video 1. The horizontal plane represents the geographic area around
New York and Miami, and the vertical axis represents altitude above ground level. The three-
dimensional space is filled with coloured dots each of which represents an individual aircraft from
the ADS-B data in the database. The colour scale of the dots represents each aircraft's altitude.

Prototype #1 provides an intuitive visualization of how air traffic is distributed in a specific
geographical area during a selected time period. However, it fails to provide additional information
used to create the simulated airspace environment such as i) the callsign, the speed, and the heading
of the aircraft, ii) the airspace infrastructure, and iii) the terrain in that area. Furthermore, this
prototype does not provide a user interface for interacting with the data loaded into the simulated
environment.

Prototype #2 includes a user interface and was developed in Python using the library extensions
BaseMap [97] and wxPython [98]. Figure 22 shows the interface for Prototype #2.

&1 Fiight Smart - o X

More Settings

Display option Map view option

() Fiight Plan 1 [Terrain Map View
+ 8 Air Traffic (ADS-6) () Street Map View
() Enroute Icing) Satellite Map View
AKs917 8]

O Show
) Show

4,5U407
Current Time:

2022-06-11 12:27:30PM
EORSSORWA2705 EPA4575 A181

4?»14911

Time Offestifrom now)

Altitude Selection
15000
£DV5091 Update Map at this Altitude
DV4758

Navigation Chart
VFR
Sectional Terminal Area Terminal Planning

MWE?W;

IFR

Low Altitude Hight Altitude
AL733

F*SGH

4BU26

Elevation Profile

4
Wﬂ L

Figure 22. Interface of Prototype #2

63

The left side of the interface shows the geographical area being simulated (in this case the New
York city area). The ADS-B data is overlaid on a 3-D topographical map using an aircraft icon
associated with the ICAO code of the aircraft. User control units are located on the right side of
the interface and can be used for interacting with the data displayed on the map. The disadvantages
associated with prototype #2 include: i) the ADS-B data can only be presented in the top view,
which makes it impossible to visualize the vertical separation between aircraft; and ii) Python is
used to develop the tool and it is only compatible with desktop computers and not other electronic
devices such as cellphone or tablet.

Prototype #3 is a web-based data visualization tool that can be used on any kind of electronic device.
Prototype #3 was developed in Javascript using Mapbox studio [94], which provides custom online
maps for websites and applications. Mapbox studio has built-in libraries for terrain and public
transportation including airport and airspace infrastructure, and this information is presented in the
form of data layers. Figure 23 shows how Mapbox studio is used to assist in generating the visual
representation of the airspace environment.

In Figure 23, the six blue data layers are generated by using the information available in Mapbox
studio. The visual representation of the simulated airspace environment is created by overlaying
these data layers on top of one another. This is done using the online editing tool of the Mapbox
studio, and an access token is generated. The access token is used in the Javascript code for
developing Prototype #3 to ensure access to the visual representation of the simulated airspace
environment at all times. In Figure 23, the weather and air traffic data layers colored in green are
generated by using the information available in the database. As a consequence, Prototype #3 is
capable of generating the visual representation of different flight scenarios by overlaying different
weather and air traffic information on top of the simulated airspace environment.

64

(® mapbox”

Figure 23. Data layers in Prototype #3

Figure 24 provides an example of Prototype #3 loaded with a visual representation of ADS-B
aircraft and weather data. Five primary features are provided to users of Prototype #3 for interacting
with the map or the data layers:

1. Two toggle switches for map type selection.

2. An information box shows the date and time for each of the data layers currently loaded
on the map.

3. File selection and update buttons for modifying the weather data layer and air traffic data
layer.

4. A media control panel for simulation playback.

5. On/Off buttons for controlling the visibility of each data layer.

65

2020-06-01 0:00 UTC
o 2020-06-01 0:19UTC 2 i NEWVB

2020-02-11 00:00 UTC
e 2020-06-17 12:00 UTC

t swaless <

B®

1
& mﬂk s-!:cm
™ q Wo
$ "‘ZQI
= 0]
Foyd Bannett Reid P

8§®

JBU676

1=

Figure 24. The interface of Prototype #3 (‘Flight’ map style)

There are two map styles available in Prototype #3, and the map shown in Figure 24 is the ‘Flight’
map style. Users can clearly see each layer of data on this monochrome map because it provides a
clear background for overlaying different data layers. The other of available map style is the
‘Satellite’ map. Figure 25 shows the same scenario as Figure 24 but in the ‘Satellite’ map. Users
can choose a map style by using the toggle switch on the top left corner identified with the number
‘1’ in Figure 24.

Prototype #3 presents data by creating data layers and overlaying them. The data layers are
graphical representations of the original data, and the prototype is designed in such a way that it is
capable of loading data from any date and time as long as the data are available in the database. The
capture date and time of each of the data layers shown on the map can be found in the information
box denoted by the number ‘2’ in Figure 24. The example presented in Figure 24 was created using
the ADS-B and weather radar data collected on June 1%, 2020 around 00:00 UTC, where the blue
rendering represents the weather and the 3D plane model with accompanying ICAO code, ground
speed, and altitude represents the air traffic. The yellow line on the map is the air route from the
airspace data layer and shows the airspace boundary and the airways around the JFK airport New
York. The airport infrastructure runways and taxiways are highlighted in green and orange.

66

The weather data layer and the air traffic in Prototype #3 can be modified at any time by loading
the available data from the database. The buttons designed for selecting and updating the data files
are denoted by the number ‘3’ in Figure 24.

The media control box denoted by the number ‘4’ in Figure 24 is used for controlling the playback
of the animation. ‘Simulation time’ indicates the time passed in the simulated airspace environment,
and users can use the media control button to enact and change or adjust the animation process.
Once the data is loaded, clicking the play button will allow the tool to animate the aircraft and
weather systems and observe a visual representation of the flow of air traffic. The animation can
be stopped at any time, fast forwarded and rewound.

To prevent potentially confusing amounts of presented information, each data layer on the map can
be inactivated. The buttons designed for this function are identified by '5" in Figure 24, with the
name tags indicating the data layer they control. When the background colour of the button is blue,
it means the data layer is activated, and when the background colour is white the data layer is
inactivated and does not display on the map.

Of the three prototypes developed to allow researchers to understand, visualize and interact with
data, prototype #3 is the one that satisfies all the requirements defined at the beginning of the
project. Video 2, accessible through the link provided below, shows an overview of each data layers
on Prototype #3 and demonstrate the capability of the control units. The next section will present
the process of verifying the database design for the case study by comparing the features of
Prototype #3 with the defined needs of the research case.

Video 2 - Prototype #3 overview: https://youtu.be/LSB7ex49N-U

67

https://youtu.be/LSB7ex49N-U

Air Traffic Database Time: 2020-06-010:00 UTC
Weather Radar Database Time: 2020-06-010:19 UTC
Terrain Database Time: 2020-02-11 00:00 UTC
Alrspace Infrastructure Time: 20200817 12:00 UTC

Simulation Time: 2 second(s)

Figure 25. The interface of Prototype #3 (‘Satellite’ map style)

4.5 Verification with test case

The purpose of this section is to verify that the Prototype #3 database obtained as described in
Sections 4.1 through 4.4 satisfies the research requirements defined for the case study:

1. A variety of flight scenarios can be generated with the information available in the database.
2. The visualization tool allows users to visualize and analyze interactions between the following
entities:

1. Air traffic

2. Air space and airport infrastructure
3. Ground obstacle

4. Terrain

5. Weather

3. The tool can generate the visual representation of the selected simulated flight scenario
efficiently.

68

In addition to these general criteria, the researcher specifically wanted to analyse the impact of
introducing a novel air vehicle into an existing airspace environment. For this reason, the prototype
is validated with the addition of another layer representing the novel air vehicle using data provided
by the researcher for i) a predefined flight route; ii) an actual flight route; and iii) the heading of
the novel air vehicle.

Figure 26 and Figure 27 are screenshots of the visual tool when introducing the novel air vehicle
into the simulated airspace environment presented in Figure 21. The information box located at the
bottom left corner shows information about the novel air vehicle. The predefined flight route in
this case is from JFK to LGA, depicted by the blue line shown in both figures. Figure 26 shows
how the given flight route appears from the bird’s eye view while Figure 27 present the same
scenario in a 3D view.

® Fiight O 3D Satelite Lift Select ADS 8 fie | Update ADS-B | Select NEXRADII ile | Update nexrad
=

Air Traffic Database Time: 2020-06-01 0:00 UTC 1 SWA1688 +

Weather Radar Database Time: 2020-06-01 0:18 UTC -

. 2020-02-11 00:00 UTC

Airspace Infrastructure Time: 2020-06-17 12:00 UTC

Simulation Time: 1 second(s)

7 i
AR) (IEname) (RAVAD) U GuaroiA
£
| Py
Ni1Tv
: N828C -
“ﬂ‘ N24NY .
m a7 N919PD
" . v R
. Novelgj-vehicle
- ot | e
10
NS5525R o
Novel air vehicle information e O]
e e Tee— [] IN9542D JBU676
Fioyd Benneit Reid
Y
fo=_| oar

Figure 26. Introduce novel air vehicle to Prototype #3 (bird s eye view)

69

@ Fiight O 3D Satellte SeleciADS 8 fle | Update ADS-B | Seiect NEXRADII e | Update nexrad

2020-06-01 0:00 UTC -
: 2020-06-010:19 UTC
2020-02-11 00:00 UTC
o Time: 20200817 12:00 UTC

|
L
| o]
)
&
:[o}

= Nove| air vehicle

S
T ——
Muacuvon —

AR o 7KaL M2
Sgen

——
S v |
RS ”

N828C 1
@ fom R

Figure 27. Introduce novel air vehicle to Prototype #3(3D view)

To distinguish the novel air vehicle from other ADS-B aircraft, the 3-D image representation is
unique and a text label 'Novel air vehicle' is displayed alongside aircraft. The blue line indicates
the flight route, and the update frequency of the novel air vehicle and the ADS-B aircraft is
synchronized in order to animate the scenario and any possible interactions in “real-life”. Video 3
demonstrate the simulated flight scenario present in Figure 26 and Figure 27.

Video 3 — Prototype #3 animating simulated flight scenario: https://youtu.be/xO1qfkIHghE

Prototype #3 is capable of adapting to changes in research requirements because it treats all the
data separately and presents them in separate data layers. If a new or additional type of data is
required, it can be converted to a data layer and overlaid on top of the existing layers. Figure 28
below shows the process of modifying Prototype #3 to add the novel air vehicle data layer.

70

https://youtu.be/xO1qfkIHghE

Novel air vehicle flight path

s ooo
L Yo
;v
o -
e o
- =

z
BG;E%

3

i

EEli
o)

ot v ekt

Figure 28. Adding new data layer to Prototype #3

The clean and organized data in the database makes it possible to create novel simulated airspace
environments by combining historical data captured at different times. Figure 28 is an example of
generating an imaginary but true-to-life flight scenario in Prototype #3. For example, the simulated
airspace environment shown in Figure 26 combines data captured at different times; the weather
radar data was collected on 1t October 2020 at 00:03 UTC whereas the air traffic data was captured
on 1% June 2020 at 00:00 UTC.

The simulated airspace environment shown in Figure 29 is made by combining real-world data
from different days and times to provide a wide range of flight scenarios for research purposes.
The capability to combine layers from different times allows the researchers to combine and study
potentially hazardous air traffic and weather scenarios that would be too dangerous to attempt in
real time.

71

@ Fiight O 3D Satelite Select ADSB fle | Update ADS-B | Select NEXRADII e | Update newrad

Air Traffic Database Time: 2020-06-01 0:00 UTC
Weather Radar Database Time: 2020-10-01 0:03 UTC
Terrain Database 2020-02-11 00:00 UTC

FENES

B - - o -
Airspace Infrastru ime: 2020-06-17 12:00 UTC » - - " N7V a -
P
o - -
- Ayt - R
SWA1688 Jystef Bay 5 ¢ EERE
- "
M
R { ac
"
-t al treant
> . ¢
= Novel alrwncls ~
TUBRG S o
N828C Al S CLL .
= L] > ESE 2a i JOHNFRENEDY
g @ I!LM PA INTERNATIONAL

Novel air vehicle information

Figure 29. Generate novel simulate airspace environment

Should the research results obtained using combined scenarios create a need for additional data
from other geographic locations, different weather conditions or traffic patterns, this can be readily

achieved by repeating the process presented in Section 4.3 and storing the new data to the existing
database.

72

5. Conclusion

Data-driven aviation research is becoming increasingly popular as researchers realize the value and
potential of using available data, but many users face challenges related to the large amounts of
data and the variety of formats that require pre-processing before being used. In response, some
researchers have created very large databases containing cleaned and neatly organized data meant
to suit the needs of a large variety of research projects. There remain, however, situations where
the information is too general to suit specific research needs; the amount of data in the database is
unmanageable for smaller computer systems; or the size of the database makes it difficult to
navigate, find and extract information related to detailed requirements.

In this thesis, a methodology is presented for the design and development of a data repository for
specific aerospace applications. The methodology presented is a systematic approach that can be
applied to many kinds of data-driven research. An example is presented where archived historical
weather radar and air traffic data is used to create a data repository in support of research requiring
a simulated airspace environment. A case study is presented to illustrate the steps in the process of
selecting, extracting, transforming, and loading the data into a database. The method is validated
by using the data to create a variety of flight scenarios using a system of layers; and a visualisation
tool is presented that allows researchers and other participants to better understand how the data is
interacting. Data from the prototype database can be used to develop a variety of simulated flight
scenarios to support the research in the case study.

The approach presented in this thesis is not capable of handling real-time data streams. This
research focuses on leveraging historical data, and the proposed method can be achieved by using
a normal desktop computer. Applying the proposed method to a real-time data stream would be
problematic because of the large amounts of incoming data as well as problems with missing
information and inconsistent scientific units.

This research clearly illustrates the usefulness of developing a compact database based on specific
research requirements for the purposes of supporting data-driven research, but it also raises the
question of data integrity in the selected data source. The methodology presented in this thesis does
not include sustainable solutions for resolving problems related to incomplete or inaccurate
information obtained from the selected data source. The problem is acknowledged, and the
temporary solution presented in this thesis is to select a data source from a trustworthy organization.

73

Future work for improving the methodology presented in this thesis could be developing a method
to filter out inaccurate information or to identify missing information by cross referencing the same
types of data collected from different data sources.

74

6. References

[1] H.K.Ng, B. Sridhar, and S. Grabbe, ‘Optimizing Aircraft Trajectories with Multiple Cruise Altitudes
in the Presence of Winds’, J. Aerosp. Inf. Syst., vol. 11, no. 1, pp. 35-47, Jan. 2014, doi:
10.2514/1.1010084.

[2] D. P. Thipphavong, C. A. Schultz, A. G. Lee, and S. H. Chan, ‘Adaptive Algorithm to Improve
Trajectory Prediction Accuracy of Climbing Aircraft’, J. Guid. Control Dyn., vol. 36, no. 1, pp. 15-24, Jan.
2013, doi: 10.2514/1.58508.

[3] K. (May) Ren, A. M. Kim, and K. Kuhn, ‘Exploration of the Evolution of Airport Ground Delay
Programs’, Transp. Res. Rec. J. Transp. Res. Board, vol. 2672, no. 23, pp. 71-81, Dec. 2018, doi:
10.1177/0361198118782272.

[4] M. Alderighiand A. A. Gaggero, ‘Flight cancellations and airline alliances: Empirical evidence from
Europe’, Transp. Res. Part E Logist. Transp. Rev., vol. 116, pp. 90-101, Aug. 2018, doi:
10.1016/j.tre.2018.05.008.

[5] K. D. Bilimoria, B. Sridhar, S. R. Grabbe, G. B. Chatterji, and K. S. Sheth, ‘FACET: Future ATM
Concepts Evaluation Tool’, Air Traffic Control Q., vol. 9, no. 1, pp. 1-20, Jan. 2001, doi:
10.2514/atcq.9.1.1.

[6] K. Sheth et al., ‘Evolution of an Air Traffic Simulation Testbed into an Operational Tool’, p. 12.

[7] S. George et al., ‘Build 8 of the Airspace Concept Evaluation System’, in AIAA Modeling and
Simulation Technologies Conference, Portland, Oregon, Aug. 2011. doi: 10.2514/6.2011-6373.

