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Abstract 
A data-driven approach to aerospace research or applications could be beneficial in the era of big 

data, but accessibility and usability of the data make this challenging. There have been attempts by 

government and academic researchers to resolve this issue by creating large generic databases. 

However, the issue remains since those databases may not be able to satisfy researchers' needs. In 

this thesis, a systematic approach is presented that can be used to create a compact, efficient, and 

aerospace application-specific database based on specific research requirements. The methodology, 

which utilizes aviation-related data that are publicly accessible, follows the data ETL (Extract, 

Transform, and Load) approach based on domain-specific requirements. A data visualization tool 

was created to help researchers better understand the data. The approach was tested with a case-

study simulated environment designed for the purpose of investigating interactions between 

entities in a shared airspace. As a result of the implementation, a relational database containing 

real-life archived air traffic and weather radar data was created, as well as a map-based data 

visualization tool. The result is verified with test cases to demonstrate the flexibility of the approach 

for creating different true-to-life flight scenarios. 

Résumé 
Une approche de recherche axée sur les données pourrait être bénéfique à l'ère du mégadonnées 

pour des applications aérospatiales, mais l'accessibilité et la facilité d'utilisation de ces données en 

font un défi. Des gouvernements et chercheurs universitaires ont tenté de résoudre ce problème en 

créant de grandes bases de données génériques; cependant, le problème demeure puisque ces bases 

de données peuvent ne pas satisfaire les besoins des chercheurs. Dans cette thèse, on présente une 

approche systématique qui peut être utilisée pour créer une base de données compacte, efficace, et 

spécifique à une application aérospatiale, basée sur des exigences de recherche spécifiques. La 

méthodologie, qui utilise des données relatives à l'aviation accessibles au public suit l'approche 

ETL (extraction, transformation et chargement) des données en fonction des exigences spécifiques 

au domaine. Un outil de visualisation des données a été créé pour aider les chercheurs à mieux 

comprendre les données. L'approche a été testée avec un environnement simulé conçu pour étudier 

les interactions entre des entités dans un espace aérien partagé. L’implémentation de cette approche 

a permis de créer une base de données relationnelle contenant des données sur le trafic aérien, des 

données de radar météorologique archivées, ainsi qu'un outil cartographique de visualisation des 

données. Le résultat est vérifié avec des cas d'essai afin de démontrer la flexibilité de l'approche 

pour créer différents scénarios de vol réalistes. 
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1. Introduction  

The availability of big data is driving several recent advances in aircraft-related research, for 

example aircraft trajectory optimization [1] and prediction [2]; flight delay prediction [3], [4]; and 

the development of simulated environments [5]–[7] to support research projects [2], [8]–[16]. But 

progress is slowed because of challenges associated with accessing and processing the data so that 

it is practically useful to aerospace researchers. 

 

Big data is a term that is used to describe data generated at high speeds and in large volumes from 

various sources and in differing formats. Big data is increasingly available, and data-driven 

research is gaining traction across multiple industries, including aerospace. Challenges to 

discipline-specific, data-driven aerospace research include the accessing, processing, and 

management of large amounts of both raw and transformed data.  

 

Aviation-related data-driven research is increasingly popular, and real-life historical aviation data 

is being used to support several research projects including the development of aircraft trajectory 

optimization algorithms and the study of the relationship between weather and air traffic ground 

delay programs. The difficulties associated with acquiring and storing the relevant data can be 

found in the literature, and the creation of aviation databases has become a research topic in itself.  

 

The literature presents examples of both governmental and academic researchers creating large 

generic databases to store pre-processed data meant to serve a broad range of aviation research 

projects. However, the data stored in these generic databases can differ from what the researchers 

need, and the pre-processed data may still need to be converted into another format to meet the 

needs of specific projects. One solution is to create smaller, more targeted, independent database 

systems designed for specific applications, where data is selected and processed based on carefully 

defined research requirements before being stored in the database. 

 

This thesis presents a methodology for creating such a targeted database to meet specific research 

requirements. The methodology employs the data ETL (Extract, Transform, and Load) processes, 

with an additional phase for creating a data visualization tool meant to make the data more 

understandable to researchers. In this thesis, a proof-of-concept database is created to support a 

project investigating interactions between entities in a shared airspace. The result of the 

implementation is a relational database that contains processed weather radar and air traffic data, 
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as well as a map-based data visualization tool. The methodology presented can be adapted to a 

variety of mid-project changes to the given research requirements, and researchers can use the 

processed data not only to recreate real-life airspace environments as they happened in the past but 

also to combine historical scenarios and/or introduce novel entities into the simulated real-life 

airspace environment. 

 

The thesis is organized into chapters, with Chapter 1 being the introduction. Chapter 2 presents the 

literature review related to the research. Chapter 3 presents the approach for the design and 

development of an aviation-specific data repository to support data-driven application. Chapter 4 

presents the implementation and validation of the approach through a case study. Chapter 5 

concludes and recommends potential uses for the contributions of this research to future research 

projects.  
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2. Literature Review 

This chapter presents the literature review conducted related to the research, beginning with the 

background information on big data in Section 2.1. Section 2.2 presents several use cases of big 

data in other academic fields, and Section 2.3 outlines some common challenges associated with 

big data implementation faced by researchers. In Section 2.4, the types of database and database 

management systems are introduced. Section 2.5 provides some examples of data-driven research 

conducted by other researchers in the aviation industry, and Section 2.6 introduces a selection of 

data warehouses developed as research-specific aerospace data collections. Chapter 2 is concluded 

with a description of the research objective in Section 2.7. 

 

2.1 Background information - big data 

In the era of big data, individuals and organizations can generate, collect and exchange large 

amounts of digital data every day through the Internet of Things (IoT) [17]. The IoT refers to a 

network of physical devices or software connected through the internet, and the purpose of this 

network is to collect and exchange data with other devices. The data collected by the IoT can be 

imagined as being from a very large number and variety of data sources that keep feeding 

information to a big data pool, which leads to the term “big data”.  

 

There is currently no standard definition of the term "big data" although various definitions can be 

found. The National Institute of Standards and Technology (NIST) is engaged in an ongoing effort 

to determine a precise definition, and in their latest publication stated that "Big Data refers to the 

need to parallelize the data handling in data-intensive applications.” [18]. The core characteristics 

of big data can be defined by the 3 Vs; volume, velocity, and variety [19], [20]. Volume refers to 

the size of the data generated and stored, where the size of big data is usually larger than terabytes 

and cannot be easily processed with a normal computer.  Variety describes the diverse types, 

sources, and formats of the collected data, where, because of the IoT, different physical devices 

are used to collect data resulting in a variety of data formats. Velocity reflects the speed of data 

generation and processing.  
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2.2 Use cases in other academic fields  

Commercial enterprises see the large amount of available data as a major economic opportunity 

with the potential to help them make smarter business decisions [21], whereas academic 

researchers see great potential in how big data analytics could impact science, technology, and 

other fields [22]. Gudivada et al. [17] believe that big data is enabling new directions for scientific 

research that was previously limited by the volume of available data. Applications for the use of 

big data exist across many fields. 

  

Bai and Bai [23] propose the idea of using sport-related big data analysis to help coaches and 

athletes know more about themselves and adjust their training activities. Sports-related big data 

analysis can also be used to analyse the behaviour of competing teams, making it possible for the 

coach and athletes to plan strategies to take advantage of their opponents’ weaknesses. Finally, big 

data analysis can also be used to identify rising stars in the sport.  

 

Han et al. [24] discuss the development of a platform to collect, store and analyse information 

related to Android applications. The platform can be used to identify the common characteristics 

of malicious applications and can alert users if such characteristics exist in a newly added 

application. 

  

Chen et al. [25] propose using big data to develop an agricultural decision model to achieve 

precision agriculture. The purpose of precision agriculture is to obtain a more abundant harvest 

with less resource consumption to optimize the agricultural economy. The research group is 

currently applying the model to a real-world experiment on a banana field. 

  

Munshi et al. [26] propose the design and implementation of a big data platform for educational 

analytics. With the massive amounts of available educational data, models can be built to predict 

incidents such as student drop-out rates, or to recommend specific courses for individual students. 

The authors believe that the platform can provide academic advisors valuable information allowing 

them to give more attention to students who might need their help, and ultimately enhancing 

education quality. 

  

Big data technology is also being used to predict market trends, identify target customers, and 

develop products that better fit the consumer’s needs.  Xiong [27] believes that big data marketing 

is better than traditional marketing in the automobile industry because it provides insights into 
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consumer demand and identifies consumers’ interests, thereby allowing enterprises to produce 

automobiles that better meet the needs of consumers. Su [28] proposes the idea of using data mining 

and cloud computing technology to analyse data from the tourism industry. The author believes 

this will help develop innovative management models which can provide personalized marketing 

plans for tourism users.  Zhe et al. [29] have designed a luxury brand marketing service model 

using big data. The authors believe their model will provide the possibility for precision marketing 

and provide consumers with exclusive services.  

  

Gupta and Rani [30] have conducted a literature review on both academic and industry publications 

with respect to big data published from 2000 to 2017.  Through the bibliometric study, they find 

that the common research challenges preventing researchers from realizing the value of big data 

include high data volume, data format and data source diversity, data sets correlation, and data 

visualization.  

 

2.3 Challenges associated with big data implementation  

2.3.1 Data visualization 

Identifying a relevant and understandable way to visually present data is a major challenge 

associated with big data implementation.  Data visualization satisfies the ‘visual need’ of the 

human mind and can help humans to understand meaningful information obtained from a large 

quantity of data regardless of the different cultural backgrounds or the spoken language of the 

reader [31]. Data visualization can be used to provide insight into information and help the reader 

to understand and form an opinion on a complex context in a “storytelling” way [32].  

  

Mani and Fei [33] believe that data visualization has an essential role in big data analytics. Big 

data analytics refers to the process of applying analytical techniques to data to discover reliable 

facts or potential information. However, the authors state that the complexity of big data can affect 

the efficiency of a data visualization tool. They believe that this problem can be solved if the 

amount of data is reduced, for example when only the data requested by the user can be extracted 

and processed to create a visualization. 

  

Agrawal et al. [34] discuss the importance of data visualization tools for helping people understand 

collections of data and to support real-time decision making. The research group believes that it is 

easier for people to understand data in a graphical manner. They point out that there are many 
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challenges associated with real-time big data visualization, including extracting data from data 

sources, determining the essential information to be displayed, and using the data to create an 

effective graphical image. The strategy proposed by the group is data reduction, which is reducing 

the big data to smaller manageable data before processing it into visualization. 

  

Eldin et al. [35] believe that data collected by the IoT needs to be pre-processed and presented in 

a meaningful way before it can be used by researchers. They believe that data visualization is a 

simple and fast way to deliver messages and represent complicated things because it summarizes 

large amounts of data using a graphical interface. To convert data into a graphical format requires 

the following steps: data extraction and data fusion; identification of a suitable graph type or 

visualization model based on the user's objective; and the generation of a visual representation 

capable of delivering meaningful messages to users. The challenge associated with this process is 

to summarize the data for a specific domain in order to create appropriate visuals to support the 

needs of the user. 

 

The literature search shows that data visualization is an effective tool to help humans from different 

cultural and technical backgrounds understand complex information in a ‘storytelling’ way [31], 

[32]. But the complexity of big data makes big data visualization challenging. Data needs to be 

processed before converting to visualization because applying a very large amount of data to a 

visualization system is inefficient, particularly in the case of real-time implementation [34]. A 

common strategy proposed by researchers to solve this challenge is the reduction of the amount of 

input data before sending specific data related to the user’s interest to the visualization system 

[33]–[35]. 

  

2.3.2 High volume, high speed, and data sources 

Digital data is constantly being created, and the size of the data generated is growing rapidly as 

data collection technology becomes more advanced. In 2012, IBM estimated that there were 2.5 

exabytes (1018) of data generated every day and that the amount was expected to grow [36]. The 

hard drive capacity of a laptop can be range from 160 gigabytes (109) to more than 2 terabyte (1012) 

[37], which means it would require at least 1.3 million laptops to store all the data. The International 

Data Corporation (IDC) predicted in 2011 that the size of the data generated every day will grow 

50 times by the year 2020, and that the growth will be driven by the physical devices or software 

embedded in systems that continually connect data[38].  
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In 2015, the Australian Square Kilometre Array Pathfinder (ASKAP) demonstrated that they are 

presently able to obtain 7.5 terabytes (1012) of astronomical data per second and they expect the 

number to be 100 times bigger by 2025 [39].  

  

The IoT is generating vast amounts of data at a high speed, but the data cannot be directly used in 

many applications because the dataset is too large and not processed. Data collected by different 

devices often exist in a variety of formats, even for the same type of data. There is a requirement 

to reduce the size of the dataset and to unify the raw data format before these data can be useful to 

the broader research community.  

  

2.3.3 Data management 

Data management refers to the action of managing data as a resource. Effective data management 

not only requires having a reliable method to access, integrate, clean, store and prepare data for 

other applications, but also requires robust techniques for maintaining the data storage system and 

ensuring data security [40]. 

  

Data migration is a specific data management operation that refers to the action of transferring data 

from its origin to a new data storage place for an identified application [41]. Data migration can be 

divided into three sub-processes identified as Extract, Transform and Load. Data ETL is an 

important step in big data analysis, and a successful data ETL provides researchers with a clean 

data warehouse to use [42]–[45]. “Extract” is the process of extracting data in different formats 

from various data sources. "Transform" is the most complicated part of the ETL process and 

requires the application of transformation techniques to clean the raw data. Transformation 

techniques include cleansing, filtering, and restructuring the raw data, and converting it to the 

desired format [45]. The transformation process is case-specific; it requires manual analysis of the 

datasets, and a clear definition of the intended use of the data before defining the appropriate 

structure for the data warehouse. Once the clean data is stored in the selected data warehouse it is 

ready to be used in the chosen application. Figure 1 shows the conceptual model of the data ETL 

process. 
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Figure 1.Data ETL process (Adapted from ‘Design of ETL Tool for Structured Data Based on Data Warehouse’, by J. 

Wang et al.[44]) 

 

A well-designed data ETL process extracts data from multiple data sources, enforces data types 

and standards, and ensures structural compliance with the output requirements determined by the 

application. This is a key process as it will bring different data together in a standard, homogeneous 

environment as a data warehouse. 

 

2.4 Database and database management system  

The term “database” refers to a collection of data that are related to each other. In the physical 

world, a database can be a series of books or papers. In computing, a database is a collection of 

organized data that is stored and can be accessed electronically in a computer system. Software 

that is used to manage, maintain, or interact with databases is called a database management system 

(DBMS). The DBMS serves as an interface between the database and the end-users or software 

applications and ensures the required data is organized and can be easily accessed. There are 

different types of DBMS depending on the database type they are designed to interact with. 

 

2.4.1 Relational and non-relational database types 

The concept of the relational database is based on a model proposed by E. F. Codd in 1970 [46]. 

In a relational database, there exists a database structure schema that describes relationships 

between each of the parameters stored in the database. The schema should be defined before the 
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actual database is created and very few modifications can be made once it is defined. In the 

operational aspect, relational databases have Atomicity, Consistency, Isolation, and Durability 

(ACID) properties. When a relational database is used, each transaction is an atomic operation; if 

one part of the system fails, the entire system fails. The isolation and consistency of a relational 

database are ensured by each transaction behaving independently and being subject to a set of rules. 

Finally, relational data is durable in the sense that if someone changes the database, other parties 

who have access to it will be able to see the same changes [47]. The ACID properties ensure high 

data consistency between the database and the end-users. These characteristics of the relational 

database make it an excellent system for banking or financial systems. The Structured Query 

Language (SQL) is a programming language designed specifically for managing and querying 

relational databases in a DBMS, thus a relational database is also called an SQL database.  

  

The NoSQL database (non-SQL or non-relational database) is a more recently developed type of 

storage method that is becoming increasingly popular. In contrast to relational databases, NoSQL 

databases do not require a predefined schema; they store data regardless of its structure and content, 

allowing greater flexibility [47]. NoSQL databases can store unstructured or semi-structured data 

such as video clips, digital figures, or document files. Large amounts of such data is being 

generated every day in web and mobile applications, and there is a need for a storage method that 

can collect and store these varied formats of data with low latency, which is a difficult task for a 

relational database [48]. Unlike relational databases, NoSQL databases are faster at processing data 

because they do not need to adhere to ACID properties [49], [50].  

 

There is a trade-off between performance speed and database complexity [50]. Therefore, one main 

concern with a NoSQL database is how to ensure its reliability and consistency. Another difficulty 

is that NoSQL does not have a well-defined query language, making complex data query difficult. 

  

Scalability is another difference between SQL and NoSQL databases [47], [51]. An SQL database 

is typically hosted on a single server and can be scaled vertically. The scalability of a SQL database 

is achieved by adding additional memory, processors, and storage to the server. NoSQL databases, 

on the other hand, are horizontally scalable and are often designed to work across cloud servers.  

A third database type is NewSQL, which can be considered an improved version of the relational 

database, which still maintains the ACID properties but can have the scalable performance of a 

NoSQL database [52]–[54]. Table 1 shows a high-level comparison of the SQL, NoSQL, and 

NewSQL database types. 
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Table 1. Comparison of SQL, NoSQL and NewSQL 

Characteristic SQL NoSQL NewSQL 

ACID properties Yes No Yes 

Relational Yes No Yes 

Support unstructured data 

(e.g.: video, audio, etc.) 

No Yes In some cases 

Standard query language Yes No Yes 

Community support Very high High Low 

Scalability Vertically scalable Horizontally scalable Horizontally scalable 

 

2.4.2 DBMS performance  

There are several DBMS available for managing the three types of databases.  Research has been 

conducted comparing the performance of different DBMSs, and results show that DBMS for 

NoSQL databases is not always more efficient than DBMS for relational databases[49], [55], [56]. 

The performance of the DBMS depends on the database operation being performed. 

 

Li et al. [55] conducted performance comparison on several NoSQL DBMSs against Microsoft 

SQL Express. MongoDB, Hypertable, Apache CouchDB, Apache Cassandra, RavenDB, and 

Couchbase are the NoSQL DBMS chosen for the experiment. The research group found that the 

NoSQL databases were not always outperforming the SQL database, and that the efficiency of the 

database varied depending on the operation. For reading, writing, and deleting operations the 

research study found that only MongoDB and Couchbase consistently outperformed the Microsoft 

SQL Express. 

 

Fatima et al. [49] also conducted research on the performance of three different types of DBMSs. 

In their experiment, MongoDB was chosen as the NoSQL DBMS, MySQL was chosen as the SQL 

DBMS, and VoltDB as the NewSQL DBMS. The research group used these three DBMSs to store 

and manage data and compared their performance. According to their research, VoltDB always 
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outperformed MongoDB and MySQL in terms of both read and write operations. As for the other 

two DBMSs, MySQL was more efficient for the read operation while MongoDB was more efficient 

for the write operation. 

 

Rautmare et al. [56] conducted similar research to compare the performance of the read and write 

operation for MySQL and MongoDB. The results show that MongoDB outperformed MySQL in 

some cases, but the response time in MySQL was more stable. The authors state that choosing a 

DBMS should depend on the requirements associated with the database application.  

 

2.5 Data-driven research in the aviation industry 

Data-driven research projects related to aviation are relatively common in the literature. Li and 

Ryerson [57] have conducted a literature review of 200 aviation data-driven publications published 

after 2010. The authors find that the literature references a variety of data types, and that the same 

data may come from different sources. They identified 16 data categories and found that each one 

of them had at least 5 available sources. They point out that, because of the existence of different 

data sources for the same data, the nomenclature used to describe the information can be 

inconsistent, making the data difficult to access and problematic to use. With respect to data 

availability, the researchers found that 24% of the 200 publications use publicly available data, 

whereas the rest rely on proprietary sources. The authors believe that standardizing data source 

nomenclature in the industry and increasing the amount of publicly available data would greatly 

benefit aviation data-driven research. A selection from the literature reviewed by Li and Ryerson 

is provided in the rest of this section. 

 

 Ben Abda et al. [58] examined domestic origin-destination traffic and fares at America's 200 

largest airports from 1990 through 2008, focusing on the effects of the arrival and growth of low-

cost carriers by analysing air carrier data obtained from the US Department of Transportation 

Bureau of Transportation Statistics.  

  

Alderighi and Gaggero [4] used flight schedule and meteorological data to study the flight 

cancellation rate and show that airlines belonging to global alliances are more likely to cancel a 

flight under the same weather condition.  

  

Fu and Kim [59] studied the relationship between airport passenger leakage at small local airports 

and the relationship with multiple explanatory factors such as travel group size and airfare. The 
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authors employ 8 years of publicly available data in an econometric model including airport 

passenger traffic, airline services, driving distance between airports, census information, and 

aviation fuel costs. 

  

Cadarso et al. [60] studied the competition between airlines (legacy and low-cost) and high-speed 

rail. The authors developed a model for generating airline schedules and used real operational data 

obtained from a Spanish airline company as input to validate their model. The results they obtained 

from the validation shows that their model generated similar flight schedules to the actual flight 

schedule used by the airline company. The validated model was then used to predict the impact on 

airline scheduling caused by the entry of high-speed rail into the transport market. 

  

Ren et al. [3] applied machine learning techniques to study the relationship between weather and 

Ground Delay Programs (GDP) issued at Newark Liberty International Airport from 2010 through 

2014. The authors take GDP advisory data, FAA flight data, and forecast and observed weather 

data from U.S. National weather services to create a merged master data repository to support their 

research. 

  

Ng et al. [1] developed a trajectory optimization algorithm that minimizes the cost of time and fuel 

burn, especially for cargo flights. Their algorithm was validated in a MATLAB simulation by 

creating a new trajectory for specific cargo flights based on air traffic data from October 2010, 

including wind data for the same period obtained from the National Oceanic and Atmospheric 

Administration.  

  

Rakas et al. [61] developed a generalized method to evaluate the impact of equipment outages on 

airport throughput and the probability of a separation loss between aircraft. The research involves 

a variety of factors including weather conditions, aircraft type, and landing and departure times. 

The authors highlight the fact that the data they need to conduct their research cannot be found in 

a single database. Their study combined historical data from three Federal Aviation Administration 

(FAA) databases: the Aviation System Performance Metric (ASPM), the Remote Monitoring and 

Logging System (RMLS), and the Performance Data Analysis and Reporting System (PDARS).  

  

In reviewing some of the publications that appear in Li and Ryerson’s survey [57], it becomes clear 

that researchers use historical aviation data obtained from real life to support a variety of research 

projects. The industry uses real-life data as input to validate new concepts or algorithms being 

developed [1], [3], [60], [61], or they analyse the data and obtain some insight regarding the 
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messages within the data [4], [58], [59]. In a third important application, real-life historical data is 

used to support the development of simulation software. Section 2.5.1 introduces and reviews two 

such simulation software systems developed by NASA and used for research. 

 

2.5.1 Historical big data and aerospace simulation research 

The Future ATM Concepts and Evaluation Tool (FACET) is a simulation and analysis tool 

developed by National Aeronautics and Space Administration (NASA) in the late 1990s [5]. 

Advanced air traffic management concepts can be explored, developed, and evaluated using the 

simulation environment provided by FACET. FACET can create simulations and playbacks with 

the support of real-life historical data on air traffic, airspace constraints, aircraft performance, and 

weather [6], [8]. The software tool was developed to satisfy the requirements of NASA Air Traffic 

Management (ATM) researchers by using real-world data to create simulations. FACET has been 

used as a testbed for air traffic management related research in subject areas including airspace 

complexity, conflict detection and resolution, and flexible airspace utilization. 

  

Sridhar et al. [8] presented a three-step hierarchical method to integrate air traffic flow management 

initiatives for the purpose of avoiding regions of severe weather and preventing congestion in the 

airspace sector. A simulated environment is created using FACET with 24-hour historical air traffic 

data to evaluate the method. 

  

Bilimoria et al. [9] evaluated the performance of two Conflict Detection and Resolution (CD&R) 

schemes in a simulated air traffic environment provided by FACET. A 6-hour test scenario 

involving nearly a thousand aircraft was modelled in FACET to support the evaluation work. The 

initial condition of the test scenario was formed by using actual air traffic data, and the two CD&R 

schemes were applied to the simulation to evaluate their influence on the air traffic in terms of 

safety, efficiency, and stability. 

  

Sheth et al. [10] conducted an analysis of five airspace tube structures using FACET, including 

three existing and two new designs. Using 24-hours of historical air traffic data, FACET was used 

to create a simulated environment to test the performance of the designs. The authors defined the 

following metrics to measure performance; the spatio-temporal utilization of the airspace, the 

frequency and angles at which the aircraft cross the tubes, and the separation distance between 

aircraft with and without tubes. 
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Although FACET can generate simulated environments to support Air Traffic Management related 

research, it cannot generate simulations of 3D aircraft trajectories or include flight delays caused 

by airport ground operation. As a result, NASA has developed the ACES software system that can 

be used to simulate aircraft trajectories with given initial conditions and performance parameters 

specific to an aircraft model. 

 

The Airspace Concept Evaluation System (ACES) is a fast-time, gate-to-gate simulation and 

modelling tool for the National Airspace System (NAS). NASA developed ACES in 2001 and is 

continuously updating and incorporating new features [7]. ACES can be used for investigating 

current operations, future operating concepts, and new tools and architectures for the NAS. The 

simulated environment in ACES is created using official data published by regulatory agencies 

including the Rapid Update Cycle (RUC) for enroute wind, the Kinematic Trajectory Generator 

(KTG), and the Base of Aircraft Data (BADA) for aircraft performance. In addition to using 

multiple databases to create realistic simulated environments, the latest version of ACES also 

includes a library of plugins that can be used by researchers to support the development and 

evaluation of NextGen concepts.  

 

Thipphavong et al. [2] developed an adaptive weight algorithm to improve the accuracy of aircraft 

climb trajectory prediction and they used ACES to establish a proof-of-concept. ACES was 

selected because it can generate realistic aircraft trajectories using aircraft models derived from the 

BADA. The algorithm adjusts the gross weight of the aircraft model based on the rate of change in 

kinetic and potential energy and uses the adaptive weight algorithm to predict the aircraft's climb 

trajectory. The researchers believe that the successful development of this algorithm will help 

reduce air traffic control workload; improve the automation level of separation assurance; and 

increase the capacity of the Next Generation Air Transportation System.  