[8] B. Sridhar, G. Chatterji, S. Grabbe, and K. Sheth, ‘Integration of Traffic Flow Management
Decisions’, in AIAA Guidance, Navigation, and Control Conference and Exhibit, Monterey, California,
Aug. 2002. doi: 10.2514/6.2002-5014.

[9] K. D. Bilimoria, S. R. Grabbe, K. S. Sheth, and H. Q. Lee, ‘Performance Evaluation of Airborne
Separation Assurance for Free Flight’, Air Traffic Control Q., vol. 11, no. 2, pp. 85-102, Apr. 2003, doi:
10.2514/atcq.11.2.85.

[10] K. S. Sheth, T. S. Islam, and P. H. Kopardekar, ‘Analysis of airspace tube structures’, in 2008
IEEE/AIAA 27th Digital Avionics Systems Conference, St. Paul, MN, USA, Oct. 2008, p. 3.C.2-1-3.C.2-10.
doi: 10.1109/DASC.2008.4702805.

[11] C. Chen et al., ‘Defining Well Clear Separation for Unmanned Aircraft Systems Operating with
Noncooperative Aircraft’, in AIAA Aviation 2019 Forum, Dallas, Texas, Jun. 2019. doi: 10.2514/6.2019-
3512.

[12] G. Satapathy, N. Nigam, and Y. Zhang, ‘Sensitivity of Efficient Descent Advisor (EDA) Performance
to Trajectory Prediction (TP) Errors’, in AIAA Guidance, Navigation, and Control Conference, Portland,

75

Oregon, Aug. 2011. doi: 10.2514/6.2011-6663.

[13] S. Zelinski, ‘Validating The Airspace Concept Evaluation System Using Real World Data’, in AIAA
Modeling and Simulation Technologies Conference and Exhibit, San Francisco, California, Aug. 2005.
doi: 10.2514/6.2005-6491.

[14] S. Zelinski and L. Meyn, ‘Validating the Airspace Concept Evaluation System for Different Weather
Days’, in AIAA Modeling and Simulation Technologies Conference and Exhibit, Keystone, Colorado, Aug.
2006. doi: 10.2514/6.2006-6115.

[15] H.Erzberger, T. Nikoleris, R. A. Paielli, and Y.-C. Chu, ‘Algorithms for control of arrival and departure
traffic in terminal airspace’, Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng., vol. 230, no. 9, pp. 1762-1779,
Jul. 2016, doi: 10.1177/0954410016629499.

[16] J. Smith, N. Guerreiro, J. Viken, S. Dollyhigh, and J. Fenbert, ‘Meeting Air Transportation Demand
in 2025 by Using Larger Aircraft and Alternative Routing to Complement NextGen Operational
Improvements’, in 10th AIAA Aviation Technology, Integration, and Operations (ATIO) Conference, Fort
Worth, Texas, Sep. 2010. doi: 10.2514/6.2010-9107.

[17] V. N. Gudivada, R. Baeza-Yates, and V. V. Raghavan, ‘Big Data: Promises and Problems’, Computer,
vol. 48, no. 3, pp. 20-23, Mar. 2015, doi: 10.1109/MC.2015.62.

[18] NIST Big Data Public Working Group Definitions and Taxonomies Subgroup, ‘NIST Big Data
Interoperability Framework: Volume 1, Definitions’, National Institute of Standards and Technology,
NIST SP 1500-1, Oct. 2015. doi: 10.6028/NIST.SP.1500-1.

[19] Doug Laney, ‘3D data management : controlling data volume, velocity and variety’, META Group
Res, vol. 949, no. February 2001, pp. 4-4, 2001.

[20] V. Shobana and N. Kumar, ‘Big data - A review’, Int. J. Appl. Eng. Res., vol. 10, no. 55, pp. 1294—
1298, 2013, doi: 10.26634/jit.6.1.13507.

[21] M. Minelli, M. Chambers, and A. Dhiraj, Big Data, Big Analytics: Emerging Business Intelligence
and Analytic Trends for Today’s Business. 2013. doi: 10.1002/9781118562260.

[22] A. K. Bhadani and D. Jothimani, ‘Big data: Challenges, opportunities, and realities’, Eff. Big Data
Manag. Oppor. Implement., pp. 1-24, 2016, doi: 10.4018/978-1-5225-0182-4.ch001.

[23] Z. Bai and X. Bai, ‘Sports Big Data: Management, Analysis, Applications, and Challenges’,
Complexity, vol. 2021, pp. 1-11, Jan. 2021, doi: 10.1155/2021/6676297.

[24] B. Han, Z. Chen, C. Liu, and M. Shang, ‘Design and Implementation of Big Data Management
Platform for Android Applications’, in Proceedings of the 2020 3rd International Conference on Big Data
Technologies, Qingdao China, Sep. 2020, pp. 36—40. doi: 10.1145/3422713.3422715.

[25] J. Chen, S. He, and X. Li, ‘A Study of Big Data Application in Agriculture’, J. Phys. Conf. Ser., vol.
1757, no. 1, p. 012107, Jan. 2021, doi: 10.1088/1742-6596/1757/1/012107.

[26] A. A. Munshi and A. Alhindi, ‘Big Data Platform for Educational Analytics’, IEEE Access, vol. 9, pp.

76

52883-52890, 2021, doi: 10.1109/ACCESS.2021.3070737.

[27] K. Xiong, ‘Research on Innovation of Automobile Marketing Mode Based on Big Data Marketing’,
in 2020 International Conference on Big Data and Social Sciences (ICBDSS), Xi’an, China, Aug. 2020, pp.
72-75. doi: 10.1109/1CBDSS51270.2020.00024.

[28] A. Su, ‘Tourism Marketing Innovation Management Model Based on Big Data’, J. Phys. Conf. Ser.,
vol. 1744, no. 4, p. 042141, Feb. 2021, doi: 10.1088/1742-6596/1744/4/042141.

[29] L. Zhe, L. Xueyan, and T. Huan, ‘Research On The Architecture And Strategy Of Luxury brands
Marketing Service Design Model From The Perspective Of Big Data’, E3S Web Conf., vol. 179, p. 02014,
2020, doi: 10.1051/e3sconf/202017902014.

[30] D. Gupta and R. Rani, ‘A study of big data evolution and research challenges’, J. Inf. Sci., vol. 45,
no. 3, pp. 322-340, Jun. 2019, doi: 10.1177/0165551518789880.

[31] M. Aparicio and C. J. Costa, ‘Data Visualization’, Commun. Des. Q., vol. 3, no. 1, pp. 7-11, Nov.
2014, doi: 10.1145/2721882.2721883.

[32] M. T. Rodriguez, S. Nunes, and T. Devezas, ‘Telling Stories with Data Visualization’, in Proceedings
of the 2015 Workshop on Narrative & Hypertext - NHT “15, Guzelyurt, Northern Cyprus, 2015, pp. 7—
11. doi: 10.1145/2804565.2804567.

[33] M. Mani and S. Fei, ‘Effective Big Data Visualization’, in Proceedings of the 21st International
Database Engineering & Applications Symposium on - IDEAS 2017, Bristol, United Kingdom, 2017, pp.
298-303. doi: 10.1145/3105831.3105857.

[34] R. Agrawal, A. Kadadi, X. Dai, and F. Andres, ‘Challenges and opportunities with big data
visualization’, in Proceedings of the 7th International Conference on Management of computational
and collective intElligence in Digital EcoSystems, Caraguatatuba Brazil, Oct. 2015, pp. 169-173. doi:
10.1145/2857218.2857256.

[35] D. M. Eldin, A. E. Hassanien, and E. E. Hassanien, ‘Challenges of Big Data Visualization in Internet-
of-Things Environments’, in International Conference on Innovative Computing and Communications,
vol. 1087, A. Khanna, D. Gupta, S. Bhattacharyya, V. Snasel, J. Platos, and A. E. Hassanien, Eds.
Singapore: Springer Singapore, 2020, pp. 873—885. doi: 10.1007/978-981-15-1286-5_76.

[36] S. Sachchidanand and S. Nirmala, ‘Big data analytics’, in Resonance, 2012, vol. 21, pp. 695-716.
doi: 10.1007/s12045-016-0376-7.

[37] ‘Guide to Laptop Storage Drives’, Lifewire. https://www.lifewire.com/laptop-storage-drives-
guide-833445 (accessed Dec. 13, 2022).

[38] L. Mearian, ‘World’s data will grow by 50X in next decade, IDC study predicts’, Computerworld,
Jun. 28, 2011. https://www.computerworld.com/article/2509588/world-s-data-will-grow-by-50x-in-
next-decade--idc-study-predicts.html (accessed Dec. 13, 2022).

[39]Z.D. Stephenset al., ‘Big Data: Astronomical or Genomical?’, PLOS Biol., vol. 13, no. 7, p. €1002195,

77

Jul. 2015, doi: 10.1371/journal.pbio.1002195.

[40] B. Diene, J. J. P. C. Rodrigues, O. Diallo, E. H. M. Ndoye, and V. V. Korotaev, ‘Data management
techniques for Internet of Things’, Mech. Syst. Signal Process., vol. 138, p. 106564, Apr. 2020, doi:
10.1016/j.ymssp.2019.106564.

[41] N. Saranya, R. Brindha, N. Aishwariya, R. Kokila, P. Matheswaran, and P. Poongavi, ‘Data Migration
using ETL Workflow’, in 2021 7th International Conference on Advanced Computing and
Communication Systems (ICACCS), Coimbatore, India, Mar. 2021, pp. 1661-1664. doi:
10.1109/1CACCS51430.2021.9441840.

[42] J. Nwokeji, F. Aglan, A. Anugu, and A. Olagunju, ‘Big Data ETL Implementation Approaches: A
Systematic Literature Review (P)’, presented at the The 30th International Conference on Software
Engineering and Knowledge Engineering, Jul. 2018, pp. 714-721. doi: 10.18293/SEKE2018-152.

[43] X. Li and Y. Mao, ‘Real-Time data ETL framework for big real-time data analysis’, in 2015 IEEE
International Conference on Information and Automation, Lijiang, China, Aug. 2015, pp. 1289-1294.
doi: 10.1109/ICInfA.2015.7279485.

[44] J. Wang and B. Liu, ‘Design of ETL Tool for Structured Data Based on Data Warehouse’, in
Proceedings of the 4th International Conference on Computer Science and Application Engineering,
Sanya China, Oct. 2020, pp. 1-5. doi: 10.1145/3424978.3425101.

[45] S. K. Bansal and S. Kagemann, ‘Integrating Big Data: A Semantic Extract-Transform-Load
Framework’, Computer, vol. 48, no. 3, pp. 42-50, Mar. 2015, doi: 10.1109/MC.2015.76.

[46] E. F. Codd, ‘A Relational Model of Data for Large Shared Data Banks’, vol. 13, no. 6, p. 11, 1970.
[47] W. Ali, M. U. Shafique, M. A. Majeed, and A. Raza, ‘Comparison between SQL and NoSQL
Databases and Their Relationship with Big Data Analytics’, Asian J. Res. Comput. Sci., pp. 1-10, Oct.
2019, doi: 10.9734/ajrcos/2019/v4i230108.

[48] A. T. Alaklabi, ‘A Comparative Study of NoSQL databases’, Biosci. Biotechnol. Res. Commun., vol.
12, no. 1, pp. 17-26, Feb. 2019, doi: 10.21786/bbrc/12.1/7.

[49] H. Fatima and K. Wasnik, ‘Comparison of SQL, NoSQL and NewSQL databases for internet of
things’, in 2016 IEEE Bombay Section Symposium (IBSS), Baramati, India, Dec. 2016, pp. 1-6. doi:
10.1109/1BSS.2016.7940198.

[50] N. Leavitt, ‘Will NoSQL Databases Live Up to Their Promise?’, Computer, vol. 43, no. 2, pp. 12-14,
Feb. 2010, doi: 10.1109/MC.2010.58.

[51] R. P. Padhy, M. R. Patra, and S. C. Satapathy, ‘RDBMS to NoSQL: Reviewing Some Next-Generation
Non-Relational Database’s’, Vol No, no. 11.

[52] K. Kaur and D. M. Sachdeva, ‘Performance Evaluation of NewSQL Databases’, p. 5.

[53] A. Pavlo and M. Aslett, “What’s Really New with NewSQL?’, ACM SIGMOD Rec., vol. 45, no. 2, pp.
45-55, Sep. 2016, doi: 10.1145/3003665.3003674.

78

[54] A. Varangaonkar, ‘NewSQL: What the hype is all about’, Packt Hub, Nov. 06, 2017.
https://hub.packtpub.com/newsql-what-hype-about/ (accessed Dec. 21, 2022).

[55] Y. Li and S. Manoharan, ‘A performance comparison of SQL and NoSQL databases’, in 2013 IEEE
Pacific Rim Conference on Communications, Computers and Signal Processing (PACRIM), Victoria, BC,
Canada, Aug. 2013, pp. 15-19. doi: 10.1109/PACRIM.2013.6625441.

[56] S. Rautmare and D. D. M. Bhalerao, ‘MySQL and NoSQL database comparison for loT application’,
p. 4, 2016.

[57] M. Z. Li and M. S. Ryerson, ‘Reviewing the DATAS of aviation research data: Diversity, availability,
tractability, applicability, and sources’, J. Air Transp. Manag., vol. 75, no. November 2018, pp. 111-130,
2019, doi: 10.1016/j.jairtraman.2018.12.004.

[58] M. Ben Abda, P. P. Belobaba, and W. S. Swelbar, ‘Impacts of LCC growth on domestic traffic and
fares at largest US airports’, J. Air Transp. Manag., vol. 18, no. 1, pp. 21-25, Jan. 2012, doi:
10.1016/j.jairtraman.2011.07.001.

[59] Q. Fu and A. M. Kim, ‘Supply-and-demand models for exploring relationships between smaller
airports and neighboring hub airports in the U.S., J. Air Transp. Manag., vol. 52, pp. 67-79, Apr. 2016,
doi: 10.1016/j.jairtraman.2015.12.008.

[60] L. Cadarso, V. Vaze, C. Barnhart, and A. Marin, ‘Integrated Airline Scheduling: Considering
Competition Effects and the Entry of the High Speed Rail’, Transp. Sci., vol. 51, no. 1, pp. 132—154, Feb.
2017, doi: 10.1287/trsc.2015.0617.

[61] J. Rakas, A. Bauranov, and B. Messika, ‘Failures of critical systems at airports: Impact on aircraft
operations and safety’, Saf. Sci., vol. 110, pp. 141-157, Dec. 2018, doi: 10.1016/].ssci.2018.05.022.
[62] M. M. Eshow, N. Ames, and M. Field, ‘"ARCHITECTURE AND CAPABILITIES OF A DATA WAREHOUSE
FOR ATM Sherlock Data Sources’, pp. 1-14, 2014.

[63] R. T. Thota, G. Bawa, and R. S. Stansbury, ‘Design and Prototyping of an Aviation Big Data
Repository’, in AIAA Scitech 2020 Forum, Orlando, FL, Jan. 2020. doi: 10.2514/6.2020-0319.

[64] K. D. Kuhn, ‘A methodology for identifying similar days in air traffic flow management initiative
planning’, Transp. Res. Part C Emerg. Technol., vol. 69, pp. 1-15, Aug. 2016, doi:
10.1016/j.trc.2016.05.014.

[65] Y. Pang, H. Yao, J. Hu, and Y. Liu, ‘A Recurrent Neural Network Approach for Aircraft Trajectory
Prediction with Weather Features From Sherlock’, in AIAA Aviation 2019 Forum, Dallas, Texas, Jun.
2019. doi: 10.2514/6.2019-3413.

[66] A. D. Evans and P. U. Lee, ‘Analyzing Double Delays at Newark Liberty International Airport’, in
16th AIAA Aviation Technology, Integration, and Operations Conference, Washington, D.C., Jun. 2016.
doi: 10.2514/6.2016-3456.

[67] H. M. (ARC-A. Arneson, ‘Sherlock Data Warehouse-2018’, Jun. 2018.

79

[68] H. M. (ARC-A. Arneson, ‘Sherlock Data Warehouse Overview-2019’, Apr. 2019. [Online]. Available:
https://ntrs.nasa.gov/api/citations/20190025090/downloads/20190025090.pdf

[69] T. Larsen, ‘Cross-platform aviation analytics using big-data methods’, in 2013 Integrated
Communications, Navigation and Surveillance Conference (ICNS), Herndon, VA, Apr. 2013, pp. 1-9. doi:
10.1109/1CNSurv.2013.6548579.

[70] A. Tyagi and J. Nanda, ‘ATLAS: Big Data Storage and Analytics Tool for ATM Researchers’, in AIAA
Infotech @ Aerospace, San Diego, California, USA, Jan. 2016. doi: 10.2514/6.2016-0577.

[71] S. Ayhan, J. Pesce, P. Comitz, D. Sweet, S. Bliesner, and G. Gerberick, ‘Predictive analytics with
aviation big data’, Integr. Commun. Navig. Surveill. Conf. ICNS, 2013, doi:
10.1109/ICNSurv.2013.6548556.

[72] U.S. Department of Commerce: National Oceanic and Atmospheric, Ed., ‘New Priorities for the 21
st Century: NOAA’s Strategic Plan’, Sep. 2004.

[73] M. Keel, G. Gimmestad, E. Stancil, A. Eckert, and M. Brown, ‘Aviation Weather Information
Requirements Study’, no. June, pp. 1-178, 2000.

[74] W. Frost and D. W. Camp, ‘Proceedings: Sixth Annual Workshop on Meteorological and
Environmental Inputs to Aviation Systems’, p. 151, 1983.

[75] ‘NOAA’s Weather and Climate Toolkit (Viewer and Data Exporter)”.
https://www.ncdc.noaa.gov/wct/index.php (accessed Jun. 29, 2022).

[76] ‘Aircraft Situation Display to Industry: Functional Description and Interface Control Document’,
Volpe Center Automation Application Division, ASDI-FD-001, 2000.

[77] ‘Enhanced Traffic Management System (ETMS) : functional description’. Jun. 30, 1995.

[78] ‘14 CFR 91.225 -- Automatic Dependent Surveillance-Broadcast (ADS-B) Out equipment and use.
https://www.ecfr.gov/current/title-14/chapter-1/subchapter-F/part-91/subpart-C/section-91.225
(accessed Jun. 13, 2022).

[79] ‘14 CFR 91.227 -- Automatic Dependent Surveillance-Broadcast (ADS-B) Out equipment
performance requirements” https://www.ecfr.gov/current/title-14/chapter-/subchapter-F/part-
91/subpart-C/section-91.227 (accessed Jun. 13, 2022).

[80] Federal Aviation Administration, ‘Automatic Dependent Surveillance-Broadcast(ADS-B) Flight
Inspection’. Oct. 19, 2014.

[81] ‘ASDI Active Subscribers and Contracts’. Federal Aviation Administration, Sep. 02, 2012. [Online].
Available: https://www.fly.faa.gov/ASDI/asdidocs/ASDI_Active_Subscribers_and_Contacts.pdf

[82] ‘The OpenSky Network’. https://opensky-network.org/about/about-us (accessed Oct. 26, 2021).
[83] ‘Accessing Data Collected by ADS-B Exchange’, ADS-B Exchange.
https://www.adsbexchange.com/data/ (accessed Jun. 14, 2022).

[84] ‘ADS-B Flight Tracking’, FlightAware. http://flightaware.com/adsb/ (accessed Jun. 14, 2022).

80

[85] ‘Structured Data vs. Unstructured Data: what are they and why care?’, lawtomated, Apr. 07, 2019.
https://lawtomated.com/structured-data-vs-unstructured-data-what-are-they-and-why-care/
(accessed Jun. 13, 2022).

[86] ‘NEXRAD Data Inventory Search | National Centers for Environmental Information’.
https://www.ncdc.noaa.gov/nexradinv/ (accessed Jul. 04, 2022).

[87] ‘What is Amazon S37? - Amazon Simple Storage Service'.
https://docs.aws.amazon.com/AmazonS3/latest/userguide/Welcome.html#CoreConcepts (accessed
Sep. 28, 2021).

[88] ‘Global Infrastructure Regions & AZs’, Amazon Web Services, Inc. https://aws.amazon.com/about-
aws/global-infrastructure/regions_az/ (accessed Jul. 04, 2022).

[89] ‘AWS Command Line Interface’, Amazon Web Services, Inc. https://aws.amazon.com/cli/
(accessed Jul. 04, 2022).

[90] ‘Impala - Overview’. https://www.tutorialspoint.com/impala/impala_overview.htm (accessed Jul.
04, 2022).

[91] impala-shell: Impala Shell. Accessed: Jul. 04, 2022. [MacOS :: MacOS X, POSIX :: Linux]. Available:
https://impala.apache.org/

[92] ‘Data elements and interchange formats - Information interchange - Representation of dates and
times - Part2:Extensions’, Oct. 20, 2017.
https://web.archive.org/web/20171020000043/https://www.loc.gov/standards/datetime/ISO_DIS%
208601-2.pdf (accessed Jul. 19, 2022).

[93] ‘General Concept of POSIX time’.
https://pubs.opengroup.org/onlinepubs/9699919799/xrat/V4_xbd_chap04.html (accessed Jul. 19,
2022).

[94] ‘Maps, geocoding, and navigation APIs & SDKs | Mapbox’. https://www.mapbox.com/ (accessed
Oct. 29, 2022).

[95] N. us Department of Commerce, ‘Past Significant Weather Events’.
https://www.weather.gov/mob/events (accessed Dec. 22, 2022).

[96] ‘Spatialite: SpatiaLite’. https://www.gaia-gis.it/fossil/libspatialite/index (accessed Oct. 29, 2022).
[97] ‘Welcome to the Matplotlib Basemap Toolkit documentation — Basemap Matplotlib Toolkit 1.2.1
documentation’. https://matplotlib.org/basemap/ (accessed Oct. 29, 2022).

[98] T. wxPython Team, ‘Welcome to wxPython!, wxPython, Aug. 02, 2021.
https://wxpython.org/index.html (accessed Oct. 29, 2022).

81

Appendix

82

Appendix A: NEXRAD data extraction

import 0s

import subprocess

#define function to use bash command to run AWS CLI to download raw weather radar data
def awc_auto_download(base_dir, dir_name):

base_dir= directory to store files download from aws

print(“created new directory for storting data: /WeatherRadarData/"'+dir_name)

if not os.path.exists(base_dir+dir_name):

os.makedirs(base_dir+dir_name)

#change working directory to the created directroy

os.chdir(base_dir + dir_name)

print(“current working directory: ", base_dir+dir_name)

subprocess.run("aws s3 cp s3://noaa-nexrad-level2/"+dir_name+"/ . --recursive --no-sign-request”, shell=True)

#reset working directory to the base directory

os.chdir(base_dir)

reset_dir=o0s.getcwd()

print(*Download process completed, reset to base directory: ", reset_dir)
if _name_ ==' main_ "

#base_dir = directory to store files download from aws

base_dir = "C:/Users/Sim/Documents/Code/Research/DataExtraction/WeatherRadarData/"

#select download date

year = "2020"
month = "10"
date = "02"

#enter specific weather station, or "ALL" to download data of all weather station
#e.g.: station = "ALL" or station =["TEWR","TOKX","TJFK","KDIX","TPHL"]

station = ['KOKX']

print(’)
if station == "ALL":
dir_name = year + "/" + month + /" + date

print('downloading weather radar data from all stations’)

83

s3://noaa-nexrad-level2/

print("prepare to download weather radar date of: " + dir_name)
awc_auto_download(base_dir, dir_name)
else:
print('downloading weather radar data from "+str(len(station))+' stations")
for i in range (len(station)):
curr_station = station[i]
dir_name = year + "/" + month + "/" + date + "/" + curr_station
print("prepare to download weather radar date of: " + dir_name)

awc_auto_download(base_dir, dir_name)

84

Appendix B: ADS-B data extraction

Appendix B1: ADS-B data extraction with Python wrapper

#Link to the OpenSky Network wrapper: https://github.com/junzi40,-75s/pyopensky

H B R R R R R
from pyopensky import OpenskylmpalaWrapper

from datetime import datetime

#specifying date and time of interest

start_time = "2018-07-01 13:00:00"

end_time = "2018-07-01 13:01:00"

max_lat = 42

min_lat =40

max_lon =-72

min_lon =-75

if _name ==' main_ "
#initialzie OpenSky impala wrapper
opensky = OpenskylmpalaWrapper()
#execute query and store query result to dataframe
adsb_df = opensky.query(
type="adsb",
start=start_time,
end=end_time,
bong = [min_lat,min_lon,max_lat,max_lon]
)
#generate file name by using start time
#file name format: absbh + UnixTimestampOfStartTime.csv
start_time_unix = datetime.fromisoformat(start_time).timestamp()
file_name = "adsh_'"+str(start_time_unix)+'.csv'
#output csv file to computer

adsb_df.to_csv(file_name, index=False)
85

https://github.com/junzi40,-75s/pyopensky

Appendix B2: ADS-B data extraction with custom Python script

import paramiko
from datetime import datetime
import pandas as pd
##H user input for querying data from database #HHHHHHHHHHHHHHHHHHHH
##1. time: YYYY-MM-DD HH:MM:SS+TimeZoneOffset
cmd_start_time = "2020-02-01 13:00:00+00:00"
cmd_end_time = "2020-02-01 13:01:00+00:00"
#convert time to unix timestamp
cmd_start_time_unix = datetime.fromisoformat(cmd_start_time).timestamp()
cmd_end_time_unix = datetime.fromisoformat(cmd_end_time).timestamp()
#2. geographical location
cmd_lat_min = "40"
cmd_lat_max = "42"
cmd_lon_min ="-75"
cmd_lon_max = "-72"
#3. OpenSky Network login credentials
username = "AC-0636"
password = 'adsbsimulation’
username = "username"
password = "password"
#4. path to storage directory
base_dir = 'C:/Users/Sim/Documents/Code/Research/DataExtraction/AdsbData/"
file_name = "adsb’ + str(cmd_start_time_unix) + ".csv'
if _name ==' main_ "
#stepl: connect to the opensky database server
#1.1 define parameters request for server connection

#Server address and port to opensky network can be found in: https://opensky-network.org/data/impala

host = "data.opensky-network.org"
port =2230
1.2 initialize a ssh connection

ssh = paramiko.SSHClient()

86

https://opensky-network.org/data/impala

1.3 set connection policy when connect to a unknown server
ssh.set_missing_host_key_policy(paramiko.AutoAddPolicy())

#1.4 connect to host through a specific port with username and password
ssh.connect(host,port,username,password)

print(‘connected to OpenSky sever")

#itHAHEHHAAE step 2: query data from database ###HHE#H#HHLHHE
#2.1 build the query

cmd = "-g SELECT time, icao24, lat, lon, velocity, heading, vertrate, callsign, baroaltitude, geoaltitude, onground,

lastposupdate, hour™ \
+" FROM state_vectors_data4 " \
+" WHERE lat > " + cmd_lat_min + " AND lat <" + cmd_lat_max \
+" AND lon>"+cmd_lon_min +" AND lon <" +cmd_lon_max \
+" AND time > " + str(cmd_start_time_unix) + " AND time <" + str(cmd_end_time_unix)\
+" AND geoaltitude IS NOT NULL AND velocity IS NOT NULL and vertrate IS NOT NULL AND onground = false;"
print(‘start to query data....")
#2.2 execute command using ssh.exec_command
stdin, stdout, stderr = ssh.exec_command(cmd)
#2.3 turn query output(stdout) to output
out = stdout.read().decode()
print(“query done™)
#2.4 split query result using ' ', and turn the result to a list
#because the result return from query are plain text with space inbetween columns

splited_out=out.split()

#2.5 clear table edge in output
temp_out=[]

border_edge = splited_out[0]
mid_border_edge = "+--"

border_mid ="|'

for i in range(len(splited_out)):
if splited_out[i] not in (border_edge,border_mid):
if splited_out[i][:3] '= mid_border_edge:

temp_out.append(splited_out[i])
87

#2.6 turn the clean list to a 'table’ format

cleaned_out =]

#step size 13 because there are 13 data column in the current dataset

for i in range (0O, len(temp_out),13):
cleaned_out.append(temp_out[i:i+13])

print(len(cleaned_out), " data record query from OpenSky Network database™)

#devide data into tables with 1025 rows because this is how the data is organized in the OpenSky Network

table_num = len(cleaned_out)//1025

#remove the header row of each table

#pop_index = the list of row index of the header rows

pop_index=[]

for i in range(1, table_num-+1):
pop_index.append(i*1025)

print("index to be removed: ", pop_index)

cleaned_out.pop(pop_index)

#use shift to update pop index as the list change while poping elements
shift="0
for i in pop_index:

cleaned_out.pop(i-shift)

shift+=1

#2.7 output clean data to csv file

print("generating csv file™)

##2.7.1 convert the data list to a dataframe

df = pd.DataFrame(cleaned_out[1:])

#use the first row of the table to set the column name

df.columns = cleaned_out[0]

#convert dataframe to csv file

df.to_csv(base_dir+file_name, index=False)

88

Appendix C: Weather radar data processing

import 0s

import subprocess

import pandas as pd

from datetime import datetime

import dateutil.parser as dp

#base_dir = directory to store files download from aws
base_dir = "C:/Users/Sim/Documents/Code/Research/DataExtraction/WeatherRadarData/"
#wct_dir = directory of the wct weather toolkit

wect_dir = "C:/Users/Sim/Documents/Code/Research/wct-4.6.0"

#define function to use bash command to run WCT to decode raw weather radar data
#export file depends on the config set to wctBatchConfig-allPoints.xml under the wct-4.6.0 file
def wct_auto_convert(base_dir, date_dir, wct_dir):

#input directory of a specific date -> dir_name = YYYY/MM/DD

input_dir = base_dir + date_dir

#append the name of weather staion directory under input_dir to a list
ws_list =[]
for ws_dir in os.listdir(input_dir):

ws_list.append(ws_dir)

#create new directory with the weather station (if not exist) for storing converted csv files
csvoutput_dir = base_dir + 'output_csv/' + date_dir
if not os.path.exists(csvoutput_dir):
os.makedirs(csvoutput_dir)
for i in range (len(ws_list)):
ws_dir=csvoutput_dir+'/'+ws_list[i]
if not os.path.exists(ws_dir):

os.mkdir(ws_dir)

#use wct export bash command to convert nexradii files to csv files

89

#1. for each weather station directory
for i in range (len(ws_list)):
print('Decrypting file under |'+ws_list[i]+"| directory")
#2. update input and output path to ws directory
station_input_dir = input_dir + /' + ws_list[i]
station_output_dir = csvoutput_dir+'/'+ ws_list[i]
#3. use wct bash command to convert files
for nexradii_file in os.listdir(station_input_dir):
#3-1. get input file path
file_path = station_input_dir + /' + nexradii_file
#3-2. constract wct bash command and run command using subprocess
#nexradii_file[:-3] -> keep original file name, without '.gz'

wct_command = "wct-export.bat "+ file_path + " " + station_output_dir+/'+nexradii_file + csv "o+

wect_dir+'/wctBatchConfig-allPoints.xml’
subprocess.run(wct_command, shell=True, cwd=wct_dir)
#delete .prj file (a not needed file generated during .csv export process)
if os.path.exists(station_output_dir+'/+nexradii_file+'.prj"):
os.remove(station_output_dir+/'+nexradii_file+'.prj")
def nexrad_standardized(base_dir,date_dir,station):
#path to de decoded weather radar file
nexrad_dir = base_dir + 'output_csv/' + date_dir + /' + station + /'

print(nexrad_dir)

#get all the nexradii file name under nexrad_dir directory
file_list =[]
for nexrad_file in os.listdir(nexrad_dir):

file_list.append(nexrad_file)

for i in range(len(file_list)):

nexrad_df = pd.read_csv(nexrad_dir+file_list[i])

#switch column order to avoid error loading longitude to map(if using csv file)
nexrad_df=nexrad_df[['sweep’, 'sweepTime', ‘elevAngle’, 'value', 'radialAng’, ‘surfaceRan’, ‘heightASL', ‘latitude’,
‘longitude’,'heightRel’]]
#drop undesired data column
90

nexrad_df.drop(columns=['sweep','elevAngle’,'radial Ang','surfaceRan'], inplace=True)
#rename sweepTime to Time

nexrad_df.rename(columns={"sweepTime":'Time', ‘'value''Reflectivity’, 'latitude" 'Latitude’, ‘longitude: 'Longitude’,
'heightASL":'HeightASL'}, inplace=True)