 

Chen et al. [11] investigated four Detect-and-Avoid (DAA) Well Clear definitions between non-

cooperative aircraft and Unmanned Aircraft Systems (UAS). The authors believe that DAA 

systems are essential to ensure the safe integration of UAS into the NAS. The DAA Well Clear is 

a separation standard used in DAA systems, and it is important to correctly identify the appropriate 

Well Clear definition for UAS DDA systems. The research group uses ACES to generate UAS 

trajectories, and the simulation of the encounter scenario is conducted by pairing a UAS trajectory 

with a non-cooperative aircraft trajectory. 
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Satapathy et al. [12] evaluate the sensitivity of a new Efficient Descent Adviser (EDA) tool to 

predict trajectory errors. The EDA tool evaluated by the group is a trajectory-based method and its 

performance depends directly on the accuracy of the trajectory prediction. The research group 

conducted the sensitivity analysis by using ACES along with its Kinematic Trajectory Generator 

(KTG) to model both actual and predicted flight trajectories. The difference between the two is due 

to the uncertainty in the data applied in the trajectory prediction calculation. The EDA is applied 

to both trajectories in the simulation, allowing the researchers to evaluate the EDA performance 

under variations in trajectory prediction uncertainty requiring controller intervention. 

 

Apart from being used to generate aircraft trajectories, ACES is also a useful research tool for 

creating realistic simulations related to airport operational metrics, for example airport throughput 

and flight delays. The accuracy of the output in terms of this type of simulation had been verified 

by Zelinski et al. [13], [14] using real-world historical flight and weather data as input to ACES. 

The research group obtained output including airport throughput, flight delay, and flight tracks 

from ACES, which they then compared to the real-world data of the reproduced day in the 

simulation. The results show that the output obtained from ACES is highly correlated to real-world 

data.   

 

Erzberger et al. [15] presented the design of a ground system that can resolve problems such as 

aircraft conflict, arrival schedule, and convective weather avoidance as a means of accommodating 

piloted and non-piloted aircraft with reduced dependency on human controllers. ACES was 

employed by the research group to test their design. A 24-hour period of historical arrival and 

departure data for the Dallas Fort Worth International Airport and the Dallas Love Field airport is 

used as input to create a simulated environment in ACES.  

 

Smith et al. [16] investigated the use of larger aircraft and alternative routing to complement the 

capacity benefits expected from NextGen in 2025. The research group uses ACES to access NAS 

delays for the 2025 demand projected by a Transportation System Analysis Model. The demand 

projection for 2025 is made based on real life air traffic data obtained in 2006. The results show 

that using larger aircraft with more seats on high-demand routes and introducing new direct routes 

can significantly reduce delay and complement NextGen improvements. 

  

Although ACES can generate realistic aircraft trajectories and simulate flight delays at specific 

airports, the software does not include the capability of simulating weather. Instead, the only 
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meteorological component available in ACES is the wind effect, and this is done by adjusting the 

aircraft's ground speed in the simulation in accordance with the input weather data. 

The examples of FACET and ACES usage described above illustrates how researchers in the 

aviation industry are using real-life historical data to create simulated environments as a means of 

testing new concepts. Both FACET and ACES require various types of input data depending on 

the research-specific simulations [5]–[7]. As a result of studies including those described, 

researchers have remarked that the quality of the real-world data can be inadequate. For example, 

data obtained from one data source might be incomplete and will require combining data from 

other data sources before using them as input to simulation software [13], [14]. As a result, aviation 

researchers have begun to address the problem of data complexity, accessibility, and compatibility 

by undertaking projects aimed at processing and grouping available archived aviation data in “data 

warehouses” as a means of providing clean data sources.   

 

2.6. Research-specific aerospace data collections 

The development of research-specific databases capable of providing relevant, clean, organized 

and manageable data collections is becoming an increasingly popular research topic [62], 

[63].  These collections are meant as data “warehouses” and do not process or apply the data to 

simulations or other software applications, but rather focus on gathering, cleaning and making the 

data accessible so that researchers may use them for specific modelling applications. Eshow et al. 

[62] introduced the design and implementation of a data warehouse named ‘Sherlock’ in support 

of ATM research at NASA’s Ames Research Center. The purpose of Sherlock is to serve as a 

centralized data repository that holds all relevant ATM data and enables NASA researchers to 

access data for their own purposes. The author points out that the success of creating Sherlock 

depends on continuous access to reliable and robust data sources. The data stored in Sherlock 

comes primarily from the FAA and the National Oceanic and Atmospheric Administration 

(NOAA). The two organizations have multiple sub-departments that collect air traffic-and weather-

related data that could be used to describe the NAS. An open-source software application is used 

to extract, transform and load data from data sources to the storage place in Sherlock. The data 

stored in Sherlock can be accessed through a web application, and researchers can download the 

data they need from the Sherlock web application instead of trying to find the data they need from 

the internet.  

 

For example, Kuhn [64] proposed a methodology for characterizing historical flight days based on 

aviation weather and air traffic conditions in a given region to provide input for Traffic Flow 
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Management (TFM) decision-making. The author extracted weather and air traffic data sets from 

Sherlock and characterized the information on a case-by-case basis. The cases developed were 

employed in the analysis of the past use of TFM initiatives as a means of improving the 

performance of the air transportation systems and reducing air traffic management workload in 

similar situations. 

 

Pang et al. [65] proposed a neural network model for weather-related aircraft trajectory prediction 

using raw air traffic and weather data from Sherlock for a database used to train their model. The 

model generated the trajectory prediction based on the aircraft’s current flight plan, the history 

flight tracks, and the weather conditions at the time.  

 

Evans and Lee [66] conducted research on air traffic schedule delays caused by weather or air 

traffic congestion. The authors applied data mining techniques to historical data extracted from 

Sherlock for arrival operations at the Newark Liberty International Airport between June and 

August 2010. The authors believe their work will contribute to a better understanding of how these 

factors contribute to the occurrence of schedule delays and help to improve ATM decision-making. 

 

Sherlock is a platform for reliable ATM data collection, archiving, processing, query, and delivery 

[62] that has proven its usefulness in supporting data-driven research including big data analysis, 

machine learning, and data mining [63]–[65]. The Sherlock product is an important component of 

the ATM research infrastructure used by the NASA Ames Research Center and their partners, but 

there remain challenges that need to be overcome. These challenges have been acknowledged in 

presentations given by researchers from NASA Ames Research Center in 2018 and 2019 [67], [68]. 

The major challenge discussed is that, although Sherlock stores archived data from different data 

sources, it only allows users to query data from one individual source at a time. This is because 

Sherlock is not a unified database and the datasets stored are heterogeneous in terms of data formats, 

spatial and temporal alignment, and scientific units. Because of this, it is hard to bridge across the 

data from different sources stored in Sherlock during query operations. 

 

Researchers from NASA are not the only ones trying to develop an integrated aviation data 

warehouse [63], [69]–[71]. Larsen [69] has presented an integrated aviation data warehouse that 

was developed in support of aviation big data analysis research. The author points out that since 

aviation data comes from diverse data sources, they do not have the standardization, uniformity or 

defect controls required for reliable integration. In addition, the diversity of data sources makes the 
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size of data extremely large for a given period of time, and that might exceed the capability of a 

traditional desktop to manage and make use of the data. 

Tyagi and Nanda [70] presented an architecture for the development of a data warehousing and big 

data analytics tool for ATM researchers. The proposed tool is designed to be an intelligent 

repository for a variety of ATM data and would allow users to combine datasets before querying 

and analyzing them instead of manually downloading, cleaning, ingesting, and querying a small 

subset of one or multiple datasets. The authors point out that having such a data warehouse can 

save redundant steps by providing one platform to solve the needs of a larger number of researchers 

while ensuring accurate, stable, and easily accessible data solutions. 

  

Ayhan et al. [71] describe a novel analytics system that processes, correlates, and stores Aircraft 

Situation Display to Industry (ASDI) data in a data warehouse. The authors clarify the need for 

developing scalable data warehouses to better manage and store data. They point out that it is hard 

to perform analytics on raw data as the collected data is large, compressed, and requires correlation 

with other flight data before it can be used for analysis. The research group designed and developed 

a data warehouse to store two years of archived ASDI data. The data warehouse was then used to 

support the development of software models to predict airspace density as a means of providing 

more refined rerouting decisions.  

  

In 2020, a group of researchers from Embry-Riddle Aeronautical University (ERAU) presented a 

research initiative to address not only the problem of managing the accumulated FAA air traffic 

management data they collect, but also to make the data useful in support of data-driven research 

conducted at the university [63]. The research group point out that it remains difficult to utilize the 

collected data because it still requires a series of processes before it can be used. These processes 

include extracting appropriate data files from the archive, decompressing those files, extracting the 

relevant data from the decompressed files, and correlating data between multiple files to fill in 

potentially missing information. The authors emphasize that such a workflow is not suitable for a 

sustainable research program and is time and resource intensive. The research group also mention 

that the challenge of making use of available aviation data for aviation big data research is not 

unique to ERAU, and that the challenge is primarily caused by the wide variety of aviation data 

types. They believe that there is a need to develop a system-level design for an aviation big data 

system that can provide adequate and useful support to research and operational needs. 

 

To demonstrate a proof-of-concept, the ERAU research group takes a 24-hour period of collected 

aviation data from various data sources and develops a data repository to store these data. They 
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present their workflow and discuss the problems they encounter during the implementation 

including extracting data from different data sources and converting them to a format suitable for 

storage; identifying the correlation between different datasets to fill in the gap where there is 

missing information from one data set; and designing an interface that allows users to query and 

visualize the data they are interested in. After implementing the proof-of-concept, the researchers 

present several lessons learned from their research. They emphasize that data clean-up and pre-

processing are important after extracting data from data sources, and that it should be expected to 

see inconsistency in data format across data sources as well as incomplete information within a 

single source. Finally, they point out that the data repository should be capable of maintaining 

efficient performance in terms of feeding back the query results to users. 

 

The examples of Sherlock and other data repositories described above reflect their usefulness in 

terms of supporting aviation data-driven research. The Sherlock data repository developed by 

NASA aims to provide researchers with a platform to download all ATM-related data [62]. 

Although Sherlock is considered an essential tool for ATM researchers, it is not a unified data 

repository and its data cannot be used directly in data-driven research [63], [70] without cleaning 

and standardization processes being applied [67], [68]. Unlike the Sherlock data repository, there 

are other researchers who design and develop small data repositories for specific research 

applications [63], [69]–[71]. These authors prefer to have a data repository with only a limited 

amount of data defined by the research purpose rather than a master data repository like Sherlock. 

For this smaller type of data warehouse, raw data extracted from data sources is processed to satisfy 

the research requirement before storing them in the repository. Characteristics of this kind of data 

repository are manageability using a normal desktop computer, and the reliability of providing 

efficient performance when users query data from it. 

 

The literature review reveals that, although we are in the era of big data and that much of that data 

has relevance for promising areas of aviation research, challenges remain to its utilization. The 

biggest challenges are related to correlating large amounts of data from a variety of sources, and 

locating, extracting, processing, and storing relevant material in a format ensuring consistency, 

compatibility, and ease of use for the aerospace researcher. Although the large amounts of 

information available have led to the temptation to create large “data warehouses”, the practice of 

storing large amounts of data increases the difficulties associated with the querying, extraction, and 

processing tasks necessary to make the data useful to the researcher in an efficient manner.  
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2.7 Research objective 

In the study that is the subject of this thesis, a smaller, more efficient, aerospace research-specific 

data repository is proposed, and a methodology is presented for its development. The methodology 

is aimed at developing best practices and alternatives for pre-processing and storing data according 

to a well-defined research need in such a way that the information is accessible, non-redundant, 

clean, and compatible. The approach is validated with a proof of concept where a prototype data 

repository is created in support of a defined research project. The research objective can be broken 

down into five main tasks as follows:  

  

1. Identify aviation data sources that satisfy the given research need within the constraints 

that the sources must be publicly available and easily accessible. 

2. Design and develop an independent data repository that i) can be handled by a common 

desktop computer; ii) is compatible (can be accessed) with various programming 

languages; and iii) can provide effective feedback to user queries. 

3. Develop a script to implement Data ETL and extract data from the sources identified in 

Task #1, clean it to satisfy specified requirements, and load it to the data repository 

developed in Task #2.  

4. Design and develop a Graphical User Interface (GUI) that provides a platform for the data 

repository user to visualize and interact with the data. 

5. Verify the methodology using a proof-of-concept test case. 
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3. Research Methodology  

This chapter presents the methodology used to create an aerospace research-specific data repository 

that satisfies the five main tasks discussed in Section 2.7 and illustrated in Figure 2. Section 3.1 

discusses the data source selection based on the defined requirement of a specific research project. 

Section 3.2 presents the design and development of a data repository that satisfies the requirements 

of Task #2 as defined in Section 2.7. Section 3.3 presents the implementation of Data ETL as 

described in Section 2.3.3; and Section 3.4 describes the development of a web-based GUI to 

provide data visualization to users. Section 3.5 concludes the chapter by presenting a validation 

approach using a proof-of-concept test case. 

 

 

Figure 2. Workflow 

3.1. Data source selection 

Task #1 involves the identification of suitable aviation data sources that fit the given research 

criteria with the added constraint that the data be publicly available at no charge. In the literature 

review conducted by Li and Ryerson [57], they identify 16 data categories of aviation-related data 

used in data-driven aviation research, the most commonly used being Air Traffic Control data; 

individual flight-level data; economics, logistics and operational data;  airport and airline specific 

data; fuel and fuel-related data; weather-related meteorological data; aviation geography and 

geometry data; and socioeconomic, demographic and population data. In the study that is the 

subject of this thesis, four of these categories of data are accessed; individual flight-level data, 

airport and airline specific data, weather-related meteorological data, and aviation geography and 

geometry data.  The data are used to implement the research methodology in the context of a 

specific research project. The remaining part of this section provides more detailed information 

about the data sources selected and the types of data associated with each of them. 
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3.1.1 Weather data 

The NOAA is a scientific agency within the United States Department of Commerce. The role of 

the NOAA is to monitor natural environmental activities in the United States. One of the 

organization’s responsibilities is to release weather forecasts as well as warnings when weather 

hazards are predicted [72]. The NOAA collaborates with other top-level organizations to jointly 

develop weather products for use by the public and federal agencies. These organizations include 

NASA, FAA, and the United States Department of Defense (DOD) as shown in Figure 3. 

  

 
Figure 3. The service available in NOAA 

There are multiple environmental services associated with the NOAA program, and some of these 

are responsible for providing information to the aviation community [73].  Figure 3 shows an 

overview of the services available from the NOAA, where the blue boxes represent services related 

to the aviation community and the white boxes show other services. The National Weather Service 

(NWS) is one of the government institutions under the NOAA program, and an important role of 

the NWS is to issue severe weather warnings to save lives and minimize property loss [74]. Within 

that context, several weather prediction services under the NWS provide direct weather forecast 

information to aviation users.  
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The two green boxes highlighted in Figure 3 are the data sources selected for use in the project that 

is the subject of this thesis, and both are owned by the NOAA. The Aviation Weather Center (AWC) 

is an institute belonging to the National Centers for Environmental Prediction (NCEP) with the 

objective of providing consistent, timely, and accurate weather information to the global aviation 

community.  The National Center for Environmental Information (NCEI) is an organization 

belonging to the National Environmental Satellite, Data and Information Service (NESDIS) and is 

the Nation’s leading authority for environmental data. The NCEI manages a large amount of 

archived atmospheric and oceanic data and fulfils the role of helping the NOAA meet the growing 

need for high value data in environmental research. Unlike the AWC, the NCEI provides only the 

raw data to users and for data-driven research, raw data is more useful because machines can 

process complex data values more effectively than humans. 

  

All weather data captured by any institution under the NOAA program is publicly available on the 

NOAA website. The various types of weather data are collected by different devices, and the raw 

data are ‘encoded’ in their own language and appear in different data formats [73] in the different 

databases. The NOAA’s Weather and Climate Toolkit (WCT) is an independent and free software 

released by the NOAA and has two primary functions: data visualization and data export [75]. The 

software can generate satellite images from any given raw radar data file but can also convert a 

raw radar data file to a variety of common formats and export. Researchers can use the WCT 

software to convert raw weather data files to the desired format compatible with their research 

activity.   

  

In 2000, NASA conducted a study to review all the aviation weather products available at the time 

[73]. The study uses Federal Aviation Regulations Part 91 (General Operating and Flight Rules), 

Part 135 (Air Taxi Operators and Commercial Operators), and Part 121 (Domestic Commercial 

Operators) as the context to analyze the critical weather information required by aviation users at 

each phase of flight. Depending on the phase of flight, different weather products may be required, 

because each product has a different coverage area. For example, while certain weather products 

are only available in the terminal area, others are issued for all 48 contiguous states in the U.S.. 

The study identifies weather products used by the aviation community as well as the data sources, 

data content, and updated frequency of each weather product. Table 2 provides an overview of the 

weather products studied and is presented here to demonstrate the diversity of data formats, update 

frequencies, and coverage areas for the different organizations under the NWS. 
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As an example, the Meteorological Aerodrome Reports (METAR) is a joint effort by the NWS, 

the DOD, and the FAA, and provides an hourly report of surface weather information for US airport 

terminal areas [73], [75]. The METAR data is a text string that combines information from 

Automated Weather Observing Systems (AWOS) and Automated Surface Observation Systems 

(ASOS) to provide the report issue time, wind speed and direction, visibility, temperature, and 

other weather phenomena.  

 

Table 2.Information about different weather data [73] 

Weather Product Description 

Responsible 

organization 

Coverage 

Area 

Update 

rate Format 

Aviation Routine 

Weather Report 

(METAR) 

Surface condition at the 

airport 

ASOS1 

AWOS2 

HO3 Terminal 1 hour Text string 

Terminal Area Forecast 

(TAF) 

Airport terminal 

weather forecast 

NWS 

WFO4 Terminal 4 hours Text string 

Airman's 

Meteorological 

Advisory (AIRMET) 

3 categories, hazardous 

atmospheric conditions 

for VFR AWC5 

3000 

square 

miles 6 hours Text string 

Significant 

Meteorological 

Information (SIGMET) 

Hazardous conditions 

for all user categories AWC 

3000 

square 

miles 6 hours Text string 

Low-Level Significant 

Weather Chart 

(LLSWC) Aid VFR briefing NWS U.S. region 

4 times per 

day 

Graphical 

chart 

 
1 ASOS: Automatic Surface Observation System 

2 AWOS: Automatic Weather Observation System 

3 HO: Human Observation 

4 WFO: Weather Forecast Office 

5 AWC: Aviation Weather Center  
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High-Level Significant 

Weather Chart 

(HLSWC) 

Provide forecasts 

during en-route phase 

for international flight NWS U.S. region 

4 times per 

day 

Graphical 

chart 

Winds and Temperature 

Aloft (WA and TA) 

Information at 9 

discrete elevations from 

3000 ft to 39000 ft NCEP6 U.S. region 12 hours 

Graphical 

chart or  text 

string 

Meteorological Impact 

Statement (MIS) 

Unscheduled weather 

information help flight 

planning, flow control CWSU7 Regional 

As 

condition 

warrant 

Graphical 

chart or  text 

string 

Center Weather 

Advisory(CWA) 

Nowcast information 

help flight crew avoid 

hazardous condition CWSU Regional 

As 

condition 

warrant 

Graphical 

chart or  text 

string 

Pilot Report(PIREPS) 

Atmosphere 

observation by pilot or 

aircraft instrument Pilots Localized 

As 

condition 

warrant Text report 

Satellite Imagery (SI) 

Images of cloud and the 

temperature of the 

cloud 

GOES8 

NOAA National 

15 min ~ 1 

hours 

Satellite 

image 

Radiosonde Additional 

Data (RAD) 

Information on freezing 

level and relative 

humidity NWS National 12 hours Radar image 

Next Generation 

Weather Surveillance 

Radar(NEXRAD) 

Produce 18 products 

related to precipitation 

and velocity estimates NWS 

~ 200 mile 

radius 

6~12 

minutes Binary file 

Terminal Doppler 

Weather Radar 

(TDWR) 

Provide wind shear 

precipitation in the 

terminal area 

FAA 

NWS Terminal 

As 

condition 

warrant Radar image 

 
6 NCEP: National Centers for Environmental Prediction 

7 CWSU: Centers Weather Service Unit 

8 GOES: Geostationary Operational Environmental Satellite 
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3.1.2 Air traffic data 

Airline Situation Display to Industry (ASDI) is a data stream that broadcasts real-time air traffic 

data to members of the aviation community and has been serving as the data feed of FAA's 

Cooperative Research Data Agreement since 1998 [71]. ASDI delivers information to users 

through a text string, where the ASDI messages include, but are not limited to, flight plan 

information, arrival information, and departure information for aircraft in the NAS. Table 3 lists 

the information content associated with each type of message delivered by ASDI. 

 

Table 3. Information available in ASDI data stream 

Message type Content 

Flight plan Aircraft identification 

Departure point 

Destination 

Aircraft type 

Speed 

Coordination Fix 

Coordination time 

Assigned altitude 

Requested altitude 

Route 
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Arrival information Aircraft identification 

Departure point 

Destination 

Arrival time 

Departure information Aircraft identification 

Aircraft type 

Departure point 

Actual departure time 

Destination 

Estimated time of arrival (ETA) 

 

The ASDI is a data stream, and the organization is not responsible for collecting the data, but rather 

makes available data coming from the Enhanced Traffic Management System (ETMS) [76]. The 

ETMS in turn derives its air traffic information from several sources [77] including airline schedule 

data from the Official Airline Guide (OAG); real-time NAS messages from the Air Route Traffic 

Control Centers (ARTCCs); and air traffic data over the contiguous and the oceanic area of the 

United States from the Aeronautical Radio Incorporated (ARINC) and the Dynamic Oceanic 

Tracking System(DOTS). The ETMS combines the available data to always maintain a 

comprehensive picture of air traffic in the NAS. This information is then broadcast in real time by 

the ASDI and can be publicly accessed by members of the aviation research community. 

 

Another public source of air traffic data is the Automatic Dependent Surveillance-Broadcast (ADS-

B). ADS-B uses satellite navigation and other sensors to determine the position of an aircraft and 
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broadcast it periodically. The latest version of the Code of Federal Regulations Title 14 Part 91.225 

and Part 91.227 states that all aircraft must be equipped with ADS-B Out to fly in most controlled 

airspace after January 1, 2020 [78], [79]. In general, ADS-B Out refers to an avionics subsystem 

that broadcasts flight information of the equipped aircraft. Any other airspace users equipped with 

ADS-B In systems can receive the broadcast information. Ground receivers like the Air Traffic 

Control System can also receive the broadcast information by equipping an antenna with receivers 

and an adapted surveillance processor. ADS-B is a surveillance service used to support separation 

assurance and traffic flow management [80]. Unlike the weather products discussed in the previous 

section that have minute-based or hour-based update rates, the ADS-B message updates every 

second. The flight information broadcast by ADS-B Out includes time, horizontal and vertical 

position, speed, barometric altitude, and aircraft identification code.  

 

Accessing the ASDI data stream is more complicated than accessing ADS-B data. The FAA 

maintains a list of acknowledged direct ASDI subscribers who can access the ASDI data stream 

[81].  ADS-B data, however, can be accessed through the internet and there are several platforms 

that provide archived ADS-B data to the public [82]–[84]. All ADS-B data platforms identified in 

this research are notable for having missing information or aircraft positional error in the data they 

provide. For the purpose of this research, when these errors are encountered, the records that lack 

information on aircraft position are neglected during the data extraction process. Section 4.3.1.2 

present more detail on the work associated with obtaining and processing ADS-B data. 

 

This section has provided a brief presentation of some of the wide variety of available data sources 

on weather and air traffic data. The selection of the type and source of data used on any given 

research project will be driven by the requirements of the project itself and limited by the constraint 

that the data be publicly availability and easily accessible. 

3.2 Independent data repository 

Task #2 from Section 2.7 concerns the design and development of an independent data repository 

that i) can be handled by a common desktop computer; ii) is compatible (can be accessed) with 

various programming languages; and iii) can provide effective feedback to user queries. 

  

While this task is defined independently, it is performed iteratively with Task #3 – the 

implementation of data ETL. Once the data source has been selected (Task #1) and the data 
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downloaded and decoded (Task #3), it must be cleaned to meet the research project specific 

requirements (Task #3) and then uploaded to the new database (Task #3). The processes used for 

cleaning the data will depend on the structure and organization of the raw data, and the type and 

structure of the database required to store the cleaned data (Task #2) will depend on the approach 

to data ETL.  

 

The data content of the weather and air traffic data sources discussed in Section 3.1 can be 

considered structured data, where structured data refers to any data converted to a predefined 

structure and format before being placed in a storage location [85]. Structured data is often 

described as data, especially numbers or text strings, that can be organized into tables or 

spreadsheets, whereas unstructured data is information that cannot be arranged in such a way 

including images, audio and video files. Figure 4 offers more detail on the differences between 

structured and unstructured data.  

 

 

Figure 4. Structured data vs unstructured data (Adapted from ‘Structured Data vs. Unstructured Data: what are they 

and why care?’, Lawtomated [85]) 

 

A selection of different types of databases and data management systems was presented in Section 

2.4 with respect to their advantages and disadvantages. A common choice for structured data is the 
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relational database. Relational databases maintain data in tables, providing an efficient and flexible 

way to store and access structured data. When designing a relational database, the primary goal is 

to minimize duplicate data columns among different tables and build connections between them 

by identifying their correlation. This requires an understanding of the data content as well as the 

requirements specific to the defined research project. Based on the type of data obtained from the 

data ETL (Task #3), the process begins with questions that may include “What does the cleaned 

data look like?”, “How can the data obtained be structured in separate tables?”  What criteria 

should be used to create relationships between tables?”, etc. 

 

The structure of the database used for the proof of concept that is the subject of this thesis is 

described in detail in Section 4, where the answers to the questions posed above are provided for a 

selected case study. 

3.3 Data ETL 

The third task identified in Section 2.7 is the application of data ETL techniques to extract data 

from the sources identified in Task #1; transform it to satisfy specified research requirements; and 

load it to the data repository developed in Task #2.  If the raw data is ‘encoded’, it must be decoded, 

and the underlying structure and organization examined.  The decoding process is driven by 

questions such as “How are we going to use the data?”; “Is the original structure adequate?”; and 

“How do I want the data stored in the new database so that it is easy to use?”. 