#time in one nexrad file are the same for all row
time = nexrad_df.loc[0, Time']
#convert time to unix timestamp
time_unix = datetime.fromisoformat(str(dp.parse(time))).timestamp()
#change time to unix timestamp in dataframe
nexrad_df[' Time'] = nexrad_df['Time'].replace({time:time_unix})
nexrad_df.to_csv(nexrad_dir+file_list[i],index=False)
if _name_ ==' main_"

#select date and station

year = "2020"
month ="10"
date = "01"

date_dir = year+"/"+month+"/"+date

station = 'KOKX'

#run WCT by calling wct_auto_convert function
print('Running WCT to decrypt raw weather data...")

wct_auto_convert(base_dir=base_dir,date_dir=date_dir,wct_dir=wct_dir)

#process the decoded weather data

print('Processing decoded weather radar file...")

nexrad_standardized(base_dir=base_dir,date_dir=date_dir,station=station)

91

Appendix D: Loading data to the database for storage

from os.path import exists

from datetime import datetime

import sqlite3

import pandas as pd

pd.set_option('float _format','{:.2f}".format)

pd.set_option('max_columns',None)

#define the name of the database

db_name ='adsb_weather db.sqlite’

#define data capture time, need to use this to make the 'Unix_time' table
start_time = "2020-08-01 00:00:00+00:00"

end_time = "2020-08-05 00:00:00+00:00"

#define the geographical region, need to use this to make the 'Geographical point' table
min_lat =37

max_lat =44

min_lon =-79

max_lon =-70

path to the adsbdata file
adsb_base_dir ="C:/Users/Sim/Documents/Code/Research/DataExtraction/AdsbData/"
adsb_csv ="adsb 1596294000.csv"

#path to the weather data file
nexrad base dir = "C:/Users/Sim/Documents/Code/Research/DataExtraction/WeatherRadarData/output _csv/"
nexrad_csv ="KDIX 2020-08-01_000432.csv"

#create the database if not exist

def createDB():
print('Database file NOT FOUND. Creating new database....\n")
conn = sqlite3.connect(db_name)
¢ = conn.cursor()
#enable load extension
conn.enable load extension(True)
#load spatialite extension and initialize spatialite
c.execute('SELECT load_extension("mod_spatialite")")
conn.execute('SELECT InitSpatialMetaData(1)")
#create table

c.execute('CREATE TABLE IF NOT EXISTS Unix_time(Time ID text, Hour int)")
92

c.execute('CREATE TABLE IF NOT EXISTS Geographical point(Geo_ID text, Latitude int, Longitude int)")

c.execute('CREATE TABLE IF NOT EXISTS Standardized ADSB_data(Geo_ID text, Time ID text, Time int, Latitude
float,Longitude float, onground bool, Icao24 text, Velocity float, Heading float, Vertrate float, Callsign float, BarometricAltitude
float, GeometricAltitude float, LastPosUpdate int)")

c.execute('CREATE TABLE IF NOT EXISTS Standardized NEXRADII data(Geo ID text, Time ID text, Time int, Latitude
float, Longitude float, HeightASL float, Reflectivity float)")

conn.close()

print('Done initializing new database, prepare to insert data...\n")

return

#check the number of time record in database
#for identifying the last index number in table to make unique time id
def checkTimelndex(db):
conn = sqlite3.connect(db)
¢ = conn.cursor()
query = c.execute('SELECT COUNT(*) FROM Unix_time')
time_id = query.fetchone()[0]
conn.close()

return time_id

#check the number of geo record in database
#for identifying the last index number in table to make unique geo_id
def checkGeolndex(db):
conn = sqlite3.connect(db)
¢ = conn.cursor()
query = c.execute('SELECT COUNT(*) FROM Geographical point')
geo_id = query.fetchone()[0]
conn.close()

return geo_id

#covert the select time period to hours and then unix timestamp
def generateHourList(start t, end t):

start_time unix = datetime.fromisoformat(start_t).timestamp()

end time unix = datetime.fromisoformat(end _t).timestamp()

#calculate the number of hours in the input time

hours = (end_time unix-start_time unix)/3600

time_df = pd.DataFrame(columns=["Hour'])

hour list =[]

for i in range(int(hours)):

temp_hour = start time unix+i*3600

hour_list.append(temp hour)

93

time_df.loc[-1] = [temp_hour]
time_df.index+=1

return hour_list

#create geo_list by matching all the combination of the select latitude and longitude 1 degree by 1 degree
def generateGeoList(min_lat,max_lat,min_lon,max_lon):
geo_list =[]
for lat in range (min_lat, max_lat+1):
for lon in range (min_lon, max_lon+1):
geo_list.append([lat,lon])

return geo_list

check if the selected time period already exist in 'Unix_time' table
def checkTimeExistence(db, hour_list):
conn = sqlite3.connect(db)
¢ = conn.cursor()
pop_index=[]
for i in range (len(hour _list)):
query ="SELECT Time ID FROM Unix_Time WHERE Hour=" + str(hour_list[i]) +';'
exec_query = c.execute(query)
print(type(exec_query.fetchone()))
result = exec_query.fetchone()
if result is not None:
print('data record exit, skip this')
pop_index.append(i)
elif result is None:
print('no data record, keep this')
#pop data that already exist in the database
if len(pop_index)>0:
shift =0
for i in pop_index:
hour list.pop(i - shift)
shift+=1

return hour list

check if the selected geo area already exist in 'Unix_time' table
def checkGeoExistence(db, geo_list):

conn = sqlite3.connect(db)

¢ = conn.cursor()

pop_index =[]

for i in range(len(geo_list)):

94

query = "SELECT Geo_ID FROM Geographical point WHERE Latitude=" + str(geo_list[i][0]) +' AND Longitude="\
+ str(geo_list[i][1]) + "'
exec_query = c.execute(query)
print(type(exec_query.fetchone()))
result = exec_query.fetchone()
if result is not None:
print(‘data record exit, skip this')
pop_index.append(i)
elif result is None:
print('no data record, keep this')
if len(pop_index) > 0:
shift=0
for i in pop_index:
geo_list.pop(i - shift)
shift +=1

return geo_list

#update Unix_time table in the database
def updateTimeTable(hour _list, time_id,db):
id_list=1]
for i in range (len(hour _list)):
id_list.append('T'+str(time_id))
time_id+=1
hour_df = pd.DataFrame()
hour df['Time ID']=id list
hour_df['Hour'] = hour _list
conn = sqlite3.connect(db)
hour df.ito _sql("Unix_time', conn, if exists='append', index=False)
conn.close()

return

update 'geographical point' table in the database
def updateGeoTable(geo list,geo id,db):
id_list=1]
geo_df = pd.DataFrame(geo_list,columns=['Latitude','Longitude'])
for i in range(len(geo_list)):
id_list.append('G'+str(geo_id))
geo_id+=1
geo_df.insert(loc=0, column='Geo ID',value=id_list)
print(geo_df)

conn =sqlite3.connect(db)

95

geo_dfito sql('Geographical point', conn, if exists='append', index=False)
conn.close

return

#insert adsb data to 'Standardized ADSB_data' table
def insertAdsbData(adsb_file,db):

#set low_memory to False aviod mixing data type

adsb_df =pd.read_csv(adsb_file,Jow_memory=False)

#create Time ID and Geo_ID column in dataframe

adsb_df['Time ID'] = pd.NaT

adsb_df['Geo_ID'] = pd.NaT

#rename column name in dataframe
adsb_df.rename(columns={"time":"Time","icao24":"Icao24","lat":"Latitude","lon":"Longitude","velocity":"Velocity","heading":"
Heading", "vertrate":" Vertrate", "callsing":"Callsign",
"baroaltitude":"BarometricAltitude","geoaltitude":"GeometricAltitude","lastposupdate":"LastPosUpdate","hour":"Hour"} ,inplace

=True)

#connect to database
conn = sqlite3.connect(db)
¢ = conn.cursor()
for i in range(0,len(adsb_df)):
#get the matching Time ID from Unix Time table
hour = adsb_df.loc[i,'Hour']
query = c.execute("SELECT Time ID From Unix_Time WHERE Hour =" + str(hour)+';")
timeld = query.fetchone()[0]
adsb_df.at[i,'Time ID'] = timeld

#get the matching Geo ID from Geographical point table

lat = int(float(adsb_df.loc[i,'Latitude']))

lon = int(float(adsb_df.loc[i,'Longitude']))

query = c.execute("SELECT Geo ID From Geographical point WHERE Latitude =" + str(lat)+ " AND Longitude =
"+str(lon) +';')

geolD = query.fetchone()[0]

adsb_df.at[i,’Geo ID']= geolD

#drop the hour column in dataframe since it is replaced by the Time ID
adsb_df.drop('Hour', axis=1,inplace=True)

#load dataframe data to database

adsb_df.to sql('Standardized ADSB_data',conn,if exists='append',index=False)
conn.close()

return

96

#create spatialite blob for air traffic data
def addAdsbBlob(db):
conn = sqlite3.connect(db)
conn.enable load extension(True)
conn.execute('SELECT load_extension("mod_spatialite")")
conn.execute("SELECT AddGeometryColumn('Standardized ADSB_data', 'Geo_blob', 4326, 'POINTZ', 'XYZ')")

c=conn.cursor()

query =c.execute('SELECT COUNT(*) FROM Standardized ADSB_data;')

row_num = query.fetchone()[0]

for i in range(1,row_num-+1):
query_geo_info ="SELECT Latitude, Longitude, BarometricAltitude FROM Standardized ADSB_data WHERE rowid
="+ str(i)+";'
query_result = (c.execute(query_geo_info)).fetchall()
lat = query_result[0][0]
lon = query_result[0][1]
alt = query_result[0][2]

query_update = "UPDATE Standardized ADSB_data SET Geo_blob = GeomFromText('POINTZ(" + str(lon) + " " + str(
lat) +" " + str(alt) + ")',4326) WHERE rowid =" + str(i)
c.execute(query update)
conn.commit()
conn.close()

return

#insert adsb data to 'Standardized NEXRADII data' table
def insertNexradData(nexrad_file, db):
#set low_memory to False aviod mixing data type
nexrad df=pd.read csv(nexrad file,Jow memory=False)
#create Time ID and Geo_ID column in dataframe
nexrad df['Time ID'] = pd.NaT
nexrad df['Geo ID']=pd.NaT
#get nexrad time from dataframe
time = nexrad_df.loc[0, Time']

hour = (int(time)//3600)*3600

#connect to database
conn =sqlite3.connect(db)

¢ = conn.cursor()

97

#get time id from database

query = c.execute("SELECT Time ID From Unix_Time WHERE Hour =" + str(hour) +";)
timeld = query.fetchone()[0]

#assign time id to dataframe

nexrad_df['Time ID'] = timeld

for i in range (0, len(nexrad_df)):
#get the matching Geo_ID from Geographical point table
lat = int(float(nexrad_df.loc[i,'Latitude']))
lon = int(float(nexrad_df.loc[i,'Longitude']))
query = c.execute("SELECT Geo_ID From Geographical point WHERE Latitude = " + str(lat)+ " AND Longitude =
"+str(lon) +';'")
geolD = query.fetchone()[0]
nexrad_df.at[i,’Geo_ID']= geolD

#drop the heightRel column in dataframe as it is not needed in dataframe
nexrad_df.drop('heightRel', axis=1,inplace=True)

#load dataframe data to database

nexrad df.to_sql('Standardized NEXRADII data',conn,if exists="append',index=False)

return

#create spatialite blob for weather radar data
def addNexradBlob(db):
conn = sqlite3.connect(db)
conn.enable load extension(True)
conn.execute('SELECT load extension("mod_spatialite")")
conn.execute("SELECT AddGeometryColumn('Standardized NEXRADII data', 'Geo_blob', 4326, 'POINTZ', 'XYZ")")

c=conn.cursor()

query = c.execute('SELECT COUNT(*) FROM Standardized NEXRADII data;')

row_num = query.fetchone()[0]

for i in range(1,row_num-+1):
query_geo_info ="SELECT Latitude, Longitude, HeightASL FROM Standardized NEXRADII_data WHERE rowid ="
+ str(i) +;'
query_result = (c.execute(query geo_info)).fetchall()
lat = query_result[0][0]
lon = query_result[0][1]
alt = query_result[0][2]

query_update = "UPDATE Standardized NEXRADII data SET Geo blob = GeomFromText('POINTZ(" + str(lon) + "

98

"+ str(
lat) +" " + str(alt) + ")',4326) WHERE rowid =" + str(i)
c.execute(query update)

conn.commit()

conn.close()
return
if name ==' main ":

check if database already exist

db_exists = exists(db_name)

if db_exists == False:
createDB()
time id=0
geo id=0

else:
print('database already exist')
time_id = checkTimeIndex(db=db_name)
geo_id = checkGeolndex(db=db_name)

##1. check and update information in the 'Unix_time' table
time_list = generateHourList(start_time, end_time)
checkTimeExistence(db=db_name, hour list=time list)

updateTimeTable(hour list=time list,time id=time id,db=db name)

#2. check and update information in the 'Geographical point' table

geo_list = generateGeoList(min_lat=min_lat,max_lat=max lat,min_lon=min_lon,max lon=max lon)
checkGeoExistence(db=db_name, geo list=geo_list)
updateGeoTable(geo_list=geo_list,geo id=geo id,db=db_name)

#3. load adsb data files, and load to database
adsb_file = adsb_base dirt+adsb csv
insertAdsbData(adsb_file=adsb_file,db=db_name)
addAdsbBlob(db=db_name)

#4. load weather data files, and load to database
nexrad file = nexrad base dir + nexrad csv
insertNexradData(nexrad_file=nexrad_file, db = db_name)

addNexradBl

99

Appendix E: Prototype #1

import matplotlib.pyplot as plt

from mpl_toolkits.basemap import Basemap
from matplotlib.animation import FuncAnimation
from mpl_toolkits.mplot3d import Axes3D
import pandas as pd

from datetime import datetime

##1. load the selected data file and filter out the information that are outside the region
#the data in the csv file are converted to dataframe to make it easier for the future steps
adsb_df = pd.read_csv(‘'adsb csv/adsb_1590969660.csv")

adsb_df = adsb_df.loc[adsb_df['lat']>=24.93]

adsb_df = adsb_df.loc[adsb_dff'lat']<=43.96]

adsb_df = adsb_df.loc[adsb_df['lon]>=-88.81]

adsb_df = adsb_df.loc[adsb_dff'lon"<=-67.26]

adsb_df = adsb_df.loc[adsb_df['baroaltitude]<=14000]

#2. create three list to store longitude, latitude, and altitude information separately
def load_adsb_from_df(time):

select_df = adsh_df.loc[adsh_df['time']==time]

lon = select_df['lon".tolist()

lat = select_df['lat].tolist()

alt = select_dff'baroaltitude.tolist()

return lon, lat,alt

#3. load the three lists to map
def load_data_to_map(i):
#create a map background for the selected geographical region
map = Basemap(projection="mill’,
llcrnrlat=24.93, urcrnrlat=43.96,
llcrnrlon=-88.81, urcrnrlon=-67.26,

fix_aspect=False)

100

#create text label for New York and Miami
nyc=[-74.006111,40.712778]
miami=[-80.208615,25.775163]
nyc_x,nyc_y= map(nyc[0],nyc[1])

miami_x,miami_y= map(miami[0],miami[1])

#update 'time' whenever the animation being called
#the initial time comes from the file name of the selected data file

time = 1590969660+i

#get adsb data from dataframe
lon, lat, alt = load_adsb_from_df(time)
#convert the longitude and latitude information to 2D (x,y) format for the plot

x,y = map(lon,lat)

#initialize the 3D map
fig = plt.gcf()

ax = Axes3D(fig)
ax.set_zlim3d(0, 15000)

#define the view of the 3d map
ax.azim =315
ax.elev =20

ax.add_collection3d(map.drawcoastlines())

#plot dot by using the information in the x,y, alt list
p=ax.scatter3D(x, y, alt, c=alt, cmap="Paired’)
ax.set_title("Visualization of archived air traffic data',fontsize=20)
ax.text(nyc_x,nyc_y,0,'New York', ha="left', fontsize=20, weight="bold")
ax.text(miami_x,miami_y,0,'Miami',ha="right',fontsize=20,weight="bold")
ax.set_zlabel(‘Altitude above ground level(ft)")
ax.annotate(str(datetime.utcfromtimestamp(time))+' UTC',

xy=(0.5, 0), xytext=(0, 10),

xycoords=("axes fraction', 'figure fraction'),

101

textcoords="offset points’,

size=25, ha='center', va="bottom',weight="bold")

plt.colorbar(mappable=p,shrink = 0.8,pad=0.03)

i+=1

if _name__=='_ main__"
#update the plot every 3 seconds
ani = FuncAnimation(plt.gcf(), load_data_to_map, interval=3000)

plt.show()

102

Appendix F: Prototype #2

Appendix F1: Graphical user interface

import wx

from matplotlib.backends.backend wxagg import FigureCanvasWxAgg as FigureCanvas
from matplotlib.figure import Figure

import display _map

import get db_data

import get navi charts

#define the main frame (the gui)
class MainFrame(wx.Frame):
def init (self, parent,title):
#size(x,y) = x width * y heigh
super(MainFrame, self). _init _(parent, title = "Flight Smart", size = (1400,1000))
#set min and max frame size to lock window size
self.SetMinSize((1400,1000))
self.SetMaxSize((1400,1000))
##set panel
self.panel = MainPanel(self)
##set menu bar
menuBar = wx.MenuBar()
fileMenu = wx.Menu()
exitMenultem = fileMenu.Append(wx.Newld(), "Exit","Exit the application")
menuBar.Append(fileMenu, "&More Settings")
self.Bind(wx.EVT_MENU, self.onExit, exitMenultem)
self.SetMenuBar(menuBar)

def onExit(self, event):
self.Close()

#defined the content to display in the main panel
class MainPanel(wx.Panel):
def init (self, parent):
super(MainPanel,self). init (parent)
config of the main map
self.mainmapFigure = Figure(figsize=(10, 10), dpi=100)
self.mainmapCanvas = FigureCanvas(self, -1, self.mainmapFigure)

103

self.mainmapAx = self.mainmapFigure.add_axes([0, 0, 1, 1])

config of the sub map

self.submapFigure = Figure(figsize=(4, 2), dpi=100)
self.submapCanvas = FigureCanvas(self,-1,self.submapFigure)
self.submapAx = self.submapFigure.add axes([0,0,1,1])

##config of the elevation profile

self.eleproFigure = Figure(figsize=(3.5,2))
self.eleproCanvas = FigureCanvas(self,-1,self.eleproFigure)
self.eleproAx = self.eleproFigure.add axes([0,0,1,1])
self.panelLayout()

self. mainTimer = wx.Timer(self)
self.Bind(wx.EVT_TIMER, self.updateTimer)
self.mainTimer.Start(1000)

def panelLayout(self):
#ctrlBox = box sizer for control manual
ctrlBox = wx.BoxSizer(wx.VERTICAL)

#mainmapBox = box sizer for map
mainmapBox = wx.BoxSizer(wx.VERTICAL)
#ADD the map figure to mainmapBox

mainmapBox.Add(self.mainmapCanvas, 0, wx.LEFT)

#submapBox = box sizer for submap
submapBox = wx.BoxSizer(wx.VERTICAL)
submapBox.Add(self.submapCanvas,0,wx.Center)

#eleproBox = box sizer for elevation profile
eleproBox = wx.BoxSizer(wx.VERTICAL)
eleproBox.Add(self.eleproCanvas,0,wx.Center)

#hBox = "final" box sizer to display map and control horizontally
hBox = wx.BoxSizer(wx. HORIZONTAL)

#cltBox = box sizer title for check lists

cltBox = wx.BoxSizer(wx.HORIZONTAL)
#clcBox = box sizer choice for check lists
clcBox = wx.BoxSizer(wx. HORIZONTAL)

104

#box sizer for vir buttons
virbtnBox = wx.BoxSizer(wx.HORIZONTAL)
#box sizer for ifr buttons
ifrbtnBox = wx.BoxSizer(wx.HORIZONTAL)

#btnBox2 = box sizer for buttons: "Swap view", "Filght Plan Map"
btnBox2 = wx.BoxSizer(wx.HORIZONTAL)

checklist box title

self.displayLabel = wx.StaticText(self,label = "Display option")
cltBox.Add(self.displayLabel, 0, wx. EXPAND)
cltBox.AddSpacer(100)

self.mapviewLabel = wx.StaticText(self, label = "Map view option™)
cltBox.Add(self.mapviewLabel, 0, wx. EXPAND)

#add check list title box sizer to control box sizer
ctrlBox.Add(cltBox)

#display option list

displayList = ["Flight Plan", "Air Traffic (ADS-B)", "Enroute Icing", "Wind", "Turbulence", "Show
Runways","Show Waypoints"]

#markers for display choice, default set as flight plan, so the first marker is 1

self.displayMarker=[1,0,0,0,0,0,0]

self.displayChoice = wx.CheckListBox(self, choices=displayList)

self.displayChoice.Check(0, True)

#Bind display choice from the radio box

self.displayChoice.Bind(wx.EVT CHECKLISTBOX, self.mapdisplayEvent)

clcBox.Add(self.displayChoice, 0, wx. EXPAND)

clcBox.AddSpacer(20)

#map view option list

mapList = ["Terrain Map View","Street Map View", "Satellite Map View"]
self.mapviewChoice = wx.CheckListBox(self, choices=mapList)

mark the deafult map view as checked
self.mapviewChoice.Check(0,True)

marker to "remember" the current view option

self.viewMarker=0

bind check box list event

self.mapviewChoice.Bind(wx.EVT CHECKLISTBOX, self.mapviewEvent)
clcBox.Add(self.mapviewChoice,0,wx.EXPAND)

add check list choice sizer to control box sizer

ctrlBox.Add(clcBox)

105

ctrlBox.AddSpacer(10)

#"Time" stuff

self.currenttimeLabel=wx.StaticText(self, label = "Current Time: ")
ctriIBox.Add(self.currenttimeLabel,0,wx. EXPAND)
self.currentTime=get db_data.getcurrenttime()
self.currenttimeDisplay = wx.StaticText(self, label = self.currentTime)
ctrlBox.Add(self.currenttimeDisplay)

ctrlBox.AddSpacer(10)

self.timeoffsetLabel = wx.StaticText(self,label = "Time Offest(from now)")
ctriIBox.Add(self.timeoffsetLabel,0,wx. EXPAND)

timeoffsetList=["30 Minute before mow', "1 Hour before mow',"None(Realtime)","30 Minute after
'now"", "1 Hour after 'now"']

self.timeoffsetChoice = wx.CheckListBox(self,choices=timeoffsetList)

#mark "None(Realtime) as default term"

self.timeoffsetChoice.Check(2,True)

ctrlIBox.Add(self.timeoffsetChoice,0,wx.EXPAND)

ctrlBox.AddSpacer(10)

#"Altitude selection" title

self.altitudeLabel = wx.StaticText(self,label="Altitude Selection")
ctrIBox.Add(self.altitudeLabel,0,wx. EXPAND)

self.altitudelnput = wx.SpinCtrl(self,initial=15000, min=1000,max=20000)
self.last_altitude = 15000
self.altitudelnput.Bind(wx.EVT_SPINCTRL,self.spinctrlEvent)
ctriIBox.Add(self.altitudeInput,0,wx. EXPAND)

#"Update map at this altitude" button

self.updatealtBtn = wx.Button(self,label="Update Map at this Altitude")
self.updatealtBtn.Bind(wx.EVT BUTTON,self.updatealtEvent)
ctrIBox.Add(self.updatealtBtn)

ctrlBox.AddSpacer(20)

#Navigation chart stuff
self.navigationchartLabel = wx.StaticText(self,label = "Navigation Chart")

ctrlBox.Add(self.navigationchartLabel,0,wx. EXPAND)

self.vfrLabel = wx.StaticText(self, label = "VFR")
ctrlBox.Add(self.vfrLabel,0,wx. EXPAND)

106

self.vfrsectional Btn = wx.Button(self,label = "Sectional™)
virbtnBox.Add(self.vfrsectionalBtn)
self.vfrsectionalBtn.Bind(wx.EVT BUTTON,self.vfrsecEvent)
virbtnBox.AddSpacer(10)

self.vfrterminalBtn = wx.Button(self,label = "Terminal Area")
virbtnBox.Add(self.vfrterminal Btn)
self.vfrterminalBtn.Bind(wx.EVT _BUTTON,self.vfrterEvent)
virbtnBox.AddSpacer(10)

self.vfrterminalpBtn = wx.Button(self,label = "Terminal Planning")
virbtnBox.Add(self.vfrterminalpBtn)
self.vfrterminalpBtn.Bind(wx.EVT BUTTON,self.vfrterplanEvent)
ctrIBox.Add(vfrbtnBox)

ctrlBox.AddSpacer(20)

self.ifrLabel = wx.StaticText(self,label = "IFR")
ctrlBox.Add(self.ifrLabel)

self.ifrlowaltBtn = wx.Button(self, label = "Low Altitude")
ifrbtnBox.Add(self.ifrlowaltBtn)
self.ifrlowaltBtn.Bind(wx.EVT BUTTON,self.ifrlowaltEvent)
ifrbtnBox.AddSpacer(10)

self.ifrhialtBtn = wx.Button(self,label = "Hight Altitude")
iftbtnBox.Add(self.ifrhialtBtn)
self.ifrhialtBtn.Bind(wx.EVT_BUTTON,self.ifrhialtEvent)
ctrIBox.Add(ifrbtnBox)

ctrlBox.AddSpacer(10)

add sub map to the ctrlBox Sizer
ctrIBox.Add(submapBox)
ctrlBox.AddSpacer(10)

#elevation profile title
self.eleproLabel = wx.StaticText(self,label="Elevation Profile")
ctrlBox.Add(self.eleproLabel,0,wx. EXPAND)

#add elevation profile to the ctrlBox Sizer
ctrlBox.Add(eleproBox)

#add them to the "final" Box
107

hBox.Add(mainmapBox)
hBox.Add(ctrlBox)
self.SetSizer(hBox)

#display default main map

display _map.zoomflightplanMap(self,self. mainmapFigure,self.mainmapCanvas,self.mainmapAx)
#display default sub map

display _map.fullflightplanMap(self,self.submapFigure,self.submapCanvas,self.submapAx)

#display elevation map

display _map.plotelevationProfile(self,self.eleproFigure,self.eleproCanvas,self.eleproAx)

#map view event: for changing map style marker
def mapviewEvent(self,event):
viewIndex = self.mapviewChoice.GetCheckedltems()
find the current view index(viewMarker) from the list, and unchecked it
removeindex = viewIndex.index(self.viewMarker)
self.mapviewChoice.Check(viewIndex[removeindex],False)
if removeindex == 0:
self.viewMarker = viewIndex[1]
else:

self.viewMarker = viewIndex[0]

viewResult = self.mapviewChoice.GetString(self.viewMarker)

display _map.mapView(self,self.mainmapFigure,self.mainmapCanvas,self. mainmapAx,viewResult)

#map display event
def mapdisplayEvent(self, event):

displayResult = self.displayChoice.GetCheckedStrings()

if "Flight Plan" in displayResult and self.displayMarker[0] == 0:
display map.flightplanMap(self, self.mainmapFigure, self.mainmapCanvas, self.mainmapAx)
self.displayMarker[0]=1

if "Air Traffic (ADS-B)" in displayResult and self.displayMarker[1] == 0:
display _map.plotTraffic(self, self.mainmapFigure, self.mainmapCanvas, self. mainmapAx)
self.displayMarker[1] =1

if "Enroute Icing" in displayResult and self.displayMarker[2] ==0:
display map.plotlcing(self,self.mainmapFigure,self. mainmapCanvas, self. mainmapAx,15000)
self.displayMarker[2] =1

elif "Show Waypoints" in displayResult and self.displayMarker[6] == 0:

display map.plotWaypoint(self, self.mainmapFigure, self. mainmapCanvas, self.mainmapAx)

time update
108

def updateTimer(self, event):
self.currentTime = get db_data.getcurrenttime()
self.currenttimeDisplay.SetLabel Text(self.currentTime)

force altitude slider increment

def spinctrlEvent(self, event):

##calculate the delta altitude to figure out whether "UP" or "DOWN" is clicked

delta_alt = self.altitudeInput.GetValue() - self.last_altitude

##"UP"

if delta_alt >0:
self.last_altitude += 1000 ##we want to set the change step as 1000
self.altitudeInput.SetValue(self.last_altitude)

##"DOWN"

else:
self.last_altitude -= 1000 ##we want to set the change step as 1000
self.altitudeInput.SetValue(self.last_altitude)

display Sectional VFR chart
def vfrsecEvent(self, event):
get_navi_charts.getvfrSectional()

display Terminal VFR chart
def vfrterEvent(self,event):
get_navi_charts.getvfrTerminal()

display Terminal Planning VFR chart
def vfrterplanEvent(self,event):
get_navi_charts.getvfrterminalPlanning()

display Low Altitude IFR chart
def ifrlowaltEvent(self,event):
get_navi_charts.getifrlowAltitude()

display High Altitude IFR chart
def ifrhialtEvent(self,event):
get navi_charts.getifrhiAltitude()

update map with altitude
def updatealtEvent(self,event):

class TApplication(wx.App):
109

def Onlnit(self):
self.frame = MainFrame(parent=None, title=None)
self.frame.Show()
return True
if name ==" main_ "
Application = TApplication(0)
Application.MainLoop()

110

Appendix F2: Design the main map

from mpl_toolkits.basemap import Basemap
from our_opensky api import OpenSkyApi
import get db_data

import get elevation profile

import matplotlib.image as image

import asyncio

#itcoordinate of departure & destination
##KIFK

depart_lat = 40.6444

depart_lon = -73.7867

#H#KLGA

dest_lat =40.7844

dest_lon =-73.8767

##global depart_lat, depart lon, dest _lat, dest lon
depart_icao = "KJFK"

dest_icao = "KLGA"

map_view_mode = "World Terrain Base"

##current location representation
currently set in JFK
current_lon = depart_lon
current_lat = depart_lat

global llclat, urclat, liclon, urclon

liclat = min(depart_lat, dest lat) # min_lat
urclat = max(depart_lat, dest lat) # max lat
llclon = min(depart lon, dest lon) # min lon

urclon = max(depart_lon, dest lon) # max lon

def mapView(self, figure, canvas, axes, view):
_figure.set_canvas(_canvas)
_axes.clear()
global map _view_mode
if view == "Street Map View":
map_view_mode = 'World_Street Map'
map_view_mode ='/Canvas/World Dark Gray Base'

111

elif view == "Terrain Map View":
map_view _mode ='World Terrain_Base'
elif view == "Satellite Map View":
map_view_mode = 'World Imagery'
plotbackgroundMap(self, figure, canvas, axes)
zoomflightplanMap(self, figure, canvas, axes)

config for the maps
def mapVariable(_llcrnlat, urcrnrlat, llcrnrlon, urcrnrlon, axes):
_map = Basemap(llcrnrlat=_llcrnlat, urcrnrlat=_urcrnrlat,
llcrnrlon=_llcrnrlon, urcrnrlon=_urcrnrlon,
epsg=4269, ax=_axes)
map.arcgisimage(service=map_view_mode, xpixels=2000, verbose=True)

return _map

plot the background map on the given area

def plotbackgroundMap(self, figure, canvas, axes):
_figure.set canvas(_canvas)
_axes.clear()

global llclat, urclat, llclon, urclon
_map = map Variable(llclat - 0.05, urclat + 0.05, llclon - 0.05, urclon + 0.05, _axes)
_map.arcgisimage(service=map_view_mode, xpixels=2000, verbose=True)

depart_x, depart y = map(depart_lon, depart_lat)
dest x, dest y=_map(dest lon, dest_lat)

_axes.scatter(depart_x, depart_y, marker="D', color="r', s=20)
_axes.annotate(depart_icao, xy=(depart_x, depart_y), color="r")
_axes.scatter(dest_x, dest y, marker="D', color="r', s=20)

_axes.annotate(dest_icao, xy=(dest_x, dest_y), color="r'")