  

3.3.1 Data Extraction 

Different data download methods are needed to assist the data extraction process depending on 

which data sources are selected. This section introduces three data extraction methods that were 

investigated in this research. Section 3.3.1.1 introduces the most common data extraction method, 

and Sections 3.3.1.2 and 3.3.1.3 present high-level descriptions of two data extraction methods 

implemented for the case study that is part of this thesis and are described in more detail in Chapter 

4. 
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3.3.1.1 Direct download  

The most common way to download something from the internet is by direct download. This data 

extraction method can be applied to data sources that provide users with a GUI. Users are capable 

of viewing or selecting the data of their interest through the GUI and can choose the file to 

download from there.  

 

Figure 5 shows an example of downloading Next Generation Radar (NEXRAD) data from the 

NCEI website. The NEXRAD data collected at the KJFK weather station on January 1st, 2020 

from 00:00:00 to 00:59:59 are the subject of the example. The data file identified in the search can 

be downloaded from the website by clicking the ‘Download’ button located at the bottom right 

corner. The NOAA has several direct download platforms where users can obtain data by selecting 

a country, city, zip code, or any geographical point on a map [86].  

 

 

Figure 5. Direct download NEXRAD data from NCEI[86] 
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Direct data download has the advantage of being user-friendly, particularly because the GUI 

provides guidance for searching and finding the specific dataset the user requires. The disadvantage 

of this method is that it is difficult to automate the data extraction process and download a wide 

array of data files at the same time because it requires the user to click and download one file at a 

time. This disadvantage could be overcome by using application programming interfaces (APIs) 

or port connection if the selected data sources have these services available. The following sections 

will introduced two data extraction methods that uses APIs and port connection. 

3.3.1.2 Amazon Web Service Command Line Interface 

Amazon Web Services (AWS) is a subsidiary of Amazon that provides businesses, governments, 

and individuals with on-demand cloud computing platforms and APIs. AWS offers a storage 

service named Amazon Simple Storage Service (Amazon S3).  Amazon S3 uses an object storage 

architecture which treats data as an object and can organize many objects amongst different 

“buckets” [87].  

 

Figure 6 illustrates the overall architecture of the Amazon S3. Each data object includes the data 

value, an object key that works as a globally unique identifier, and a metadata capability for storing 

extra information. A bucket container is the storage entity for storing data objects, and multiple 

data objects can be stored in the same bucket container. When a bucket container is created, the 

bucket owner is required to assign a name to the bucket and choose an AWS region. The AWS 

region is a geographical location where the AWS cluster data centers [88]. The AWS region is an 

important piece of information for identifying buckets. The bucket owner can restrict access to a 

specific group of users or open the bucket to the public. 
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Figure 6. Amazon S3 structure 

The AWS Command Line Interface (CLI) is an open-source, unified tool for AWS service 

management. The data object stored in Amazon S3 buckets can be accessed using AWS CLI to 

connect and send commands to the AWS server. The AWS CLI can be downloaded from AWS's 

official website and is compatible with the three most popular operating systems: Microsoft 

Windows, macOS, and Linux [89]. In order to use the AWS CLI to access data stored in Amazon 

S3 buckets, users are required to specify the AWS region of the bucket as well as the data output 

format. Figure 7 shows an example of AWS CLI initial configuration, where the two access keys 

shown in the figure are used to verify whether a user has the authorization to access restricted 

buckets. To access buckets that have open access, there is no need to specify the two access keys 

in the initial configuration. 

 

 

Figure 7. AWS CLI initial configuration 
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Table 4 shows the command syntax used in AWS CLI to access and download data objects from 

Amazon S3 buckets. In the command syntax, <bucket> represents the name of the bucket, <prefix> 

represents the name of folders stored inside the bucket, <object> refers to the globally unique 

identifier of the data object, and users can define the destination of the downloaded data by 

configuring <target>.   

 

Table 4. AWS CLI command syntax 

Command syntax Description 

aws s3 ls <bucket> List all objects and prefixes in <bucket> 

aws s3 cp <bucket>/<object> <target> Copy a <object> from <bucket> to destination <target> 

aws s3 cp <bucket>/<prefix> <target> --

recursive 

Copy ALL <object> in <prefix> from <bucket> to 

destination <target> 

  

Figure 8 shows an overview of the complete process of using AWS CLI to access and download 

data objects from Amazon S3. The advantage of this data extraction method is the ease with which 

the process can be automated to download a large amount of data. However, this can only be 

achieved under two conditions. The first is that the user must know the basic information about the 

bucket they want to access including, but not limited to, the name of the bucket; the AWS region 

of the bucket; and how the data object is organized inside the bucket. The second condition is to 

obtain access permission to the bucket. Depending on how the bucket owner configures the access 

control of their bucket, some buckets have restricted access while others are publicly accessible. 

Some companies and organizations configure their buckets with restricted access so that the data 

object is only available to their members.  
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Figure 8. Accessing data from Amazon S3 using AWS CLI 

3.3.1.3 Apache Impala 

Apache Hadoop is a software platform that manages data processing and storage for big data 

applications. It is credited with being the platform for modern cloud data storage because it breaks 

large data sets into manageable pieces and distributes the data analysis work to different computing 

clusters. The data stored in Apache Hadoop can be queried and accessed by using an open-source 

SQL query engine named Apache Impala [90].  

 

The Impala Shell is a tool that can be used to communicate with Apache Impala by using text-form 

commands. The Impala Shell connects to the Impala service through Secure Shell (SSH), a network 

protocol that allows one computer to remotely access another computer or server over the internet. 

The SSH is known for its identity authentication and encoded data communication, ensuring 

security in the communication between the end-user and the database server. To use Impala Shell 

to establish a remote connection to the database server, the user must provide information on the 

server address, server port, and user identity. In Python, there exist open-source libraries that allow 

users to establish a connection to a remote server and perform impala-shell operations [91]. 
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Figure 9. Accessing data using Impala Shell 

Figure 9 illustrates the process of using Impala Shell to access data on a cloud data server. Users 

can access an online database server, and once the client is connected, the client can use SQL 

queries to search and explore the database. SQL is a query language used for managing relational 

databases. Using SQL queries allows users to extract data from a remote data server and once the 

query execution is done, the query result will be returned to users in plain text. To make the data 

transformation process easier, the query result is converted from plain text to comma-separated 

values (CSV) files without modifying any of the data content. One way this can be achieved is by 

using a Python library named Pandas designed for data manipulation and analysis. Additional 

discussion on how to use SQL to query data from a relational database can be found in Section 

3.4.   

 

The advantage of the Impala Shell is like that of the AWS CLI, in that it facilitates automated data 

extraction. Users can create a script with a list of SQL query statements and pass the script 

document to Impala Shell to automate the data extraction process. A disadvantage is that this 

method requires a stable internet connection. If a download process is interrupted by a loss of 

internet connection, it is impossible to locate the breakpoint and restart the download process at 

the breakpoint. In addition, the method also requires the user to know the address of the remote 

data server and the server port open for connection. 
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3.3.1.4 Summary 

This section introduced three methods that can be used to extract data from data sources depending 

on how it is presented to users. This is the first step of the data ETL defined in Task #3 in Section 

2.7. The following section will introduce the second ETL step – the process of transforming the 

extracted raw data into a form that satisfies the given research requirements. 

 

3.3.2 Data transformation 

After extracting data from a data source, the next step is data transformation. In data ETL, data 

transformation is the process of converting data from one format or structure to another [41]–[44]. 

Raw data is not always readable or understandable to humans because the format depends on the 

way it was collected, particularly if it was collected by machine. If that is the case, the first step in 

data transformation is to convert the raw data into a readable form, and data owners often provide 

information about how to do the conversion on their website. For example, the NOAA's WCT 

mentioned in Section 3.1.1 is a software that can convert raw weather data files to various common 

data formats.  

 

The WCT can generate radar images from a raw weather radar file, as well as decoding and 

exporting the input radar data to a specific file format.  Figure 10 is an example of using the WCT 

GUI to generate the radar image and to export the decoded data to a CSV file with a given raw 

weather radar file. The toolkit can be executed either through a GUI or through command lines. 

The user can choose the execution method depending on whether the purpose is to observe one 

specific file or to decode and export the data of a large number of raw weather radar files. 

 

The decoded data is first converted into CSV files so that the researcher will be able to read and 

explore the raw data content. The CSV file format is selected as it allows data to be saved in a 

tabular format, which is similar to the tables within a relational database. The advantage of 

converting the decoded raw data to CSV file format is that it makes it easier to import the data file 

to another storage database in the next step. 
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Figure 10. Decoding raw radar data file with WCT 

Once the raw data set is converted to a CSV file, it is ready for the necessary data transformation 

operations. Data transformation involves the process of cleansing, filtering, reorganizing, and 

converting raw information into a desired format [41]–[44]. Figure 11 illustrates the overall process 

of data transformation. 

 

 

Figure 11. Data transformation process 

Once the raw data has been converted into a readable format, the data content can be explored. The 

raw data extracted may contain more information than the research requires, and redundant 

information is a waste of storage capacity in the project data repository. If that is the case, the raw 

data content is filtered to retain only the required information.  

 

If more than one data source is used, the data transformation phase will also require actions to 

standardize the common data content after filtering out undesired content. In this research, data 
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standardization refers to the process of identifying duplicate data contents in different datasets and 

unifying their naming convention and data unit. Figure 12 shows an example of the complete data 

transformation process with two raw datasets. 

 

 

Figure 12. Data standardization with two raw datasets 

In the example shown in Figure 12, the red column in the raw datasets represents the undesired 

data component that is not needed for the given research requirements, and the blue data column 

in the filtered datasets represents a duplicate or redundant data component. The data 

standardization process is done for each raw dataset separately but based on the same research 

requirements since the two raw datasets contain different data contents. The end product obtained 

after this phase is two standardized datasets that include only the data content that is required for 

the given research project with no duplication. 

 

A specific example of data that requires transformation because of common content is the time the 

data is collected. Depending on how the raw data is managed by the data owner, this information 

can be presented in different ways. One representation commonly used for date and time-related 

information is defined by the International Organization for Standardization (ISO). The 

international standard to represent time defined by the ISO 8601 is: yyyy-mm-dd 

Thh:mm:ss∓UTC offset [92]. On the other hand, for computer operating systems, the Unix time 

(or POSIX time) system is used. The Unix time is the number of seconds that have elapsed since 

00:00:00 UTC on 1 January 1970, excluding leap seconds [93].  The Unix time system is more 
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commonly used in computers as it can represent time as an integer which makes it easier to parse 

and use across different software systems. 

 

The goal of data transformation is to apply a series of actions to the extracted data to eliminate 

duplicate information, convert it to a format that satisfies the given research requirements and 

prepare it for loading into the final storage place. Once the transformation process is completed, 

the cleaned data is ready to be loaded into the selected storage place. 

 

3.3.3 Loading and data storage 

The last step of the data ETL process is to load the data into the selected storage place. In the case 

study that will be discussed later in this thesis, the selected storage place is a relational database as 

discussed in Section 3.2 that is designed and developed as part of Task #2. The last step of the data 

ETL process is to load the data file to the predefined database. 

 

For example, the Python programming language provides library extensions that can help convert 

data in a CSV file to a local database file or to upload the data to a database server. Figure 13 below 

shows an example of the loading process. The left part of the figure represents three standardized 

data tables from three separate CSV files where the blue column represents a data component that 

is shared by all the datasets, the green column represents a unique data component within that 

dataset, and the purple column represents a data component that is shared by some dataset.  

 

The right part of the figure shows a relational database structure design based on the data 

correlation, which was determined in Task #2. The main table is designed to store two common 

data contents that are shared by all three standardized datasets and a ‘main_id’ is assigned to each 

row. Because of the uniqueness of the ‘main_id’, it can be used to replace the duplicate information 

in the three original datasets. Therefore, in the database, the blue columns are removed from each 

table and replaced by a new column to store the ‘main_id’ value. In spite of the fact that the tables 

have been modified, they still contain the same information as they did before moving to the 

database. The information in the standardized datasets 2 and 3 can be merged into the database 

table 2 as these two datasets have another shared data content. Having the information merged into 

one data table will make querying easier as it will only be necessary to search one data table to 

retrieve information from two different datasets. The loading process in this phase will be loading 

the data from the CSV tables to a relational database with the help of Python library extensions. 
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Figure 13. Load cleaned data to storage 

The process of loading the cleaned data to a final storage place is the last step of the data ETL 

process defined in Task #3 in Section 2.7. Once the data is loaded to the storage place, it is ready 

to be used for specific applications defined by researchers. The following section will introduce 

the design and development of a GUI that allow researchers to visualize and interact with the data 

for specific applications.   

3.4 Data visualization and user interaction 

Once the data ETL process is completed, the cleaned data are stored in the new database and are 

ready to be used. The fourth task identified in Section 2.7 is to design and develop a GUI that 

provides a platform for the database user to visualize and interact with the data. Literature reviews 

[31], [32] show that data visualization is an effective tool to help humans from a variety of 

disciplines understand complex information. The selection of the type of visualization model is 

based on the user's objective [35].  A simple example of data visualization is the Microsoft Excel 

spreadsheet. Excel can convert data into line charts, bar charts, pie charts, or maps (if the given 

data is geographically based).  
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Graphical representations can be in either static or dynamic, where static visualization is a still 

image that is only able to deliver a message that does not change over time. A dynamic 

visualization is an animation of a series of data images and often allows users to interact with it. 

An advantage of dynamic visualization is that it can reveal information contained in the data that 

is not evident in static displays. 

 

Commercial software such as Microsoft Excel, Tableau, Infogram, and ChartBlocks are data 

management tools that have been developed for general applications and often cannot satisfy 

complex and specific research requirements.  Programming languages like C++ and Python have 

library extensions that can create static or dynamic visualization from a given set of data. 

Programming languages can be used by researchers to develop GUIs to satisfy specific research 

requirements. The design and development of the visualization interface depends on the selected 

data as well as the purpose of the research objective. Depending on the purpose of the research, the 

visualization tool should be able to address questions like: “What are we using the data for?”, “How 

do we want to display the data?”, “What information are we trying to get from the data?”, or “What 

kinds of interaction is needed to help understand the data?”, etc. 

 

Table 5. SQL query statement 

Query statement Description 

Select Select rows from one or many database tables and returns this data in the form 

of a result table 

Where Filter database rows based on specific range or value 

And, Or, Not Operators that used combine with “Where” 

Join Combine rows from two or more tables, based on a related column between them 

show tables Show all tables within the database 

describe table Show the name of all columns in table 

 

For the case study that is presented in Chapter 4, the data shown in the visualization tool is the 

cleaned and standardized data stored in a relational database after the data ETL process of Task #3 
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described in Section 2.7. SQL is a domain-specific language designed for managing data in a 

relational database. SQL queries can be used to search and extract data from relational databases 

for applications. Programming languages like C++ and Python all have library extensions to 

support the use of SQL queries within the development environment. Therefore, regardless of the 

choice of programming language for developing the visualization tool, data stored in a relational 

database can always be accessed and extracted to create graphical representations. For example, 

Table 5 presents some useful SQL query statements which can be applied for the purpose of 

exploring the database content or to load data from the database for applications.  

 

Despite existing commercial software that can create graphical representations of datasets, a data 

visualization tool that can be tailored for specific implementations is developed. The development 

of the visualization tool is equally important to the database as it can be used to study and analyze 

data from a specific disciplinary project perspective. The data visualization tool can also serve as 

an analysis tool to test research hypotheses by testing if the data supports the proposed research 

approach and/or solution. Once the visualization tool has been implemented, the completed process 

can be verified using a proof-of-concept case study as described in the following Section. 

3.5 Process verification using a proof-of-concept test case 

This chapter discusses the implementation of Tasks #1 to #4 as defined in Section 2.7. The 

methodology concludes with Task #5 which is the process of verifying the data selection, cleaning, 

database design and the visualization tool using a proof-of-concept test case. The purpose of Task 

#5 is to make sure that i) the database obtained has enough data to support the needs of the defined 

research; and ii) the data visualization tool developed in Task #4 can serve as a platform that allows 

researchers to appropriately understand, visualize and interact with the data. 

 

The implementation of the tasks described in this chapter is an approach to designing and 

implementing a database based on given research requirements. Once the process is complete, a 

research-specific relational database has been created and includes a data visualization tool that is 

specifically designed for the project. If the given research requirements change during one or more 

phases of the research project, the systematic approach that has been developed can adapt to the 

change in an iterative manner. Figure 14 illustrates how typical changes to project requirements 

might impact the individual tasks and how the remaining processes would be updated to produce 

a new database or data visualization tool adapted to the new requirements.  
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Figure 14. Effect on tasks due to change of decision from “research requirement” to “data format” 

This chapter presented a systematic methodology for the creation of a database and a data 

visualization tool tailored to the needs of specific research projects. The approach can be used to 

structure databases for any data-driven research that requires a series of specific types of data. It is 

an iterative process that is developed based on given research requirements and that can adapt to 

changes to requirements that may arise during the research project.  A proof-of-concept 

implementation of the methodology is described in the following Section, in which a database is 

created to support the requirement for a series of “real world” historic simulated flight scenarios 

with a range of visualization and data acquisition capabilities. 
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4. Case study implementation 

A proof-of-concept implementation is provided in this Section. The case study was performed in 

collaboration with a co-researcher and is based on their research project investigating risk 

assessment methodologies for an airspace shared between crewed and un-crewed aircraft. The 

research required a database that contains ADS-B and weather radar data as a tool for creating a 

simulated airspace environment on which the risk assessment is based. The researcher provided 

the types of data required as well as the following criteria for the database: 

  

1. The database must contain enough data to support the creation of a series of varying ‘real 

world’ simulated flight scenarios based on historic traffic patterns. 

2. The simulated airspace environment must contain the following entities: 

1. Air traffic 

2. Airspace and airport infrastructure 

3. Ground obstacle 

4. Terrain 

5. Weather 

3. The database should maintain a high level of efficiency in terms of data acquisition. 

4. A data visualization tool is required to visualize and interact with the simulated airspace 

environment. 

 

In this chapter, Section 4.1 presents the choice of data sources and Section 4.2 describes the design 

of the database structure. Section 4.3 outlines the process of implementing the data ETL process 

on the raw data sources identified in Section 4.1. The programming language Python is used in this 

case study, and the Python code used for the case study is attached in the Appendices. In Section 

4.4 the GUI developed for data visualization and interaction is presented and discussed. The final 

data visualization product developed in this case is a local-host website that is developed using 

JavaScript and a link to a You-Tube presentation is provided in the Appendices. 
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4.1 Data source selection 

The entities required for the simulated airspace environment are defined in Criteria #2, above, and 

are listed in Table 6, where they are divided into two categories based on their rate of change with 

respect to time: dynamic and static.  

 

Table 6. Dynamic entity and Static entity 

Dynamic entity Static entity 

Air traffic Airspace and airport infrastructure 

Weather Ground obstacle 

 
Terrain 

 

Among the five entities in Table 6, airspace and airport infrastructure, ground obstacles, and terrain 

are classified as static entities. The term 'static' means that the characteristics of these entities 

change at a frequency that is much lower than that of entities classified as dynamic, such as the 

position of an air vehicle or a weather system.  For example, the FAA releases a dataset every 28 

days that is updated to reflect modifications to so-called static entities, for example, an airway or 

the airspace infrastructure.  

 

In the case-study implementation, only the most recent update of the static entity data is used. The 

data for the case-study static entities is obtained from a map development tool named Mapbox 

studio [94] and will be discussed in more detail in Section 4.4. For the purposes of the case-study, 

the methodology developed in this thesis is applied to create a database storing real-life weather 

radar and air traffic data collected and archived from two open sources: ADS-B data from the 

Opensky Network and weather radar data from the NCEI. 

 

The OpenSky Network [82] is a non-profit organization founded in 2012 to provide secure and 

reliable real-world air traffic data to the public. The organization gathers data using ADS-B 

transponders which can collect air traffic information every second. The collected data is decoded 

and archived in a large historical database. The OpenSky Network offers access to its online 

database free of charge, and users can assess their historical database by establishing an impala-
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shell connection. The ADS-B data stored in the database are already decoded, and the data content 

of the downloaded data will be described in more detail in Section 4.3.1.2. Because the data 

obtained from the OpenSky Network has already been decoded, there is no need to perform the 

decoding process in the data transformation phase for the ADS-B data.  

 

The weather radar data used in the case study is the NEXRAD data archived by the NCEI. The 

NCEI is an organization that helps the NOAA manage archived atmospheric and oceanic data to 

support the need for high-value data in environmental research. Weather radar data are archived 

based on the time and the weather station where the data was collected. This makes it possible to 

extract only the data that are within a specific geographical boundary or collected at a specific time. 

The NCEI makes its database accessible to the public through multiple platforms, and for the case-

study described in this chapter, radar data was extracted from the NCEI Amazon S3 bucket. The 

advantage of selecting this particular data source is the potential to automate the data extraction 

process and easily download a large number of data files. 

 

4.2 Database structure design  

This section discusses the design of the database structure for storing the data required to create 

the simulated airspace environment. The goal is to have a research-specific database that not only 

contains sufficient data to support the research but also maintains high efficiency when querying 

data from the database. The database designed for the purposes of the case-study is based on the 

data content of weather radar and air traffic data. 

 

The process of developing the database is an iterative process and involves understanding how the 

data is presented at source while also considering the user’s research requirements. A relational 

database is used for this case study because the selected data are structured. In this case study, the 

update frequencies of the two selected data sources differ and merging the two datasets will result 

in missing values in data rows. As a result, ADS-B data and weather radar data will be stored 

separately.  Figure 15 illustrates the design of the database schema. The ADS-B data obtained 

from the OpenSky Network is already decoded, and the data content of the weather radar data from 

NOAA is obtained by performing a complete data transformation process as described in Section 

4.3. 

 

The design is based on two types of data content common to both datasets: geographical locations 

and time. Latitude and longitude information is divided into one-degree by one-degree data points 
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and stored in the ‘Geographical_point’ table with a given ‘Geo_ID’ that serves as a unique 

identifier for each row. Altitude is not included in this table but is managed by creating a new data 

content named ‘geo_BLOB’ with the help of an SQLite spatial extension. This approach is 

discussed in Section 4.3.2.4 as part of the ‘load data to storage’ phase.  

 

A unique identifier ‘Geo_ID’ is used to identify the data within a specific geographical region 

among the two datasets. The purpose of creating the ‘Geographical_point’ table is to: i) narrow 

down a range while querying data from the database and ii) extract data that are from the same 

geographical area across two tables by using SQL queries. However, for the purpose of creating 

the simulated airspace environment, precise geographical information is required for each 

entity.  Therefore, the latitude and longitude information associated with each data row remains as 

this information stored in the two tables is in decimal degrees detailed to 6 decimal places. 

 

 

Figure 15.Database schema 
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In a manner similar to that used to create the ‘Geographical_point’ table, a ‘Unix_time’ table is 

created to assist in querying data collected at specific times in the two standardized tables. The 

Unix time format is selected in this case because it is the easiest for computers to process. The time 

difference between each data row in the ‘Unix_time’ table is one hour, and a unique identifier, 

‘Time_ID’, is assigned to each data row. In the two standardized tables, each row is assigned the 

corresponding ‘Time_ID’ based on the hour when data is collected. However, the two standardized 

tables still have a ‘Time’ content which indicates the exact time when the data is collected. 

 

4.3 Data ETL 

This section presents the implementation of the data ETL process using the programming language 

Python. The results obtained from each process is presented at the end of each subsection. 

 

4.3.1 Data Extraction 

4.3.1.1 Extracting weather data 

 

The weather radar data used in this case study is extracted from the NCEI Amazon S3 bucket. The 

data is categorized into weather station folders and then stored in subfolders of year, month, and 

day depending on when the data was collected. Figure 16 illustrates how the archived radar data is 

stored in the folders of the Amazon S3 bucket.  

 

The AWS region and the name of the bucket can be found on the AWS open data registry website. 

After obtaining the necessary information about the bucket and how the data is being stored and 

organized, a Python script was developed to extract weather radar data from the bucket using AWS 

CLI. The research requirements specific to the case study is for selectable weather “scenarios” 

featuring extreme weather conditions for specific airspace locations. For this reason, the dates for 

a selection of significant weather events were obtained from a list provided on the NWS 

website[95]. These dates were used as a guide for downloading weather radar data collected on 

different days with varying weather conditions in a way that is useful for the simulated airspace 

environment.  
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Figure 16.NCEI Amazon S3 bucket 

The size and number of weather data files obtained from the bucket will differ depending on the 

location and weather conditions of the selected weather station. This size difference can affect the 

time required to download the data, and the performance of the computer and the quality of the 

internet connection can also contribute to the time required. While it is difficult to be specific on 

how long it takes to download a certain amount of weather data, two examples of data download 

duration, files available, and the size of all downloaded files are shown in Figure 17 for 24 hours 

of weather data for two different dates collected by the same weather station (KOKX). Figure 17 

indicates that if there was bad weather on the selected date and location, more weather information 

is available. Despite this, downloading weather data from different days does not significantly 

increase the download time because the bucket only contains raw files that are compressed. The 

Python script developed for the data extraction process can be found in Appendix A.  
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Figure 17.Downloading weather data from two different days 

4.3.1.2 Extracting ADS-B data 

The OpenSky Network was selected as the best data source to satisfy the need for air traffic data 

as defined in Criteria #2. The historical database of the OpenSky Network is based on Cloudera 

Impala, and users can connect to the database by establishing an impala-shell connection. The 

organization provides information on an available open-source Python wrapper named ‘pyopensky’ 

that can be used to access and download data. An attempt was made to use this Python wrapper to 

extract ADS-B data from the OpenSky Network, and the Python script for this implementation can 

be found in Appendix B1. 

 

Table 7 shows the data content and the description of each term contained in the ADS-B data 

extracted from the OpenSky Network historical database using the wrapper. The data contains 

information which is not required for the specified research project where only the data content 

highlighted in green in Table 7 is required for the research. Another problem associated with using 

the wrapper to directly download all ADS-B data is that the data obtained may contain aircraft 

identification or position error. An initial attempt was made to use the wrapper to download all 

ADS-B data on the selected date and geographical region. The dataset obtained contains redundant 

information and would require additional processing in the data transformation phase. 

 

Table 7. ADS-B data content from the OpenSky Network 

Data content Description 

time UTC time in Unix timestamp (seconds) 

icao24 Aircraft type designator 

lat Latitude of the aircraft position 

lon Longitude of the aircraft position 
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velocity Ground speed in m/s 

heading Direction of movement as the clockwise angle from the geographic north 

vertrate Vertical speed in m/s 

callsign Callsign of the aircraft 

onground 

At surface position = true; At airborne positions = false (only false condition is 

required) 

alert Special indicators used in ATC 

spi Special indicators used in ATC 

squawk 4-digit octal number used by ATC and pilot represent for emergency condition 

baroaltitude 

Altitude in meters measured by barometer, the value will be slightly different from the 

value measured by GNSS sensor(geoaltitude), but baroaltitude always present in 

measurement 

geoaltitude Altitude in meters measured by GNSS sensor 

lastposupdate Time indicate the age of the position information, in Unix timestamp(second) 

lastcontact Time last receive signal from aircraft, time in Unix timestamp (second) 

hours Unix timestamp(second) indicating the hour 

 

To overcome the problem of obtaining undesired ADS-B data, a second attempt was made using a 

Python script to extract ADS-B data rather than using the open-source wrapper. The script is 

designed to extract only the data content required at specific times and from geographical areas 

defined by the researchers. This method also filters out records that have missing position 

information (e.g.: the barometric altitude) while querying ADS-B data in the OpenSky Network 

database. In this way, the data obtained will not need to go through the process of removing 

undesired data content in the next phase (data transformation). This approach, however, requires 

knowing the server address and the port number before establishing the shell connection. 

Information on this implementation can be found on the OpenSky Network website. In addition, it 

requires more time to extract the data because of the filtering process. The complete Python script 

can be found in Appendix B2. The ‘pyopensky’ wrapper has a similar capability to filter out 

undesired data content during query operation, which is achieved by passing SQL query to the 

wrapper. The result obtained is the same as the script presented in Appendix B2. 
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Using a similar approach to that applied to weather data, the size and time required to download 

ADS-B data varies depending on the selected time, geographical area as well as the network quality 

and the performance of the computer. An example is given in Figure 18 where the logs for 

downloading historical air traffic data from the OpenSky Network are compared with and without 

the filtering process being applied during the data extraction process. The ADS-B data in the 

example was collected on August 1st, 2020 from 15:00:00 to 15:01:00 UTC around the east coast 

of the United States of America.  

 

 

Figure 18. ADS-B data download log comparison 

Figure 18 indicates that it is more efficient to download all ADS-B data available on the OpenSky 

Network server for a specific time and geographical location, but the information obtained will be 

need additional processing to remove undesired information. While applying the filter and using 

the script to download the ADS-B data takes more time to execute, the information obtained will 

not require additional processing. 

 

Figure 19 presents snips of the ADS-B data files obtained using the two different methods. A 

comparison of the two data files shows that the data obtained from the script only contains the 

information required for the specified research, and there is no missing position information in the 

dataset. Some data records have missing aircraft callsign information. In the ADS-B data, an 

aircraft can be identified with its unique callsign or aircraft type designator, and for those records 

that are missing aircraft callsign, a cross-reference can be applied to the data file by searching the 

aircraft type designator; locating other records associated with the same aircraft; and using those 

records to identify the missing callsign information. In the case study that is aprt of this research, 

the aircraft type designator is used as the aircraft identification code, while the callsign is used as 

backup information. For this reason, missing callsign in the data file is disregarded as long as there 

is an aircraft type designator associated with the record. 
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Figure 19. ADS-B data file comparison 

 

In this section, the data extraction method used to extract weather radar and air traffic data has been 

presented. The selection of the data extraction method depends on how the data is presented at the 

source as well as what then user requires for the research. The importance of the data extraction 

phase is to extract raw data from selected data sources that meet the research requirement without 

unnecessary or missing data components. The next section will present the implementation of data 

transformation on the raw data downloaded in this case study. 
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4.3.2 Data transformation  

There are three processes in the data transformation phase as shown in Figure 11; decoding raw 

data, filtering, and data standardization. This section will present the implementation of each of 

these processes in the context of the case study. 

4.3.2.1 Decoding raw data 

The ADS-B data obtained from the OpenSky Network historical database has already been 

decoded but because all Impala-shell query results are returned in plain text format, the downloaded 

data must be converted to a CSV file. This was performed at the time the data was extracted from 

the OpenSky Network database, and the implementation of the operation can be found in the data 

extraction Python script provided in Appendix B2. 

 

The raw radar data obtained from NEXRAD requires decoding in order to provide a readable 

format for the user. Raw radar data downloaded from the NCEI AWS S3 bucket can be decoded 

using special software, and the NCEI offers a list of free decoders for various programming 

languages on its website.  In this case study, the NOAA’s WCT distributed from NCEI was 

selected. The WCT is a decoding software that is officially released by the NCEI and using WCT 

for the case study ensures the integrity of the decoded data. A Python script was developed to run 

the WCT through command lines. The complete script can be found in Appendix C, which was 

used to run the execution of decoding raw radar files, the exporting of data to CSV files.  

4.3.2.2 Filtering data content  

After the data is decoded and converted to a CSV file, the next step is to filter out data components 

that are not required for the research. In the context of the case study described here, this step only 

applies to the weather radar data because the ADS-B data was filtered as it was extracted from the 

OpenSky Network database as described in Section 4.3.1.2. 

 

Tables 8 and 9 show the data components of the weather radar data after the decoding process. 

Only the data content highlighted in green has been requested by the researcher, and the data 

content highlighted in red needs to be removed. This process is performed as part of the Python 
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script developed for extracting the weather radar data from the NCEI Amazon S3 bucket, and the 

detailed implementation can be found in the Python script provided in Appendix C. 

 

Table 8. Raw weather radar data (part 1) 

 

Table 9. Raw weather radar data (part 2) 

4.3.2.3 Data standardization  

Once all datasets contain only the required data, the remaining process in the data transformation 

phase is to standardize the naming conventions and data units for common data contents.  Tables 

10, 11 and 12 present the data content from the two datasets used for the case study. The columns 

highlighted in blue represent common data components shared by the two datasets, where time and 

geographical information are the common data contents in this case. A standardized naming 

convention and data unit must be defined and implemented to be compatible with the design of the 

database schema described in Section 4.2. 

Raw weather data (part 1) 

Data content Sweep sweepTime elevAngle value radialAng 

Description 

and 

data unit 

Radar sweep 

(0-360 degree) 

Time of the sweep, 

Zulu time, UTC 

(YYYY-MM-DDT 

Hh:mm:ssZ) 

The tilt angle 

between the 

horizontal plane and 

the line of sight of 

the current sweep 

(degree) 

Base 

reflectivity 

value 

(dBZ) 

Azimuth 

angle in the 

radar’s 

polar 

coordinate 

system, 

where 0 is 

north 

(degree) 

Raw weather data (part 2) 

Data 

content 
surfaceRan heightRel heightASL latitude longitude 

Description 

and 

data unit 

Range of 

radar site(m) 

Height relative 

to radar(m) 

Height 

above sea 

level (m) 

Latitude of the base 

reflectivity data 

point(Angular degree) 

Longitude of the base 

reflectivity data point 

(Angular degree) 
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Table 10. Data content of weather radar dataset 

Filtered weather radar data 

Data content sweepTime value heightASL latitude longitude 

Description 

and 

data unit 

Time of the 

sweep, Zulu 

time, UTC 

(YYYY-MM-

DDT 

Hh:mm:ssZ) 

Base 

reflectivity 

value 

(dBZ) 

Height above 

sea level 

(m) 

Latitude of 

the base 

reflectivity 

data point 

(Angular 

degree) 

Longitude of the 

base reflectivity 

data point 

(Angular degree) 

 

The weather radar dataset uses the label ‘sweepTime’ to identify the time when the data is collected, 

while the ADS-B data obtained from the OpenSky Network uses the label “time”. Although both 

datasets use Coordinated Universal Time (UTC) standard, one dataset presents time as YYYY-

MM-DDThh:mm:ssZ, whereas the other dataset presents time data in seconds in the Unix time 

format. In this case study, the ‘sweepTime’ label from the weather radar dataset is renamed to ‘time’ 

to keep the naming consistency in both datasets. The Unix time format is selected to represent time 

in both datasets because the format makes it easy for computers to store, manage and compare data. 

The implementation of this operation can be found in the Python script provided in Appendix C. 

 

Table 11. Data content of ADS-B dataset (part1) 

ADS-B data (part 1) 

Data content time icao24 lat lon velocity heading 

Description 

and 

data unit 

UTC time 

of the data 

captured 

(Unix time) 

Icao code 

of the 

aircraft 

(text 

string) 

Latitude of 

the aircraft 

position 

(Angular 

degree) 

Longitude 

of the 

aircraft 

position 

(Angular 

degree) 

Ground 

speed 

(m/s) 

Direction of 

the 

movement as 

the clockwise 

angle from 

the 

geographic 

north 

(Angular 

degree) 
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Table 12. Data content of ADS-B dataset (part2) 

ADS-B data (part 2) 

Data content vertrate callsign baroaltitude geoaltitude lastposupdate 

Description 

and 

data unit 

Vertical 

speed 

(m/s) 

Callsign of 

the aircraft 

(text string) 

Aircraft 

altitude 

measured by 

barometer 

(m) 

Aircraft 

altitude 

measured by 

GNSS sensor 

(m) 

Time indicate 

the age of the 

position 

information 

(Unix time) 

 

The geographical information data content also requires the standardization of both data units and 

naming convention. Although the angular degree is used to represent the geographical coordinate 

in both datasets, the naming convention between the two is not the same. The labels ‘lat’ and ‘lon’ 

in the ADS-B dataset are renamed as ‘latitude’ and ‘longitude’ to keep the naming consistent 

between both datasets. Tables 13, 14 and 15 show the data content of the two datasets after the data 

standardization process. 

 

Table 13. Standardized weather radar data 

Standardized weather radar data 

Data content time latitude longitude value heightASL 

Data unit Unix time Angular 

degree 

Angular 

degree 

dBZ m 

 

Table 14. Standardized ADS-B data (part 1) 

ADS-B data (part 1) 

Data 

content 

time latitude longitude icao24 velocity heading 

Data unit Unix time Angular 

degree 

Angular 

degree 

Text string m/s Angular 

degree 
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Table 15. Standardized ADS-B data (part 2) 

ADS-B data (part 2) 

Data content vertrate callsign baroaltitude geoaltitude lastposupdate 

Data unit m/s Text string m m Unix time 

 

Metres are used in both datasets as the unit for altitude information, but these data contents are all 

kept in their own form as they are collected based on different standards. The altitude information 

in the weather dataset is the height of the radar antenna above sea level, whereas, in the ADS-B 

dataset, there are barometric altitudes and geographical altitudes. According to the description 

provided by the OpenSky Network, the ADS-B data provided will almost always have the 

barometric altitude information, but in case of missing information, the geographical altitude 

information of each ADS-B data is extracted from the OpenSky Network historical database. A 

new data column will be created to manage the altitude information while loading the data to the 

new database for storage and will be presented in Section 4.3.3. 

 

The ADS-B data used in this case study require little modification, and only the semantics and 

scientific units are edited for shared data content. The size of the ADS-B data file is mainly 

determined by when and where the data was captured and is not significantly impacted by the data 

standardization process. Table 16 provides an example of file size before and after the process for 

ADS-B data collected around the New York area on June 1st, 2020 from 00:00 - 00:03 UTC. 

 

Table 16. ADS-B data file size comparison 

Description File size 

Original data file 5,569 KB (5.569 MB) 

Standardized data file 5,664 KB (5.664 MB) 

 

The weather radar data requires a complete data transformation process from decoding the raw data 

to data standardization. During this process, the file size of the weather radar data file changes 

significantly. Table 17 provides an example of how the file size changes for 10 minutes of weather 

radar information collected at the weather radar KOKX on August 1st, 2020 around 00:14 UTC.  
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Table 17. Weather data file size comparison 

Description File size 

Raw data file 2,412 KB (2.412 MB) 

Decoded data file 16,320 KB (16.32 MB) 

Filtered and standardized data file 9,482 KB (9.482 MB) 

 

4.3.3 Loading data to storage  

Once all the datasets are cleaned and standardized, the last step in the data ETL process is to load 

the data to the database for storage. In this thesis, the database is built with SQLite. The database 

schema shown in Figure 15 is implemented to store the required weather radar and ADS-B data. 

 

In the data transformation phase, the two datasets are converted to the CSV file format for 

processing. In Python, there is a library extension that can convert CSV files to local database files. 

The library extensions used to assist in this process are named ‘pandas’ and ‘sqlite3’. Pandas is a 

Python library that was developed for data manipulation and analysis, while sqlite3 is used for 

creating and managing database files. Appendix D contains the complete Python script for loading 

the cleaned and standardized weather radar data and ADS-B data to the research database. 

 

In the database schema shown in Figure 15, the geo_BLOB column is a spatial data object created 

by using the latitude, longitude, and altitude of the current data row. This is achieved by using a 

spatial extension of SQLite named Spatialite [96]. Figure 20 presents an example of a database file 

obtained from the implementation. The table highlighted in blue corresponds to the four data tables 

presented in the database schema shown in Figure 15. The other tables shown on the list come with 

the Spatialite extension. The example presented in Figure 20 contains 5 minutes of ADS-B data 

and 10 minutes of weather radar data collected on August 1st, 2020 at around 00:14 UTC. The size 

of this database is around 58 MB. The size of the database is bigger than the sum of the two original 

datasets due to adding the Spatialite extension. However, the Spatialite extension is important for 

this case study, as it is designed to support the management and querying of data from geodatabases. 
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Figure 20. An overview of database 

4.4 GUI development for data visualization 

This section presents a prototype of the data visualization tool developed for the case study. The 

visualization tool must meet the following requirements: 

 

1. The tool should be able to create simulated air traffic scenarios by using any selected data 

from the database. 

2. The tool should be able to generate a 2D and a 3D visualization in the simulated airspace 

environment. 
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3. The tool should be able to display the collection date and time of the data in use in the 

simulated airspace environment. 

4. The tool should be able to generate animation intended to visualize how the air traffic and 

weather change with respect to time. 

5. The tool should have functions that allow users to visualize and extract data on the 

interaction between different airspace entities within the simulated flight scenario. 

6. The tool should be able to be used with any electronic device. 

 

Figure 21 shows the first prototype developed as part of this thesis research to load and visualize 

the ADS-B data from the database. It was developed using Python with BaseMap [97], one of its 

library extensions. 

 

 

Figure 21. ADS-B data representation in Prototype #1 

In Prototype #1, the simulated airspace environment is presented in a three-dimensional space. 

Video 1, accessible through the link provided below, is a 2-minute archived air traffic playback 

using Prototype #1. The ADS-B data loaded to Prototype #1 was captured on June 1st, 2020 around 

00:01:00 UTC.  

 

Video 1 – Prototype #1 demonstration: https://www.youtube.com/watch?v=9H4eG0KYgTk 

 

https://www.youtube.com/watch?v=9H4eG0KYgTk
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Figure 21 is a snapshot taken Video 1. The horizontal plane represents the geographic area around 

New York and Miami, and the vertical axis represents altitude above ground level. The three-

dimensional space is filled with coloured dots each of which represents an individual aircraft from 

the ADS-B data in the database. The colour scale of the dots represents each aircraft's altitude.   

 

Prototype #1 provides an intuitive visualization of how air traffic is distributed in a specific 

geographical area during a selected time period. However, it fails to provide additional information 

used to create the simulated airspace environment such as i) the callsign, the speed, and the heading 

of the aircraft, ii) the airspace infrastructure, and iii) the terrain in that area. Furthermore, this 

prototype does not provide a user interface for interacting with the data loaded into the simulated 

environment.  

 

Prototype #2 includes a user interface and was developed in Python using the library extensions 

BaseMap [97] and wxPython [98]. Figure 22 shows the interface for Prototype #2. 

 

 

Figure 22. Interface of Prototype #2 
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The left side of the interface shows the geographical area being simulated (in this case the New 

York city area). The ADS-B data is overlaid on a 3-D topographical map using an aircraft icon 

associated with the ICAO code of the aircraft. User control units are located on the right side of 

the interface and can be used for interacting with the data displayed on the map. The disadvantages 

associated with prototype #2 include: i) the ADS-B data can only be presented in the top view, 

which makes it impossible to visualize the vertical separation between aircraft; and ii) Python is 

used to develop the tool and it is only compatible with desktop computers and not other electronic 

devices such as cellphone or tablet. 

 

Prototype #3 is a web-based data visualization tool that can be used on any kind of electronic device. 

Prototype #3 was developed in Javascript using Mapbox studio [94], which provides custom online 

maps for websites and applications. Mapbox studio has built-in libraries for terrain and public 

transportation including airport and airspace infrastructure, and this information is presented in the 

form of data layers. Figure 23 shows how Mapbox studio is used to assist in generating the visual 

representation of the airspace environment. 

 

In Figure 23, the six blue data layers are generated by using the information available in Mapbox 

studio. The visual representation of the simulated airspace environment is created by overlaying 

these data layers on top of one another. This is done using the online editing tool of the Mapbox 

studio, and an access token is generated. The access token is used in the Javascript code for 

developing Prototype #3 to ensure access to the visual representation of the simulated airspace 

environment at all times. In Figure 23, the weather and air traffic data layers colored in green are 

generated by using the information available in the database. As a consequence, Prototype #3 is 

capable of generating the visual representation of different flight scenarios by overlaying different 

weather and air traffic information on top of the simulated airspace environment. 
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Figure 23. Data layers in Prototype #3 

Figure 24 provides an example of Prototype #3 loaded with a visual representation of ADS-B 

aircraft and weather data. Five primary features are provided to users of Prototype #3 for interacting 

with the map or the data layers:  

 

1. Two toggle switches for map type selection. 

2. An information box shows the date and time for each of the data layers currently loaded 

on the map. 

3. File selection and update buttons for modifying the weather data layer and air traffic data 

layer. 

4. A media control panel for simulation playback. 

5. On/Off buttons for controlling the visibility of each data layer. 
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Figure 24. The interface of Prototype #3 (‘Flight’ map style) 

There are two map styles available in Prototype #3, and the map shown in Figure 24 is the ‘Flight’ 

map style. Users can clearly see each layer of data on this monochrome map because it provides a 

clear background for overlaying different data layers. The other of available map style is the 

‘Satellite’ map. Figure 25 shows the same scenario as Figure 24 but in the ‘Satellite’ map. Users 

can choose a map style by using the toggle switch on the top left corner identified with the number 

‘1’ in Figure 24. 

  

Prototype #3 presents data by creating data layers and overlaying them. The data layers are 

graphical representations of the original data, and the prototype is designed in such a way that it is 

capable of loading data from any date and time as long as the data are available in the database. The 

capture date and time of each of the data layers shown on the map can be found in the information 

box denoted by the number ‘2’ in Figure 24. The example presented in Figure 24 was created using 

the ADS-B and weather radar data collected on June 1st, 2020 around 00:00 UTC, where the blue 

rendering represents the weather and the 3D plane model with accompanying ICAO code, ground 

speed, and altitude represents the air traffic. The yellow line on the map is the air route from the 

airspace data layer and shows the airspace boundary and the airways around the JFK airport New 

York. The airport infrastructure runways and taxiways are highlighted in green and orange.  
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The weather data layer and the air traffic in Prototype #3 can be modified at any time by loading 

the available data from the database. The buttons designed for selecting and updating the data files 

are denoted by the number ‘3’ in Figure 24.  

 

The media control box denoted by the number ‘4’ in Figure 24 is used for controlling the playback 

of the animation. ‘Simulation time’ indicates the time passed in the simulated airspace environment, 

and users can use the media control button to enact and change or adjust the animation process. 

Once the data is loaded, clicking the play button will allow the tool to animate the aircraft and 

weather systems and observe a visual representation of the flow of air traffic. The animation can 

be stopped at any time, fast forwarded and rewound. 

 

To prevent potentially confusing amounts of presented information, each data layer on the map can 

be inactivated. The buttons designed for this function are identified by '5' in Figure 24, with the 

name tags indicating the data layer they control. When the background colour of the button is blue, 

it means the data layer is activated, and when the background colour is white the data layer is 

inactivated and does not display on the map.  

 

Of the three prototypes developed to allow researchers to understand, visualize and interact with 

data, prototype #3 is the one that satisfies all the requirements defined at the beginning of the 

project. Video 2, accessible through the link provided below, shows an overview of each data layers 

on Prototype #3 and demonstrate the capability of the control units. The next section will present 

the process of verifying the database design for the case study by comparing the features of 

Prototype #3 with the defined needs of the research case.  

 

Video 2 - Prototype #3 overview: https://youtu.be/LSB7ex49N-U 

 

https://youtu.be/LSB7ex49N-U
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Figure 25. The interface of Prototype #3 (‘Satellite’ map style) 

4.5 Verification with test case 

The purpose of this section is to verify that the Prototype #3 database obtained as described in 

Sections 4.1 through 4.4 satisfies the research requirements defined for the case study: 

 

1. A variety of flight scenarios can be generated with the information available in the database. 

2. The visualization tool allows users to visualize and analyze interactions between the following 

entities: 

1. Air traffic 

2. Air space and airport infrastructure 

3. Ground obstacle 

4. Terrain 

5. Weather 

3. The tool can generate the visual representation of the selected simulated flight scenario 

efficiently. 
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In addition to these general criteria, the researcher specifically wanted to analyse the impact of 

introducing a novel air vehicle into an existing airspace environment. For this reason, the prototype 

is validated with the addition of another layer representing the novel air vehicle using data provided 

by the researcher for i) a predefined flight route; ii) an actual flight route; and iii) the heading of 

the novel air vehicle.  

 

Figure 26 and Figure 27 are screenshots of the visual tool when introducing the novel air vehicle 

into the simulated airspace environment presented in Figure 21. The information box located at the 

bottom left corner shows information about the novel air vehicle. The predefined flight route in 

this case is from JFK to LGA, depicted by the blue line shown in both figures. Figure 26 shows 

how the given flight route appears from the bird’s eye view while Figure 27 present the same 

scenario in a 3D view.  

 

 
Figure 26. Introduce novel air vehicle to Prototype #3 (bird’s eye view) 
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Figure 27. Introduce novel air vehicle to Prototype #3(3D view) 

To distinguish the novel air vehicle from other ADS-B aircraft, the 3-D image representation is 

unique and a text label 'Novel air vehicle' is displayed alongside aircraft. The blue line indicates 

the flight route, and the update frequency of the novel air vehicle and the ADS-B aircraft is 

synchronized in order to animate the scenario and any possible interactions in “real-life”. Video 3 

demonstrate the simulated flight scenario present in Figure 26 and Figure 27. 

 

Video 3 – Prototype #3 animating simulated flight scenario: https://youtu.be/xO1qfkIHghE 

 

Prototype #3 is capable of adapting to changes in research requirements because it treats all the 

data separately and presents them in separate data layers. If a new or additional type of data is 

required, it can be converted to a data layer and overlaid on top of the existing layers. Figure 28 

below shows the process of modifying Prototype #3 to add the novel air vehicle data layer. 

 

https://youtu.be/xO1qfkIHghE
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Figure 28. Adding new data layer to Prototype #3 

The clean and organized data in the database makes it possible to create novel simulated airspace 

environments by combining historical data captured at different times. Figure 28 is an example of 

generating an imaginary but true-to-life flight scenario in Prototype #3. For example, the simulated 

airspace environment shown in Figure 26 combines data captured at different times; the weather 

radar data was collected on 1st October 2020 at 00:03 UTC whereas the air traffic data was captured 

on 1st June 2020 at 00:00 UTC.  

 

The simulated airspace environment shown in Figure 29 is made by combining real-world data 

from different days and times to provide a wide range of flight scenarios for research purposes. 

The capability to combine layers from different times allows the researchers to combine and study 

potentially hazardous air traffic and weather scenarios that would be too dangerous to attempt in 

real time. 
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Figure 29. Generate novel simulate airspace environment 

Should the research results obtained using combined scenarios create a need for additional data 

from other geographic locations, different weather conditions or traffic patterns, this can be readily 

achieved by repeating the process presented in Section 4.3 and storing the new data to the existing 

database. 
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5. Conclusion 

Data-driven aviation research is becoming increasingly popular as researchers realize the value and 

potential of using available data, but many users face challenges related to the large amounts of 

data and the variety of formats that require pre-processing before being used. In response, some 

researchers have created very large databases containing cleaned and neatly organized data meant 

to suit the needs of a large variety of research projects. There remain, however, situations where 

the information is too general to suit specific research needs; the amount of data in the database is 

unmanageable for smaller computer systems; or the size of the database makes it difficult to 

navigate, find and extract information related to detailed requirements. 

 

In this thesis, a methodology is presented for the design and development of a data repository for 

specific aerospace applications. The methodology presented is a systematic approach that can be 

applied to many kinds of data-driven research. An example is presented where archived historical 

weather radar and air traffic data is used to create a data repository in support of research requiring 

a simulated airspace environment. A case study is presented to illustrate the steps in the process of 

selecting, extracting, transforming, and loading the data into a database. The method is validated 

by using the data to create a variety of flight scenarios using a system of layers; and a visualisation 

tool is presented that allows researchers and other participants to better understand how the data is 

interacting. Data from the prototype database can be used to develop a variety of simulated flight 

scenarios to support the research in the case study.  

 

The approach presented in this thesis is not capable of handling real-time data streams. This 

research focuses on leveraging historical data, and the proposed method can be achieved by using 

a normal desktop computer. Applying the proposed method to a real-time data stream would be 

problematic because of the large amounts of incoming data as well as problems with missing 

information and inconsistent scientific units. 