_figure.canvas.draw()

return _map

zoom map background set up, clear map with flight plan plotted

currentlly using JFK as our center

def zoomflightplanMap(self, figure, canvas, axes):
_figure.set_canvas(_canvas)

_axes.clear()

112

global llclat, urclat, llclon, urclon
_map = map Variable(depart_lat - 0.05, depart_lat + 0.05, depart_lon - 0.05, depart_lon + 0.05, _axes)
_map.arcgisimage(service=map_view_mode, xpixels=2000, verbose=True)

plot jtk
depart_x, depart y = map(depart_lon, depart_lat)
_axes.scatter(depart_x, depart_y, marker='D', color="r', s=50)

_axes.annotate(depart_icao, xy=(depart_x, depart_y), color="r")

plot flight plan

_fplat, fplon, fpalt=get db data.getflightPlan()
fp x, fp_y=_map(fplon, fplat)
_axes.plot(fp_x, fp_y, linewidth=1.5, color="r")

plot our "current”" location

current_x, current y = map(current_lon, current_lat)
_axes.scatter(current_Xx, current_y, marker='0', color="y', s=30)
_figure.canvas.draw()

return _map

##full map background set up, clear map with flight plan plotted
def fullflightplanMap(self, figure, canvas, axes):
_figure.set _canvas(_canvas)
_axes.clear()
_map = plotbackgroundMap(self, figure, canvas, axes)
_fplat, fplon, fpalt=get db data.getflightPlan()
fp x, fp_y=_map(_fplon, fplat)
_axes.plot(fp_x, fp_y, linewidth=1.5, color="r")
_figure.canvas.draw()
return _map

elevation map set up

def plotelevationProfile(self, figure, canvas, axes):
_figure.set_canvas(_canvas)
_axes.clear()

_d list rev, elev_list = get elevation_profile.elevationData()

BASIC STAT INFORMATION

mean_elev = round((sum(_elev_list) / len(_elev_list)), 3)

113

min_elev =min(_elev_list)
max_elev = max(_elev_list)
distance = d _list rev[-1]

_axes.plot(_d list rev, elev_list)

_axes.plot([0, distance], [min_elev, min_elev], '--g', label="min: ' + str(min_elev) + ' m")
_axes.plot([0, distance], [max_elev, max_elev], '--r', label="max: ' + str(max_elev) + ' m')
_axes.plot([0, distance], [mean_elev, mean_elev], '--y', label='ave: ' + str(mean_elev) + ' m')
_axes.fill_between(_d list rev, elev list, 0, alpha=0.1)

_axes.text(_d list rev[0], elev list[0], "KJFK") ##P1

_axes.text(_d list rev[-1], elev list[-1], "KLGA") ##P2

_axes.grid()

_axes.legend(fontsize="small')

_figure.canvas.draw()

##map ADS-B info

def plotTraffic(self, figure, canvas, axes):
_figure.set canvas(_canvas)
_axes.clear()

##plotting the icon to the graph
dpi = 72;
imageSize = (16, 16)
wpt_im = image.imread('icon/plane.png')
_map = fullflightplanMap(self, figure, canvas, axes)
lon =]
lat =]
tailnum =[]
alt=1]
j=0
api = OpenSkyApi()
global llclat, urclat, liclon, urclon
#itget live ADS-B from opensky api
states = api.get_states(bbox=(llclat - 0.08, urclat + 0.08, llclon - 0.08, urclon + 0.08))
for s in states.states:
lon.append([])
lon[j] = s.longitude
lat.append([])
lat[j] = s.latitude

alt.append([])
alt[j] = s.geo_altitude

114

tailnum.append([])
tailnum[j] = s.callsign
j+=1

map air traffic to the map
traffic_x, traffic y=_map(lon, lat)

plot icao code to the aircraft
for k in range(len(traffic_x)):
_axes.annotate(tailnum[k], xy=(traffic_x[k], traffic_y[k]), color="b")

check for altitude value obtained from the api
remove the 'None' value
for 1 in range(0, j - 1):
if alt[1] is None:
alt[1]=0
1+=1
else:
1+=1

plot the traffic in the map
_axes.scatter(traffic_x, traffic_y, s=10, c=alt, cmap="Paired')

##Ref: https://stackoverflow.com/questions/2318288/how-to-use-custom-png-image-marker-with-plot

points, = axes.plot(traffic_x, traffic_y, "bo", mfc="None", mec="None", markersize=imageSize[0] * (dpi
/96))

points._transform_path()

path, affine = points._transformed path.get transformed points_and affine()

path = affine.transform_path(path)

for pixelPoint in path.vertices:

_figure.figimage(wpt_im, pixelPoint[0] - imageSize[0] / 2, pixelPoint[1] - imageSize[l] / 2,

origin="upper")

_figure.canvas.draw()
return _map
plot icing info
def plotlcing(self, figure, canvas, axes, alt):

get db_data.getlcing(llclat, llclon, urclat, urclon, _alt)

plot waypoint info
115

def plotWaypoint(self, figure, canvas, axes):
_figure.set canvas(_canvas)

_axes.clear()

##plotting the icon to the graph

dpi = 72;

imageSize = (32, 32)

wpt_im = image.imread('icon/waypoint.png')

_map = fullflightplanMap(self, figure, canvas, axes)

_wpt_name_list, wpt lat list, wpt lon_list = get db_data.getWaypoint(liclat, llclon, urclat, urclon)

map wpt to the map
wpt_x, wpt_ y=_map(_wpt lon_list, wpt lat list)

axes.scatter(wpt_x, wpt_y, s=10, color ='g")

plot the traffic in the map
points, = _axes.plot(wpt_x, wpt_y, "bo", mfc="None", mec="None", markersize=imageSize[0] * (dpi/ 96))
points._transform_path()
path, affine = points._transformed path.get transformed points_and affine()
path = affine.transform_path(path)
for pixelPoint in path.vertices:
_figure.figimage(wpt_im, pixelPoint[0] - imageSize[0] / 2, pixelPoint[1] - imageSize[l] / 2,

—_n

origin="upper")
plot wpt name to the aircraft
for k in range(len(wpt_x)):
_axes.annotate(_wpt_name_list[k], xy=(wpt_x[k], wpt_y[k]), color="k")

_figure.canvas.draw()

return _map

116

Appendix F3: Obtain airspace and weather data from data files

import pandas as pd

import numpy as np

import sqlite3

from datetime import datetime

set cifp connection
cifp_path = "db/CIFP_v1.db"
cifp_conn = sqlite3.connect(cifp_path)

set icing connection
icing_patn = "db/Icing2020-03-16.db"
icing_conn = sqlite3.connect(icing_patn)

get the coordinate of the departure and destination
def getaptLocation(departicao, desticao):
read apt =pd.read_csv("airports.csv")
##"marker", use to know if done searching
_getdepart =0
_getdest=0
##use a list to save data
location_list lat_lon =]

for 1 in range(0,len(read_apt)):
if _getdepart == 0 or _getdest ==0:
if read_apt["ident"][1] == departicao:
departlat = read_apt["latitude deg"][i]
departlon = read_apt["longitude deg"][i]
_getdepart = 1
elif read_apt["ident"][i] == desticao:
destlat = read_apt["latitude deg"][i]
destlon = read_apt["longitude deg"][i]
_getdest=1
else:
i+=1
else: ## getdepart =1 and _getdest =1
i=len(read_apt)

if getdepart ==1 and _getdest ==1:
117

location_list lat_lon.append([])
location_list lat lon[0] = departicao
location_list lat_lon.append([])
location_list lat_lon[1] = departlat
location_list lat_lon.append([])
location_list lat_lon[2] = departlon
location_list lat_lon.append([])
location_list lat_lon[3] = desticao
location_list lat_lon.append([])
location_list lat lon[4] = destlat
location_list lat_lon.append([])
location_list lat_lon[5] = destlon

return location_list lat lon, getdepart, getdest
get current time
def getcurrenttime():
now = datetime.now()
current_time=now.strftime("%c")
return current_time

get the given flight plan

def getflightPlan():
fp = pd.read_csv("fp/KIFK-KLGA.csv")
##tget data from flightplan.csv
fplatarr = np.array(fp["latitude _deg"][0:200])
fplonarr = np.array(fp["longitude deg"][0:200])
fpaltarr = np.array(fp["elevation_ft"][0:200])

return fplatarr,fplonarr, fpaltarr

get enroute icing data

def getlcing(_minlat, minlon, maxlat, maxlon, alt):
_minlat = str(_minlat)
_minlon = str(_minlon)
_maxlat = str(_maxlat)

_maxlon = str(_maxlon)
icing_lat list={]
icing_lon_list =]

icing_sev_list =]

118

icing lat from db
icing_lat query = "SELECT Latitude FROM IcingInfo" +str(int(_alt/1000)) +" WHERE Latitude > " +
_minlat +" AND Latitude <+ maxlat +" AND Longitude >" + minlon + " AND Longitude < "+ maxlon
icing_lat = pd.read_sql(icing_lat_query, icing_conn)
for i in range(len(icing_lat)):
icing_lat_list.append([])
icing_lat_list[i] = icing_lat['Latitude'][1]

icing lon from db
icing_lon_query = "SELECT Longitude FROM IcingInfo" + str(int(_alt / 1000)) + " WHERE Latitude > "
+ minlat + " AND Latitude <+ maxlat + " AND Longitude >" + minlon + " AND Longitude <" + maxlon
icing_lon = pd.read _sql(icing lon_query, icing_conn)
for i in range(len(icing_lon)):
icing_lon_list.append([])
icing_lon_list[i] = icing_lon['Longitude'][i]

icing sev from db
icing_sev_query = "SELECT ICSEV FROM IcingInfo" + str(int(_alt / 1000)) + " WHERE Latitude > " +
_minlat + " AND Latitude <+ maxlat + " AND Longitude >" + minlon + " AND Longitude <" + maxlon
icing_sev = pd.read_sql(icing_sev_query, icing_conn)
for 1 in range(len(icing_sev)):
icing_sev_list.append([])
icing_sev_list[i] = icing_sev['ICSEV'|[i]
return icing_lat list, icing_lon_list, icing_sev_list

get nearby waypoint
def getWaypoint(_minlat, minlon, maxlat, maxlon):
_minlat = str(_minlat)
_minlon = str(_minlon)
_maxlat = str(_maxlat)
_maxlon = str(_maxlon)

wpt_name_list =[]
wpt_lat_list =]
wpt_lon_list =]

wpt data from cifp

wpt_name_query = "SELECT WaypointName FROM Waypoints WHERE Latitude > " + minlat +" AND
Latitude <+ maxlat + " AND Longitude >" + minlon +" AND Longitude <"+ maxlon

wpt_name = pd.read_sql(wpt_name_query,cifp_conn)

for i in range(len(wpt_name)):

119

wpt_name_list.append([])
wpt_name_list[i] = wpt_name['WaypointName'][i]

for 1 in range(len(wpt_name)):
wpt _name_str = wpt_name_list[i]
wpt _lat_query = "SELECT Latitude FROM Waypoints WHERE WaypointName = ""+wpt_name_str
4o
wpt_lat =pd.read sql(wpt_lat query,cifp_conn)
wpt lat_list.append([])
wpt lat _list[i] = wpt_lat['Latitude'][0]

wpt lon_query = "SELECT Longitude FROM Waypoints WHERE WaypointName = " +
wpt_name str +""
wpt_lon = pd.read_sql(wpt_lon_query, cifp_conn)
wpt_lon_list.append([])
wpt_lon_list[i] = wpt_lon['Longitude'][0]
return wpt_name_list, wpt_lat list, wpt_lon_list

120

Appendix F4: Obtain NAVID chart from data files

import gdal as gdal
import matplotlib.pyplot as plt

def getvfrSectional():
filepath = 'New_York VFR_Sectional/New York SEC 101.tif'
raster = gdal.Open(filepath).Read AsArray()
image = plt.imshow(raster)
plt.show()

def getvfrTerminal():
filepath = 'New_York TAC 99/New York TAC 99.tif
raster = gdal.Open(filepath).ReadAsArray()
image = plt.imshow(raster)
plt.show()

def getvfrterminalPlanning():
filepath = 'New_York TAC 99/New York TAC VFR Planning Charts 99.tif
raster = gdal.Open(filepath).ReadAsArray()
image = plt.imshow(raster)
plt.show()

def getifrlowAltitude():
filepath ='enr 134/ENR_L34.tif'
raster = gdal.Open(filepath).ReadAsArray()
image = plt.imshow(raster)
plt.show()

def getifrhiAltitude():
filepath ='enr h12/ENR_H12.tif
raster = gdal.Open(filepath).ReadAsArray()
image = plt.imshow(raster)
plt.show()

121

Appendix F5: Obtain elevation profile from data files

import urllib.request

import json

import math

import matplotlib.pyplot as plt

def haversine(latl,lon1,lat2,lon2):
lat]l rad=math.radians(latl) ##math.radians: convert angle x from degrees to radians
lat2_rad=math.radians(lat2)
lonl_rad=math.radians(lonl)
lon2 rad=math.radians(lon2)
delta_lat=lat2 rad-latl rad
delta lon=lon2 rad-lonl rad

a=math.sqrt((math.sin(delta_lat/2))**2+math.cos(latl rad)*math.cos(lat2_rad)*(math.sin(delta_lon/2))**2)
d=2*6371000*math.asin(a)

return d

def elevationData():
with open("elevation_profile data.json", "r'") as read_file:
js_str =json.load(read_file)

DISTANCE CALCULATION, mian process is obtained from the original example code
lat list={]

lon_list =]

d list=[]

for j in range(len(js_str['results'])):
lat list.append(js_str['results'][j]['latitude'])
lon_list.append(js_str['results'][j]['longitude'])

lat0 = lat_list[-1]
lon0 = lon_list[-1]

for j in range(len(lat_list)):
lat p =lat_list[j]
lon p =lon_list[j]
dp = haversine(lat0, lon0, lat p, lon_p) /1000 # km
d_list.append(dp)

122

d list rev=d list[::-1] # reverse list

GETTING ELEVATION

response_len = len(js_str['results'])

elev_list =]

for j in range(response_len):
elev_list.append(js_str['results'][j]['elevation'])

return d_list rev,elev_list

123

Appendix G: Prototype #3

Appendix G1: Design the map layout

<IDOCTYPE html>
<html>
<head>
<meta charset="utf-8" />
<title>FlySmart Map</title>
<meta name="viewport" content="initial-scale=1,maximum-scale=1,user-scalable=no" />
<script src="https://api.mapbox.com/mapbox-gl-js/v2.2.0/mapbox-gl.js"></script>
<link href="https://api.mapbox.com/mapbox-gl-js/v2.2.0/mapbox-gl.css" rel="stylesheet" type="text/css">
<link href="page style.css" rel="stylesheet" />
</head>
<body>
<!-- scripts for geocoder -->
<script src="https://api.mapbox.com/mapbox-gl-js/plugins/mapbox-gl-geocoder/v4.5.1/mapbox-gl-
geocoder.min.js"></script>
<link
rel="stylesheet"
href="https://api.mapbox.com/mapbox-gl-js/plugins/mapbox-gl-geocoder/v4.5.1/mapbox-gl-
geocoder.css"
type="text/css"
/>
<script src="https://cdn.jsdelivr.net/npm/es6-promise@4/dist/es6-promise.min.js"></script>
<script src="https://cdn.jsdelivr.net/npm/es6-promise@4/dist/es6-promise.auto.min.js"></script>

<div id="map"></div>

<div id="view_menu">
<input id="nicvb/ckadti4bj0z2qlinylw3zqujy" type="radio" name="rtoggle" value="flight"
checked="checked"/>

<label for="flight">Flight</label>

<input id="mapbox-map-design/ckhqrf2tz0dt119ny6azh975y" type="radio" name="rtoggle"
value="satellite" />
<label for="satellite">3D Satellite</label>

</div>

<form id="input_menu'">

124

<l--need custom text in file upload button -> set button "adsb_upload" to replace the default file upload
button-->

<input type="button" id="adsb upload" value = "Select ADS-B file" onclick =
"document.getElementByld('adsb_file').click();">

<input type="file" id="adsb_file" accept=".csv" style="display:none" onclick="adsbcsv()"/>