 

This research clearly illustrates the usefulness of developing a compact database based on specific 

research requirements for the purposes of supporting data-driven research, but it also raises the 

question of data integrity in the selected data source. The methodology presented in this thesis does 

not include sustainable solutions for resolving problems related to incomplete or inaccurate 

information obtained from the selected data source. The problem is acknowledged, and the 

temporary solution presented in this thesis is to select a data source from a trustworthy organization. 
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Future work for improving the methodology presented in this thesis could be developing a method 

to filter out inaccurate information or to identify missing information by cross referencing the same 

types of data collected from different data sources. 
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Appendix A: NEXRAD data extraction  

import os 

import subprocess 

 

# #define function to use bash command to run AWS CLI to download raw weather radar data 

def awc_auto_download(base_dir, dir_name): 

    # base_dir= directory to store files download from aws 

    print("created new directory for storting data: /WeatherRadarData/"+dir_name) 

    if not os.path.exists(base_dir+dir_name): 

       os.makedirs(base_dir+dir_name) 

    # #change working directory to the created directroy 

    os.chdir(base_dir + dir_name) 

    print("current working directory: ", base_dir+dir_name) 

    subprocess.run("aws s3 cp s3://noaa-nexrad-level2/"+dir_name+"/ . --recursive --no-sign-request", shell=True) 

    # #reset working directory to the base directory 

    os.chdir(base_dir) 

    reset_dir=os.getcwd() 

    print("Download process completed, reset to base directory: ", reset_dir) 

 

if __name__ == '__main__': 

    # #base_dir = directory to store files download from aws 

    base_dir = "C:/Users/Sim/Documents/Code/Research/DataExtraction/WeatherRadarData/" 

    # #select download date 

    year = "2020" 

    month = "10" 

    date = "02" 

    # #enter specific weather station, or "ALL" to download data of all weather station 

    # #e.g.: station = "ALL" or station =["TEWR","TOKX","TJFK","KDIX","TPHL"] 

    station = ['KOKX'] 

    print('------------------------------------------------------------------') 

    if station == "ALL": 

        dir_name = year + "/" + month + "/" + date 

        print('downloading weather radar data from all stations') 

s3://noaa-nexrad-level2/
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        print("prepare to download weather radar date of: " + dir_name) 

        awc_auto_download(base_dir, dir_name) 

    else: 

        print('downloading weather radar data from '+str(len(station))+' stations') 

        for i in range (len(station)): 

            curr_station = station[i] 

            dir_name = year + "/" + month + "/" + date + "/" + curr_station 

            print("prepare to download weather radar date of: " + dir_name) 

            awc_auto_download(base_dir, dir_name) 
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Appendix B: ADS-B data extraction 

Appendix B1: ADS-B data extraction with Python wrapper 

# #Link to the OpenSky Network wrapper:  https://github.com/junzi40,-75s/pyopensky 

# !!!!!!!!! Read the documentation on the page !!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

# !!!! The wrapper required to manually modify a config file after installation !!!!! 

# ######################################################################################## 

from pyopensky import OpenskyImpalaWrapper 

from datetime import datetime 

# #specifying date and time of interest 

start_time = "2018-07-01 13:00:00" 

end_time = "2018-07-01 13:01:00" 

max_lat = 42 

min_lat = 40 

max_lon = -72 

min_lon = -75 

 

if __name__ == '__main__': 

    # #initialzie OpenSky impala wrapper 

    opensky = OpenskyImpalaWrapper() 

    # #execute query and store query result to dataframe 

    adsb_df = opensky.query( 

        type="adsb", 

        start=start_time, 

        end=end_time, 

        bong = [min_lat,min_lon,max_lat,max_lon] 

    ) 

    # #generate file name by using start time 

    # #file name format: absb + UnixTimestampOfStartTime.csv 

    start_time_unix = datetime.fromisoformat(start_time).timestamp() 

    file_name = 'adsb_'+str(start_time_unix)+'.csv' 

    # #output csv file to computer 

    adsb_df.to_csv(file_name, index=False) 

https://github.com/junzi40,-75s/pyopensky
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Appendix B2: ADS-B data extraction with custom Python script 

import paramiko 

from datetime import datetime 

import pandas as pd 

# #### user input for querying data from database ###################### 

# #1. time: YYYY-MM-DD HH:MM:SS+TimeZoneOffset 

cmd_start_time = "2020-02-01 13:00:00+00:00" 

cmd_end_time = "2020-02-01 13:01:00+00:00" 

# #convert time to unix timestamp 

cmd_start_time_unix = datetime.fromisoformat(cmd_start_time).timestamp() 

cmd_end_time_unix = datetime.fromisoformat(cmd_end_time).timestamp() 

# #2. geographical location 

cmd_lat_min = "40" 

cmd_lat_max = "42" 

cmd_lon_min = "-75" 

cmd_lon_max = "-72" 

# #3. OpenSky Network login credentials 

username = "AC-0636" 

password = 'adsbsimulation' 

# username = "username" 

# password = "password" 

# #4. path to storage directory 

base_dir = 'C:/Users/Sim/Documents/Code/Research/DataExtraction/AdsbData/' 

file_name = 'adsb' + str(cmd_start_time_unix) + '.csv' 

 

if __name__ == '__main__': 

    # #step1: connect to the opensky database server 

    # #1.1 define parameters request for server connection 

    # #Server address and port to opensky network can be found in: https://opensky-network.org/data/impala  

    host = "data.opensky-network.org" 

    port = 2230 

    # # 1.2 initialize a ssh connection 

    ssh = paramiko.SSHClient() 

https://opensky-network.org/data/impala


87 
 

    # # 1.3 set connection policy when connect to a unknown server 

    ssh.set_missing_host_key_policy(paramiko.AutoAddPolicy()) 

    # #1.4 connect to host through a specific port with username and password 

    ssh.connect(host,port,username,password) 

    print('connected to OpenSky sever') 

 

    # ########## step 2: query data from database ########### 

    # #2.1 build the query 

    cmd = "-q SELECT time, icao24, lat, lon, velocity, heading, vertrate, callsign, baroaltitude, geoaltitude, onground, 

lastposupdate, hour" \ 

          +" FROM state_vectors_data4 " \ 

          + " WHERE lat > " + cmd_lat_min + " AND lat < " + cmd_lat_max \ 

          + " AND lon > " + cmd_lon_min + " AND lon < " + cmd_lon_max  \ 

          + " AND time > " + str(cmd_start_time_unix) + " AND time < " + str(cmd_end_time_unix)\ 

          + " AND geoaltitude IS NOT NULL AND velocity IS NOT NULL and vertrate IS NOT NULL AND onground = false;" 

    print('start to query data....') 

    # #2.2 execute command using ssh.exec_command 

    stdin, stdout, stderr = ssh.exec_command(cmd) 

    # #2.3 turn query output(stdout) to output 

    out = stdout.read().decode() 

    print("query done")   

    # #2.4 split query result using ' ', and turn the result to a list 

    # #because the result return from query are plain text with space inbetween columns  

    splited_out=out.split() 

 

    # #2.5 clear table edge in output 

    temp_out=[] 

    border_edge = splited_out[0] 

    mid_border_edge = "+--" 

    border_mid = '|' 

 

    for i in range(len(splited_out)): 

        if splited_out[i] not in (border_edge,border_mid): 

            if splited_out[i][:3] != mid_border_edge: 

                temp_out.append(splited_out[i]) 
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    # #2.6 turn the clean list to a 'table' format 

    cleaned_out = [] 

    # #step size 13 because there are 13 data column in the current dataset 

    for i in range (0, len(temp_out),13): 

        cleaned_out.append(temp_out[i:i+13]) 

    print(len(cleaned_out), " data record query from OpenSky Network database") 

 

    # #devide data into tables with 1025 rows because this is how the data is organized in the OpenSky Network 

    table_num = len(cleaned_out)//1025 

 

    # #remove the header row of each table 

    # #pop_index = the list of row index of the header rows 

    pop_index=[] 

    for i in range(1, table_num+1): 

        pop_index.append(i*1025) 

    # print("index to be removed: ", pop_index) 

    cleaned_out.pop(pop_index) 

 

    # #use shift to update pop index as the list change while poping elements 

    shift = 0 

    for i in pop_index: 

        cleaned_out.pop(i-shift) 

        shift += 1 

 

    # #2.7 output clean data to csv file 

    print("generating csv file") 

    # #2.7.1 convert the data list to a dataframe 

    df = pd.DataFrame(cleaned_out[1:]) 

    # #use the first row of the table to set the column name 

    df.columns = cleaned_out[0] 

 

    # #convert dataframe to csv file 

    df.to_csv(base_dir+file_name, index=False) 
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Appendix C: Weather radar data processing 

import os 

import subprocess 

import pandas as pd 

from datetime import datetime 

import dateutil.parser as dp 

 

# #base_dir = directory to store files download from aws 

base_dir = "C:/Users/Sim/Documents/Code/Research/DataExtraction/WeatherRadarData/" 

# #wct_dir = directory of the wct weather toolkit 

wct_dir = "C:/Users/Sim/Documents/Code/Research/wct-4.6.0" 

 

# #define function to use bash command to run WCT to decode raw weather radar data 

# #export file depends on the config set to wctBatchConfig-allPoints.xml under the wct-4.6.0 file 

def wct_auto_convert(base_dir, date_dir, wct_dir): 

    # #input directory of a specific date -> dir_name = YYYY/MM/DD 

    input_dir = base_dir + date_dir 

 

    # #append the name of weather staion directory under input_dir to a list 

    ws_list = [] 

    for ws_dir in os.listdir(input_dir): 

        ws_list.append(ws_dir) 

 

    # #create new directory with the weather station (if not exist) for storing converted csv files 

    csvoutput_dir = base_dir + 'output_csv/' + date_dir 

    if not os.path.exists(csvoutput_dir): 

        os.makedirs(csvoutput_dir) 

    for i in range (len(ws_list)): 

        ws_dir=csvoutput_dir+'/'+ws_list[i] 

        if not os.path.exists(ws_dir): 

            os.mkdir(ws_dir) 

 

    # #use wct export bash command to convert nexradii files to csv files 
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    # #1. for each weather station directory 

    for i in range (len(ws_list)): 

        print('Decrypting file under |'+ws_list[i]+"| directory") 

        # #2. update input and output path to ws directory 

        station_input_dir = input_dir + '/' + ws_list[i] 

        station_output_dir = csvoutput_dir+'/'+ ws_list[i] 

        # #3. use wct bash command to convert files 

        for nexradii_file in os.listdir(station_input_dir): 

            # #3-1. get input file path 

            file_path = station_input_dir + '/' + nexradii_file 

            # #3-2. constract wct bash command and run command using subprocess 

            # #nexradii_file[:-3] -> keep original file name, without '.gz' 

            wct_command = "wct-export.bat "+ file_path + " " + station_output_dir+'/'+nexradii_file + " csv " + 

wct_dir+'/wctBatchConfig-allPoints.xml' 

            subprocess.run(wct_command, shell=True, cwd=wct_dir) 

            # #delete .prj file (a not needed file generated during .csv export process) 

            if os.path.exists(station_output_dir+'/'+nexradii_file+'.prj'): 

                os.remove(station_output_dir+'/'+nexradii_file+'.prj') 

def nexrad_standardized(base_dir,date_dir,station): 

    # #path to de decoded weather radar file 

    nexrad_dir = base_dir + 'output_csv/' + date_dir + '/' + station + '/' 

    print(nexrad_dir) 

 

    # #get all the nexradii file name under nexrad_dir directory 

    file_list = [] 

    for nexrad_file in os.listdir(nexrad_dir): 

        file_list.append(nexrad_file) 

 

    for i in range(len(file_list)): 

        nexrad_df = pd.read_csv(nexrad_dir+file_list[i]) 

 

        # #switch column order to avoid error loading longitude to map(if using csv file) 

        nexrad_df=nexrad_df[['sweep', 'sweepTime', 'elevAngle', 'value', 'radialAng', 'surfaceRan', 'heightASL', 'latitude', 

'longitude','heightRel']] 

        # #drop undesired data column 
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        nexrad_df.drop(columns=['sweep','elevAngle','radialAng','surfaceRan'], inplace=True) 

        # #rename sweepTime to Time 

        nexrad_df.rename(columns={'sweepTime':'Time', 'value':'Reflectivity', 'latitude': 'Latitude', 'longitude': 'Longitude', 

'heightASL':'HeightASL'}, inplace=True) 

        # #time in one nexrad file are the same for all row 

        time = nexrad_df.loc[0,'Time'] 

        # #convert time to unix timestamp 

        time_unix = datetime.fromisoformat(str(dp.parse(time))).timestamp() 

        # #change time to unix timestamp in dataframe 

        nexrad_df['Time'] = nexrad_df['Time'].replace({time:time_unix}) 

        nexrad_df.to_csv(nexrad_dir+file_list[i],index=False) 

 

if __name__ == '__main__': 

    # #select date and station 

    year = "2020" 

    month = "10" 

    date = "01" 

    date_dir = year+"/"+month+"/"+date 

    station = 'KOKX' 

 

    # #run WCT by calling wct_auto_convert function 

    print('Running WCT to decrypt raw weather data...') 

    wct_auto_convert(base_dir=base_dir,date_dir=date_dir,wct_dir=wct_dir) 

 

    # #process the decoded weather data 

    print('Processing decoded weather radar file...') 

    nexrad_standardized(base_dir=base_dir,date_dir=date_dir,station=station) 
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Appendix D: Loading data to the database for storage 

from os.path import exists 

from datetime import datetime 

import sqlite3 

import pandas as pd 

pd.set_option('float_format','{:.2f}'.format) 

pd.set_option('max_columns',None) 

 

# #define the name of the database 

db_name = 'adsb_weather_db.sqlite' 

# #define data capture time, need to use this to make the 'Unix_time' table 

start_time = "2020-08-01 00:00:00+00:00" 

end_time = "2020-08-05 00:00:00+00:00" 

 

# #define the geographical region, need to use this to make the 'Geographical_point' table 

min_lat = 37 

max_lat = 44 

min_lon = -79 

max_lon = -70 

 

# # path to the adsbdata file 

adsb_base_dir ="C:/Users/Sim/Documents/Code/Research/DataExtraction/AdsbData/" 

adsb_csv = "adsb_1596294000.csv" 

 

# #path to the weather data file 

nexrad_base_dir = "C:/Users/Sim/Documents/Code/Research/DataExtraction/WeatherRadarData/output_csv/" 

nexrad_csv = "KDIX_2020-08-01_000432.csv" 

 

# #create the database if not exist 

def createDB(): 

    print('Database file NOT FOUND. Creating new database....\n') 

    conn = sqlite3.connect(db_name) 

    c = conn.cursor() 

    # #enable load extension 

    conn.enable_load_extension(True) 

    # #load spatialite extension and initialize spatialite 

    c.execute('SELECT load_extension("mod_spatialite")') 

    conn.execute('SELECT InitSpatialMetaData(1)') 

    # #create table 

    c.execute('CREATE TABLE IF NOT EXISTS Unix_time(Time_ID text, Hour int)') 
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    c.execute('CREATE TABLE IF NOT EXISTS Geographical_point(Geo_ID text, Latitude int, Longitude int)') 

    c.execute('CREATE TABLE IF NOT EXISTS Standardized_ADSB_data(Geo_ID text, Time_ID text, Time int, Latitude 

float,Longitude float, onground bool, Icao24 text, Velocity float, Heading float, Vertrate float, Callsign float, BarometricAltitude 

float, GeometricAltitude float, LastPosUpdate int)') 

    c.execute('CREATE TABLE IF NOT EXISTS Standardized_NEXRADII_data(Geo_ID text, Time_ID text, Time int, Latitude 

float, Longitude float, HeightASL float, Reflectivity float)') 

    conn.close() 

    print('Done initializing new database, prepare to insert data...\n') 

    return 

 

# #check the number of time record in database 

# #for identifying the last index number in table to make unique time_id 

def checkTimeIndex(db): 

    conn = sqlite3.connect(db) 

    c = conn.cursor() 

    query = c.execute('SELECT COUNT(*) FROM Unix_time') 

    time_id = query.fetchone()[0] 

    conn.close() 

    return time_id 

 

# #check the number of geo record in database 

# #for identifying the last index number in table to make unique geo_id 

def checkGeoIndex(db): 

    conn = sqlite3.connect(db) 

    c = conn.cursor() 

    query = c.execute('SELECT COUNT(*) FROM Geographical_point') 

    geo_id = query.fetchone()[0] 

    conn.close() 

    return geo_id 

 

# #covert the select time period to hours and then unix timestamp 

def generateHourList(start_t, end_t): 

    start_time_unix = datetime.fromisoformat(start_t).timestamp() 

    end_time_unix = datetime.fromisoformat(end_t).timestamp() 

    # #calculate the number of hours in the input time 

    hours = (end_time_unix-start_time_unix)/3600 

    # time_df = pd.DataFrame(columns=['Hour']) 

    hour_list =[] 

    for i in range(int(hours)): 

        temp_hour = start_time_unix+i*3600 

        hour_list.append(temp_hour) 
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        # time_df.loc[-1] = [temp_hour] 

        # time_df.index+=1 

    return hour_list 

 

# #create geo_list by matching all the combination of the select latitude and longitude 1 degree by 1 degree 

def generateGeoList(min_lat,max_lat,min_lon,max_lon): 

    geo_list =[] 

    for lat in range (min_lat, max_lat+1): 

        for lon in range (min_lon, max_lon+1): 

            geo_list.append([lat,lon]) 

    return geo_list 

 

# # check if the selected time period already exist in 'Unix_time' table 

def checkTimeExistence(db, hour_list): 

    conn = sqlite3.connect(db) 

    c = conn.cursor() 

    pop_index=[] 

    for i in range (len(hour_list)): 

        query = "SELECT Time_ID FROM Unix_Time WHERE Hour=" + str(hour_list[i]) + ';' 

        exec_query = c.execute(query) 

        # print(type(exec_query.fetchone())) 

        result = exec_query.fetchone() 

        if result is not None: 

            # print('data record exit, skip this') 

            pop_index.append(i) 

        # elif result is None: 

        #     print('no data record, keep this') 

    # #pop data that already exist in the database 

    if len(pop_index)>0: 

        shift =0 

        for i in pop_index: 

            hour_list.pop(i - shift) 

            shift+=1 

    return hour_list 

 

# # check if the selected geo area already exist in 'Unix_time' table 

def checkGeoExistence(db, geo_list): 

    conn = sqlite3.connect(db) 

    c = conn.cursor() 

    pop_index = [] 

    for i in range(len(geo_list)): 
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        query = "SELECT Geo_ID FROM Geographical_point WHERE Latitude=" + str(geo_list[i][0]) + ' AND Longitude=' \ 

                + str(geo_list[i][1]) + ';' 

        exec_query = c.execute(query) 

        # print(type(exec_query.fetchone())) 

        result = exec_query.fetchone() 

        if result is not None: 

            print('data record exit, skip this') 

            pop_index.append(i) 

        # elif result is None: 

        #     print('no data record, keep this') 

        if len(pop_index) > 0: 

            shift = 0 

            for i in pop_index: 

                geo_list.pop(i - shift) 

                shift += 1 

    return geo_list 

 

# #update Unix_time table in the database 

def updateTimeTable(hour_list, time_id,db): 

    id_list = [] 

    for i in range (len(hour_list)): 

        id_list.append('T'+str(time_id)) 

        time_id+=1 

    hour_df = pd.DataFrame() 

    hour_df['Time_ID'] = id_list 

    hour_df['Hour'] = hour_list 

    conn = sqlite3.connect(db) 

    hour_df.to_sql('Unix_time', conn, if_exists='append', index=False) 

    conn.close() 

    return 

 

# # update 'geographical_point' table in the database 

def updateGeoTable(geo_list,geo_id,db): 

    id_list = [] 

    geo_df = pd.DataFrame(geo_list,columns=['Latitude','Longitude']) 

    for i in range(len(geo_list)): 

        id_list.append('G'+str(geo_id)) 

        geo_id+=1 

    geo_df.insert(loc=0, column='Geo_ID',value=id_list) 

    # print(geo_df) 

    conn =sqlite3.connect(db) 



96 
 

    geo_df.to_sql('Geographical_point', conn, if_exists='append', index=False) 

    conn.close 

    return 

 

# #insert adsb data to 'Standardized_ADSB_data' table 

def insertAdsbData(adsb_file,db): 

    # #set low_memory to False aviod mixing data type 

    adsb_df = pd.read_csv(adsb_file,low_memory=False) 

    # #create Time_ID and Geo_ID column in dataframe 

    adsb_df['Time_ID'] = pd.NaT 

    adsb_df['Geo_ID'] = pd.NaT 

    # #rename column name in dataframe 

adsb_df.rename(columns={'time':"Time","icao24":"Icao24","lat":"Latitude","lon":"Longitude","velocity":"Velocity","heading":"

Heading", "vertrate":"Vertrate", "callsing":"Callsign", 

"baroaltitude":"BarometricAltitude","geoaltitude":"GeometricAltitude","lastposupdate":"LastPosUpdate","hour":"Hour"},inplace

=True) 

 

    # #connect to database 

    conn = sqlite3.connect(db) 

    c = conn.cursor() 

    for i in range(0,len(adsb_df)): 

        # #get the matching Time_ID from Unix_Time table 

        hour = adsb_df.loc[i,'Hour'] 

        query = c.execute("SELECT Time_ID From Unix_Time WHERE Hour = " + str(hour)+';') 

        timeId = query.fetchone()[0] 

        adsb_df.at[i,'Time_ID'] = timeId 

 

        # #get the matching Geo_ID from Geographical_point table 

        lat = int(float(adsb_df.loc[i,'Latitude'])) 

        lon = int(float(adsb_df.loc[i,'Longitude'])) 

        query = c.execute("SELECT Geo_ID From Geographical_point WHERE Latitude = " + str(lat)+ " AND Longitude = 

"+str(lon) +';') 

        geoID = query.fetchone()[0] 

        adsb_df.at[i,'Geo_ID']= geoID 

 

    # #drop the hour column in dataframe since it is replaced by the Time_ID 

    adsb_df.drop('Hour', axis=1,inplace=True) 

    # #load dataframe data to database 

    adsb_df.to_sql('Standardized_ADSB_data',conn,if_exists='append',index=False) 

    conn.close() 

    return 
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# #create spatialite blob for air traffic data 

def addAdsbBlob(db): 

    conn = sqlite3.connect(db) 

    conn.enable_load_extension(True) 

    conn.execute('SELECT load_extension("mod_spatialite")') 

    conn.execute("SELECT AddGeometryColumn('Standardized_ADSB_data', 'Geo_blob', 4326, 'POINTZ', 'XYZ')") 

    c=conn.cursor() 

 

    query =c.execute('SELECT COUNT(*) FROM Standardized_ADSB_data;') 

    row_num = query.fetchone()[0] 

 

    for i in range(1,row_num+1): 

        query_geo_info = "SELECT Latitude, Longitude, BarometricAltitude FROM Standardized_ADSB_data WHERE rowid 

="+ str(i)+';' 

        query_result = (c.execute(query_geo_info)).fetchall() 

        lat = query_result[0][0] 

        lon = query_result[0][1] 

        alt = query_result[0][2] 

 

        query_update = "UPDATE Standardized_ADSB_data SET Geo_blob = GeomFromText('POINTZ(" + str(lon) + " " + str( 

            lat) + " " + str(alt) + ")',4326) WHERE rowid = " + str(i) 

        c.execute(query_update) 

        conn.commit() 

    conn.close() 

    return 

 

# #insert adsb data to 'Standardized_NEXRADII_data' table 

def insertNexradData(nexrad_file, db): 

    # #set low_memory to False aviod mixing data type 

    nexrad_df = pd.read_csv(nexrad_file,low_memory=False) 

    # #create Time_ID and Geo_ID column in dataframe 

    nexrad_df['Time_ID'] = pd.NaT 

    nexrad_df['Geo_ID'] = pd.NaT 

    # #get nexrad time from dataframe 

    time = nexrad_df.loc[0,'Time'] 

    hour = (int(time)//3600)*3600 

 

    # #connect to database 

    conn =sqlite3.connect(db) 

    c = conn.cursor() 
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    # #get time id from database 

    query = c.execute("SELECT Time_ID From Unix_Time WHERE Hour = " + str(hour) + ';') 

    timeId = query.fetchone()[0] 

    # #assign time id to dataframe 

    nexrad_df['Time_ID'] = timeId 

 

    for i in range (0, len(nexrad_df)): 

        # #get the matching Geo_ID from Geographical_point table 

        lat = int(float(nexrad_df.loc[i,'Latitude'])) 

        lon = int(float(nexrad_df.loc[i,'Longitude'])) 

        query = c.execute("SELECT Geo_ID From Geographical_point WHERE Latitude = " + str(lat)+ " AND Longitude = 

"+str(lon) +';') 

        geoID = query.fetchone()[0] 

        nexrad_df.at[i,'Geo_ID']= geoID 

 

    # #drop the heightRel column in dataframe as it is not needed in dataframe 

    nexrad_df.drop('heightRel', axis=1,inplace=True) 

    # #load dataframe data to database 

    nexrad_df.to_sql('Standardized_NEXRADII_data',conn,if_exists='append',index=False) 

    return 

 

# #create spatialite blob for weather radar data 

def addNexradBlob(db): 

    conn = sqlite3.connect(db) 

    conn.enable_load_extension(True) 

    conn.execute('SELECT load_extension("mod_spatialite")') 

    conn.execute("SELECT AddGeometryColumn('Standardized_NEXRADII_data', 'Geo_blob', 4326, 'POINTZ', 'XYZ')") 

    c=conn.cursor() 

 

    query = c.execute('SELECT COUNT(*) FROM Standardized_NEXRADII_data;') 

    row_num = query.fetchone()[0] 

 

    for i in range(1,row_num+1): 

        query_geo_info = "SELECT Latitude, Longitude, HeightASL FROM Standardized_NEXRADII_data WHERE rowid =" 

+ str(i) + ';' 

        query_result = (c.execute(query_geo_info)).fetchall() 

        lat = query_result[0][0] 

        lon = query_result[0][1] 

        alt = query_result[0][2] 

 

        query_update = "UPDATE Standardized_NEXRADII_data SET Geo_blob = GeomFromText('POINTZ(" + str(lon) + " 
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" + str( 

            lat) + " " + str(alt) + ")',4326) WHERE rowid = " + str(i) 

        c.execute(query_update) 

        conn.commit() 

 

    conn.close() 

    return 

 

if __name__ == '__main__': 

    # # check if database already exist 

    db_exists = exists(db_name) 

    if db_exists == False: 

        createDB() 

        time_id = 0 

        geo_id = 0 

    else: 

        print('database already exist') 

        time_id = checkTimeIndex(db=db_name) 

        geo_id = checkGeoIndex(db=db_name) 

 

    # #1. check and update information in the 'Unix_time' table 

    time_list = generateHourList(start_time, end_time) 

    checkTimeExistence(db=db_name, hour_list=time_list) 

    updateTimeTable(hour_list=time_list,time_id=time_id,db=db_name) 

 