<input type="submit" value="Update ADS-B" onclick = "upload csv_adsb()"/>

<input type="button" id="nexradii upload" value = "Select NEXRADII file"
onclick="document.getElementByld('nexrad_file").click();">
<input type="file" id="nexrad_file" accept=".csv" style="display:none" onclick="nexradcsv()"/>

_n

<input type="submit" value="Update nexrad" onclick = "upload csv_nexrad()"/>

</form>

<!-- map overlay menu content -->
<div class="map-overlay">

<!-- time control -->
<div class="map-overlay-inner" style ="background-color: rgba(255, 255, 255, 0.8);">
<div class="display_text">
<p>Air Traffic Database Time:</p>
<p>Weather Radar Database Time:</p>
<p>Terrain Database Time:</p>
<p>Airspace Infrastructure Time:</p>
</div>
<div class="display_text">
<p id ="adsb_time"> </p>
<p id = "nexrad_time"> </p>
<!-- <p id = "weather radar time">01/09/2020 21:00 UTC</p> -->
<l-- <p id = "terrain_time"> </p> -->
<p id = "terrain_time">2020-02-11 00:00 UTC</p>
<l-- <p id = "airspace time"> </p> -->
<p id = "airspace_time">2020-05-17 12:00 UTC</p>
</div>

<hr class="solid">
<p style="font-size: 15px;">Simulation Time: <label id="slected time">0</label> <label

id='selected time unit"™>second(s)</label></p>

<1-- <div style="background-color: #a5787894;text-align: center;"> -->
<div style="text-align: center;">

<button id="play back" style="background-color: rgba(0, 0, 0, 0); font-size:25px; word-
125

wrap: break-word;border: none;" onclick = "previousFrame()">) </button>
<button id="play auto" style="background-color: rgba(0, 0, 0, 0); font-size:25px; border:
none;"onclick = "playStop()" > [@ </button>
<button id="play forward" style="background-color: rgba(0, 0, 0, 0); font-size:25px; border:
none;"onclick = "nextFrame()"> [3 </button>
</div>

<input id="slider" type="range" min="0" max="80" step="1" value="0"/>
</div>

<l-- layer display control -->
<div class="map-overlay-inner" style="border: none;">

<fieldset>

<button id="All" style = "font-size: 15px;background-color:#FFFFFF" onclick
="displayall()">All</button>

<button id="RiskContours" style = "font-size: 15px;background-color:dodgerblue onclick
="displayControl('RiskContours','RiskContours')">Risk Contours</button>

<button id="AirspaceRoute" style = "font-size: 15px; Dbackground-color:dodgerblue"
onclick="displayControl('Airspace',' AirspaceRoute"), displayControl('Airroute")" >Airspace/AirRoute</button>

<button id="Landmark" style = 'font-size: 15px;background-color:dodgerblue" onclick
="displayControl('Landmark’,'Landmark’)">Landmark</button>

<button id="NAVAID" style = "font-size: 15px;background-color:dodgerblue"
onclick="displayControl('NAVAID',NAVAID")">NAVAID</button>

<button id="Wxradar" style = "font-size: 15px;background-color:dodgerblue"” onclick
="displayControl('Reflectivity','Wxradar')">Weather radar</button>

<button id="Traffic" style = '"font-size: 15px;background-color:dodgerblue" onclick
="displayControl('adsb_callsign_labels_layer','Traffic"), displayControl('adsb_velocity labels_layer"),
displayControl('adsb_altitude labels layer')">Traffic</button>

<button id="Novel" style = "font-size: 15px;background-color:#FFFFFF" onclick
="display novel_entities('Novel')">Novel Entities</button>

</fieldset>

</div>

</div>

<!-- info box for displaying aircraft performance -->
<div id = "info_box">
<div id="es_information"></div>

</div>

<!-- Function "turf" for distance calculation between points -->

126

<script src="https://npmcdn.com/@turf/turf@5.1.6/turf.min.js"></script>

:" 1

<script src="js/main_map.js"></script>

<!-- load simulation info -->

<script id="simulation_info" src="python_simulation/OutputDataFile/simulation_data.js"></script>

:" 1

<script src="js/simulation_info.js"></script>

<!-- test load csv file-->

<script src = "js/load_csv.js"></script>

<!--load historical adsb data from csv file -->
<script src = "js/historical adsb.js"></script>

<l-- load historical nexrad data from csv file-->
<script src = "js/historical nexrad.js"></script>

<!--for using three.js plugins used for 3D objects -->

<script src="https://unpkg.com/three@0.106.2/build/three.min.js"></script>

<script src="https://unpkg.com/three@0.106.2/examples/js/loaders/GLTFLoader.js"></script>
<!-- for using threebox.js mesh line to create 3d flight path -->

<script src="threebox/threebox.js"></script>

</body>
</html>

127

Appendix G2: Main execution file

// access token of the map designed on Mapbox studio

mapboxgl.accessToken

'pk.eyJ11joibmljdmIiLCJhljoiY 2thNzBxMnlOMDAyY zJObmZpeW 1;0HNIayJ9.p5h0j178qIUWCRLQ 19muY
W'

var map = new mapboxgl.Map({

container: 'map’,

/Noad our flight map at default
style: 'mapbox://styles/nicvb/ckadti4bj0z2qliny 1 w3zqujy',

zoom: 14,

center: [-73.7786925,40.6399278], //JFK airport
pitch: 60,

1)

//control for switching between flight map view and satellite map view
var layerList = document.getElementByld('view menu');
var inputs = layerList.getElementsByTagName('input');

function switchLayer(layer) {
var layerld = layer.target.id;
map.setStyle('mapbox://styles/' + layerld);

for (var i = 0; i < inputs.length; i++) {
inputs[i].onclick = switchLayer;

}

//set default data source for airspace, airroute, and navaid

var airspaceSource = 'mapbox://nicvb.5545qn4c";

var airspaceSourceLayer = 'united_states-axvqcm';

var airrouteSource = 'mapbox://nicvb.90kgjezx'";

var airrouteSourceLayer = 'a896b894 db9c 4207 82ac 8e07c¢5¢207b4202046 1 leto9wt.Ojyd';
var navaidSource = 'mapbox://nicvb.ckaak488q0nbo2hpfm6juvwz7-2riz7';

var navaidSourceLayer = 'navaids';

128

var frameCount = 100;

// this is for JFK-PHL novel entity
// var currentlmage = 1500037201,
var currentlmage = 1500037367,

function getgifPath() {
return (
// 'http://localhost:8000/localhost/RiskContours/JFK-PHL novel entity/' +
'http://localhost:8000/localhost/RiskContours/for demo only/' +

currentlmage +
.png
);

!

//slider control
var slider_ele = document.getElementByld('slider");
var slider_time = slider_ele.value;

//animation control
var animationPosition = 0;
var animationTimer = false;

//geojson of adsb and novel air vehicle to to load 3d model
var far_drone geojson;

var adsb_geojson;

var nexrad_geojson;

var sim_geojson;

var novel_entity label;

T T
// this section defined the build in map control (zoom in, zoom out, etc)

// Add a geocoder

map.addControl(
new MapboxGeocoder({
accessToken: mapboxgl.accessToken,

129

mapboxgl: mapboxgl
$)
)i

// Adds zoom and rotation controls to top right of map

map.addControl(new mapboxgl.NavigationControl({ visualizePitch: true, showZoom: true , showCompass:
true}));

// Adds fullscreen control to top right of map
map.addControl(new mapboxgl.FullscreenControl({container:document.querySelector('body")}));

// Adds scale control to top right of map
var scale = new mapboxgl.ScaleControl({
maxWidth: 80,
unit: 'imperial’
1)
map.addControl(scale);
scale.setUnit("metric'");

T T
// this section defined all the custom data layer added to the map
function addCommonLayer()

{

// //landmark layer
map.addSource('landmark’, {

type: 'vector',

url: 'mapbox://ac-0636.c46dnh3I'

1

map.addLayer({
'id": 'Landmark’,
'type': 'symbol’,
'source': 'landmark’,
//'source-layer'= name of source detail
'source-layer': '9¢937979 7¢9b 43d3 970e e5b95dcdb6eb202042 1 22kxp8.7iwSs',
'layout'":
{
'visibility':'visible',
'icon-image' : 'castle-15',

130

'icon-size' : 1
}s
;s

1
////dummy data for nexrad csv initialization
nexrad geojson = {
'type": 'FeatureCollection',
'features':[{
'type':'Feature',
'properties': {
'reflectivity': ',

}s
'geometry’: {
'type":'Point’,
'coordinates':[0,0]
// 'coordinates':[-73.77,40.63]
H

1]
}s

map.addSource('nexrad_points', {
'type':'geojson’,
'data’: nexrad_geojson
1)
map.addLayer({
'id":'Reflectivity’,
'type": 'heatmap',
'source’:'nexrad_points',
'layout':
{
'visibility':'visible'
s
'paint':
{
// 11! the min and max of reflectivity value for different dataset could be different
'heatmap-weight':[
"interpolate",
["linear"],
['get','reflectivity'],
131

]’

// increase intensity as zoom level increases
'heatmap-intensity": 1,
//assign color
'heatmap-color': [
"interpolate",
["linear"],
["heatmap-density"],
0,
"rgba(0, 0, 255, 0)",
0.1,
"hsla(223, 98%, 42%, 0.16)",
0.3,
"hsla(223, 98%, 42%, 0.38)",
0.5,
"hsla(223, 98%, 42%, 0.54)",
0.7,
"hsla(229, 100%, 50%, 0.67)",
L,
"hsl(223, 98%, 42%)"
1,
// increase radius as zoom increases
'heatmap-radius': 20,
// decrease opacity to transition into the circle layer

'heatmap-opacity": 0.5,

1

// airspace layer
map.addSource('airspace data', {
type: 'vector',

url: airspaceSource

s

132

map.addLayer({
'id": 'Airspace’,
'type": 'fill',
'source': 'airspace_data’,
//'source-layer'= name of source detail

'source-layer': airspaceSourceLayer,

'layout':
{
'visibility':'visible'
¥
'paint':
{
'fill-color": '#000000',
'fill-opacity":["step",
["zoom"],
0.33,
10,
0
]
}

1

// air route layer
map.addSource(‘airroute_data', {
type: 'vector',

url: airrouteSource

;s

map.addLayer({
'id": 'Airroute’,
'type': 'line’,
'source': 'airroute_data’,
'source-layer': airrouteSourceLayer,
'layout'":
{
'visibility':'visible'
s
'paint':
{
133

'line-color'": "#fff00",
'line-opacity':0.23

;s

//mavaid layer
map.addSource('navaid_data’, {
type: 'vector',
url: navaidSource

s

map.addLayer({

'id": 'NAVAID,

'type': 'symbol’,

'source': 'navaid_data’,

'source-layer': navaidSourceLayer,

'layout'":

{

'icon-image': [

"match",
["get", "type"],
["VOR"],
"VOR",
["VORTAC"],
"VORTAC",
["VOR-DME"],
"VOR-DME",
["NDB"],
"NDB_the good one",
["TACAN"],
"TACAN",
["NDB-DME"],
"NDB_the good one",
["DME"],
"VOR-DME",

"nn

I,
'icon-size':0.2,
'visibility':'visible',

134

'text-field":['get, 'ident'],
'text-size": 16,
'text-offset’:[0,1.5]

}s

'paint':

{
'text-color'":'hsl(183, 91%, 48%)',
'text-halo-color':'hsl(0, 0%, 0%)',
'text-halo-width' : 1

}

1

////dummy data for adsb csv initialization
adsb_geojson = {
'type":'FeatureCollection’,
'features':[{
'type': 'Feature',
'properties': {

'callsign': ',
¥
'geometry’: {
'type': "Point’,
'coordinates':[0, 0]
H

1]
}s

map.addSource('adsb_labels', {
'type':'geojson’,
'data': adsb_geojson
1)
map.addLayer({
'id'": 'adsb_callsign_labels_layer',
'type': 'symbol’,
'source’:'adsb_labels',
'layout': {
'text-field': ['get', 'callsign'],
'text-variable-anchor":['bottom'],
'text-radial-offset':1.5,

'text-justify':'center’,

135

'text-size':20,
'visibility': 'visible'

¥
'paint': {
'text-color' : '"#OFOFOF",
}
1)
map.addLayer({

'id": 'adsb_velocity labels layer',
'type': 'symbol’,
'source':'adsb_labels',
'layout': {
'text-field": ['get’, 'velocity 1'],
// 'text-field': ['get', 'velocity'],
'text-variable-anchor' : ['top-left'],
'text-radial-offset'’:1.5,
'text-justify': 'left,
'text-size': 10,
'visibility":'visible'

¥
'paint': {
'text-color' : '#OFOFOF",
}
1)
map.addLayer({

'id": 'adsb_altitude labels_layer’,

'type': 'symbol’,

'source:'adsb_labels',

'layout": {
'text-field": ['get, 'baroaltitude 1],
'text-variable-anchor' : ['top-right'],
'text-radial-offset':1.5,
'text-justify': 'right',
'text-size': 10,

'visibility':'visible'

}s
"paint': {

'text-color' : '#OFOFOF',
H

1

136

//dummy data for novel air vehicle initialization
novel _entity label = {
'type": 'FeatureCollection',
'features': [
{
'type': 'Feature',
'properties'": {
'description’: "Novel entity",
'icon': 'theatre’'
¥
'geometry": {
'type': "Point’,
'coordinates': [0,0]
}
}
]
¥
map.addSource('novel entity labels', {
'type':'geojson’,
'data: novel entity label
1)
map.addLayer({
'id": 'novel_entity labels layer',
'type': 'symbol’,
'source’: 'novel entity labels',
'layout': {
'text-field': 'Novel air vehicle',
// 'text-variable-anchor': ['top', 'bottom’, 'left', 'right'],
'text-font': ['Open Sans Semibold', 'Arial Unicode MS Bold'],
'text-variable-anchor': ['bottom'],
'text-radial-offset": 1.5,
'text-justify': 'auto’,
// 'text-justify': 'center’,
'text-size': 30, // to adjust the callsign text size
'visibility':'visible'

}s
paint: {
"text-color": "#483D8B"
H
1)

137

// load novel air vehicle info by calling function in another js file
load simulation_data();

// load adsb data by calling function in another js file
load adsb();

// load weather radar data by calling function in another js file
load nexrad();

function addRiskLayer()
{
//risk contours
map.addSource('risk_contours',
{
type: 'image’,
url: getgifPath(),
coordinates: [
//KJFK - KPHL
[-76.2526,41.2500], //ulc
[-71.8820, 41.2500], //urc ----
[-71.8820, 39.2353], //Irc
[-76.2526, 39.2353] //lc ----
//KJFK - KLGA
// [-74.4113,40.9142], //ulc
//'[-73.4819, 40.9142], //urc ----
//'[-73.4819, 40.410867], //lrc
/I [-74.4113, 40.410867] //llc ----

]
1);
map.addLayer({
id: 'RiskContours',
'type': 'raster’,
'source': 'risk_contours',
'layout': {
'visibility':'visible'
¥s
'paint': {
138

'raster-fade-duration': 0,
"raster-opacity" : 0.5 // to adjust the risk countour image opacity

}
s

function add3dTerrainLayer()
{
map.addSource('mapbox-dem’, {
'type'": 'raster-dem’,
"url": 'mapbox://mapbox.mapbox-terrain-dem-v1',
'tileSize': 512,
'maxzoom': 14
3
// // add the DEM source as a terrain layer with exaggerated height

map.setTerrain({ 'source': 'mapbox-dem', 'exaggeration':1});

T T
// this section is for changing the visibility of the data layer
//load all the data layer when the map style first load

map.on('load’, function()

{
addCommonLayer();

;s

//reload all the data layer when the map style change
//Ref: https://bl.ocks.org/tristen/0cOed34e210a04¢89984
map.on('style.load',function()

{
addCommonLayer();

// check which map style is the current selected one

var flight map checked = document.getElementByld("nicvb/ckadti4bj0z2qliny1w3zqujy").checked;

var satellite_ map checked = document.getElementByld("mapbox-map-
design/ckhqrf2tz0dt119ny6azh975y").checked;

139

//// load extra layer to the selected map style
if (flight map_checked == true)

{
console.log("Current map style: Flight map, added risk image layer")
addRiskLayer();

H

if(satellite_ map checked == true)

{
console.log("Current map style: 3D satellite map, add 3d terrain layer")
add3dTerrainLayer();

H

1

//use in all dispaly button, pass in layer name and button id
function displayControl(layername, btn)

{
var visibility = map.getLayoutProperty(layername,'visibility");
var click_btn = document.getElementByld(btn);
// console.log(layername,": ' visibility)
if (visibility == 'visible')
{
map.setLayoutProperty(layername, 'visibility', none');
if (click_btn != null)
{
click btn.style.backgroundColor = "#FFFFFF";
}
H
else
{
map.setLayoutProperty(layername, 'visibility', 'visible');
if (click_btn != null)
{
click btn.style.backgroundColor = "#1E9OFF";
h
H
H

140

function displayall()
{
var all_btn = document.getElementById('All");
if (all_btn.style.backgroundColor == "dodgerblue")

{
all_btn.style.backgroundColor = "#FFFFFF";

all_btn.style.backgroundColor = '#1E90FF";

displayControl('Icing',"'Wxradar');
displayControl('Landmark’,'Landmark’);
displayControl('Airspace',' AirspaceRoute");
displayControl('Airroute');
displayControl('NAVAID', NAVAID");
displayControl('RiskContours','RiskContours');
displayControl('drone_labels_layer',' Traffic');
displayControl('drone_labels_spd layer');
displayControl('drone_labels_alt layer');

// display_novel_entities('Novel')

function display novel entities(btn)

{

var click_btn = document.getElementByld(btn);
var visibility = map.getLayoutProperty('novel entity labels_layer','visibility');
// console.log('layer visibility: ', visibility);

if (novel_entity status == 1)

{
novel entity status =0
click btn.style.backgroundColor = "#FFFFFF";
map.setLayoutProperty('novel entity labels layer','visibility','none");
H
else
{

141

novel entity status = 1
click btn.style.backgroundColor = "#1E9OFF";
map.setLayoutProperty('novel entity labels layer','visibility','visible');

I
// this section is for the media control

function stop() {

document.getElementByld("play auto").textContent ="[3";
console.log("stop™);
if(animationTimer)
{
clearTimeout(animationTimer);
animationTimer = false;
return true;

}

// return false;

function play()
{
document.getElementByld("play auto").textContent =" o
if (slider time < slider ele.max)
{
slider_time += 1;
slider_ele.value = String(slider time);

slider_time = 0;
slider_ele.value = String(slider time);

}

// Main animation driver. Run this function every 5s
animationTimer = setTimeout(play, 2000);

console.log("play");

function playStop()
142

if (!stop()) {
play();
H
H
function nextFrame()
{
stop();
slider_time +=5;
slider_ele.value = String(slider_time);
console.log("next");
H
function previousFrame()
{
stop();
slider time -=5;
slider _ele.value = String(slider _time);
console.log("previous");
H

143

Appendix G3: Convert data in CSV file to arrays

var adsb_csv;

var nexrad_csv;

// convert data in csv file to an array
// ref: https://sebhastian.com/javascript-csv-to-array/
function csvToArray(str, delimiter =",")
{
// slice from start of text to the first \n index
// use split to create an array from string by delimiter
const headers = str.slice(0, str.indexOf("\n")).split(delimiter);

// slice from \n index + 1 to the end of the text
// use split to create an array of each csv value row
const rows = str.slice(str.indexOf("\n") + 1).split("\n");

// Map the rows
// split values from each row into an array
// use headers.reduce to create an object
// object properties derived from headers:values
// the object passed as an element of the array
const arr = rows.map(function (row) {
const values = row.split(delimiter);
const el = headers.reduce(function (object, header, index) {
object[header] = values[index];
return object;

0

return el;

1

// return the array

return arr;

function upload _csv_adsb()

{

const myForm = document.getElementByld("input_menu");
const adsb_file = document.getElementByld("adsb_file");

144

// prevent browser from executing the default action of the selected element
myForm.addEventListener("submit", function(e)

{

e.preventDefault();
1)

//// load adsb data from csv file

// .files[0] : return to the file object at the index 0
const filel = adsb_file.files[0];

const csvreader] = new FileReader();
csvreaderl.readAsText(filel);

csvreaderl.onload = function()

{

adsb_csv = csvToArray(csvreaderl.result);

//get adsb start time of this csv file

adsb_t=get adsb_start time(adsb_csv);

console.log('adsb_start time:',adsb_t)

var adsb_date = convertTimestamp(adsb _t)
document.getElementByld("adsb_time").innerHTML = adsb_date;

//// call function in historical adsb.js to get adsb data
get_adsb_data();

function upload csv_nexrad()
{
const myForm = document.getElementByld("input_menu");
const nexrad_file = document.getElementByld("nexrad_file");
// prevent browser from executing the default action of the selected element
myForm.addEventListener("submit", function(e)

{

e.preventDefault();

1

//// load nexrad data from csv file
//'// files[0] : return to the file object at the index 0
const file2 = nexrad_file.files[0];

145

const csvreader2 = new FileReader();
csvreader2.readAsText(file2);
csvreader2.onload = function()
{
nexrad _csv = csvToArray(csvreader2.result);
nexrad date = convertTimestamp(nexrad csv[0].Time)
// nexrad_date = convertNEXRADTime(nexrad csv[0].Time)
// console.log(nexrad_date)
// console.log(nexrad_csv[0].sweepTime)
document.getElementByld("nexrad_time").innerHTML = nexrad_date;

////initialize nexrad display
get nexrad_data();

//// function link to select adsb file button in .html
function adsbcsv()
{

console.log("adsb_csv");

if (adsb_csv !=null)

{

console.log('new adsb file will be upload');

//clear current adsb data

adsb_csv=[];

adsb_data t=1{];

adsb _loc t=T];

////get new adsb start time of this csv file

// adsb_t=get start time from csv(adsb csv);

// get_adsb_data();

// console.log("prepare for new csv file: ',adsb_csv);

}

else

{

console.log('first adsb file select');

146

//// function link to select nexrad file button in .html
function nexradcsv()
{
console.log(nexrad _csv');
if (nexrad_csv !=null)
{
console.log('new nexradii file will be upload');
/l//clear current nexrad data
nexrad csv=[];

}

else

{

console.log('first nexrad file select');

function convertTimestamp(timestamp) {
var date = new Date(timestamp * 1000), // Convert the passed timestamp to milliseconds
yyyy = date.getUTCFullYear(),
mm = ('0' + (date.getUTCMonth() + 1)).slice(-2), // Months are zero based. Add leading 0.
dd = ('0" + date.getUTCDate()).slice(-2), // Add leading 0.
hh = date.getUTCHours(),
min = ('0' + date.getUTCMinutes()).slice(-2), // Add leading 0.

time;

time=yyyy+'-'+mm+"'-'+dd+"'"'+hh+"'+min+"'UTC,

return time;

147

Appendix G4: Mapping ADS-B data for display

var adsb_t =0;

var adsb_data t=1]

var adsb_loc_t=T]

var slider_time_diff;

var prev_slider_time = 0;

// recursive function monitoring incoming adsb file
function load_adsb()

{
update_adsb = setInterval(function()
{
update_adsb_loc();
get_adsb_data();
},1000);
}

//get start time from adsb csv file
// function use in load_csv.js

function get_adsb_start_time (csv_obj)

{
var values = []
// for (var 1 =0; i< 1000; i ++)
for (var i =0; i< csv_obj.length-1; i ++)
{
// console.log(csv_obj[i].time)
temp_time = parselnt(csv_obj[i].time)
// console.log(temp_time)
if (isNaN(temp_time) == false)
{
values.push(parselnt(csv_obj[i].time));
}
H
return min = Math.min.apply(null,values)
H

// get adsb data that match the time in simulation

148

function get_adsb_data()
{

adsb_data t=[]

for (var i =0; i< adsb_csv.length-1;i++)

{

if (parselnt(adsb_csv[i].time) == adsb _t)
{
adsb_data_t.push({

time: parselnt(adsb_csv[i].time),
icao : adsb_csv([i].icao24,
latitude: parseFloat(adsb_csv][i].lat),
longitude: parseFloat(adsb_csv[i].lon),
velocity: parseFloat(adsb_csv[i].velocity),
heading: parseFloat(adsb csv[i].heading),
vertrate: parseFloat(adsb_csv[i].vertrate),
callsign: adsb_csv[i].callsign,
onground : (adsb_csv[i].onground).toLowerCase(),
baroaltitude: adsb_csv[i].baroaltitude,
geoaltitude: adsb_csv[i].geoaltitude,
lastposupdate: parselnt(adsb_csv[i].lastposupdate),

;s

}

// draw adsb on map
plot_air_traftic();

// this function is used to draw adsb on map
function plot_air_traffic()
{
// store adsb position info at time t in a list
adsb_loc_t=[];
for (var i=0; i<adsb_data_t.length;i++)
{
//ilter adsb traffic by onground status, keep the flying ones only
if(adsb_data_t[i].onground == "false")
{
// create an object for each aircraft that matches the condition, set their properties
adsb_loc_t.push({
type:'Feature',

149

geometry:

{
type: 'Point’,
coordinates:[Number(adsb_data_t[i].longitude), Number(adsb_data_t[i].latitude)]
¥
properties:
{
heading:Number(adsb_data t[i].heading),
callsign: adsb_data_t[i].callsign,
icao: adsb_data_t[i].icao,
velocity: Number(Math.round(adsb_data_t[i].velocity)),
baroaltitude: Number(Math.round(adsb_data_t[i].baroaltitude)),
// for label display
velocity I: Math.round(adsb_data_t[i].velocity)+ 'kts',
baroaltitude I: Math.round(adsb_data_t[i].baroaltitude) + 'm’,
}

1

// find the adsb data layer by using 'sourceld', update the data layer
adsb_geojson = {
'type": 'FeatureCollection',
features:adsb_loc t,
¥
map.getSource('adsb_labels').setData(adsb_geojson);
var satellite_ map checked = document.getElementByld("mapbox-map-
design/ckhqrf2tz0dt119ny6azh975y").checked;
if(satellite._ map checked == true)
{
map.setPaintProperty(‘adsb_callsign_labels_layer', 'text-color', #{fffff")
map.setPaintProperty(‘adsb_velocity labels layer', 'text-color', '#{ffftf")
map.setPaintProperty(‘adsb_altitude labels layer', 'text-color', "#ffftft")

// add 3d model to map
for (var k =0; k<adsb_loc_t.length;k++)

{
adsb_3d model(k);

150

// this function is define to match the adsb display with the media control
function update _adsb _loc()

{

/lprev_slider time != (current) slider time -> there is change on slider input OR the in initial state
(prev_slider _time =0)
if (prev_slider time !=slider time)

{

/Iplayback (drag slider backward)
if (prev_slider_time>slider time)

{
//difference between previous slider time and current slider time
slider time diff = (prev_slider time-slider time);
//match adsb_time to the current slider time to load adsb data
adsb_t -=slider time diff;

}

//(drag slider forward)

else //prev_slder time < slider time

{
//difference between previous slider time and current slider time
slider time diff = (slider time-prev_slider time);
//match adsb_time to the current slider time to load adsb data
adsb_t +=slider time_diff;

}

//load/plot adsb traffic on the map
get_adsb data();
for (var k =0; k<adsb_loc_t.length;k++)

{
adsb_3d_model(k);

/flapdate prev_slider time

prev_slider time = slider_time;

151

// this function is used for plotting a 3d aircraft model for each aircraft in the adsb data
function adsb_3d_model(i)
{
// three.js 3D object variables
// parameters to ensure the model is georeferenced correctly on the map
modelOrigin = adsb_loc_t[i].geometry.coordinates;
modelAltitude = adsb_loc_t[i].properties.baroaltitude;

//convert heading, from angle to radians
var heading_rad = parseFloat(adsb_loc _t[i].properties.heading)*(Math.P1/180);
var modelRotate = [-1.5,heading_rad,3];

var modelAsMercatorCoordinate = mapboxgl.MercatorCoordinate.fromLngLat(
modelOrigin,
modelAltitude

);

// transformation parameters to position, rotate and scale the 3D model onto the map
var modelTransform = {

translateX: modelAsMercatorCoordinate.x,

translateY: modelAsMercatorCoordinate.y,

translateZ: modelAsMercatorCoordinate.z,

rotateX: modelRotate[0],

rotateY: modelRotate[1],

rotateZ: modelRotate[2],

scale: modelAsMercatorCoordinate.meterInMercatorCoordinateUnits()

}s

var THREE = window.THREE;
var layerid = "Adsb3d"+ String(i);
// configuration of the custom layer for a 3D model per the CustomLayerInterface
var customLayer = {
id: layerid,
type: 'custom’,
renderingMode: '3d',
onAdd: function (map, gl) {
this.camera = new THREE.Camera();
this.scene = new THREE.Scene();

152

var directionalLight2 = new THREE.Directional Light(Ox fftftf);
directionalLight2.position.set(0, 70, 100).normalize();
this.scene.add(directionalLight2);

// use the three.js GLTF loader to add the 3D model to the three.js scene
var loader = new THREE.GLTFLoader();
loader.load(
'http://localhost:8000/localhost/PlaneModel/h164/scene. gltf',
function (gltf) {
this.scene.add(gltf.scene);
}.bind(this)
);

this.map = map;

// use the Mapbox GL JS map canvas for three.js
this.renderer = new THREE.WebGLRenderer({
canvas: map.getCanvas(),
context: gl,
antialias: true

;s

this.renderer.autoClear = false;
s
render: function (gl, matrix) {
var rotationX = new THREE.Matrix4().makeRotationAxis(
new THREE.Vector3(1.2, 0, 0),
modelTransform.rotateX
);
var rotationY = new THREE.Matrix4().makeRotationAxis(
new THREE.Vector3(0, 1.2, 0),
modelTransform.rotateY
);
var rotationZ = new THREE.Matrix4().makeRotationAxis(
new THREE.Vector3(0, 0, 1.2),
modelTransform.rotateZ

);

var m = new THREE.Matrix4().fromArray(matrix);
var 1 = new THREE.Matrix4()

.makeTranslation(

153

modelTransform.translateX,
modelTransform.translateY,
modelTransform.translateZ
)
.scale(
new THREE. Vector3(
modelTransform.scale,
-modelTransform.scale,
modelTransform.scale

)

.multiply(rotationX)
.multiply(rotationY)
.multiply(rotationZ);

this.camera.projectionMatrix = m.multiply(l);
this.renderer.state.reset();
this.renderer.render(this.scene, this.camera);
this.map.triggerRepaint();

¥
var map_layer = map.getLayer(layerid);
if (prev_slider time !=slider time)

{
if (typeof map_layer == 'undefined')
{
map.addLayer(customLayer, 'waterway-label');
}
else
{
map.removelLayer(layerid);
map.addLayer(customLayer, 'waterway-label');
h
H

154

Appendix G5: Mapping NexRad data for display

var nexrad_t=0;
var nexrad_data t =[]
var nexrad _loc_t=]

// recursive function monitoring incoming weather radar file

function load nexrad()

{
update nexrad = setlnterval(function()
{
get nexrad_data();
},2000);
}

// push current nexrad data read from csv
function get nexrad data()

{
nexrad data t={]
for (var i = 0; i< nexrad_csv.length-1;i++)
{
nexrad_data_t.push({
time: nexrad_csv[i].sweepTime,
reflectivity: nexrad_csvl[i].value,
latitude: parseFloat(nexrad csv[i].Latitude),
longitude: parseFloat(nexrad csv[i].Longitude),
heightRel : parseFloat(nexrad csv[i].HeightRel),
heightASL: parseFloat(nexrad csv[i].HeightASL),
s
H
plot_nexrad data();
H

//plot nexrad weather data
function plot_nexrad_data()

{
155

// create geojson object for the nexrad weather data point
nexrad loc t=T[];
for (var i =0; i <nexrad data t.length;i++)
{
nexrad_loc_t.push({
type:'Feature',
geometry:
{
type:'Point’,
coordinates:[Number(nexrad data t[i].longitude),Number(nexrad data_t[i].latitude)]
’s
properties:

{

reflectivity: nexrad data_t[i].reflectivity,

s

//find the weather radar data layer by using 'sourceld’, update the data layer
nexrad geojson = {

'type' : 'FeatureCollection',

features:nexrad _loc t,
¥

map.getSource('nexrad_points').setData(nexrad_geojson);

156