    # #2. check and update information in the 'Geographical_point' table 

    geo_list = generateGeoList(min_lat=min_lat,max_lat=max_lat,min_lon=min_lon,max_lon=max_lon) 

    checkGeoExistence(db=db_name, geo_list=geo_list) 

    updateGeoTable(geo_list=geo_list,geo_id=geo_id,db=db_name) 

 

    # #3. load adsb data files, and load to database 

    adsb_file = adsb_base_dir+adsb_csv 

    insertAdsbData(adsb_file=adsb_file,db=db_name) 

    addAdsbBlob(db=db_name) 

 

    # #4. load weather data files, and load to database 

    nexrad_file = nexrad_base_dir + nexrad_csv 

    insertNexradData(nexrad_file=nexrad_file, db = db_name) 

    addNexradBl 
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Appendix E: Prototype #1  

import matplotlib.pyplot as plt 

from mpl_toolkits.basemap import Basemap 

from matplotlib.animation import FuncAnimation 

from mpl_toolkits.mplot3d import Axes3D 

import pandas as pd 

from datetime import datetime 

 

# #1. load the selected data file and filter out the information that are outside the region 

# #the data in the csv file are converted to dataframe to make it easier for the future steps 

adsb_df = pd.read_csv('adsb csv/adsb_1590969660.csv') 

adsb_df = adsb_df.loc[adsb_df['lat']>=24.93] 

adsb_df = adsb_df.loc[adsb_df['lat']<=43.96] 

adsb_df = adsb_df.loc[adsb_df['lon']>=-88.81] 

adsb_df = adsb_df.loc[adsb_df['lon']<=-67.26] 

adsb_df = adsb_df.loc[adsb_df['baroaltitude']<=14000] 

 

# #2. create three list to store longitude, latitude, and altitude information separately 

def load_adsb_from_df(time): 

    select_df = adsb_df.loc[adsb_df['time']==time] 

    lon = select_df['lon'].tolist() 

    lat = select_df['lat'].tolist() 

    alt = select_df['baroaltitude'].tolist() 

    return lon, lat,alt 

 

# #3. load the three lists to map 

def load_data_to_map(i): 

    # #create a map background for the selected geographical region 

    map = Basemap(projection='mill', 

                  llcrnrlat=24.93, urcrnrlat=43.96, 

                  llcrnrlon=-88.81, urcrnrlon=-67.26, 

                  fix_aspect=False) 
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    # #create text label for New York and Miami 

    nyc=[-74.006111,40.712778] 

    miami=[-80.208615,25.775163] 

    nyc_x,nyc_y= map(nyc[0],nyc[1]) 

    miami_x,miami_y= map(miami[0],miami[1]) 

 

    # #update 'time' whenever the animation being called 

    # #the initial time comes from the file name of the selected data file 

    time = 1590969660+i 

 

    # #get adsb data from dataframe 

    lon, lat, alt = load_adsb_from_df(time) 

    # #convert the longitude and latitude information to 2D (x,y) format for the plot 

    x,y = map(lon,lat) 

 

    # #initialize the 3D map 

    fig = plt.gcf() 

    ax = Axes3D(fig) 

    ax.set_zlim3d(0, 15000) 

 

    # #define the view of the 3d map 

    ax.azim = 315 

    ax.elev = 20 

    ax.add_collection3d(map.drawcoastlines()) 

 

    # #plot dot by using the information in the x,y, alt list 

    p=ax.scatter3D(x, y, alt, c=alt, cmap='Paired') 

    ax.set_title('Visualization of archived air traffic data',fontsize=20) 

    ax.text(nyc_x,nyc_y,0,'New York', ha='left', fontsize=20, weight='bold') 

    ax.text(miami_x,miami_y,0,'Miami',ha='right',fontsize=20,weight='bold') 

    ax.set_zlabel('Altitude above ground level(ft)') 

    ax.annotate(str(datetime.utcfromtimestamp(time))+' UTC', 

                xy=(0.5, 0), xytext=(0, 10), 

                xycoords=('axes fraction', 'figure fraction'), 
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                textcoords='offset points', 

                size=25, ha='center', va='bottom',weight='bold') 

 

    plt.colorbar(mappable=p,shrink = 0.8,pad=0.03) 

    i+=1 

 

if __name__ == '__main__': 

    # #update the plot every 3 seconds 

    ani = FuncAnimation(plt.gcf(), load_data_to_map, interval=3000) 

    plt.show() 
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Appendix F: Prototype #2 

Appendix F1: Graphical user interface 

import wx 

from matplotlib.backends.backend_wxagg import FigureCanvasWxAgg as FigureCanvas 

from matplotlib.figure import Figure 

import display_map 

import get_db_data 

import get_navi_charts 

 

# #define the main frame (the gui) 

class MainFrame(wx.Frame): 

    def __init__(self, parent,title): 

        #size(x,y) = x width * y heigh 

        super(MainFrame, self).__init__(parent, title = "Flight Smart", size = (1400,1000)) 

        # #set min and max frame size to lock window size 

        self.SetMinSize((1400,1000)) 

        self.SetMaxSize((1400,1000)) 

        ##set panel 

        self.panel = MainPanel(self) 

        ##set menu bar 

        menuBar = wx.MenuBar() 

        fileMenu = wx.Menu() 

        exitMenuItem = fileMenu.Append(wx.NewId(), "Exit","Exit the application") 

        menuBar.Append(fileMenu, "&More Settings") 

        self.Bind(wx.EVT_MENU, self.onExit, exitMenuItem) 

        self.SetMenuBar(menuBar) 

 

    def onExit(self, event): 

        self.Close() 

 

# #defined the content to display in the main panel 

class MainPanel(wx.Panel): 

    def __init__(self, parent): 

        super(MainPanel,self).__init__(parent) 

        ## config of the main map 

        self.mainmapFigure = Figure(figsize=(10, 10), dpi=100) 

        self.mainmapCanvas = FigureCanvas(self, -1, self.mainmapFigure) 
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        self.mainmapAx = self.mainmapFigure.add_axes([0, 0, 1, 1]) 

 

        ## config of the sub map 

        self.submapFigure = Figure(figsize=(4, 2), dpi=100) 

        self.submapCanvas = FigureCanvas(self,-1,self.submapFigure) 

        self.submapAx = self.submapFigure.add_axes([0,0,1,1]) 

 

        ##config of the elevation profile 

        self.eleproFigure = Figure(figsize=(3.5,2)) 

        self.eleproCanvas = FigureCanvas(self,-1,self.eleproFigure) 

        self.eleproAx = self.eleproFigure.add_axes([0,0,1,1]) 

        self.panelLayout() 

        self.mainTimer = wx.Timer(self) 

        self.Bind(wx.EVT_TIMER, self.updateTimer) 

        self.mainTimer.Start(1000) 

 

    def panelLayout(self): 

        # #ctrlBox = box sizer for control manual 

        ctrlBox = wx.BoxSizer(wx.VERTICAL) 

 

        # #mainmapBox = box sizer for map 

        mainmapBox = wx.BoxSizer(wx.VERTICAL) 

        # #ADD the map figure to mainmapBox 

        mainmapBox.Add(self.mainmapCanvas, 0, wx.LEFT) 

 

        # #submapBox = box sizer for submap 

        submapBox = wx.BoxSizer(wx.VERTICAL) 

        submapBox.Add(self.submapCanvas,0,wx.Center) 

 

        # #eleproBox = box sizer for elevation profile 

        eleproBox = wx.BoxSizer(wx.VERTICAL) 

        eleproBox.Add(self.eleproCanvas,0,wx.Center) 

 

        # #hBox = "final" box sizer to display map and control horizontally 

        hBox = wx.BoxSizer(wx.HORIZONTAL) 

 

        # #cltBox = box sizer title for check lists 

        cltBox = wx.BoxSizer(wx.HORIZONTAL) 

        # #clcBox = box sizer choice for check lists 

        clcBox = wx.BoxSizer(wx.HORIZONTAL) 
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        # #box sizer for vfr buttons 

        vfrbtnBox = wx.BoxSizer(wx.HORIZONTAL) 

        # #box sizer for ifr buttons 

        ifrbtnBox = wx.BoxSizer(wx.HORIZONTAL) 

 

        # #btnBox2 = box sizer for buttons: "Swap view", "Filght Plan Map" 

        btnBox2 = wx.BoxSizer(wx.HORIZONTAL) 

 

        # # checklist box title 

        self.displayLabel = wx.StaticText(self,label = "Display option") 

        cltBox.Add(self.displayLabel, 0, wx.EXPAND) 

        cltBox.AddSpacer(100) 

        self.mapviewLabel = wx.StaticText(self, label = "Map view option") 

        cltBox.Add(self.mapviewLabel, 0, wx.EXPAND) 

        # #add check list title box sizer to control box sizer 

        ctrlBox.Add(cltBox) 

 

        # #display option list 

        displayList = ["Flight Plan", "Air Traffic (ADS-B)", "Enroute Icing", "Wind", "Turbulence", "Show 

Runways","Show Waypoints"] 

        # #markers for display choice, default set as flight plan, so the first marker is 1 

        self.displayMarker=[1,0,0,0,0,0,0] 

        self.displayChoice = wx.CheckListBox(self, choices=displayList) 

        self.displayChoice.Check(0, True) 

        # #Bind display choice from the radio box 

        self.displayChoice.Bind(wx.EVT_CHECKLISTBOX, self.mapdisplayEvent) 

        clcBox.Add(self.displayChoice, 0, wx.EXPAND) 

        clcBox.AddSpacer(20) 

 

        # #map view option list 

        mapList = ["Terrain Map View","Street Map View", "Satellite Map View"] 

        self.mapviewChoice = wx.CheckListBox(self, choices=mapList) 

        # # mark the deafult map view as checked 

        self.mapviewChoice.Check(0,True) 

        # # marker to "remember" the current view option 

        self.viewMarker=0 

        # # bind check box list event 

        self.mapviewChoice.Bind(wx.EVT_CHECKLISTBOX, self.mapviewEvent) 

        clcBox.Add(self.mapviewChoice,0,wx.EXPAND) 

        # # add check list choice sizer to control box sizer 

        ctrlBox.Add(clcBox) 
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        ctrlBox.AddSpacer(10) 

 

        # #"Time" stuff 

        self.currenttimeLabel=wx.StaticText(self, label = "Current Time: ") 

        ctrlBox.Add(self.currenttimeLabel,0,wx.EXPAND) 

        self.currentTime=get_db_data.getcurrenttime() 

        self.currenttimeDisplay = wx.StaticText(self, label = self.currentTime) 

        ctrlBox.Add(self.currenttimeDisplay) 

        ctrlBox.AddSpacer(10) 

 

        self.timeoffsetLabel = wx.StaticText(self,label = "Time Offest(from now)") 

        ctrlBox.Add(self.timeoffsetLabel,0,wx.EXPAND) 

        timeoffsetList=["30 Minute before 'now'", "1 Hour before 'now'","None(Realtime)","30 Minute after 

'now'", "1 Hour after 'now'"] 

        self.timeoffsetChoice = wx.CheckListBox(self,choices=timeoffsetList) 

        # #mark "None(Realtime) as default term" 

        self.timeoffsetChoice.Check(2,True) 

        ctrlBox.Add(self.timeoffsetChoice,0,wx.EXPAND) 

        ctrlBox.AddSpacer(10) 

 

        # #"Altitude selection" title 

        self.altitudeLabel = wx.StaticText(self,label="Altitude Selection") 

        ctrlBox.Add(self.altitudeLabel,0,wx.EXPAND) 

        self.altitudeInput = wx.SpinCtrl(self,initial=15000, min=1000,max=20000) 

        self.last_altitude = 15000 

        self.altitudeInput.Bind(wx.EVT_SPINCTRL,self.spinctrlEvent) 

        ctrlBox.Add(self.altitudeInput,0,wx.EXPAND) 

 

        # #"Update map at this altitude" button 

        self.updatealtBtn = wx.Button(self,label="Update Map at this Altitude") 

        # self.updatealtBtn.Bind(wx.EVT_BUTTON,self.updatealtEvent) 

        ctrlBox.Add(self.updatealtBtn) 

        ctrlBox.AddSpacer(20) 

 

        # #Navigation chart stuff 

        self.navigationchartLabel = wx.StaticText(self,label = "Navigation Chart") 

        ctrlBox.Add(self.navigationchartLabel,0,wx.EXPAND) 

 

        self.vfrLabel = wx.StaticText(self, label = "VFR") 

        ctrlBox.Add(self.vfrLabel,0,wx.EXPAND) 
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        self.vfrsectionalBtn = wx.Button(self,label = "Sectional") 

        vfrbtnBox.Add(self.vfrsectionalBtn) 

        self.vfrsectionalBtn.Bind(wx.EVT_BUTTON,self.vfrsecEvent) 

        vfrbtnBox.AddSpacer(10) 

 

        self.vfrterminalBtn = wx.Button(self,label = "Terminal Area") 

        vfrbtnBox.Add(self.vfrterminalBtn) 

        self.vfrterminalBtn.Bind(wx.EVT_BUTTON,self.vfrterEvent) 

        vfrbtnBox.AddSpacer(10) 

 

        self.vfrterminalpBtn = wx.Button(self,label = "Terminal Planning") 

        vfrbtnBox.Add(self.vfrterminalpBtn) 

        self.vfrterminalpBtn.Bind(wx.EVT_BUTTON,self.vfrterplanEvent) 

        ctrlBox.Add(vfrbtnBox) 

        ctrlBox.AddSpacer(20) 

 

        self.ifrLabel = wx.StaticText(self,label = "IFR") 

        ctrlBox.Add(self.ifrLabel) 

        self.ifrlowaltBtn = wx.Button(self, label = "Low Altitude") 

        ifrbtnBox.Add(self.ifrlowaltBtn) 

        self.ifrlowaltBtn.Bind(wx.EVT_BUTTON,self.ifrlowaltEvent) 

        ifrbtnBox.AddSpacer(10) 

 

        self.ifrhialtBtn = wx.Button(self,label = "Hight Altitude") 

        ifrbtnBox.Add(self.ifrhialtBtn) 

        self.ifrhialtBtn.Bind(wx.EVT_BUTTON,self.ifrhialtEvent) 

        ctrlBox.Add(ifrbtnBox) 

        ctrlBox.AddSpacer(10) 

 

        # add sub map to the ctrlBox Sizer 

        ctrlBox.Add(submapBox) 

        ctrlBox.AddSpacer(10) 

 

        # #elevation profile title 

        self.eleproLabel = wx.StaticText(self,label="Elevation Profile") 

        ctrlBox.Add(self.eleproLabel,0,wx.EXPAND) 

 

        # #add elevation profile to the ctrlBox Sizer 

        ctrlBox.Add(eleproBox) 

 

        # #add them to the "final" Box 



108 
 

        hBox.Add(mainmapBox) 

        hBox.Add(ctrlBox) 

        self.SetSizer(hBox) 

 

        # #display_default main map 

        display_map.zoomflightplanMap(self,self.mainmapFigure,self.mainmapCanvas,self.mainmapAx) 

        # #display default sub map 

        display_map.fullflightplanMap(self,self.submapFigure,self.submapCanvas,self.submapAx) 

        # #display elevation map 

        display_map.plotelevationProfile(self,self.eleproFigure,self.eleproCanvas,self.eleproAx) 

 

# #map view event: for changing map style marker 

    def mapviewEvent(self,event): 

        viewIndex = self.mapviewChoice.GetCheckedItems() 

        ## find the current view index( viewMarker) from the list, and unchecked it 

        removeindex = viewIndex.index(self.viewMarker) 

        self.mapviewChoice.Check(viewIndex[removeindex],False) 

        if removeindex == 0: 

            self.viewMarker = viewIndex[1] 

        else: 

            self.viewMarker = viewIndex[0] 

 

        viewResult = self.mapviewChoice.GetString(self.viewMarker) 

        display_map.mapView(self,self.mainmapFigure,self.mainmapCanvas,self.mainmapAx,viewResult) 

 

# #map display event 

    def mapdisplayEvent(self, event): 

        displayResult = self.displayChoice.GetCheckedStrings() 

        if "Flight Plan" in displayResult and self.displayMarker[0] == 0: 

            display_map.flightplanMap(self, self.mainmapFigure, self.mainmapCanvas, self.mainmapAx) 

            self.displayMarker[0]=1 

        if "Air Traffic (ADS-B)" in displayResult and self.displayMarker[1] == 0: 

            display_map.plotTraffic(self, self.mainmapFigure, self.mainmapCanvas, self.mainmapAx) 

            self.displayMarker[1] =1 

        if "Enroute Icing" in displayResult and self.displayMarker[2] ==0: 

            display_map.plotIcing(self,self.mainmapFigure,self.mainmapCanvas, self.mainmapAx,15000) 

            self.displayMarker[2] =1 

        elif "Show Waypoints" in displayResult and self.displayMarker[6] == 0: 

            display_map.plotWaypoint(self, self.mainmapFigure, self.mainmapCanvas, self.mainmapAx) 

     

## time update 
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    def updateTimer(self, event): 

        self.currentTime = get_db_data.getcurrenttime() 

        self.currenttimeDisplay.SetLabelText(self.currentTime) 

 

## force altitude slider increment 

    def spinctrlEvent(self, event): 

        ##calculate the delta altitude to figure out whether "UP" or "DOWN" is clicked 

        delta_alt = self.altitudeInput.GetValue() - self.last_altitude 

        ##"UP" 

        if delta_alt >0: 

            self.last_altitude += 1000 ##we want to set the change step as 1000 

            self.altitudeInput.SetValue(self.last_altitude) 

        ##"DOWN" 

        else: 

            self.last_altitude -= 1000  ##we want to set the change step as 1000 

            self.altitudeInput.SetValue(self.last_altitude) 

 

## display Sectional VFR chart 

    def vfrsecEvent(self, event): 

        get_navi_charts.getvfrSectional() 

 

## display Terminal VFR chart 

    def vfrterEvent(self,event): 

        get_navi_charts.getvfrTerminal() 

 

## display Terminal Planning VFR chart 

    def vfrterplanEvent(self,event): 

        get_navi_charts.getvfrterminalPlanning() 

 

## display Low Altitude IFR chart 

    def ifrlowaltEvent(self,event): 

        get_navi_charts.getifrlowAltitude() 

 

## display High Altitude IFR chart 

    def ifrhialtEvent(self,event): 

        get_navi_charts.getifrhiAltitude() 

 

## update map with altitude 

    # def updatealtEvent(self,event): 

 

class TApplication(wx.App): 
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    def OnInit(self): 

        self.frame = MainFrame(parent=None, title=None) 

        self.frame.Show() 

        return True 

if __name__ == "__main__": 

    Application = TApplication(0) 

    Application.MainLoop() 
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Appendix F2: Design the main map 

from mpl_toolkits.basemap import Basemap 

from our_opensky_api import OpenSkyApi 

import get_db_data 

import get_elevation_profile 

import matplotlib.image as image 

import asyncio 

 

##coordinate of departure & destination 

##KJFK 

depart_lat = 40.6444 

depart_lon = -73.7867 

##KLGA 

dest_lat = 40.7844 

dest_lon = -73.8767 

 

##global depart_lat, depart_lon, dest_lat, dest_lon 

depart_icao = "KJFK" 

dest_icao = "KLGA" 

map_view_mode = "World_Terrain_Base" 

 

##current location representation 

## currently set in JFK 

current_lon = depart_lon 

current_lat = depart_lat 

 

global llclat, urclat, llclon, urclon 

llclat = min(depart_lat, dest_lat)  # min_lat 

urclat = max(depart_lat, dest_lat)  # max lat 

llclon = min(depart_lon, dest_lon)  # min lon 

urclon = max(depart_lon, dest_lon)  # max lon 

 

def mapView(self, _figure, _canvas, _axes, _view): 

    _figure.set_canvas(_canvas) 

    _axes.clear() 

    global map_view_mode 

    if _view == "Street Map View": 

        # map_view_mode = 'World_Street_Map' 

        map_view_mode = '/Canvas/World_Dark_Gray_Base' 
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    elif _view == "Terrain Map View": 

        map_view_mode = 'World_Terrain_Base' 

    elif _view == "Satellite Map View": 

        map_view_mode = 'World_Imagery' 

    # plotbackgroundMap(self,_figure,_canvas,_axes) 

    zoomflightplanMap(self, _figure, _canvas, _axes) 

 

## config for the maps 

def mapVariable(_llcrnlat, _urcrnrlat, _llcrnrlon, _urcrnrlon, _axes): 

    _map = Basemap(llcrnrlat=_llcrnlat, urcrnrlat=_urcrnrlat, 

                   llcrnrlon=_llcrnrlon, urcrnrlon=_urcrnrlon, 

                   epsg=4269, ax=_axes) 

    # _map.arcgisimage(service=map_view_mode, xpixels=2000, verbose=True) 

    return _map 

 

 

## plot the background map on the given area 

def plotbackgroundMap(self, _figure, _canvas, _axes): 

    _figure.set_canvas(_canvas) 

    _axes.clear() 

 

    # global llclat, urclat, llclon, urclon 

    _map = mapVariable(llclat - 0.05, urclat + 0.05, llclon - 0.05, urclon + 0.05, _axes) 

    _map.arcgisimage(service=map_view_mode, xpixels=2000, verbose=True) 

 

    depart_x, depart_y = _map(depart_lon, depart_lat) 

    dest_x, dest_y = _map(dest_lon, dest_lat) 

 

    _axes.scatter(depart_x, depart_y, marker='D', color='r', s=20) 

    _axes.annotate(depart_icao, xy=(depart_x, depart_y), color='r') 

    _axes.scatter(dest_x, dest_y, marker='D', color='r', s=20) 

    _axes.annotate(dest_icao, xy=(dest_x, dest_y), color='r') 

 

    _figure.canvas.draw() 

    return _map 

 

## zoom map background set up, clear map with flight plan plotted 

## currentlly using JFK as our center 

def zoomflightplanMap(self, _figure, _canvas, _axes): 

    _figure.set_canvas(_canvas) 

    _axes.clear() 
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    # global llclat, urclat, llclon, urclon 

    _map = mapVariable(depart_lat - 0.05, depart_lat + 0.05, depart_lon - 0.05, depart_lon + 0.05, _axes) 

    _map.arcgisimage(service=map_view_mode, xpixels=2000, verbose=True) 

 

    ## plot jfk 

    depart_x, depart_y = _map(depart_lon, depart_lat) 

    _axes.scatter(depart_x, depart_y, marker='D', color='r', s=50) 

    _axes.annotate(depart_icao, xy=(depart_x, depart_y), color='r') 

 

    ## plot flight plan 

    _fplat, _fplon, _fpalt = get_db_data.getflightPlan() 

    fp_x, fp_y = _map(_fplon, _fplat) 

    _axes.plot(fp_x, fp_y, linewidth=1.5, color='r') 

 

    ## plot our "current" location 

    current_x, current_y = _map(current_lon, current_lat) 

    _axes.scatter(current_x, current_y, marker='o', color='y', s=30) 

    _figure.canvas.draw() 

    return _map 

 

##full map background set up, clear map with flight plan plotted 

def fullflightplanMap(self, _figure, _canvas, _axes): 

    _figure.set_canvas(_canvas) 

    _axes.clear() 

    _map = plotbackgroundMap(self, _figure, _canvas, _axes) 

    _fplat, _fplon, _fpalt = get_db_data.getflightPlan() 

    fp_x, fp_y = _map(_fplon, _fplat) 

    _axes.plot(fp_x, fp_y, linewidth=1.5, color='r') 

    _figure.canvas.draw() 

    return _map 

 

 

## elevation map set up 

def plotelevationProfile(self, _figure, _canvas, _axes): 

    _figure.set_canvas(_canvas) 

    _axes.clear() 

    _d_list_rev, _elev_list = get_elevation_profile.elevationData() 

 

    # BASIC STAT INFORMATION 

    mean_elev = round((sum(_elev_list) / len(_elev_list)), 3) 
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    min_elev = min(_elev_list) 

    max_elev = max(_elev_list) 

    distance = _d_list_rev[-1] 

 

    _axes.plot(_d_list_rev, _elev_list) 

    _axes.plot([0, distance], [min_elev, min_elev], '--g', label='min: ' + str(min_elev) + ' m') 

    _axes.plot([0, distance], [max_elev, max_elev], '--r', label='max: ' + str(max_elev) + ' m') 

    _axes.plot([0, distance], [mean_elev, mean_elev], '--y', label='ave: ' + str(mean_elev) + ' m') 

    _axes.fill_between(_d_list_rev, _elev_list, 0, alpha=0.1) 

    _axes.text(_d_list_rev[0], _elev_list[0], "KJFK")  ##P1 

    _axes.text(_d_list_rev[-1], _elev_list[-1], "KLGA")  ##P2 

    _axes.grid() 

    _axes.legend(fontsize='small') 

    _figure.canvas.draw() 

 

##map ADS-B info 

def plotTraffic(self, _figure, _canvas, _axes): 

    _figure.set_canvas(_canvas) 

    _axes.clear() 

 

    ##plotting the icon to the graph 

    dpi = 72; 

    imageSize = (16, 16) 

    wpt_im = image.imread('icon/plane.png') 

    _map = fullflightplanMap(self, _figure, _canvas, _axes) 

    lon = [] 

    lat = [] 

    tailnum = [] 

    alt = [] 

    j = 0 

    api = OpenSkyApi() 

    global llclat, urclat, llclon, urclon 

    ##get live ADS-B from opensky api 

    states = api.get_states(bbox=(llclat - 0.08, urclat + 0.08, llclon - 0.08, urclon + 0.08)) 

    for s in states.states: 

        lon.append([]) 

        lon[j] = s.longitude 

        lat.append([]) 

        lat[j] = s.latitude 

        alt.append([]) 

        alt[j] = s.geo_altitude 
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        tailnum.append([]) 

        tailnum[j] = s.callsign 

        j += 1 

 

    ## map air traffic to the map 

    traffic_x, traffic_y = _map(lon, lat) 

 

    # plot icao code to the aircraft 

    for k in range(len(traffic_x)): 

        _axes.annotate(tailnum[k], xy=(traffic_x[k], traffic_y[k]), color='b') 

 

    ## check for altitude value obtained from the api 

    ## remove the 'None' value 

    for l in range(0, j - 1): 

        if alt[l] is None: 

            alt[l] = 0 

            l += 1 

        else: 

            l += 1 

 

    ## plot the traffic in the map 

    _axes.scatter(traffic_x, traffic_y, s=10, c=alt, cmap='Paired') 

 

    ##Ref: https://stackoverflow.com/questions/2318288/how-to-use-custom-png-image-marker-with-plot 

    points, = _axes.plot(traffic_x, traffic_y, "bo", mfc="None", mec="None", markersize=imageSize[0] * (dpi 

/ 96)) 

    points._transform_path() 

    path, affine = points._transformed_path.get_transformed_points_and_affine() 

    path = affine.transform_path(path) 

    for pixelPoint in path.vertices: 

        _figure.figimage(wpt_im, pixelPoint[0] - imageSize[0] / 2, pixelPoint[1] - imageSize[1] / 2, 

origin="upper") 

    _figure.canvas.draw() 

 

    return _map 

 

## plot icing info 

def plotIcing(self, _figure, _canvas, _axes, _alt): 

    get_db_data.getIcing(llclat, llclon, urclat, urclon, _alt) 

 

## plot waypoint info 
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def plotWaypoint(self, _figure, _canvas, _axes): 

    _figure.set_canvas(_canvas) 

    _axes.clear() 

 

    ##plotting the icon to the graph 

    dpi = 72; 

    imageSize = (32, 32) 

    wpt_im = image.imread('icon/waypoint.png') 

    _map = fullflightplanMap(self, _figure, _canvas, _axes) 

    _wpt_name_list, _wpt_lat_list, _wpt_lon_list = get_db_data.getWaypoint(llclat, llclon, urclat, urclon) 

 

    ## map wpt to the map 

    wpt_x, wpt_y = _map(_wpt_lon_list, _wpt_lat_list) 

 

    # _axes.scatter(wpt_x, wpt_y, s=10, color = 'g') 

 

    ## plot the traffic in the map 

    points, = _axes.plot(wpt_x, wpt_y, "bo", mfc="None", mec="None", markersize=imageSize[0] * (dpi / 96)) 

    points._transform_path() 

    path, affine = points._transformed_path.get_transformed_points_and_affine() 

    path = affine.transform_path(path) 

    for pixelPoint in path.vertices: 

        _figure.figimage(wpt_im, pixelPoint[0] - imageSize[0] / 2, pixelPoint[1] - imageSize[1] / 2, 

origin="upper") 

 

    ## plot wpt name to the aircraft 

    for k in range(len(wpt_x)): 

        _axes.annotate(_wpt_name_list[k], xy=(wpt_x[k], wpt_y[k]), color='k') 

    _figure.canvas.draw() 

 

    return _map 
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Appendix F3: Obtain airspace and weather data from data files 

import pandas as pd 

import numpy as np 

import sqlite3 

from datetime import datetime 

 

## set cifp connection 

cifp_path = "db/CIFP_v1.db" 

cifp_conn = sqlite3.connect(cifp_path) 

 

## set icing connection 

icing_patn = "db/Icing2020-03-16.db" 

icing_conn = sqlite3.connect(icing_patn) 

 

## get the coordinate of the departure and destination 

def getaptLocation(departicao, desticao): 

   read_apt = pd.read_csv("airports.csv") 

   ##"marker", use to know if done searching 

   _getdepart = 0 

   _getdest = 0 

   ##use a list to save data 

   location_list_lat_lon = [] 

 

   for i in range(0,len(read_apt)): 

       if _getdepart == 0 or _getdest ==0: 

           if read_apt["ident"][i] == departicao: 

               departlat = read_apt["latitude_deg"][i] 

               departlon = read_apt["longitude_deg"][i] 

               _getdepart = 1 

           elif read_apt["ident"][i] == desticao: 

               destlat = read_apt["latitude_deg"][i] 

               destlon = read_apt["longitude_deg"][i] 

               _getdest = 1 

           else: 

               i+=1 

       else: ##_getdepart = 1 and _getdest =1 

           i = len(read_apt) 

 

   if _getdepart ==1 and _getdest ==1: 
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       location_list_lat_lon.append([]) 

       location_list_lat_lon[0] = departicao 

       location_list_lat_lon.append([]) 

       location_list_lat_lon[1] = departlat 

       location_list_lat_lon.append([]) 

       location_list_lat_lon[2] = departlon 

       location_list_lat_lon.append([]) 

       location_list_lat_lon[3] = desticao 

       location_list_lat_lon.append([]) 

       location_list_lat_lon[4] = destlat 

       location_list_lat_lon.append([]) 

       location_list_lat_lon[5] = destlon 

 

   return location_list_lat_lon, _getdepart,_getdest 

## get current time 

def getcurrenttime(): 

    now = datetime.now() 

    current_time=now.strftime("%c") 

    return current_time 

 

## get the given flight plan 

def getflightPlan(): 

    fp = pd.read_csv("fp/KJFK-KLGA.csv") 

    ##get data from flightplan.csv 

    fplatarr = np.array(fp["latitude_deg"][0:200]) 

    fplonarr = np.array(fp["longitude_deg"][0:200]) 

    fpaltarr = np.array(fp["elevation_ft"][0:200]) 

 

    return fplatarr,fplonarr,fpaltarr 

 

## get enroute icing data 

def getIcing(_minlat,_minlon,_maxlat,_maxlon,_alt): 

    _minlat = str(_minlat) 

    _minlon = str(_minlon) 

    _maxlat = str(_maxlat) 

    _maxlon = str(_maxlon) 

 

    icing_lat_list = [] 

    icing_lon_list = [] 

    icing_sev_list = [] 

 



119 
 

    ## icing lat from db 

    icing_lat_query = "SELECT Latitude FROM IcingInfo" +str(int(_alt/1000)) +" WHERE Latitude > " + 

_minlat +" AND Latitude < + _maxlat + " AND Longitude >" + _minlon + " AND Longitude < "+ _maxlon 

    icing_lat = pd.read_sql(icing_lat_query, icing_conn) 

    for i in range(len(icing_lat)): 

        icing_lat_list.append([]) 

        icing_lat_list[i] = icing_lat['Latitude'][i] 

 

    ## icing lon from db 

    icing_lon_query = "SELECT Longitude FROM IcingInfo" + str(int(_alt / 1000)) + " WHERE Latitude > " 

+ _minlat + " AND Latitude < + _maxlat + " AND Longitude >" + _minlon + " AND Longitude < " + _maxlon 

    icing_lon = pd.read_sql(icing_lon_query, icing_conn) 

    for i in range(len(icing_lon)): 

        icing_lon_list.append([]) 

        icing_lon_list[i] = icing_lon['Longitude'][i] 

 

    ## icing sev from db 

    icing_sev_query = "SELECT ICSEV FROM IcingInfo" + str(int(_alt / 1000)) + " WHERE Latitude > " + 

_minlat + " AND Latitude < + _maxlat + " AND Longitude >" + _minlon + " AND Longitude < " + _maxlon 

    icing_sev = pd.read_sql(icing_sev_query, icing_conn) 

    for i in range(len(icing_sev)): 

        icing_sev_list.append([]) 

        icing_sev_list[i] = icing_sev['ICSEV'][i] 

    return icing_lat_list, icing_lon_list, icing_sev_list 

 

## get nearby waypoint 

def getWaypoint(_minlat,_minlon,_maxlat,_maxlon): 

    _minlat = str(_minlat) 

    _minlon = str(_minlon) 

    _maxlat = str(_maxlat) 

    _maxlon = str(_maxlon) 

 

    wpt_name_list =[] 

    wpt_lat_list = [] 

    wpt_lon_list = [] 

 

    ## wpt data from cifp 

    wpt_name_query = "SELECT WaypointName FROM Waypoints WHERE Latitude > " + _minlat +" AND 

Latitude < + _maxlat + " AND Longitude >" + _minlon + " AND Longitude < "+ _maxlon 

    wpt_name = pd.read_sql(wpt_name_query,cifp_conn) 

    for i in range(len(wpt_name)): 
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        wpt_name_list.append([]) 

        wpt_name_list[i] = wpt_name['WaypointName'][i] 

 

    for i in range(len(wpt_name)): 

        wpt_name_str = wpt_name_list[i] 

        wpt_lat_query = "SELECT Latitude FROM Waypoints WHERE WaypointName = '"+wpt_name_str 

+ "'" 

        wpt_lat = pd.read_sql(wpt_lat_query,cifp_conn) 

        wpt_lat_list.append([]) 

        wpt_lat_list[i] = wpt_lat['Latitude'][0] 

 

        wpt_lon_query = "SELECT Longitude FROM Waypoints WHERE WaypointName = '" + 

wpt_name_str + "'" 

        wpt_lon = pd.read_sql(wpt_lon_query, cifp_conn) 

        wpt_lon_list.append([]) 

        wpt_lon_list[i] = wpt_lon['Longitude'][0] 

    return wpt_name_list, wpt_lat_list, wpt_lon_list 
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Appendix F4: Obtain NAVID chart from data files 

import gdal as gdal 

import matplotlib.pyplot as plt 

 

def getvfrSectional(): 

    filepath = 'New_York_VFR_Sectional/New York SEC 101.tif' 

    raster = gdal.Open(filepath).ReadAsArray() 

    image = plt.imshow(raster) 

    plt.show() 

 

def getvfrTerminal(): 

    filepath = 'New_York_TAC_99/New York TAC 99.tif' 

    raster = gdal.Open(filepath).ReadAsArray() 

    image = plt.imshow(raster) 

    plt.show() 

 

def getvfrterminalPlanning(): 

    filepath = 'New_York_TAC_99/New York TAC VFR Planning Charts 99.tif' 

    raster = gdal.Open(filepath).ReadAsArray() 

    image = plt.imshow(raster) 

    plt.show() 

 

def getifrlowAltitude(): 

    filepath = 'enr_l34/ENR_L34.tif' 

    raster = gdal.Open(filepath).ReadAsArray() 

    image = plt.imshow(raster) 

    plt.show() 

 

def getifrhiAltitude(): 

    filepath = 'enr_h12/ENR_H12.tif' 

    raster = gdal.Open(filepath).ReadAsArray() 

    image = plt.imshow(raster) 

    plt.show() 
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Appendix F5: Obtain elevation profile from data files 

import urllib.request 

import json 

import math 

import matplotlib.pyplot as plt 

 

def haversine(lat1,lon1,lat2,lon2): 

    lat1_rad=math.radians(lat1) ##math.radians: convert angle x from degrees to radians 

    lat2_rad=math.radians(lat2) 

    lon1_rad=math.radians(lon1) 

    lon2_rad=math.radians(lon2) 

    delta_lat=lat2_rad-lat1_rad 

    delta_lon=lon2_rad-lon1_rad 

    

a=math.sqrt((math.sin(delta_lat/2))**2+math.cos(lat1_rad)*math.cos(lat2_rad)*(math.sin(delta_lon/2))**2) 

    d=2*6371000*math.asin(a) 

    return d 

 

def elevationData(): 

    with open("elevation_profile_data.json", "r") as read_file: 

        js_str = json.load(read_file) 

 

    # DISTANCE CALCULATION, mian process is obtained from the original example code 

    lat_list = [] 

    lon_list = [] 

    d_list = [] 

 

    for j in range(len(js_str['results'])): 

        lat_list.append(js_str['results'][j]['latitude']) 

        lon_list.append(js_str['results'][j]['longitude']) 

 

    lat0 = lat_list[-1] 

    lon0 = lon_list[-1] 

 

    for j in range(len(lat_list)): 

        lat_p = lat_list[j] 

        lon_p = lon_list[j] 

        dp = haversine(lat0, lon0, lat_p, lon_p) / 1000  # km 

        d_list.append(dp) 
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    d_list_rev = d_list[::-1]  # reverse list 

 

    # GETTING ELEVATION 

    response_len = len(js_str['results']) 

    elev_list = [] 

    for j in range(response_len): 

        elev_list.append(js_str['results'][j]['elevation']) 

 

    return d_list_rev,elev_list 
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Appendix G: Prototype #3 

Appendix G1: Design the map layout 

<!DOCTYPE html> 

<html> 

 <head> 

 <meta charset="utf-8" /> 

 <title>FlySmart Map</title> 

 <meta name="viewport" content="initial-scale=1,maximum-scale=1,user-scalable=no" /> 

 <script src="https://api.mapbox.com/mapbox-gl-js/v2.2.0/mapbox-gl.js"></script> 

 <link href="https://api.mapbox.com/mapbox-gl-js/v2.2.0/mapbox-gl.css" rel="stylesheet" type="text/css"> 

 <link href="page_style.css" rel="stylesheet" /> 

 </head> 

<body> 

  <!-- scripts for geocoder --> 

 <script src="https://api.mapbox.com/mapbox-gl-js/plugins/mapbox-gl-geocoder/v4.5.1/mapbox-gl-

geocoder.min.js"></script> 

 <link 

 rel="stylesheet" 

 href="https://api.mapbox.com/mapbox-gl-js/plugins/mapbox-gl-geocoder/v4.5.1/mapbox-gl-

geocoder.css" 

 type="text/css" 

 /> 

 <script src="https://cdn.jsdelivr.net/npm/es6-promise@4/dist/es6-promise.min.js"></script> 

 <script src="https://cdn.jsdelivr.net/npm/es6-promise@4/dist/es6-promise.auto.min.js"></script> 

 <div id="map"></div> 

 

 <div id="view_menu"> 

 <input id="nicvb/cka9ti4bj0z2q1iny1w3zqujy" type="radio" name="rtoggle" value="flight"  

checked="checked"/> 

 <label for="flight">Flight</label> 

 

 <input id="mapbox-map-design/ckhqrf2tz0dt119ny6azh975y" type="radio" name="rtoggle" 

value="satellite" /> 

 <label for="satellite">3D Satellite</label> 

 </div> 

 

 <form id="input_menu"> 
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  <!--need custom text in file upload button -> set button "adsb_upload" to replace the default file upload 

button--> 

  <input type="button" id="adsb_upload" value = "Select ADS-B file" onclick = 

"document.getElementById('adsb_file').click();"> 

  <input type="file" id="adsb_file" accept=".csv" style="display:none" onclick="adsbcsv()"/> 

  <input type="submit" value="Update ADS-B" onclick = "upload_csv_adsb()"/> 

 

  <input type="button" id="nexradii_upload" value = "Select NEXRADII file" 

onclick="document.getElementById('nexrad_file').click();"> 

  <input type="file" id="nexrad_file" accept=".csv" style="display:none" onclick="nexradcsv()"/> 

  <input type="submit" value="Update nexrad" onclick = "upload_csv_nexrad()"/> 

 </form> 

 

  <!-- map overlay menu content --> 

 <div class="map-overlay"> 

 

  <!-- time control --> 

  <div class="map-overlay-inner" style ="background-color: rgba(255, 255, 255, 0.8);"> 

   <div class="display_text"> 

    <p>Air Traffic Database Time:</p> 

    <p>Weather Radar Database Time:</p> 

    <p>Terrain Database Time:</p> 

    <p>Airspace Infrastructure Time:</p> 

   </div> 

   <div class="display_text"> 

    <p id = "adsb_time"> </p> 

    <p id = "nexrad_time"> </p> 

    <!-- <p id = "weather_radar_time">01/09/2020 21:00 UTC</p> --> 

    <!-- <p id = "terrain_time"> </p> --> 

    <p id = "terrain_time">2020-02-11 00:00 UTC</p> 

    <!-- <p id = "airspace_time"> </p> --> 

    <p id = "airspace_time">2020-05-17 12:00 UTC</p> 

   </div>  

    

   <hr class="solid">     

   <p style="font-size: 15px;">Simulation Time: <label id="slected_time">0</label> <label 

id='selected_time_unit'>second(s)</label></p> 

 

   <!-- <div style="background-color: #a5787894;text-align: center;"> --> 

   <div style="text-align: center;"> 

    <button id="play_back" style="background-color: rgba(0, 0, 0, 0); font-size:25px; word-
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wrap: break-word;border: none;" onclick = "previousFrame()">  </button> 

    <button id="play_auto" style="background-color: rgba(0, 0, 0, 0); font-size:25px; border: 

none;"onclick = "playStop()" >  </button> 

    <button id="play_forward" style="background-color: rgba(0, 0, 0, 0); font-size:25px; border: 

none;"onclick = "nextFrame()">  </button> 

   </div> 

   <input id="slider" type="range" min="0" max="80" step="1" value="0"/> 

 

  </div> 

 

  <!-- layer display control --> 

  <div class="map-overlay-inner" style="border: none;"> 

  <fieldset> 

  <button id="All" style = "font-size: 15px;background-color:#FFFFFF" onclick 

="displayall()">All</button>  

  <button id="RiskContours" style = "font-size: 15px;background-color:dodgerblue onclick 

="displayControl('RiskContours','RiskContours')">Risk Contours</button>  

  <button id="AirspaceRoute" style = "font-size: 15px; background-color:dodgerblue" 

onclick="displayControl('Airspace','AirspaceRoute'), displayControl('Airroute')" >Airspace/AirRoute</button>  

  <button id="Landmark" style = "font-size: 15px;background-color:dodgerblue" onclick 

="displayControl('Landmark','Landmark')">Landmark</button>  

  <button id="NAVAID" style = "font-size: 15px;background-color:dodgerblue" 

onclick="displayControl('NAVAID','NAVAID')">NAVAID</button>  

  <button id="Wxradar" style = "font-size: 15px;background-color:dodgerblue" onclick 

="displayControl('Reflectivity','Wxradar')">Weather radar</button>  

  <button id="Traffic" style = "font-size: 15px;background-color:dodgerblue" onclick 

="displayControl('adsb_callsign_labels_layer','Traffic'), displayControl('adsb_velocity_labels_layer'), 

displayControl('adsb_altitude_labels_layer')">Traffic</button> 

  <button id="Novel" style = "font-size: 15px;background-color:#FFFFFF" onclick 

="display_novel_entities('Novel')">Novel Entities</button>  

  </fieldset> 

  </div> 

 

 </div> 

 

 <!-- info box for displaying aircraft performance --> 

 <div id = "info_box"> 

  <div id="es_information"></div> 

 </div> 

 

 <!-- Function "turf" for distance calculation between points  --> 
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 <script src="https://npmcdn.com/@turf/turf@5.1.6/turf.min.js"></script> 

 <script src="js/main_map.js"></script> 

 

 <!-- load simulation info --> 

 <script id="simulation_info" src="python_simulation/OutputDataFile/simulation_data.js"></script> 

 <script src="js/simulation_info.js"></script> 

 

 <!-- test load csv file--> 

 <script src = "js/load_csv.js"></script> 

 

 <!--load historical adsb data from csv file --> 

 <script src = "js/historical_adsb.js"></script> 

 

 <!-- load historical nexrad data from csv file--> 

 <script src = "js/historical_nexrad.js"></script> 

 

 <!--for using three.js plugins used for 3D objects --> 

 <script src="https://unpkg.com/three@0.106.2/build/three.min.js"></script> 

 <script src="https://unpkg.com/three@0.106.2/examples/js/loaders/GLTFLoader.js"></script> 

 

 <!-- for using threebox.js mesh line to create 3d flight path --> 

 <script src="threebox/threebox.js"></script> 

  

 

</body> 

</html> 
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Appendix G2: Main execution file 

// access token of the map designed on Mapbox studio 

mapboxgl.accessToken = 

'pk.eyJ1IjoibmljdmIiLCJhIjoiY2thNzBxMnl0MDAyYzJ0bmZpeW1jOHNlayJ9.p5h0jJ78qIUWcRLQ19muY

w'; 

var map = new mapboxgl.Map({ 

container: 'map', 

 

//load our flight map at default 

style: 'mapbox://styles/nicvb/cka9ti4bj0z2q1iny1w3zqujy', 

 

 

zoom: 14, 

center: [-73.7786925,40.6399278], //JFK airport 

pitch: 60, 

}); 

  

//control for switching between flight map view and satellite map view 

var layerList = document.getElementById('view_menu'); 

var inputs = layerList.getElementsByTagName('input'); 

  

function switchLayer(layer) { 

var layerId = layer.target.id; 

map.setStyle('mapbox://styles/' + layerId); 

 

} 

 

for (var i = 0; i < inputs.length; i++) { 

inputs[i].onclick = switchLayer; 

} 

 

 

//set default data source for airspace, airroute, and navaid 

var airspaceSource = 'mapbox://nicvb.5545qn4c'; 

var airspaceSourceLayer = 'united_states-axvqcm'; 

var airrouteSource = 'mapbox://nicvb.90kqjezx'; 

var airrouteSourceLayer = 'a896b894_db9c_4207_82ac_8e07c5e207b4202046_1_1eto9wt.0jyd'; 

var navaidSource = 'mapbox://nicvb.ckaak488q0nbo2hpfm6juvwz7-2riz7'; 

var navaidSourceLayer = 'navaids'; 
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var frameCount = 100; 

// this is for JFK-PHL novel entity 

// var currentImage = 1500037201; 

var currentImage = 1500037367; 

 

 

function getgifPath() { 

    return ( 

        // 'http://localhost:8000/localhost/RiskContours/JFK-PHL novel entity/' + 

        'http://localhost:8000/localhost/RiskContours/for demo only/' + 

 

    currentImage + 

    '.png' 

    ); 

} 

 

 

//slider control 

var slider_ele = document.getElementById('slider'); 

var slider_time = slider_ele.value; 

 

//animation control 

var animationPosition = 0; 

var animationTimer = false; 

 

//geojson of adsb and novel air vehicle to  to load 3d model 

var far_drone_geojson;  

var adsb_geojson; 

var nexrad_geojson; 

var sim_geojson; 

 

var novel_entity_label; 

 

 

/////////////////////////////////////////////////////////////////////////////// 

// this section defined the build in map control (zoom in, zoom out, etc) 

 

    // Add a geocoder 

    map.addControl( 

        new MapboxGeocoder({ 

        accessToken: mapboxgl.accessToken, 
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        mapboxgl: mapboxgl 

        }) 

        ); 

 

    // Adds zoom and rotation controls to top right of map  

    map.addControl(new mapboxgl.NavigationControl({ visualizePitch: true, showZoom: true , showCompass: 

true})); 

 

 

    // Adds fullscreen control to top right of map 

    map.addControl(new mapboxgl.FullscreenControl({container:document.querySelector('body')})); 

 

    // Adds scale control to top right of map 

    var scale = new mapboxgl.ScaleControl({ 

        maxWidth: 80, 

        unit: 'imperial' 

    }); 

    map.addControl(scale); 

scale.setUnit('metric'); 

 

/////////////////////////////////////////////////////////////////////////////// 

// this section defined all the custom data layer added to the map 

function addCommonLayer() 

{ 

 

    // //landmark layer 

    map.addSource('landmark',{ 

        type: 'vector', 

        url: 'mapbox://ac-0636.c46dnh3l' 

    }); 

 

    map.addLayer({ 

        'id': 'Landmark', 

        'type': 'symbol', 

        'source': 'landmark', 

        //'source-layer'= name of source detail 

        'source-layer': '9c937979_7e9b_43d3_970e_e5b95dcdb6eb202042_1_22kxp8.7iw8s', 

        'layout': 

        { 

            'visibility':'visible', 

            'icon-image' : 'castle-15', 
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            'icon-size' : 1 

        }, 

    }); 

 

    //////--------------------------------------------- 

    ////dummy data for nexrad csv initialization 

    nexrad_geojson = { 

        'type': 'FeatureCollection', 

        'features':[{ 

            'type':'Feature', 

            'properties':{ 

                'reflectivity': ' ', 

            }, 

            'geometry':{ 

                'type':'Point', 

                'coordinates':[0,0] 

                // 'coordinates':[-73.77,40.63] 

 

            } 

        }] 

    }; 

 

    map.addSource('nexrad_points',{ 

        'type':'geojson', 

        'data': nexrad_geojson 

    }) 

    map.addLayer({ 

        'id':'Reflectivity', 

        'type': 'heatmap', 

        'source':'nexrad_points', 

        'layout': 

        { 

            'visibility':'visible' 

        }, 

        'paint': 

        { 

            // !!! the min and max of reflectivity value for different dataset could be different 

            'heatmap-weight':[ 

                "interpolate", 

                ["linear"], 

                ['get','reflectivity'], 
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                -20, 

                0, 

                40, 

                1 

            ], 

            // increase intensity as zoom level increases 

            'heatmap-intensity': 1, 

            //assign color  

            'heatmap-color': [ 

                "interpolate", 

                ["linear"], 

                ["heatmap-density"], 

                0, 

                "rgba(0, 0, 255, 0)", 

                0.1, 

                "hsla(223, 98%, 42%, 0.16)", 

                0.3, 

                "hsla(223, 98%, 42%, 0.38)", 

                0.5, 

                "hsla(223, 98%, 42%, 0.54)", 

                0.7, 

                "hsla(229, 100%, 50%, 0.67)", 

                1, 

                "hsl(223, 98%, 42%)" 

              ], 

            // increase radius as zoom increases 

            'heatmap-radius': 20, 

            // decrease opacity to transition into the circle layer 

            'heatmap-opacity': 0.5, 

             

        } 

 

    }); 

 

 

    // airspace layer 

    map.addSource('airspace_data',{ 

        type: 'vector', 

        url: airspaceSource 

        }); 
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    map.addLayer({ 

        'id': 'Airspace', 

        'type': 'fill', 

        'source': 'airspace_data', 

        //'source-layer'= name of source detail 

        'source-layer': airspaceSourceLayer, 

        'layout': 

        { 

            'visibility':'visible' 

        }, 

        'paint':  

        { 

            'fill-color': '#000000', 

            'fill-opacity':["step", 

            ["zoom"], 

            0.33, 

            10, 

            0 

            ] 

 

        } 

    }); 

 

     

    // air route layer 

    map.addSource('airroute_data',{ 

        type: 'vector', 

        url: airrouteSource 

        }); 

         

    map.addLayer({ 

        'id': 'Airroute', 

        'type': 'line', 

        'source': 'airroute_data', 

        'source-layer': airrouteSourceLayer, 

        'layout': 

        { 

            'visibility':'visible' 

        }, 

        'paint':  

        { 
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            'line-color': '#ffff00', 

            'line-opacity':0.23 

 

        } 

    }); 

 

 

    //navaid layer 

    map.addSource('navaid_data',{ 

        type: 'vector', 

        url: navaidSource 

        }); 

         

    map.addLayer({ 

        'id': 'NAVAID', 

        'type': 'symbol', 

        'source': 'navaid_data', 

        'source-layer': navaidSourceLayer, 

        'layout': 

        { 

            'icon-image': [ 

                "match", 

                ["get", "type"], 

                ["VOR"], 

                "VOR", 

                ["VORTAC"], 

                "VORTAC", 

                ["VOR-DME"], 

                "VOR-DME", 

                ["NDB"], 

                "NDB_the_good_one", 

                ["TACAN"], 

                "TACAN", 

                ["NDB-DME"], 

                "NDB_the_good_one", 

                ["DME"], 

                "VOR-DME", 

                "" 

                ], 

            'icon-size':0.2, 

            'visibility':'visible', 
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            'text-field':['get', 'ident'], 

            'text-size': 16, 

            'text-offset':[0,1.5] 

        }, 

        'paint':  

        { 

            'text-color':'hsl(183, 91%, 48%)', 

            'text-halo-color':'hsl(0, 0%, 0%)', 

            'text-halo-width' : 1 

 

        } 

    }); 

 

    ////dummy data for adsb csv initialization 

    adsb_geojson = { 

        'type':'FeatureCollection', 

        'features':[{ 

            'type': 'Feature', 

            'properties':{ 

                'callsign': ' ', 

            }, 

            'geometry':{ 

                'type': 'Point', 

                'coordinates':[0, 0] 

            } 

        }] 

    }; 

 

    map.addSource('adsb_labels',{ 

        'type':'geojson', 

        'data': adsb_geojson 

    }) 

    map.addLayer({ 

        'id': 'adsb_callsign_labels_layer', 

        'type': 'symbol', 

        'source':'adsb_labels', 

        'layout':{ 

            'text-field': ['get', 'callsign'], 

            'text-variable-anchor':['bottom'], 

            'text-radial-offset':1.5, 

            'text-justify':'center', 
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            'text-size':20, 

            'visibility': 'visible' 

        }, 

        'paint':{ 

            'text-color' : '#0F0F0F', 

        } 

    }); 

    map.addLayer({ 

        'id': 'adsb_velocity_labels_layer', 

        'type': 'symbol', 

        'source':'adsb_labels', 

        'layout':{ 

            'text-field': ['get', 'velocity_l'], 

            // 'text-field': ['get', 'velocity'], 

            'text-variable-anchor' : ['top-left'], 

            'text-radial-offset':1.5, 

            'text-justify': 'left', 

            'text-size':10, 

            'visibility':'visible' 

        }, 

        'paint':{ 

            'text-color' : '#0F0F0F', 

        } 

    }); 

    map.addLayer({ 

        'id': 'adsb_altitude_labels_layer', 

        'type': 'symbol', 

        'source':'adsb_labels', 

        'layout':{ 

            'text-field': ['get', 'baroaltitude_l'], 

            'text-variable-anchor' : ['top-right'], 

            'text-radial-offset':1.5, 

            'text-justify': 'right', 

            'text-size':10, 

            'visibility':'visible' 

        }, 

        'paint':{ 

            'text-color' : '#0F0F0F', 

        } 

    }); 
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    //dummy data for novel air vehicle initialization 

    novel_entity_label = { 

        'type': 'FeatureCollection', 

        'features': [ 

        { 

        'type': 'Feature', 

        'properties': { 

        'description': "Novel entity", 

        'icon': 'theatre' 

        }, 

        'geometry': { 

        'type': 'Point', 

        'coordinates': [0,0] 

        } 

        } 

        ] 

    }; 

    map.addSource('novel_entity_labels',{ 

        'type':'geojson', 

        'data': novel_entity_label 

    }) 

    map.addLayer({ 

        'id': 'novel_entity_labels_layer', 

        'type': 'symbol', 

        'source': 'novel_entity_labels', 

        'layout': { 

        'text-field': 'Novel air vehicle', 

        // 'text-variable-anchor': ['top', 'bottom', 'left', 'right'], 

        'text-font': ['Open Sans Semibold', 'Arial Unicode MS Bold'], 

        'text-variable-anchor': ['bottom'], 

        'text-radial-offset': 1.5, 

        'text-justify': 'auto', 

        // 'text-justify': 'center', 

        'text-size': 30, // to adjust the callsign text size 

        'visibility':'visible' 

        }, 

        paint: { 

            "text-color": "#483D8B" 

          } 

        }); 
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    // load novel air vehicle info by calling function in another js file 

    load_simulation_data(); 

 

    // load adsb data by calling function in another js file 

    load_adsb(); 

 

    // load weather radar data by calling function in another js file 

    load_nexrad(); 

 

 

} 

 

function addRiskLayer() 

{ 

    //risk contours 

    map.addSource('risk_contours', 

    { 

        type: 'image', 

        url: getgifPath(), 

        coordinates: [ 

        //KJFK - KPHL 

        [-76.2526, 41.2500],  //ulc 

        [-71.8820, 41.2500], //urc ---- 

        [-71.8820, 39.2353], //lrc 

        [-76.2526, 39.2353] //llc ---- 

        //KJFK - KLGA 

        // [-74.4113, 40.9142],  //ulc 

        // [-73.4819, 40.9142], //urc ---- 

        // [-73.4819, 40.410867], //lrc 

        // [-74.4113, 40.410867] //llc ---- 

        ] 

    }); 

    map.addLayer({ 

        id: 'RiskContours', 

        'type': 'raster', 

        'source': 'risk_contours', 

        'layout':{ 

            'visibility':'visible' 

        }, 

        'paint': { 
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        'raster-fade-duration': 0, 

        "raster-opacity" : 0.5 // to adjust the risk countour image opacity 

        } 

        }); 

} 

 

 

function add3dTerrainLayer() 

{ 

    map.addSource('mapbox-dem', { 

        'type': 'raster-dem', 

        'url': 'mapbox://mapbox.mapbox-terrain-dem-v1', 

        'tileSize': 512, 

        'maxzoom': 14 

        }); 

    //     // add the DEM source as a terrain layer with exaggerated height 

    map.setTerrain({ 'source': 'mapbox-dem', 'exaggeration':1}); 

} 

 

 

////////////////////////////////////////////////////////////////////////////////////////// 

// this section is for changing the visibility of the data layer 

//load all the data layer when the map style first load 

map.on('load', function() 

{ 

    addCommonLayer(); 

     

 

}); 

 

//reload all the data layer when the map style change 

//Ref: https://bl.ocks.org/tristen/0c0ed34e210a04e89984 

map.on('style.load',function() 

{ 

    addCommonLayer(); 

 

    // check which map style is the current selected one 

    var flight_map_checked = document.getElementById("nicvb/cka9ti4bj0z2q1iny1w3zqujy").checked; 

    var satellite_map_checked = document.getElementById("mapbox-map-

design/ckhqrf2tz0dt119ny6azh975y").checked; 
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    //// load extra layer to the selected map style  

    if (flight_map_checked == true) 

    { 

        console.log("Current map style: Flight map, added risk image layer") 

        addRiskLayer(); 

 

    } 

    if(satellite_map_checked == true) 

    { 

        console.log("Current map style: 3D satellite map, add 3d terrain layer") 

        add3dTerrainLayer(); 

    } 

 

 

}); 

 

//use in all dispaly button, pass in layer name and button id 

function displayControl(layername, btn) 

{ 

    var visibility = map.getLayoutProperty(layername,'visibility'); 

    var click_btn = document.getElementById(btn); 

    // console.log(layername,':  ',visibility) 

 

    if (visibility == 'visible') 

    {    

        map.setLayoutProperty(layername, 'visibility', 'none'); 

        if (click_btn != null) 

        { 

          click_btn.style.backgroundColor = "#FFFFFF";    

        } 

    } 

    else 

    { 

        map.setLayoutProperty(layername, 'visibility', 'visible'); 

        if (click_btn != null) 

        { 

            click_btn.style.backgroundColor = "#1E90FF"; 

        } 

    } 

 

} 
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function displayall() 

{ 

    var all_btn = document.getElementById('All'); 

    if (all_btn.style.backgroundColor == "dodgerblue") 

    { 

        all_btn.style.backgroundColor = '#FFFFFF'; 

    } 

    else 

    { 

        all_btn.style.backgroundColor = '#1E90FF'; 

    } 

     

    displayControl('Icing','Wxradar'); 

    displayControl('Landmark','Landmark'); 

    displayControl('Airspace','AirspaceRoute'); 

    displayControl('Airroute'); 

    displayControl('NAVAID','NAVAID'); 

    displayControl('RiskContours','RiskContours'); 

    displayControl('drone_labels_layer','Traffic'); 

    displayControl('drone_labels_spd_layer'); 

    displayControl('drone_labels_alt_layer'); 

    // display_novel_entities('Novel') 

} 

 

function display_novel_entities(btn) 

{ 

    var click_btn = document.getElementById(btn); 

    var visibility = map.getLayoutProperty('novel_entity_labels_layer','visibility'); 

    // console.log('layer visibility: ', visibility); 

 

    if (novel_entity_status == 1) 

    { 

        novel_entity_status = 0 

        click_btn.style.backgroundColor = "#FFFFFF";  

        map.setLayoutProperty('novel_entity_labels_layer','visibility','none'); 

 

    } 

    else 

    { 
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        novel_entity_status = 1 

        click_btn.style.backgroundColor = "#1E90FF"; 

        map.setLayoutProperty('novel_entity_labels_layer','visibility','visible'); 

    } 

     

} 

 

//////////////////////////////////////////////////////////////////////////////////////// 

// this section is for the media control 

function stop() { 

 

    document.getElementById("play_auto").textContent = "  "; 

    console.log("stop"); 

    if(animationTimer) 

    { 

        clearTimeout(animationTimer); 

        animationTimer = false; 

        return true; 

    } 

    // return false; 

} 

 

function play()  

{ 

    document.getElementById("play_auto").textContent = "  "; 

    if (slider_time < slider_ele.max) 

    { 

        slider_time += 1; 

        slider_ele.value = String(slider_time); 

    } 

    else 

    { 

        slider_time = 0; 

        slider_ele.value = String(slider_time); 

    } 

    // Main animation driver. Run this function every 5s 

    animationTimer = setTimeout(play, 2000); 

    console.log("play"); 

} 

 

function playStop()  
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{ 

    if (!stop()) { 

        play(); 

    } 

} 

 

function nextFrame() 

{ 

    stop(); 

    slider_time += 5; 

    slider_ele.value = String(slider_time); 

    console.log("next"); 

} 

 

function previousFrame() 

{ 

    stop(); 

    slider_time -= 5; 

    slider_ele.value = String(slider_time); 

    console.log("previous"); 

} 
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Appendix G3: Convert data in CSV file to arrays 

var adsb_csv; 

var nexrad_csv; 

 

// convert data in csv file to an array 

// ref: https://sebhastian.com/javascript-csv-to-array/ 

function csvToArray(str, delimiter = ",") 

{ 

    // slice from start of text to the first \n index 

  // use split to create an array from string by delimiter 

    const headers = str.slice(0, str.indexOf("\n")).split(delimiter); 

 

  // slice from \n index + 1 to the end of the text 

  // use split to create an array of each csv value row 

    const rows = str.slice(str.indexOf("\n") + 1).split("\n"); 

 

  // Map the rows 

  // split values from each row into an array 

  // use headers.reduce to create an object 

  // object properties derived from headers:values 

  // the object passed as an element of the array 

  const arr = rows.map(function (row) { 

        const values = row.split(delimiter); 

        const el = headers.reduce(function (object, header, index) { 

            object[header] = values[index]; 

            return object; 

        }, {}); 

        return el; 

    }); 

 

  // return the array 

    return arr; 

} 

 

 

function upload_csv_adsb() 

{ 

  const myForm = document.getElementById("input_menu"); 

  const adsb_file = document.getElementById("adsb_file"); 
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  // prevent browser from executing the default action of the selected element 

  myForm.addEventListener("submit", function(e) 

  { 

    e.preventDefault(); 

  }); 

 

  //// load adsb data from csv file 

  // .files[0] : return to the file object at the index 0 

  const file1 = adsb_file.files[0]; 

  const csvreader1 = new FileReader(); 

  csvreader1.readAsText(file1); 

  csvreader1.onload = function() 

  { 

      adsb_csv = csvToArray(csvreader1.result); 

 

      //get adsb start time of this csv file 

      adsb_t=get_adsb_start_time(adsb_csv); 

      console.log('adsb_start time:',adsb_t) 

      var adsb_date = convertTimestamp(adsb_t) 

      document.getElementById("adsb_time").innerHTML = adsb_date; 

 

  } 

 

  //// call function in historical_adsb.js to get adsb data 

  get_adsb_data(); 

 

} 

 

function upload_csv_nexrad() 

{ 

  const myForm = document.getElementById("input_menu"); 

  const nexrad_file = document.getElementById("nexrad_file"); 

  // prevent browser from executing the default action of the selected element 

  myForm.addEventListener("submit", function(e) 

  { 

    e.preventDefault(); 

  }); 

 

  //// load nexrad data from csv file 

  // // .files[0] : return to the file object at the index 0 

  const file2 = nexrad_file.files[0];   
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  const csvreader2 = new FileReader(); 

  csvreader2.readAsText(file2); 

  csvreader2.onload = function() 

  { 

      nexrad_csv = csvToArray(csvreader2.result); 

      nexrad_date = convertTimestamp(nexrad_csv[0].Time) 

      // nexrad_date = convertNEXRADTime(nexrad_csv[0].Time) 

      // console.log(nexrad_date) 

      // console.log(nexrad_csv[0].sweepTime) 

      document.getElementById("nexrad_time").innerHTML = nexrad_date; 

  } 

 

  ////initialize nexrad display 

  get_nexrad_data(); 

} 

 

 

//// function link to select adsb file button in .html 

function adsbcsv() 

{ 

  console.log("adsb_csv"); 

  if (adsb_csv != null) 

  { 

    console.log('new adsb file will be upload'); 

 

    //clear current adsb data 

    adsb_csv=[]; 

    adsb_data_t = []; 

    adsb_loc_t = []; 

    ////get new adsb start time of this csv file 

    // adsb_t=get_start_time_from_csv(adsb_csv); 

    // get_adsb_data(); 

    // console.log('prepare for new csv file: ',adsb_csv); 

  } 

  else 

  { 

    console.log('first adsb file select'); 

  } 

 

} 
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//// function link to select nexrad file button in .html 

function nexradcsv() 

{ 

  console.log('nexrad_csv'); 

  if (nexrad_csv != null) 

  { 

    console.log('new nexradii file will be upload'); 

    ////clear current nexrad data 

    nexrad_csv=[]; 

  } 

  else 

  { 

    console.log('first nexrad file select'); 

  } 

 

} 

 

function convertTimestamp(timestamp) { 

  var date = new Date(timestamp * 1000), // Convert the passed timestamp to milliseconds 

      yyyy = date.getUTCFullYear(), 

      mm = ('0' + (date.getUTCMonth() + 1)).slice(-2),  // Months are zero based. Add leading 0. 

      dd = ('0' + date.getUTCDate()).slice(-2),         // Add leading 0. 

      hh = date.getUTCHours(), 

      min = ('0' + date.getUTCMinutes()).slice(-2),     // Add leading 0. 

      time; 

 

  time = yyyy + '-' + mm + '-' + dd + ' ' + hh + ':' + min + ' UTC'; 

  return time; 

} 
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Appendix G4: Mapping ADS-B data for display 

var adsb_t =0; 

var adsb_data_t = [] 

var adsb_loc_t = [] 

var slider_time_diff; 

var prev_slider_time = 0; 

 

 

// recursive function monitoring incoming adsb file 

function load_adsb() 

{ 

    update_adsb = setInterval(function() 

    { 

        update_adsb_loc(); 

        get_adsb_data(); 

    },1000); 

} 

 

 

//get start time from adsb csv file 

// function use in load_csv.js 

function get_adsb_start_time (csv_obj) 

{ 

    var values = [] 

    // for (var i =0; i< 1000; i ++) 

    for (var i =0; i< csv_obj.length-1; i ++) 

    { 

        // console.log(csv_obj[i].time) 

        temp_time = parseInt(csv_obj[i].time) 

        // console.log(temp_time) 

        if (isNaN(temp_time) == false) 

        { 

            values.push(parseInt(csv_obj[i].time)); 

        } 

    } 

    return min = Math.min.apply(null,values) 

} 

 

// get adsb data that match the time in simulation 
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function get_adsb_data() 

{ 

    adsb_data_t = [] 

    for (var i =0; i< adsb_csv.length-1;i++) 

    { 

        if (parseInt(adsb_csv[i].time) == adsb_t) 

        { 

            adsb_data_t.push({ 

                time: parseInt(adsb_csv[i].time), 

                icao : adsb_csv[i].icao24, 

                latitude: parseFloat(adsb_csv[i].lat), 

                longitude: parseFloat(adsb_csv[i].lon), 

                velocity: parseFloat(adsb_csv[i].velocity), 

                heading: parseFloat(adsb_csv[i].heading), 

                vertrate: parseFloat(adsb_csv[i].vertrate), 

                callsign: adsb_csv[i].callsign, 

                onground : (adsb_csv[i].onground).toLowerCase(), 

                baroaltitude: adsb_csv[i].baroaltitude, 

                geoaltitude: adsb_csv[i].geoaltitude, 

                lastposupdate: parseInt(adsb_csv[i].lastposupdate), 

            }); 

     

        } 

    } 

    // draw adsb on map 

    plot_air_traffic(); 

} 

 

// this function is used to draw adsb on map 

function plot_air_traffic() 

{ 

    // store adsb position info at time t in a list 

    adsb_loc_t =[]; 

    for (var i=0; i<adsb_data_t.length;i++) 

    { 

        //filter adsb traffic by onground status, keep the flying ones only 

        if(adsb_data_t[i].onground == "false") 

        { 

            // create an object for each aircraft that matches the condition, set their properties 

            adsb_loc_t.push({ 

                type:'Feature', 
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                geometry: 

                { 

                    type: 'Point', 

                    coordinates:[Number(adsb_data_t[i].longitude), Number(adsb_data_t[i].latitude)] 

                }, 

                properties: 

                { 

                    heading:Number(adsb_data_t[i].heading), 

                    callsign: adsb_data_t[i].callsign, 

                    icao: adsb_data_t[i].icao, 

                    velocity: Number(Math.round(adsb_data_t[i].velocity)), 

                    baroaltitude: Number(Math.round(adsb_data_t[i].baroaltitude)), 

                    // for label display 

                    velocity_l: Math.round(adsb_data_t[i].velocity)+ 'kts', 

                    baroaltitude_l: Math.round(adsb_data_t[i].baroaltitude) + 'm', 

                  

                } 

            }); 

        } 

    

    } 

 

    // find the adsb data layer by using 'sourceId', update the data layer 

    adsb_geojson = { 

        'type': 'FeatureCollection', 

        features:adsb_loc_t, 

    }; 

    map.getSource('adsb_labels').setData(adsb_geojson); 

    var satellite_map_checked = document.getElementById("mapbox-map-

design/ckhqrf2tz0dt119ny6azh975y").checked; 

    if(satellite_map_checked == true) 

    { 

        map.setPaintProperty('adsb_callsign_labels_layer', 'text-color', '#ffffff') 

        map.setPaintProperty('adsb_velocity_labels_layer', 'text-color', '#ffffff') 

        map.setPaintProperty('adsb_altitude_labels_layer', 'text-color', '#ffffff') 

    } 

 

    // add 3d model to map 

    for (var k =0; k<adsb_loc_t.length;k++) 

    { 

        adsb_3d_model(k); 
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    } 

} 

 

// this function is define to match the adsb display with the media control 

function update_adsb_loc() 

{ 

 

    //prev_slider_time != (current) slider_time -> there is change on slider input OR the in initial state 

(prev_slider_time =0) 

    if (prev_slider_time != slider_time)  

    { 

         

        //playback (drag slider backward) 

        if (prev_slider_time>slider_time) 

        { 

            //difference between previous slider time and current slider time 

            slider_time_diff = (prev_slider_time-slider_time); 

 

            //match adsb_time to the current slider time to load adsb data 

            adsb_t -= slider_time_diff; 

 

        } 

        //(drag slider forward) 

        else //prev_slder_time < slider_time 

        {             

            //difference between previous slider time and current slider time 

            slider_time_diff = (slider_time-prev_slider_time); 

             

            //match adsb_time to the current slider time to load adsb data 

            adsb_t += slider_time_diff; 

        } 

 

        //load/plot adsb traffic on the map 

        get_adsb_data(); 

        for (var k =0; k<adsb_loc_t.length;k++) 

        { 

            adsb_3d_model(k); 

        } 

 

        //update prev_slider_time 

        prev_slider_time = slider_time; 



152 
 

    } 

} 

 

// this function is used for plotting a 3d aircraft model for each aircraft in the adsb data 

function adsb_3d_model(i) 

{ 

    // three.js 3D object variables 

    // parameters to ensure the model is georeferenced correctly on the map 

    modelOrigin = adsb_loc_t[i].geometry.coordinates; 

    modelAltitude = adsb_loc_t[i].properties.baroaltitude; 

 

    //convert heading, from angle to radians 

    var heading_rad = parseFloat(adsb_loc_t[i].properties.heading)*(Math.PI/180); 

    var modelRotate = [-1.5,heading_rad,3]; 

 

    var modelAsMercatorCoordinate = mapboxgl.MercatorCoordinate.fromLngLat( 

        modelOrigin, 

        modelAltitude 

    ); 

 

    // transformation parameters to position, rotate and scale the 3D model onto the map 

    var modelTransform = { 

        translateX: modelAsMercatorCoordinate.x, 

        translateY: modelAsMercatorCoordinate.y, 

        translateZ: modelAsMercatorCoordinate.z, 

        rotateX: modelRotate[0], 

        rotateY: modelRotate[1], 

        rotateZ: modelRotate[2], 

        scale: modelAsMercatorCoordinate.meterInMercatorCoordinateUnits() 

    }; 

 

    var THREE = window.THREE; 

    var layerid = "Adsb3d"+ String(i); 

    // configuration of the custom layer for a 3D model per the CustomLayerInterface 

    var customLayer = { 

        id: layerid, 

        type: 'custom', 

        renderingMode: '3d', 

        onAdd: function (map, gl) { 

            this.camera = new THREE.Camera(); 

            this.scene = new THREE.Scene(); 
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            var directionalLight2 = new THREE.DirectionalLight(0xffffff); 

            directionalLight2.position.set(0, 70, 100).normalize(); 

            this.scene.add(directionalLight2); 

 

            // use the three.js GLTF loader to add the 3D model to the three.js scene 

            var loader = new THREE.GLTFLoader(); 

            loader.load( 

                'http://localhost:8000/localhost/PlaneModel/hl64/scene.gltf', 

                function (gltf) { 

                    this.scene.add(gltf.scene); 

                }.bind(this) 

            ); 

            this.map = map; 

 

            // use the Mapbox GL JS map canvas for three.js 

            this.renderer = new THREE.WebGLRenderer({ 

                canvas: map.getCanvas(),  

                context: gl, 

                antialias: true 

            }); 

 

            this.renderer.autoClear = false; 

        }, 

        render: function (gl, matrix) { 

            var rotationX = new THREE.Matrix4().makeRotationAxis( 

                new THREE.Vector3(1.2, 0, 0), 

                modelTransform.rotateX 

            ); 

            var rotationY = new THREE.Matrix4().makeRotationAxis( 

                new THREE.Vector3(0, 1.2, 0), 

                modelTransform.rotateY 

            ); 

            var rotationZ = new THREE.Matrix4().makeRotationAxis( 

                new THREE.Vector3(0, 0, 1.2), 

                modelTransform.rotateZ 

            ); 

 

            var m = new THREE.Matrix4().fromArray(matrix); 

            var l = new THREE.Matrix4() 

                .makeTranslation( 



154 
 

                    modelTransform.translateX, 

                    modelTransform.translateY, 

                    modelTransform.translateZ 

                ) 

                .scale( 

                    new THREE.Vector3( 

                        modelTransform.scale, 

                        -modelTransform.scale, 

                        modelTransform.scale 

                    ) 

                ) 

                .multiply(rotationX) 

                .multiply(rotationY) 

                .multiply(rotationZ); 

 

            this.camera.projectionMatrix = m.multiply(l); 

            this.renderer.state.reset(); 

            this.renderer.render(this.scene, this.camera); 

            this.map.triggerRepaint(); 

        } 

    }; 

    var map_layer = map.getLayer(layerid);  

    if (prev_slider_time != slider_time) 

    { 

        if (typeof map_layer == 'undefined') 

        { 

            map.addLayer(customLayer, 'waterway-label'); 

        } 

        else 

        { 

            map.removeLayer(layerid); 

            map.addLayer(customLayer, 'waterway-label');  

        } 

    } 

 

 

} 
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Appendix G5: Mapping NexRad data for display 

var nexrad_t = 0; 

var nexrad_data_t =[] 

var nexrad_loc_t = [] 

 

// recursive function monitoring incoming weather radar file 

function load_nexrad() 

{ 

    update_nexrad = setInterval(function() 

    { 

        get_nexrad_data(); 

    },2000); 

     

} 

 

 

// push current nexrad data read from csv 

function get_nexrad_data() 

{ 

    nexrad_data_t = [] 

 

    for (var i = 0; i< nexrad_csv.length-1;i++) 

    { 

        nexrad_data_t.push({ 

            time: nexrad_csv[i].sweepTime, 

            reflectivity: nexrad_csv[i].value, 

            latitude: parseFloat(nexrad_csv[i].Latitude), 

            longitude: parseFloat(nexrad_csv[i].Longitude), 

            heightRel : parseFloat(nexrad_csv[i].HeightRel), 

            heightASL: parseFloat(nexrad_csv[i].HeightASL), 

        }); 

    } 

    plot_nexrad_data(); 

} 

 

 

//plot nexrad weather data 

function plot_nexrad_data() 

{ 
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    // create geojson object for the nexrad weather data point 

    nexrad_loc_t = []; 

    for (var i =0; i < nexrad_data_t.length; i ++) 

    { 

        nexrad_loc_t.push({ 

            type:'Feature', 

            geometry: 

            { 

                type:'Point', 

                coordinates:[Number(nexrad_data_t[i].longitude),Number(nexrad_data_t[i].latitude)] 

            }, 

            properties: 

            { 

                reflectivity: nexrad_data_t[i].reflectivity, 

            } 

        }); 

    } 

 

    //find the weather radar data layer by using 'sourceId', update the data layer  

    nexrad_geojson = { 

        'type' : 'FeatureCollection', 

        features:nexrad_loc_t, 

    }; 

    map.getSource('nexrad_points').setData(nexrad_geojson); 

} 


